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In this paper, we derive minimax rates for estimating both parametric and nonparametric components in
partially linear additive models with high dimensional sparse vectors and smooth functional components.
The minimax lower bound for Euclidean components is the typical sparse estimation rate that is inde-
pendent of nonparametric smoothness indices. However, the minimax lower bound for each component
function exhibits an interplay between the dimensionality and sparsity of the parametric component and the
smoothness of the relevant nonparametric component. Indeed, the minimax risk for smooth nonparametric
estimation can be slowed down to the sparse estimation rate whenever the smoothness of the nonparametric
component or dimensionality of the parametric component is sufficiently large. In the above setting, we
demonstrate that penalized least square estimators can nearly achieve minimax lower bounds.
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1. Introduction

In this paper, we consider high dimensional partially linear additive models:

Y = XT β0 +
J∑

j=1

fj (Zj ) + ε, (1.1)

where the Euclidean vector β0 ∈ R
p is sparse with p > n and fj : R �→ R are nonparametric

functions with possibly different smoothness. Assume J is fixed while sparsity and smoothness
parameters are known. Under this setting, minimax risks of estimation for both components are
derived. As a side note, we mention that the choice of model structure, that is, which covariate is
linear or nonlinear, can be determined by the method developed in Zhang, Cheng and Liu [27].

Without loss of generality, we assume J = 2 in this paper:

Y = XT β0 + f0(Z) + g0(U) + ε, (1.2)

where β0 ∈ R
p has at most s0 nonzero elements, and f0 and g0 belong to the αth and γ th or-

der Sobolev balls, respectively. The αth order Sobolev ball over [0,1], denoted as Wα,2(L1), is
defined as {f : [0,1] → R|J 2

α (f ) ≤ L2
1} for a constant L1 > 0, where J 2

α (f ) = ∫ 1
0 (f (α)(z))2 dz

with f (α) being the αth derivative of f . When the dimension of β0 is fixed or slowly increasing
(p < n), the above model has been extensively studied in the semiparametric literature, for ex-
ample, Härdle, Liang and Gao [5], Xie and Huang [23], Cheng, Zhang and Shang [3], while the
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high dimensional extension with p > n has been further considered in Müller and van de Geer
[10], Ma and Huang [8], Zhu [28]. Despite these literature, the minimax rates in estimating β0,
f0 and g0 remain unclear as far as we are aware.

First, we establish the minimax lower bound for estimating β0 as

Rβ0(s0, α, γ )� s0

n
log

(
p

s0

)
, (1.3)

up to a universal constant, based on i.i.d. observations {Yi,Xi,Zi,Ui}ni=1. It is worth noting
that the lower bound does not depend on nonparametric smoothness indices, say α and γ , and
coincides with the classical sparse estimation rate in the high dimensional linear models (Ye and
Zhang [24], Raskutti, Wainwright and Yu [14], Verzelen [22]). This result is similar in spirit to
the classical low dimensional result where the Euclidean part can be estimated at

√
n-rate even

in the presence of nuisance functions with slower rates; see Bickel et al. [1].
A somewhat surprising result is that the lower bounds for estimating f0 and g0 turn out to be

affected by the existence of β0:

Rf0(s0, α, γ )� max

(
n−2α/(2α+1),

s0

n
log

(
p

s0

))
, (1.4)

and

Rg0(s0, α, γ ) � max

(
n−2γ /(2γ+1),

s0

n
log

(
p

s0

))
. (1.5)

Such one-way interaction can be intuitively explained by the orthogonal decomposition (2.6).
An interesting consequence of (1.4) and (1.5) is that the best possible estimation of f0 and
g0 could be slowed down to the well known sparse estimation rate. To demonstrate this rate-
switching phenomenon, we plot a two regime dichotomy in Figure 1: (i) in the sparse regime
where f0 is sufficiently smooth or p is sufficiently high, the minimax risk lower bound becomes
s0 log(p/s0)/n; (ii) in the smooth regime where f0 is very rough or p is low, the lower bound
becomes the classical nonparametric rate n−2α/(2α+1) (Pinsker [13], Stone [16]). Note that a
similar phase transition phenomenon occurs in high dimensional additive nonparametric mod-
els but due to very different reasons; see Koltchinskii and Yuan [7], Raskutti, Wainwright and
Yu [15], Suzuki and Sugiyama [17], Yuan and Zhou [26]. We also note that the lower bound of
estimating f0 or g0 does not depend on the smoothness of the other nonparametric component.
This result essentially generalizes Horowitz, Klemelä and Mammen [6] who showed that, in an
additive nonparametric regression model, each component can be estimated (up to the first order
asymptotics) as well as if all the rest were known.

In contrast with the literature on sparse parametric or nonparametric estimation such as
Koltchinskii and Yuan [7], Ye and Zhang [24], Raskutti, Wainwright and Yu [14], Raskutti,
Wainwright and Yu [15], Suzuki and Sugiyama [17], Yuan and Zhou [26], we are not interested
in estimating the conditional mean function E(Y |X,Z1, . . . ,ZJ ) as a whole, but rather separate
minimax risk for each model component: β0, f0, g0. Note that our results are not directly implied
by the above papers where additive components are always assumed to share the same linear or
nonlinear structure with the same smoothness.
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Figure 1. The minimax lower bound is n−2α/(2α+1) when α,p, s0 and n fall into smooth regime. Other-
wise, the minimax lower bound is s0 log(p/s0)/n in the sparse regime.

In the end, we demonstrate that the penalized least square estimate for (β0, f0, g0) can almost
achieve the lower bounds established above. To obtain such estimation rates, we develop a series
of oracle inequalities that give more and more refined estimation errors for each model compo-
nent in the order of g,f and β (under the assumption that f is smoother than g), and then derive
the risk upper bounds by strengthening these oracle inequalities to their moment versions.

Notations. For any vector v ∈ R
n, we write its �1, Euclidean and �∞ norm as ‖v‖1 =∑n

i=1 |vi |, ‖v‖ =
√∑n

i=1 v2
i and ‖v‖∞ = max1≤i≤n |vi |, respectively, and also ‖v‖2

n := vT v/n.

With a bit abuse of notation, we define for any function f : Z �→ R that ‖f ‖ = √Ef 2(Z),
‖f ‖∞ = supz∈[0,1] |f (z)| and ‖f ‖2

n =∑n
i=1 f 2(Zi)/n. Let S0 be the set of all non-zero compo-

nents of β0 and s0 = |S0|. Define βS0 such that (βS0)j = βj 1{β0j 	= 0} and βSc
0
= β − βS0 , for

any β ∈ R
p . Thus, ‖β‖1 = ‖βS0‖1 + ‖βSc

0
‖1. For any x ∈ R, 
x� is the smallest integer that is

strictly greater than x. For real sequences an, bn, if an � bn (an � bn), then lim supan/bn ≤ C

(c ≤ lim supan/bn), for some constant C (constant c). If an � bn, then c ≤ lim infan/bn ≤
lim supan/bn ≤ C for some constant c,C. Also, we write an = O(bn) if |an| ≤ C|bn| for some
constant C > 0. In the sequel, c, c′,C,C′, . . . denote a generic constant which may differ at each
appearance.

2. Main results

2.1. Minimax lower bounds

In this section, we assume X is a mean zero Gaussian vector with variance matrix �, and the
errors {εi}ni=1 are i.i.d. standard Gaussian random variables independent of {Xi,Zi,Ui}ni=1. For
simplicity, we standardize X such that the diagonal of � consist of 1’s. Under this setting, we es-
tablish separate lower bounds on the minimax risk of estimating β0, f0 and g0. For identifiability
purpose, we assume Ef0(Z) = 0.
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We are ready to define the risk for estimating β0 as

Rβ0(s0, α, γ,�) := inf
β̂

sup
β0∈B[s0,p],f0∈Wα,2(L1),

g0∈Wγ,2(L2)

E
[‖β0 − β̂‖2], (2.1)

where B[s0,p] and Sp denote a set of p-dimensional vectors with at most s0 non-zero coordi-
nates and a set of p × p covariance matrices with 1’s on the diagonal, respectively. Since the
supremum of minimax risks with respect to all covariance matrices � is +∞, it only makes
sense to consider the infimum of minimax risks with respect to random designs:

Rβ0(s0, α, γ ) := inf
�∈Sp

Rβ0(s0, α, γ,�),

as indicated by Verzelen [22]. Similarly, we define the risk of estimating f0 as

Rf0(s0, α, γ ) := inf
�∈Sp

Rf0(s0, α, γ,�),

where

Rf0(s0, α, γ,�) = inf
f̂

sup
β0∈B[s0,p],f0∈Wα,2(L1),

g0∈Wγ,2(L2)

E

∫ 1

0

∣∣f̂ (z) − f0(z)
∣∣2 dz.

Rg0(s0, α, γ ) is defined similarly.
Our main result in this paper is on the minimax lower bound presented below. We start with

a version of the Fano’s lemma, that is, Corollary 2.19 in Massart [9], to be used in the proof.
Suppose that s = (β,f )′ ∈ S where S = R

p × F . The induced probability measure is written
as Ps . A finite subset of F is denoted as C1 and a finite subset of Rp is denoted as C2. Their
Cartesian product is denoted as C with the obvious cardinality |C| = |C1||C2|.

Lemma 2.1. We consider a set of statistical models {Ps, s ∈ S} where (S, d) is a pseudo-
metric space. Let κ be the absolute constant suggested in Corollary 2.18 of Massart [9].
Choose an arbitrary estimator ŝ = (β̂, f̂ ) of s and a finite subset C = C1 × C2 of S, such that
maxs,t∈C K(Ps,Pt ) ≤ κ log |C|. Then, setting δ = mins,t∈C

s 	=t

d(s, t), we have for any r ≥ 1

sup
s∈C

E
[
dr(s, ŝ)

]≥ 21−r δr (1 − κ).

Now, we always consider that sparsity s0 = nβ with 0 < β < 1. The dimensionality p can
either be a power of n, that is, p = nk for some k > 1, or be a subexponential case whereby
n = exp(nγ ) where 0 < γ < 1. In the second case, it is necessary to require that γ + β < 1 to
ensure that s0

n
log(

p
s0

) → 0 as n → ∞. In both cases, the following result is true.
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Theorem 2.2. Given n i.i.d. samples from (1.2), the minimax risk for estimating β0 can be
bounded from below as

Rβ0(s0, α, γ )� s0

n
log

(
p

s0

)
; (2.2)

the minimax risk for estimating f0 can be bounded from below as

Rf0(s0, α, γ )� max

(
n−2α/2α+1,

s0

n
log

(
p

s0

))
; (2.3)

moreover, the analogous result is also true for Rg0(s0, α, γ ), namely

Rg0(s0, α, γ )� max

(
n−2γ /2γ+1,

s0

n
log

(
p

s0

))
, (2.4)

respectively.

As is common in the literature, minimax lower bounds are obtained under the Gaussianity
assumption on both errors ε and the design matrix X. Such assumptions are meant to use known
results on functional distances between normal density functions; for example, Verzelen [22].

As discussed previously, these lower bound results indicate (i) the best possible estimation of
β0 is not affected by the existence of nonparametric components, and coincides with the sparse
estimation rate in high dimensional linear models; (ii) (the first order) minimax risk for estimating
one nonparametric component does not depend on the smoothness of another component, but on
the dimensionality and sparsity of the Euclidean parameter; see Figure 1. A similar lower bound
has been discovered in nonparametric additive models (Raskutti, Wainwright and Yu [15]) for the
entire conditional mean function

∑
j∈S hj0(Wj ), but with rather different interpretation: the term

s0 log(p/s0)/n reflects the difficulty of selecting the sample size needed to perform the subset
selection. Rather, this term here reflects the difficulty of selecting the p-dimensional vector β0

with s0 sparsity.

2.2. Nearly optimal estimators

In this section, we demonstrate that the penalized least square estimate for (β0, f0, g0) can al-
most achieve the lower bounds established in Theorem 2.2. To show such a result, we develop
a series of oracle inequalities that give more and more refined estimation errors for each model
component in the order of g,f and β (under the assumption that f is smoother than g), and then
derive the risk upper bounds by strengthening these oracle inequalities to their moment versions.
Similar proof strategy was adopted in Müller and van de Geer [10] and van de Geer and Muro
[20] to show oracle rates for parameters under partial linear models and nonparametric addi-
tive models, respectively. In comparison with Müller and van de Geer [10], our nonparametric
part possess an additive structure, and the linear covariates are relaxed from being bounded to
sub-Gaussian.
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Let (β̂, f̂ , ĝ) be an estimator of (β0, f0, g0) as follows:

(β̂, f̂ , ĝ) = arg min
β∈Rp,f ∈Wα,2(L1),g∈Wγ,2(L2)

{∥∥Y − XT β − f − g
∥∥2

n

+ λ‖β‖1 + ρ2J 2
α (f ) + μ2J 2

γ (g)
}
,

(2.5)

Without loss of generality, we assume that α ≥ γ .

Assumption A.1. The covariates X is a sub-Gaussian vector such that for any vector v ∈ R
p ,

vT X is sub-Gaussian. And it satisfies for some constant KX ≥ 1,

sup
v∈Rp :‖v‖=1

∥∥vT X
∥∥

�
≤ KX,

where ‖ · ‖� := inf{L > 0 : E�(ξ/L) < 1} with �(t) = exp(t2) − 1 is the Orlicz norm.

Assumption A.2. The error term ε is independent of (X,Z,U), and satisfies for some constant
Kε ≥ 1,

‖ε‖� ≤ Kε.

Let H = Wα,2(L1) ⊕ Wγ,2(L2) be a space of additive functions. For each 1 ≤ j ≤ p, define
the projection of Xj onto H as �(Xj |H)(Z,U) = arg minh∗∈H ‖Xj − h∗‖2. For simplicity,
we write ((�(X1|H)(Z,U), . . . , (�(Xp|H)(Z,U))T as πX|Z,U . Note that πX|Z,U ∈ R

p can be
written as a sum of fX(Z) + gX(U) where fXj

∈ Wα,2(L1) and gXj
∈ Wγ,2(L2) for 1 ≤ j ≤ p.

Further, we have the following useful decomposition:∥∥XT β + f + g
∥∥2 = ∥∥X̃T β

∥∥2 + ∥∥πT
X|Z,Uβ + f + g

∥∥2
, (2.6)

where X̃ = X − πX|Z,U is a random vector in R
p .

Assumption A.3. The smallest eigenvalue �2
min of EX̃X̃T is positive, and the largest eigenvalue

�2
max of E{πX|Z,UπT

X|Z,U } is finite.

Assumption A.3 is common in semiparametric literature, for example, Yu, Mammen and Park
[25], Müller and van de Geer [10]. It guarantees that

‖βS0‖2
1 ≤ (βT

EX̃T X̃β
)
s0/�

2
min.

Our next assumption implies separate rates for f and g from that for f + g. This is due
to ‖f + g‖2 ≥ (1 − γ0)(‖f ‖ + ‖g‖)2, given Ef0(Z) = 0, see Lemma 5.1 of van de Geer and
Muro [20]. Here, γ0 is related to the minimal angle between two Hilbert spaces Wα,2(L1) and
Wγ,2(L2), see A.4 of Bickel et al. [1], and formally defined as follows

γ 2
0 =

∫
(r − 1)2pZpU dν,
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where p = dPZU/dν is the density of PZU w.r.t. ν = νZ × νU with marginal densities pZ and
pU , and r(z, u) = p(z,u)/(pZ(z)pU (u)).

Assumption A.4. It holds that γ0 < 1.

We assume the projection fP (U) = E(f (Z)|U) to be smooth.

Assumption A.5. For some constant � > 0, it holds that, for any function f ∈ Wα,2(L1),

Jγ (fP ) ≤ �‖f ‖.

Remark. Assumptions A.1 requires X being sub-Gaussian, which relaxes the assumption that
the entries of X are uniformly bounded (say, by M > 0) in Müller and van de Geer [10]. In Müller
and van de Geer [10], the authors derive an upper bound on supβ,f |(Pn − P)XT βf | in terms of
M , and no other distributional information of X is needed in this upper bound (as far as we are
aware of). Our approach is more refined in that we bound supβ,f |(Pn − P)XT βf | in terms of
the Orlicz norm of the entries of X (see Assumption A.1), which in general can be much smaller
than M even when X is bounded. The relaxation of X from being bounded to sub-Gaussian also
leads to a more refined upper bound for supβ |PnεX

T β|. Such a relaxation on X is also needed
in proving the minimax lower bound. Assumption A.2 relaxes the errors from being standard
normal to sub-Gaussian, compared to Müller and van de Geer [10]. Condition 2.2 of van de Geer
and Muro [20] is not assumed as it holds up to a constant under our setting, see Lemma A.3 in
the Appendix.

Before presenting our second main theorem, we need a set of oracle inequalities that hold in
probability. Define the norm

τ(β,f, g;R) = λ
‖β‖1

δ0R
+ ∥∥XT β + f + g

∥∥+ ρJα(f ) + μJγ (g),

τI (β,f ;RI ) = λ
‖β‖1

δIRI

+ ∥∥X̃T β
∥∥+ ∥∥f T

X β + f
∥∥+ ρJα(f ),

for some constant δ0 > 0.

Lemma 2.3. Suppose Assumptions A.1–A.5 hold. Let

λ�
√

logp

n
, ρ2 � n− 2α

2α+1 , μ2 � n
− 2γ

2γ+1 and ρ2 ≤ μ2.

If there exist R and RI satisfying

4λ2s0

�2
min

≤ R2
I ≤ R2 ≤ λ ≤ 1, ρ2 ≤ δ2

I R
2
I

2(1 + � + L1 + Jα(f0))2
,

μ2 ≤ δ2
0R2

2(1 + � + L2 + Jγ (g0))2
,
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then it holds that

P
(
τ(β̂ − β0, f̂ − f0, ĝ − g0;R) ≤ R,τI (β̂ − β0, f̂ − f0;RI ) ≤ RI

)≥ 1 − C exp
(−nρ2/c

)
for some constants C,c > 0.

In particular, we can take R2 � μ2 +λ2s0 and R2
I � ρ2 +λ2s0. Then the first oracle inequality

gives an upper bound for the overall estimating rate of (β̂, f̂ , ĝ):

OP

(
max

(
n−2γ /(2γ+1), s0 logp/n

))
,

which implies the desirable estimation rate for ĝ. And the second one provides a tighter bound
for the estimating rate of (β̂, f̂ ):

OP

(
max

(
n−2α/(2α+1), s0 logp/n

))
,

which in turn implies the rate for f̂ .
We need a separate lemma to improve the rate of ‖β̂ − β0‖ to (nearly) minimax optimal level

s0 log(p)/n. This new Lemma 2.4 requires us to project X onto the additive space H.

Lemma 2.4. Assume conditions of Lemma 2.3 hold. Then there exists constants C′, c′ > 0 such
that with probability at least 1 − 7/(2p) − C′ exp(−c′nρ2),

∥∥X̃T (β̂ − β0)
∥∥2

n
+ (λ/2)‖β̂ − β0‖1 ≤ 4s0λ

2

�2
min

.

Lemma 2.4 has two important implications: (i) prediction error: ‖X̃T (β̂ − β0)‖2
n ≤

4s0λ
2/�2

min; (ii) �1 error: ‖β̂ − β0‖1 ≤ 8s0λ/�2
min. We note that these two rates are in the

same order as those standard lasso rates (as if f0 and g0 were known); see Bühlmann and
van de Geer [2]. However, the probability that these rates hold is comparatively smaller as re-
flected by an additional term exp(−c′nρ2). This is the price to pay for estimating two unknown
nonparametric functions in the model.

We are now ready to prove that (β̂, f̂ , ĝ) nearly achieve the minimax lower bounds established
in Theorem 2.2.

Theorem 2.5. Assume conditions of Lemma 2.3 hold. Then

E‖β̂ − β0‖2 � s0 logp

n
,

E

∫ 1

0

∣∣f̂ (z) − f0(z)
∣∣2 dz � max

(
n−2α/(2α+1),

s0 logp

n

)
,

and

E

∫ 1

0

∣∣̂g0(u) − g0(u)
∣∣2 du� max

(
n−2γ /(2γ+1),

s0 logp

n

)
.
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Appendix

In this section, we present all the technical details. Proofs for main lemmas, theorems and corol-
laries in Sections 2.1, 2.2 are presented in Sections A.1, A.2, respectively. Results from empirical
process theory are presented in Section A.3.

A.1. Proofs for Section 2.1

A.1.1. Proof of Theorem 2.2

Proof. It is easy to see that the minimax lower bound for estimating β0 trivially follows from
that for high dimensional linear models derived in Verzelen [22], that is, Rβ0(s0,�,α, γ ) ≥
infβ̂ supβ0∈B[s0,p] E[‖β0 − β̂‖2] (fixing f and g at their true values).

In what follows, we concentrate on the lower bound of the minimax risk for estimators of the
nonparametric component. Without loss of generality, we choose f0 for our discussion. To make
this proof easier, we start from partial linear models

Y = XT β0 + f0(Z) + ε, (A.1)

where β0 ∈ B[s0,p] and f0 ∈ Wα,2(L1), and will show the minimax risk for f0 is bounded from
below by

max

(
n−2α/(2α+1),

s0

n
log

(
p

s0

))
(A.2)

up to a universal constant, based on i.i.d. observations {Yi,Xi,Zi}ni=1.
In the model (A.1), define the minimax estimation risk for f0 as

Rf0(s0, α) = inf
�∈Sp

inf
f̂

sup
β0∈B[s0,p]

sup
f0∈Wα,2(L1)

E

∫ 1

0

∣∣f̂ (z) − f0(z)
∣∣2 dz.

The first part of lower bound, that is, n−2α/(2α+1), trivially follows from the following inequality
(assuming β taking its true value)

Rf0(s0, α) ≥ inf
�∈Sp

inf
f̂

sup
f0∈Wα,2(L1)

E

∫ 1

0

∣∣f̂ (z) − f0(z)
∣∣2 dz

and the classical nonparametric minimax rate.
Our method of obtaining minimax lower bounds on rates of convergence for estimators of the

nonparametric component is somewhat different from typical ones. It is based on the the Corol-
lary 2.19 from Massart [9], that represents a version of the classical Fano’s lemma. Specifically,
Massart [9] specifies that values of the unknown parameter are viewed as points in a pseudomet-
ric space (S, d) where d is the corresponding pseudometric. Note that both the coefficient β and
the function f are not known yet it is only the function f that is currently a quantity of interest.
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To help us handle this situation, we define a “real” pseudometric (the one that is not a metric)
between the two points of interest and use it to establish the lower bound. In this situation, defin-
ing the pseudometric between pairs (β1, f1) and (β2, f2) as the L2-distance between f1 and f2

works out well.
Now we need to establish the second part of the minimax lower bound, that is, s0 log(p/s0)/n.

Using the approach just described, we note that for two vectors s1 = (β1, f1)
′ and s2 = (β2, f2)

′
we can define a pseudometric d(s1, s2) := d1(f1, f2). It is easy to verify that all of the metric
properties are satisfied for d(s1, s2) except that, of course, it is possible to have d(s1, s2) = 0
while s1 	= s2; this, clearly, qualifies d as a pseudometric. Choosing r = 2 reduces the search for
the lower bound of sups∈C E[d2(s, ŝ)] to that of sups∈C E[d2

1 (f, f̂ )].
Our first step is, thus, to find

δ := min
s1,s2∈C
s1 	=s2

d1(f1, f2)

for an appropriate C. To define the set C, we start with selecting a set of test functions fjn and fkn

(note that they depend on n). To do so, first define a kernel function K0(u) = exp(− 1
1−u2 )I (|u| ≤

1) and take K(u) = aK0(2u) for a sufficiently small constant a > 0. For an integer m ≥ 1,
and k = 1, . . . ,m, select a set of points zk = k−1/2

m
that belong in [0,1]. For convenience, we

will also use the following notation: �0 = [0,1/m] and �k = [(k − 1)/m,k/m], where k =
2, . . . ,m. The choice of m will depend on n, s0, p and α. For brevity, we introduce the notation
δn := s0

n
log p

s0
where δn → 0 as n → ∞. Now we can define the cardinality of the partition of

[0,1] as m = n2α+1/(4α+1)δ
2α/(4α+1)
n ; the corresponding optimal bandwidth is defined as hn =

( δn

m
)1/2α+1. Note that the choices of hn and m that we made are sensible since one can easily show

that m → ∞ as n → ∞ while the bandwidth hn goes to zero as n → ∞ as well. This is true both
in the polynomial setting where p = nk and in subexponential setting where p = exp(nγ ). With
all of the elements in place, we can now define a function φk(z) = L1h

α
nK(

z−zk

hn
).

Second, consider a set of binary sequences � = {ω = (ω1, . . . ,ωm),ωi ∈ {0,1}}, and define
a set of functions F = {fω(z) =∑m

k=1 ωkφk(z),ω ∈ �}. First of all, we note that any function
fω ∈ F belongs, by construction, to Wα,2(L1). Second, we need to select test functions from
the set F ; however, in practice, in order to ensure that any two functions thus selected are sep-
arated by at least the required amount, a certain subset of the set F has to be used. Due to the
Varshamov–Gilbert lemma (see, e.g., Gilbert [4]) we can, indeed, find a subset of F , that is,
{fjn, j = 0, . . . ,M}, such that any two distinct functions in it are sufficiently well separated and
whose cardinality M is sufficiently large. More specifically, for any 0 ≤ j < k ≤ M , we have
fjn and fkn such that the squared L2 distance between the two functions is d2

1 (fjn, fkn) � δn

as long as logM ≥ log 2
8 m. This is done using a standard construction one can find in, for exam-

ple, Tsybakov [18]. To show that this is true, denote the binary sequences corresponding to fjn

and fkn as ω(j) and ω(1/2α), respectively, while the Hamming distance between them is denoted
ρ(ω(j),ω(1/2α)). By the Varshamov–Gilbert lemma, we have

‖fjn − fkn‖2
2 = L2

1h
2α+1
n ‖K‖2

2ρ
(
ω(j),ω(1/2α)

)≥ L2
1h

2α+1
n ‖K‖2

2
m

16
≥ Cδn.
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Define a finite set C that consists of s = (β,fjn)
′ where β is arbitrary while 0 ≤ j ≤ M ; in

other words, the set C consists of all vectors with an arbitrary parametric first coordinate and
one of the test functions we constructed as a second coordinate. The vectors thus constructed
are all distinct so, by Fano’s lemma, and using the pseudometric d , we immediately obtain that
sups∈C Es[d2(s, ŝ)] = sups∈C Es[d2

1 (f, f̂ )] ≥ Cδn as needed. Now it only remains to verify that
maxs,t∈C K(Ps,Pt ) ≤ κ log |C|. To do so, we first note that the cardinality of C, as defined, is M ;
using calculations very similar to those in Tsybakov [18] (pp. 115–116) we find that, for fixed
data points Z1, . . . ,Zn, we have maxs,t∈C K(Ps,Pt ) ≤ Cnh2α

n ≤ m for the hn we defined above.
By Varshamov–Gilbert inequality, it follows that m ≤ 8

log 2 logM and so the condition on the
Kullback–Leibler distance is satisfied as well. Thus, the statement has been proved for the partial
linear model.

Note that an interesting feature of our proof is the subtle way in which the bandwidth of the
test functions φk(z) and the cardinality of the set of these functions m depend on each other. The
bandwidth hn = (δn/m)1/2α+1 and m = n2α+1/(4α+1)δ

2α/(4α+1)
n where δn = (s0/n) log(p/s0)

guarantees the existence of the non-trivial lower bound due to Varshamov–Gilbert lemma. More-
over, it works for a wide range of dimensionalities p that includes both the polynomial setting
p = nk and subexponential p = exp(nγ ) with k, γ > 0. The precise selection of the relationship
between m and hn is what enables us to obtain the correct lower bound of the risk.

To carry these results over to the partial linear additive model (1.2), we need to consider a
nonparametric model without the linear component

Yi = A + f0(Zi) + g0(Ui) + εi, (A.3)

where A is a constant, Ef0(Z) = Eg0(U) = 0 for identifiability purposes, (Z,U) ∈ [0,1] ×
[0,1], and f0 ∈ Wα,2(L1) and g0 ∈ Wγ,2(L2). For the model (A.3), it is known (see, e.g.,
Horowitz, Klemelä and Mammen [6]) that the minimax risk of estimating f0 is n−2α/(2α+1),
which does not depend on γ . Specifically, this means that

inf
f̂

sup
g0∈Wγ,2(L2)

sup
f0∈Wα,2(L1)

E

∫ 1

0

∣∣f̂ (z) − f0(z)
∣∣2 dz ≥ Cn−2α/(2α+1)

for a generic constant C that does not depend on n. By the definition of Rf0(s0, α, γ ), this im-
mediately suggests that one lower bound of Rf0(s0, α, γ ) is n−2α/(2α+1). On the other hand, it is
also clear that (assuming g at its true value)

Rf0(s0, α, γ ) ≥ inf
f̂

sup
β0∈B[s0,p]

sup
f0∈Wα,2(L1)

E

∫ 1

0

∣∣f̂ (z) − f0(z)
∣∣2 dz.

Then, by the lower bound result for partial linear models, we know that (A.2) is another lower
bound for estimating f in partial linear additive models. This concludes our proof. �
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A.2. Proof for Section 2.2

A.2.1. Proof of Lemma 2.3

Before proving the lemma, we first present the following necessary notations.
For any normed linear space F , let d be a metric on the space F . For any t > 0, de-

fine N(t,F, d) as covering number of F and H(t,F, d) = logN(t,F, d) as entropy num-
ber of F . Let An be the set of all configurations An of n points within the support
of the joint density PXZU . For An ∈ An, ‖f ‖An,∞ := maxZ∈An |f (Z)|. Let H∞(t,F) =
supAn∈An

H(t,F,‖ · ‖An,∞), see van de Geer [19]. Further, we write

J∞(u,F) = C0 inf
δ>0

[
u

∫ 1

δ/4

√
H∞(tu/2,F) dt + √

nδu

]
.

For arbitrary constants R0 > 0 and M0 > 0, we denote Wα,2(R0,M0) = {f ∈ Wα,2(L1) : ‖f ‖ ≤
R0, Jα(f ) ≤ M0} and Wγ,2(R0,M0) = {g ∈ Wγ,2(L2) : ‖g‖ ≤ R0, Jγ (g) ≤ M0}. Therefore, it
holds that for R0 ≤ M0 and some constants AI ≥ 1 and AJ ≥ 1

J∞
(
z,Wα,2(R0,M0)

)≤ AIM
1/2α

0 z1−1/2α, (A.4)

and

J∞
(
z,Wγ,2(R0,M0)

)≤ AJ M
1/2γ

0 z1−1/2γ .

For some δ0 > 0 small enough, define

M(R) = {(β,f, g) : τ(β,f, g;R) ≤ R,β ∈ R
p,f ∈ Wα,2(L1), g ∈ Wγ,2(L2)

}
,

T1(R) =
{

sup
M(R)

∣∣∥∥XT β + f + g
∥∥2

n
− ‖XT β + f + g ‖2

∣∣≤ δ2
0R2
}
,

T2(R) =
{

sup
M(R)

∣∣Pn

(
ε
(
XT β + f + g

))∣∣≤ δ2
0R2
}
,

and

T (R) = T1(R) ∩ T2(R). (A.5)

Let fXP (·) = E(fX(Z)|U = ·) and fXA = fX − fXP . For any f ∈ Wα,2(L1), write fP (·) =
E(f (Z)|U = ·) and fA = f − fP . For δI sufficiently small, define

MI (RI ) = {(β,f ) : τI (β,f ;RI ) ≤ RI ,β ∈R
p,f ∈ Wα,2(L1)

}
,

TI,1(RI ) =
{

sup
(β,f )∈MI (RI )

∣∣∥∥X̃T β + f T
XAβ + fA

∥∥2
n
− ∥∥X̃T β + f T

X β + fA

∥∥2∣∣≤ δ2
I R

2
I

}
,

TI,2(RI ) =
{

sup
(β,f )∈MI (RI )

∣∣Pn

(
ε
(
X̃T β + f T

XAβ + fA

))∣∣≤ δ2
I R

2
I

}
,
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TI,3(RI ) =
{

sup
(β,f,g)∈M(R),(β,f )∈MI (RI )

∣∣Pn

(
X̃T β + f T

XAβ + fA

)(
f T

XP β + gT
Xβ + fP + g

)∣∣
≤ δ2

I R
2
I

}
,

and

TI (RI ) = TI,1(RI ) ∩ TI,2(RI ) ∩ TI,3(RI ). (A.6)

To prove Lemma 2.3, we first show in Lemma A.1 that τ(β̂ − β0, f̂ − f0, ĝ − g0;R) ≤ R

on T (R). The probability of T (R) is estimated in Lemma A.4. We next show τI (β̂ − β0, f̂ −
f0;RI ) ≤ RI on the set T (R) ∩ TI (RI ) in Lemma A.5, whereas the probability of TI (RI ) is
estimated in Lemma A.6. Lemmas A.2 and A.3 are technical Lemmas in order to show Lemmas
A.4 and A.6.

Lemma A.1. Under the conditions of Lemma 2.3, we have, on T (R),

τ(β̂ − β0, f̂ − f0, ĝ − g0;R) ≤ R.

Proof. Take δ0 ≤ 1/30. Under the conditions of Lemma 2.3, we can find ρ and μ such that

ρ2J 2
α (f0) + μ2J 2

γ (g0) ≤ δ2
0R2, (A.7)

and

4λ2s0/�
2
min ≤ R2

I ≤ R2. (A.8)

Define

t = R

R + τ(β̂ − β0, f̂ − f0, ĝ − g0;R)
.

Let β̃ = t β̂ +(1− t)β0, f̃ = t f̂ +(1− t)f0, g̃ = t ĝ+(1− t)g0. Notice that τ(β̃ −β0, f̃ −f0, g̃−
g0;R) = tτ (β̂ − β0, f̂ − f0, ĝ − g0;R) ≤ R, which implies (β̃ − β0, f̃ − f0, g̃ − g0) ∈ M(R).
In order to show τ(β̂ − β0, f̂ − f0, ĝ − g0;R) ≤ R, it suffices to prove τ(β̃ − β0, f̃ − f0, g̃ −
g0;R) ≤ R/2.

By the convexity, we have∥∥Y − XT β̃ − f̃ − g̃
∥∥2

n
+ λ‖β̃‖1 + ρ2J 2

α (f̃ ) + μ2J 2
γ (g̃)

≤ ∥∥Y − XT β0 − f0 − g0
∥∥2

n
+ λ‖β0‖1 + ρ2J 2

α (f0) + μ2J 2
γ (g0).

Together with (A.7), it further implies∥∥XT (β̃ − β0) + (f̃ − f0) + (g̃ − g0)
∥∥2

n
+ λ‖β̃‖1 + ρ2J 2

α (f̃ ) + μ2J 2
γ (g̃)

≤ 2Pn

(
ε
(
XT (β̂ − β0) + (f̂ − f0) + (ĝ − g0)

))+ λ‖β0‖1 + δ2
0R2.

(A.9)
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Therefore, by the definition of T1(R) and T2(R),

∥∥XT (β̃ − β0) + (f̃ − f0) + (g̃ − g0)
∥∥2 + λ‖β̃SC

0
‖1 + ρ2J 2

α (f̃ ) + μ2J 2
γ (g̃)

≤ δ2
0R2 + δ2

0R2 + 2δ2
0R2 + λ‖β0‖1 − λ‖β̃S0‖1

≤ 4δ2
0R2 + λ‖β0S0

− β̃S0‖1.

(A.10)

Note that

λ‖β0S0
− β̃S0‖1 ≤ λ

√
s0‖β0S0

− β̃S0‖
≤ λ

√
s0‖β̃ − β0‖

≤ λ
√

s0
∥∥X̃T (β̃ − β0)

∥∥/�min

≤ λ2s0/�
2
min + ∥∥X̃T (β̃ − β0)

∥∥2
/4

≤ δ2
0R2/4 + ∥∥X̃T (β̃ − β0)

∥∥2
/4,

(A.11)

where the third inequality holds by Assumption A.3, the fourth inequality follows from uv ≤
u2 + v2/4, and the last one is due to (A.8). Thus, substituting (A.11) into (A.10), we ob-
tain

(a) (3/4)‖XT (β̃ −β0)+ (f̃ − f0)+ (g̃ − g0)‖2 ≤ (17/4)δ2
0R2, by orthogonal decomposition

(2.6);
(b) ρ2J 2

α (f̃ ) ≤ (17/4)δ2
0R2;

(c) μ2J 2
γ (g̃) ≤ (17/4)δ2

0R2.

Now it follows from (a) that ‖XT (β̃ − β0) + (f̃ − f0) + (g̃ − g0)‖ ≤ (
√

17/
√

3)δ0R. In addi-
tion, (b), (c) and (A.7) imply

ρI (f̃ − f0) ≤ ρJα(f̃ ) + ρJα(f0) ≤
√

17

2
δ0R + 2δ0R ≤ √

17δ0R

and (
μ

R

) 2−q
q

J 2
γ (g̃ − g0) ≤

√
17

2
δ0R + 2δ0R ≤ √

17δ0R.

Adding λ‖β0S0
− β̃S0‖1 on both sides of (A.10), we get ‖XT (β̃ −β0)+ (f̃ −f0)+ (g̃ −g0)‖2 +

λ‖β̃ − β0‖1 + ρ2J 2
α (f̃ ) + μ2J 2

γ (g̃) ≤ 4δ2
0R2 + 2λ‖β0S0

− β̃S0‖1 ≤ 4δ2
0R2 + ‖X̃T (β̂ − β0)‖2 +

1
4δ2

0R2, which further implies

λ‖β̃ − β0‖1 ≤ 17

4
δ2

0R2.
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Invoking the definition of τ(·), we finally get

τ(β̃ − β0, f̃ − f0, g̃ − g0;R) ≤ (
√

17/
√

3 + 2
√

17 + 17/4)δ0R ≤ 15δ0R ≤ 1

2
R,

by letting δ0 ≤ 1/30. �

Lemma A.2. Given ξi,1 ≤ i ≤ n are i.i.d. random sub-Gaussian vectors with covariance ma-
trix �

P

(
sup

β∈B(s0,p)

(
βT ( 1

n

∑n
i=1 ξiξ

T
i )β

βT �β
− 1

)
> C

(√
t + s0 logp

n
+ t + s0 logp

n

))
≤ exp(−t).

where C > 0 is a constant not depending on n.

This lemma follows the same reasoning as Lemma 1 of Nickl and van de Geer [11].

Lemma A.3 (Gagliardo–Nirenberg–Sobolev inequality). For α ≥ 1, there exists a constant
Cα ≥ 1 such that

sup
f ∈Wα,2(R0,M0)

‖f ‖∞ ≤ Cα(R0 + M0).

Remark. The inequality above is standard for Sobolev spaces consisting of functions that
vanish at the endpoints 0 and 1, or of 1-periodic functions. In our paper, the Sobolev space
Wm,2(R0,M0) consists of functions that are (one-sided) differentiable at the endpoints (such as
splines), therefore differs slightly from the commonly used definition. For such Sobolev space,
we had not been able to locate a proof in the literature, therefore include here a proof for readers’
convenience.

Proof of Lemma A.3. Fix x ∈ [0,1]. Using Taylor’s theorem, we can write for any t ∈ [0,1]
f (x) = f (t) + Qα−1(x, t) + Rα(x, t),

where

Qα−1(x, t) = f ′(t)(x − t) + · · · + f (α−1)(t)

(α − 1)! (x − t)α−1

and

Rα(x, t) =
∫ x

t

f (α)(s)

(α − 1)! (x − s)α−1 ds

is the Lagrange remainder. Averaging over t , we obtain

f (x) =
∫ 1

0
f (t) dt +

∫ 1

0
Qα−1(x, t) dt +

∫ 1

0
Rα(x, t) dt.
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It is easy to see that∣∣∣∣∫ 1

0
f (t) dt

∣∣∣∣≤ ‖f ‖ ≤ R0,

∣∣∣∣∫ 1

0
Rm(x, t) dt

∣∣∣∣≤ ∥∥f (m)
∥∥≤ M0.

For the middle term, we have∣∣∣∣∫ 1

0
Qm−1(x, t) dt

∣∣∣∣≤ ∥∥f ′∥∥∞ + · · · + ‖f (m−1)‖∞
(m − 1)! .

So it suffices to show

sup
f ∈Wm,2(R0,M0)

∥∥f (k)
∥∥∞ ≤ Cm(R0 + M0), 1 ≤ k ≤ m − 1. (A.12)

The proof of (A.12) is by induction on m − k = 1, . . . ,m − 1. The base case is k = m − 1. By
averaging over suitable kth order finite differences of f , we have

min
x∈[0,1]

∣∣f (k)(x)
∣∣≤ Cm‖f ‖ ≤ CmR0. (A.13)

Suppose the minimum is attained at x0, that is,∣∣f (k)(x0)
∣∣= min

x∈[0,1]
∣∣f (k)(x)

∣∣.
Then, for any x ∈ [0,1], we can write

f (k)(x) = f (k)(x0) +
∫ x

x0

f (k+1)(t) dt.

Thus, ∣∣f (k)(x)
∣∣≤ ∣∣f (k)(x0)

∣∣+ ∥∥f (k+1)
∥∥.

Combining (A.13) and the bound on ‖f (k+1)‖, this implies∥∥f (k)
∥∥∞ ≤ Cm(R0 + M0).

By induction, the same bound holds for k < m − 1, with the same argument. This establishes
(A.12), and the proof of Lemma A.3 is complete. �

Lemma A.4. Under the conditions of Lemma 2.3, we have for some constants C̃ > 0, c̃ > 0,
P(T (R)) ≥ 1 − C̃ exp(−c̃nρ2).

Proof. We first introduce some necessary notations and preliminary results. Note that τ(β,f, g;
R) ≤ R implies that ‖XT β + f + g‖2 ≤ R2 and ‖β‖1 ≤ δ0R

2/λ, Jα(f ) ≤ R/ρ, Jγ (g) ≤ R/μ.
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By the orthogonal decomposition (2.6), we have ‖X̃T β‖ ≤ R and ‖f T
X β + f + gT

Xβ + g‖ ≤ R.
Then Assumption A.3 implies∥∥XT β

∥∥≤ ∥∥X̃T β
∥∥+ ∥∥πT

X|Z,Uβ
∥∥≤ R + (�max/�min)

∥∥X̃T β
∥∥≤ (1 + �max/�min)R.

Similar arguments and Assumption A.4 imply that both ‖f ‖ and ‖g‖ are bounded by (1 +
�max/�min)R/

√
(1 − γ0), that is, R/

√
1 − γ1, for simplicity, we write it as R1. Define M2 =

R/ρ, M3 = R/μ. In particular, we can choose ρ2 ≤ 1 − γ1 and μ2 ≤ 1 − γ1, where 1 − γ1 =
(1 − γ0)/(1 + �max/�min)

2. Then it follows from Lemma A.3 that supf ∈Wα,2(R1,M2)
‖f ‖∞ ≤

CαM2 and supg∈Wγ,2(R1,M3)
‖g‖∞ ≤ Cγ M3, with the fact R1 ≤ M2 and R1 ≤ M3. Further, we

find a constant L > 1 such that the following hold:

√
nρ

2α+1
2α ≥ LAI ,

√
nμ

2γ+1
2γ ≥ LAJ , R ≥ μ ≥ ρ,

ρ1/2α ≤ 1/L,
√

s0 logp/n ≤ 1/L.

(A.14)

Now, we are ready to apply empirical process theory stated in Section A.3 to show that with
probability at least 1 − 6 exp(−nρ2/L), the event T1(R) holds. Without loss of generality, we
take C1 = 1 in Theorem A.11; otherwise we can replace in L = LC1 in the proof. Note that for
any (β,f, g), it holds∣∣∥∥XT β + f + g

∥∥2
n
− ‖XT β + f + g ‖2

∣∣
≤ ∣∣∥∥XT β

∥∥2
n
− ∥∥XT β

∥∥2∣∣+ ∣∣‖f ‖2
n − ‖f ‖2

∣∣+ ∣∣‖g‖2
n − ‖g‖2

∣∣+ ∣∣2(Pn − P)XT βf
∣∣

+ ∣∣2(Pn − P)XT βg
∣∣+ ∣∣2(Pn − P)fg

∣∣
�A + B + C + D + E + F.

(A.15)

We bound each of the terms over the set M(R) as follows.

A. Note that

sup
(β,f,g)∈M(R)

∣∣∥∥XT β
∥∥2

n
− ∥∥XT β

∥∥2∣∣
= sup

(β,f,g)∈M(R)

∣∣∣∣∣1n
n∑

i=1

βT XiX
T
i β − βT �β

∣∣∣∣∣
= sup

(β,f,g)∈M(R)

(
βT �β

)∣∣∣∣∣1n
n∑

i=1

βT XiX
T
i β

βT �β
− 1

∣∣∣∣∣
≤ R2

1

∣∣∣∣∣1n
n∑

i=1

βT XiX
T
i β

βT �β
− 1

∣∣∣∣∣.
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Note that

P

(∣∣∣∣∣1n
n∑

i=1

βT XiX
T
i β

βT �β
− 1

∣∣∣∣∣> C

(√
t + s0 logp

n
+ t + s0 logp

n

))
≤ exp(−t)

for some constant C > 0. Therefore, by taking t = nρ2/L2, we have

sup
(β,f,g)∈M(R)

∣∣∥∥XT β
∥∥2

n
− ∥∥XT β

∥∥2∣∣≤ 2CR2
1(ρ/L + 1/L). (A.16)

B . Replace R∗ and K∗ by R1 and CαM2, and let t = nρ2/L2 in Theorem A.11. Note that

J∞
(
CαM2,W

α,2(R2,M2)
)≤ AI (R/ρ)1/2α(CαR/ρ)1−1/2α

≤ CαAIR/ρ

≤ Cα

(√
nρ(2α+1)/2α/L

)
(R/ρ)

≤ √
nCαR/L,

(A.17)

where the first inequality follows from A.4, the third one and the last one follow from
(A.14) and L > 1.

Then we have with probability at least 1 − exp(−nρ2/L),

sup
(β,f,g)∈M(R)

∣∣‖f ‖2
n − ‖f ‖2

∣∣
≤ 2R1J∞(CαM2,W

α,2(R1,M2))√
n

+ R1(CαM2)
ρ

L

+ 4J 2∞(CαM2,W
α,2(R1,M2))

n
+ (CαM2)

2 ρ2

L2

≤ (2R1R/L + R1R/L + 4(R/L)2 + (R/L)2)C2
α

≤ 8C2
αR2

1/L,

(A.18)

where (A.18) follows from (A.17).
C. Replace R∗

1 and K∗
1 by R1 and Cγ M3, and let t = nρ2/L2 in Theorem A.11. By similar

arguments as (A.17), together with (A.14), it shows that

J∞
(
Cγ M3,W

γ,2(R3,M3)
)≤ √

nCγ R/L. (A.19)
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Then we have with probability at least 1 − exp(−nρ2/L),

sup
(β,f,g)∈M(R)

∣∣‖g‖2
n − ‖g‖2

∣∣
≤ 2R1J∞(Cγ M3,W

γ,2(R1,M3))√
n

+ R1(Cγ M3)
ρ

L

+ 4J 2∞(Cγ M3,W
γ,2(R1,M3))

n
+ (Cγ M3)

2 ρ2

L2

≤ (2R1R/L + R1R/L + 4(R/L)2 + (R/L)2)C2
γ

≤ 8C2
γ R2

1/L,

(A.20)

where (A.20) follow from (A.19) and (A.14).
D. Write Wi = βT Xi/‖β‖, for 1 ≤ i ≤ n. Then we have

sup
(β,f,g)∈M(R)

∣∣(Pn − P)
(
XT βf

)∣∣= sup
(β,f,g)∈M(R)

‖β‖
∣∣∣∣∣1n

n∑
i=1

Wif (Zi)

∣∣∣∣∣,
where ‖β‖ ≤ ‖X̃β‖/�min ≤ R/�min on the set M(R). Note that {Wi,1 ≤ i ≤ n} are i.i.d.
sub-Gaussian with Orlicz norm bounded by KX . Then it follows from Theorem 3.2 of van
de Geer [19]

P

(
sup

f ∈Wα,2(R1,M2)

∣∣∣∣∣1n
n∑

i=1

Wif (Zi)

∣∣∣∣∣> 2J∞(KXCαM2,W
α,2(R1,M2)) + KXCαM2

√
t

n

)
≤ exp(−t).

(A.21)

By substituting t = nρ2/L2, together with (A.17), we have D ≤ (2KX +2)CαR2/(L�min)

with probability at least 1 − exp(−nρ2/L2).
E. Similarly as D, we have E ≤ ‖β‖ sup(β,f,g)∈M(R) | 1

n

∑n
i=1 Wig(Ui)|, where

P

(
sup

g∈Wγ,2(R1,M3)

∣∣∣∣∣1n
n∑

i=1

Wig(Ui)

∣∣∣∣∣> KXJ∞(2Cγ M3,W
γ,2(R1,M3)) + KXCγ M3

√
t

n

)
≤ exp(−t).

By substituting t = nρ2/L2, together with (A.19), we have E ≤ (2KX +2)Cγ R2/(L�min)

with probability at least 1 − exp(−nρ2/L2).
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F. Replace R∗
1 ,R∗

2 ,K∗
1 ,K∗

2 by R1,R1,CαM2,Cγ M3, and let t = nρ2/L2 in Theorem A.12.
Note that

J∞
(
Cγ M3,W

γ,2(R1,M2)
)≤ AI (R/ρ)1/2γ (Cγ R/μ)1−1/2γ

≤ AI (R/ρ)1/2γ (Cγ R/ρ)1−1/2γ

≤ √
nCγ R/L.

(A.22)

where the first inequality follows from (A.4), the second one and the last one are from
(A.14). Then we obtain with probability at least 1 − exp(−nρ2/L),

sup
(β,f,g)∈M(R)

∣∣(Pn − P)fg
∣∣ (A.23)

≤ R1J∞(Cγ M3,W
γ,2(R1,M3))√

n
+ R1J∞(R1(Cγ M3)/R1,W

α,2(R1,M2))√
n

+ R1(Cγ M3)ρ

L
+ CαM2Cγ M3ρ

2

L2

≤ (R1R/L + R1R/L + R1R/L2 + R2/L2)CαCγ (A.24)

≤ 4CαCγ R2
1/L,

where (A.24) is implied by (A.22) and (A.14).

Combining A to F and with suitably chosen L, we obtain,

sup
(β,f,g)∈M(R)

∣∣∥∥XT β + f + g
∥∥2

n
− ‖XT β + f + g ‖2

∣∣≤ δ2
0R2.

with probability at least 1 − 6 exp(−nρ2/L).
Next, we are going to show with probability at least 1−3 exp(−nρ2/L), the event T2(R) hold.

Note that |Pnε(X
T β + f + g)| ≤ |Pnε(X

T β)| + |Pnεf | + |Pnεg|. Note that

sup
(β,f,g)∈M(R)

∣∣Pnε
(
XT β

)∣∣≤ sup
(β,f )∈M(R)

‖β‖
∣∣∣∣∣1n

n∑
i=1

Wiεi

∣∣∣∣∣. (A.25)

Again, we notice that {Wi,1 ≤ i ≤ n} are i.i.d. sub-Gaussian and {εi,1 ≤ i ≤ n} are i.i.d. sub-
Gaussian. It follows from Bernstein’s inequality that

P

(∣∣∣∣∣1n
n∑

i=1

Wiεi

∣∣∣∣∣> C(
√

t/n + t/n)

)
≤ exp(−t).

By taking t = nρ2/L2 and together with the fact that ρ ≤ R, we have

sup
(β,f,g)∈M(R)

∣∣Pnε
(
XT β

)∣∣≤ C(R/�min)(2ρ/L) ≤ C(R/�min)(2R/L),
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with probability at least 1 − exp(−nρ2/L). In addition, it follows from Theorem 5.2 of van de
Geer and Muro [20], A.4 and (A.14) that

sup
(β,f,g)∈M(R)

|Pnεf | ≤ KεJ∞(R1,W
α,2(R1,M2)) + KεR1

√
t√

n

≤ KεAIR√
n(1 − γ1)(1−1/2α)/2ρ(1/2α)

+ R2

√
1 − γ1L

≤ R2

L(1 − γ1)(1−1/2α)/2
+ R2

L
√

1 − γ1
≤ 2R2

L
√

1 − γ1
,

and

sup
(β,f,g)∈M(R)

|Pnεg| ≤ KεJ∞(R1,W
γ,2(R1,M3)) + KεR1

√
t√

n

≤ KεAJ M
γ

3 R1−1/2γ

√
n(1 − γ1)(1−1/2γ )/2

+ R2

√
1 − γ1L

≤ R2

L(1 − γ1)(1−1/2γ )/2
+ R2

L
√

1 − γ1
≤ 2R2

L
√

1 − γ1
.

Therefore, with a suitably chosen L, we have

sup
(β,f,g)∈M(R)

∣∣Pnε
(
XT β + f + g

)∣∣≤ δ2
0R2,

with probability at least 1 − 3 exp(−nρ2/L). Recalling the probability of T1(R), we have shown
that for some constants C̃ > 0, c̃ > 0, P(T (R)) ≥ 1 − C̃ exp(−c̃nρ2). �

Lemma A.5. Under the conditions of Lemma 2.3, it holds that on T (R) ∩ TI (RI ), τI (β̂ −
β0, f̂ − f0;RI ) ≤ RI .

Proof. Under the conditions of Lemma 2.3, we can find some ρ and μ such that

ρ2J 2
α (f0) + μ2J 2

γ (g0) ≤ δ2
0R2, ρ2J 2

α (f0) ≤ δ2
I R

2
I , (A.26)

2μ2(� + L2δ0RI/λ)(2δ0R/μ) ≤ δIR
2
I , μ2(� + L2δ0RI/λ)2 ≤ δ2

I (A.27)

for some δ0, δI > 0, which will be taken small enough later.
By the definition of (β̂, f̂ , ĝ), we have∥∥Y − XT β̂ − f̂ − ĝ

∥∥2
n
+ λ‖β̂‖1 + ρ2I 2(f̂ ) + J 2

γ (ĝ)

≤ ∥∥Y − XT β0 − f0 − (ĝ + fXP (β̂ − β0) + gX(β̂ − β0) + f̂P − f0P

)∥∥2
n
+ λ‖β0‖1

+ ρ2J 2
α (f0) + μ2J 2

γ

(
ĝ + fXP (β̂ − β0) + gX(β̂ − β0) + f̂P − f0P

)
,
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which implies∥∥X̃(β̂ − β0) + f T
XA(β̂ − β0) + f̂A − f0A

∥∥2
n
+ ρ2J 2

α (f̂ )

≤ −2Pn

((
(fXP + gX)T (β̂ − β0) + f̂P − f0P + ĝ − g0

)(
(X̃ + fXA)T (β̂ − β0) + f̂A − f0A

))
+ 2Pn

(
ε
(
X̃ + f T

XA(β̂ − β0) + f̂A − f0A

))+ λ‖β0‖1 + ρ2J 2
α (f0) − μ2J 2

γ (ĝ)

+ μ2J 2
γ

(
ĝ + fXP (β̂ − β0) + gX(β̂ − β0) + f̂P − f0P

)
.

Let

t = RI

RI + τI (β̂ − β0, f̂ − f0;RI )
.

Define β̃ = t β̂ + (1 − t)β0, f̃ = t f̂ + (1 − t)f0, f̃A = t f̂A + (1 − t)f0A. Note that (β̃, f̃ ) ∈
TI (RI ). Similarly as the proof of Lemma A.1, it suffices to show that τI (β̃ − β0, f̃ − f0;RI ) ≤
RI/2.

By convexity and the definition of TI (RI ), we have∥∥X̃(β̃ − β0) + f T
XA(β̃ − β0) + f̃A − f0A

∥∥2 + λ‖β̃‖1 + ρ2J 2
α (f̃ )

≤ 5R2
I + λ‖β0‖1 + ρ2J 2

α (f0)

+ μ2J 2
γ

(
g̃ + fXP (β̃ − β0) + gX(β̃ − β0) + f̃P − f0P

)− μ2J 2
γ (g̃).

Notice that

J 2
γ

(
g̃ + fXP (β̃ − β0) + gX(β̃ − β0) + f̃P − f0P

)− J 2
γ (g̃)

= 2Jγ (g̃)Jγ

(
f T

XP (β̃ − β0) + gT
X(β̃ − β0) + f̃P − f0P

)
+ J 2

γ

(
f T

XP (β̃ − β0) + gT
X(β̃ − β0) + f̃P − f0P

)
≤ 2Jγ (g̃)

(
Jγ

(
gT

X(β̃ − β0)
)+ Jγ

(
f T

XP (β̃ − β0) + f̃P − f0P

))
+ (Jγ

(
gT

X(β̃ − β0)
)+ Jγ

(
f T

XP (β̃ − β0) + f̃P − f0P

))2
≤ 2Jγ (g̃)

(∥∥Jγ (gX)
∥∥∞‖β̃ − β0‖1 + �

∥∥fX(β̃ − β0) + f̃ − f0
∥∥)

+ (∥∥Jγ (gX)
∥∥∞‖β̃ − β0‖1 + �

∥∥fX(β̃ − β0) + f̃ − f0
∥∥)2

≤ 2

(
2δ0R

μ

)(
L2

δ0R
2
I

λ
+ �RI

)
+
(

L2
δ0R

2
I

λ
+ �RI

)2

≤ 2δ2
I R

2
I /μ

2.

where the fourth inequality follows from J (g̃) ≤ (2δ0R/μ) on T (R), Assumptions A.4, A.5 and
the fact ‖fX(β̃ − β0) + f̃ − f0‖ ≤ RI on TI (RI ). The last step follows from (A.27).
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Hence, we have∥∥X̃T (β̃ − β0)
∥∥2 + ∥∥f T

XA(β̃ − β0) + f̃A − f0A

∥∥2 + λ‖β̃‖1 + ρ2J 2
α (f̃ )

≤ 8δ2
I R

2
I + λ‖β0‖1.

(A.28)

Subtracting λ‖β̃S0‖1 on both sides of (A.28), we get∥∥X̃T (β̃ − β0)
∥∥2 + ∥∥f T

XA(β̃ − β0) + f̃A − f0A

∥∥2 + λ‖β̃Sc
0
‖1 + ρ2J 2

α (f̃ )

≤ 8δ2
I R

2
I + λ‖β̃S0 − β0S0

‖1,

(A.29)

where λ‖β̃S0 − β0S0
‖1 ≤ λ

√
s0‖β0S0

− β̃S0‖1 ≤ λ
√

s0‖β̃ − β0‖1 ≤ λ
√

s0‖X̃T (β̃ − β0)‖/�min ≤
λ2s0/4�2

min + ‖X̃T (β̃ − β0)‖2 ≤ δ2
I R

2
I + ‖X̃T (β̃ − β0)‖2. Therefore,∥∥f T

XA(β̃ − β0) + f̃A − f0A

∥∥2 + λ‖β̃Sc
0
‖1 + ρ2J 2

α (f̃ ) ≤ 9δ2
I R

2
I .

It holds

(a′) ‖f T
XA(β̃ − β0) + f̃A − f0A‖ ≤ 3δIRI which further implies∥∥f T

X (β̃ − β0) + f̃ − f0
∥∥≤ 3δIRI /

√(
1 − γ 2

);
(b′) ρI (f̃ − f0) ≤ ρI (f̃ ) + ρI (f0) ≤ (3 + 1)δIRI ≤ 4δIRI together with equation (A.26).

Note that by using λ‖β̃S0 − β0S0
‖1 ≤ λ2s0/(2�2

min) + ‖XT (β̃ − β0)‖2/2, we can also obtain

(c′) ‖X̃T (β̃ − β0)‖ ≤ √
18δIRI .

Now, adding λ‖β̃0S0
− β0S0

‖1 on both sides of (A.29), we get∥∥XT (β̃ − β0)
∥∥2 + ∥∥f T

XA(β̃ − β0) + f̃A − f0A

∥∥2 + λ‖β̃ − β0‖1 + ρ2J 2
α (f̃ )

≤ 8δ2
I R

2
I + 2λ‖β̃S0 − β0S0

‖1 ≤ 8δ2
I R

2
I + λ2s0/�

2
min + ∥∥XT (β̃ − β0)

∥∥2
,

which implies that

(d ′) λ‖β̃ − β0‖1 ≤ 9δ2
I R

2
I .

Combining (a′) − (d ′) and recalling the form of τI (β̃ − β0, f̃ − f0;RI ), we obtain

τI (β̃ − β0, f̃ − f0;RI ) ≤ ((√18 + 16)/

√
1 − γ 2

)
δIRI ≤ 1

2
RI ,

given that δI ≤√1 − γ 2/(2(
√

18 + 16)). This completes the proof of the lemma. �

Lemma A.6. Under the conditions of Lemma 2.3, there exist constants CI and cI , such that

P
(
TI (RI )

)≥ 1 − CI exp
(−cI nρ

2).
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Proof. Note that on the set TI (RI ), we have ‖f ‖2 ≤ (1 + �max/�
′
min)R

2
I , I (f ) ≤ RI/ρ,

‖X̃T β‖ ≤ RI and ‖β‖1 ≤ δ0R
2
I /λ, where �′

min is defined as the smallest eigenvalue of
E(fXf T

X ). Also we have ‖g‖2 ≤ (1 + �max/�min)R
2/(1 − γ0) and J (g) ≤ R/μ. Now, we let

R′2
1 = R′2

2 = (1 + �max/�
′
min)R

2
I � R2

I /(1 − γ1) and R′2
3 = (1 + �max/�min)R

2/(1 − γ0) �
R2/(1 − γ2), M ′

1 = δIR
2
I /λ, M ′

2 = RI/ρ and M ′
3 = R/μ. In particular, we can choose ρ2 ≤

1 − γ1 and μ2 ≤ 1 − γ2. Then Lemma A.3 yields that supf ∈Wα,2(R′
2,M

′
2)

‖f ‖∞ ≤ CαM ′
2 and

supg∈Wα,2(R′
3,M

′
3)

‖g‖∞ ≤ Cγ M ′
3. Let L be the constant as in the proof of Lemma A.4. Further,

we restrict ρ,μ,R and RI as follows

RI ≥ RAJ /(
√

nμ), RI ≥ ρ, RI ≥ Rρ/μ. (A.30)

This can be achieved under the assumptions that ρ2 � R2
I ≤ R2 and μ2 � R2. We take t =

nρ2/L2 throughout this proof.
We first look at TI,1(RI ) and show that with probability at least 1 − 3 exp(−nρ2/L), the event

TI,1(RI ) holds. Note that∥∥X̃T β + f T
XAβ + fA

∥∥2
n
− ∥∥X̃T β + f T

XAβ + fA

∥∥2

≤ ∣∣∥∥X̃T β + f T
XAβ

∥∥2
n
− ∥∥X̃T β + f T

XAβ
∥∥2∣∣

+ ∣∣‖fA‖2
n − ‖fA‖2

∣∣+ ∣∣(Pn − P)
(
X̃T β + f T

XAβ
)
fA

∣∣
� A′ + B ′ + C′.

We bound A′,B ′,C′ as follows, respectively.

A′. Recall that fXP (·) = E(fX(Z)|U = ·) ∈ Wγ,2(L2) and fXA = fX − fXP . We have
fX,fXA,fP being bounded, therefore sub-Gaussian. Also we have ‖X̃T β + f T

XAβ‖2 ≤
2R′2

1 . Applying Lemma A.2 and similar arguments as (A.16), we obtain

sup
(β,f )∈MI (RI )

∣∣∥∥X̃T β + f T
XAβ

∥∥2
n
− ∥∥X̃T β + f T

XAβ
∥∥2∣∣≤ 2R′2

1

(‖X̃T β + f T
XAβ‖2

n

‖X̃T β + f T
XAβ‖ − 1

)
,

which is smaller than 4CR
′2
1 /L for some absolute constant C > 0 with probability at least

1 − exp(−nρ2/L).
B ′. Note that

sup
f ∈Wα,2(R′

2,M
′
2)

‖fA‖∞ ≤ sup
f ∈Wα,2(R′

2,M
′
2)

‖fP ‖∞ + sup
f ∈Wα,2(R′

2,M
′
2)

‖f ‖∞ ≤ 2M ′
2

and supf ∈Wα,2(R′
2,M

′
2)

‖fA‖ ≤ R′
2. Replace R∗ and K∗ by R′

2 and 2CαM ′
2 in Theo-

rem A.11. Note that

J∞
(
2CαM ′

2,
{
fA : f ∈ Wα,2(R′

2,M
′
2

)})≤ J∞
(
2CαM ′

2,W
α,2(R′

2,M
′
2

))
≤ 2

√
nR

/
IL.

(A.31)
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Similarly as (A.18), we then have

B ′ ≤ 2R′
2J∞(2CαM ′

2, {fA : f ∈ Wα,2(R′
2,M

′
2)})√

n
+ 2R′

2CαM ′
2
ρ

L

+ 4J 2∞(2CαM ′
2, {fA : f ∈ Wα,2(R′

2,M
′
2)})

n
+ 4C2

αM
′2
2

ρ2

L2

≤
(

8R2
I

L
√

(1 − γ1)
+ 8R2

I

L
√

(1 − γ1)
+ 64R2

I

L2
+ 4R2

I

L

)
C2

γ ≤ 84Cγ R2
I

L
√

(1 − γ1)
,

where the second inequality follows from (A.31).
C′. Write W ′

i = βT (X̃+fXA)/‖β‖,1 ≤ i ≤ n, which are i.i.d. sub-Gaussian with Orlicz norm
bounded by, say K ′

X > 1.

sup
(β,f )∈MI (RI )

∣∣(Pn − P)
(
X̃T β + f T

XAβ
)
fA

∣∣= sup
(β,f )∈MI (RI )

‖β‖
∣∣∣∣∣1n

n∑
i=1

W ′
i fA(Zi,Ui)

∣∣∣∣∣,
where ‖β‖ ≤ ‖X̃β‖/�min ≤ RI/�min on the set MI (RI ). Similarly as (A.21), we have

sup
f ∈Wα,2(R′

2,M
′
2)

∣∣∣∣∣1n
n∑

i=1

W ′
i fA(Zi,Ui)

∣∣∣∣∣
>

2J∞(2K ′
XCγ M ′

2, {fA : f ∈ Wα,2(R′
2,M

′
2)}) + 2K ′

XCγ M ′
2

√
t√

n

holds with probability ≤ exp(−t). Substituting t = nρ2/L, together with (A.31), we have

sup
(β,f )∈MI (RI )

∣∣(Pn − P)
(
X̃T β + f T

XAβ
)
fA

∣∣≤ Cγ (RI /�min)
(
6K ′

XRI/L
)
. (A.32)

Combining A′ to C′, with L large enough, we can have

sup
(β,f )∈MI (RI )

∣∣∥∥X̃T β + f T
XAβ + fA

∥∥2
n
− ∥∥X̃T β + f T

XAβ + fA

∥∥2∣∣≤ δ2
I R

2
I

with probability at least 1 − 3 exp(−nρ2/L).
Next, we show with probability at least 1 − 2 exp(−nρ2/L), the event TI,2(RI ) holds. Notice

that |Pn(ε(X̃
T β + f T

XAβ + fA))| ≤ |Pnε(X̃
T β + f T

XAβ)| + |PnεfA|, where for some absolute
constant C > 0,

sup
(β,f )∈MI (RI )

∣∣Pnε
(
X̃T β + f T

XAβ
)∣∣= sup

(β,f )∈MI (RI )

‖β‖
∣∣∣∣∣1n

n∑
i=1

W ′
i εi

∣∣∣∣∣≤ 2CR2
I /(�minL),
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follows from similar arguments as (A.25). Further, Theorem 5.2 of van de Geer and Muro [20],
A.4 and equation (A.30) shows

|PnεfA| ≤ KεJ∞(R′
2, {fA : f ∈ Wα,2(R′

2,M
′
2)}) + KεR

′
2

√
t√

n

≤ 2KεJ∞(R′
2,W

α,2(R′
2,M

′
2)) + KεR

′
2

√
t√

n

≤ 2KεAIRI√
n(1 − γ1)(1−1/2α)/2ρ(1/2α)

+ R2
I√

1 − γ1L

≤ 2R2
I

L(1 − γ1)(1−1/2α)/2
+ R2

I√
1 − γ1L

≤ 3R2
I√

1 − γ1L
.

Thus, we have for some suitably chosen L > 0,

sup
(β,f )∈MI (RI )

∣∣Pnε
(
X̃T β + f T

XAβ + fA

)∣∣≤ δ2
I R

2
I

with probability at least 1 − 2 exp(−nρ2/L).
Finally, we show with probability at least 1−4 exp(−nρ2/L), the event TI,3(RI ) holds. Notice

that E(X̃T β + f T
XAβ + fA)(f T

XP β + gT
Xβ + fP + g) = 0. Then we get

∣∣Pn

(
X̃T β + f T

XAβ + fA

)(
f T

XP β + gT
Xβ + fP + g

)∣∣
≤ ∣∣(Pn − P)

((
X̃T β + f T

XAβ
)(

f T
XP β + gT

Xβ
))∣∣+ ∣∣(Pn − P)

(
X̃T β + f T

XAβ
)
(fP + g)

∣∣
+ ∣∣(Pn − P)

((
f T

XP β + gT
Xβ
)
fA

)∣∣+ ∣∣(Pn − P)
(
fA(fP + g)

)∣∣
� A′′ + B ′′ + C′′ + D′′.

It is noted that ‖X̃T β + f T
XAβ‖ ≤ R′

1, ‖X̃T β + f T
XAβ‖∞ ≤ 2M ′

1, ‖f T
XP β + gT

Xβ‖ ≤ R′
1,

‖fP + g‖ ≤ ‖fP ‖ + ‖g‖ ≤ R′
2 + R′

3 ≤ 2R′
3, J (fP + g) ≤ J (fP ) + J (g) ≤ �‖f ‖ + (R/μ) ≤

�RI + (R/μ) ≤ 4M ′
3. Then we apply Theorem A.12 for A′′,B ′′,C′′,D′′, respectively. Each of

the following terms holds with probability at least 1 − exp(−nρ2/L).

A′′. Note that

sup
(β,f,g)∈M(R),(β,f )∈MI (RI )

∣∣(Pn − P)
((

X̃T β + f T
XAβ

)(
f T

XP β + gT
Xβ
))∣∣

≤ sup
(β,f,g)∈M(R),(β,f )∈MI (RI )

‖β‖2
∣∣∣∣(Pn − P)

(
βT (X̃ + fXA)

‖β‖
βT (fXP + gX)

‖β‖
)∣∣∣∣,
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where both βT (X̃+fXA)
‖β‖ and βT (fXP +gX)

‖β‖ are sub-Gaussian. Therefore, by Bernstein’s in-
equality, we have for some constant C > 0.

P

(∣∣∣∣(Pn − P)

(
βT (X̃ + fXA)

‖β‖
βT (fXP + gX)

‖β‖
)∣∣∣∣> C(

√
t/n + t/n)

)
≤ exp(−t).

By taking t = nρ2/L and recalling that sup(β,f )∈MI (RI ) ‖β‖2 ≤ R2
I /�

2
min, we can have

with probability 1 − exp(−nρ2/L), that

sup
(β,f,g)∈M(R),(β,f )∈MI (RI )

∣∣(Pn −P)
((

X̃T β +f T
XAβ

)(
f T

XP β +gT
Xβ
))∣∣≤ 2CR2

I /
(
L�2

min

)
.

B ′′. Recall the definition of W ′. We have

sup
(β,f,g)∈M(R),(β,f )∈MI (RI )

∣∣(Pn − P)
(
X̃T β + f T

XAβ
)
(fP + g)

∣∣
= sup

(β,f,g)∈M(R),(β,f )∈MI (RI )

‖β‖∣∣(Pn − P)W ′(fP + g)
∣∣.

Note that on the set MI (RI ) ∩ M(R), we have fP + g ∈ Wγ,2(2R′
3,4M ′

3). Further it
follows from A.4 and (A.30) that

J∞
(
4Cγ M ′

3,W
γ,2(2R′

3,4M ′
3

))≤ AJ R/μ ≤ √
nCγ RI /L

and M ′
3ρ/L ≤ RI/L. Therefore, similarly as the proof of (A.32), we can have with prob-

ability at least 1 − exp(−nρ2/L), that

sup
(β,f,g)∈M(R),(β,f )∈MI (RI )

∣∣(Pn−P)
(
X̃T β+f T

XAβ
)
(fP +g)

∣∣≤ Cγ (RI /�min)
(
12K ′

XRI/L
)
.

C′′. Write W ′′ = (f T
XP β + gT

Xβ)/‖β‖, which is sub-Gaussian with Orlicz norm bounded by
K

′′
X . Now we have

∣∣(Pn − P)
((

f T
XP β + gT

Xβ
)
fA

)∣∣= ‖β‖∣∣(Pn − P)W ′′fA

∣∣.
Similarly to the proof of ((A.21)), (A.32), we can have with probability at least 1 −
exp(−nρ2/L),

sup
(β,f )∈MI (RI ),(β,f,g)∈M(R)

‖β‖∣∣(Pn − P)W ′′fA

∣∣≤ Cα(RI /�min)
(
10K

′′
XRI/L

)
.
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D′′. Similar to the proof of (A.23), we have

D′′ ≤ R′
2J∞(4Cγ M ′

3,W
γ,2(2R′

3,4M ′
3))√

n

+ 2R′
3J∞(R′

2(4Cγ M ′
3)/2R′

3, {fA : f ∈ Wα,2(R′
2,M

′
2)})√

n

+ R′
2(4Cγ M ′

3)ρ

L
+ (2CαM ′

2)(4Cγ M ′
3)ρ

2

L2

≤
(

RI√
1 − γ1

4RI

L
+
(√

1 − γ2√
1 − γ1

)1−1/2α 8R(1/2α)

√
1 − γ2

AI (R/μ)1−1/2αRIρ√
nρ1+1/2α

+ RI√
1 − γ1

4(R/μ)ρ

L
+ 2RI

ρ

4(R/μ)ρ2

L2

)
CαCγ

≤ 18CαCγ R2
I√

1 − γ1(
√

1 − γ2)1/2αL
.

Therefore, by choosing L large enough, we can have with probability at least 1 −
4 exp(−nρ2/L),

sup
(β,f,g)∈M(R),(β,f )∈MI (RI )

∣∣Pn

(
X̃T β + f T

XAβ + fA

)(
f T

XP β + gT
Xβ + fP + g

)∣∣≤ δ2
I R

2
I ,

by letting L large enough. Now, we conclude that there exists constant CI and cI , such that

P
(
TI (RI )

)≥ 1 − CI exp
(−cI nρ

2). �

Proof of Lemma 2.3. This proof simply follows from the following inequality

P
(
T (R) ∩ TI (RI )

)≥ 1 − P
(
T c(R)

)− P
(
T c

I (RI )
)

and Lemmas A.4 and A.6. �

A.2.2. Proof of Lemma 2.4

We start from the main proof of Lemma 2.4, followed by some necessary lemmas.

Proof. Recall that πX|Z,U = fX + gX . By the definition of (β̂, f̂ , ĝ), we have∥∥Y − XT β̂ − f̂ − ĝ
∥∥2

n
+ λ‖β̂‖1 + ρ2J 2

α (f̂ ) + μ2J 2
γ (ĝ)

≤ ∥∥Y − XT β0 − (f̂ + f T
X (β̂ − β0)

)− (ĝ + gT
X(β̂ − β0)

)∥∥2
n

+ λ‖β0‖1 + ρ2J 2
α

(
f̂ + f T

X (β̂ − β0)
)

+ μ2J 2
γ

(
ĝ + gT

X(β̂ − β0)
)
.
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That implies ∥∥X̃(β̂ − β0)
∥∥2

n
+ λ‖β̂‖1 + ρ2J 2

α (f̂ ) + μ2J 2
γ (ĝ)

≤ 2
∣∣Pnε

(
X̃T (β̂ − β0)

)∣∣+ 2
∣∣Pn(f̂ − f0 + ĝ − g0)X̃

T (β̂ − β0)
∣∣

+ 2
∣∣Pn

(
f T

X (β̂ − β0) + gT
X(β̂ − β0)

)
X̃T (β̂ − β0)

∣∣+ λ‖β0‖1

+ ρ2J 2
α

(
f̂ + f T

X (β̂ − β0)
)+ μ2J 2

γ

(
ĝ + gT

X(β̂ − β0)
)
.

(A.33)

From Lemmas A.7–A.10, we know that with probability 1−7/(2p)−c exp(−Cnρ2) for some
constant c,C > 0, (A.33) can be further reduced to∥∥X̃(β̂ − β0)

∥∥2
n
+ λ‖β̂‖1 ≤ (λ/2)‖β̂ − β0‖1 + λ‖β0‖1.

Hence, Noting that ‖β̂‖1 = ‖β̂S0‖1 + ‖β̂Sc
0
‖1 and ‖β0‖1 = ‖β0S0

‖1, we get ‖X̃(β̂ − β0)‖2 +
1
2λ‖β̂Sc

0
‖1 ≤ λ

2 ‖β̂S0 − β0S0
‖1 + λ

2 ‖β̂Sc
0
− β0Sc

0
‖1 + λ‖β0S0

‖1 − λ‖β̂S0‖1 − λ
2 ‖β̂Sc

0
‖1 ≤ 3λ

2 ‖β̂S0 −
β0S0

‖1. This gives

2
∥∥X̃(β̂ − β0)

∥∥2
n
+ λ‖β̂ − β0‖1

= 2
∥∥X̃(β̂ − β0)

∥∥2
n
+ λ‖β̂Sc

0
‖1 + λ‖β̂Sc

0
− β0Sc

0
‖1

≤ 4λ‖β̂S0 − β0S0
‖1 ≤ 4λ

√
s0‖β̂ − β0‖ ≤ 4λ

√
s0

�min

∥∥X̃(β̂ − β0)
∥∥

≤ ∥∥X̃(β̂ − β0)
∥∥2 + 4λ2s0

�2
min

≤ ∥∥X̃(β̂ − β0)
∥∥2

n
+ 4λ2s0

�2
min

+ λ

2
‖β̂ − β0‖1.

Therefore, ∥∥X̃(β̂ − β0)
∥∥2

n
+ λ

2
‖β̂ − β0‖1 ≤ 4λ2s0

�2
min

. �

Lemma A.7. With probability at least 1 − 1/p,

2
∣∣Pnε

(
X̃T (β̂ − β0)

)∣∣≤ 4
√

6KX̃Kε

√
log(2p)

n
‖β̂ − β0‖1 ≤ λ

10
‖β̂ − β0‖1

for some constant KX̃ > 1.

Proof. First, we have ∣∣Pnε
(
X̃T (β̂ − β0)

)∣∣≤ ∥∥PnεX̃
T
∥∥∞‖β̂ − β0‖1.
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Assumption A.2 that E exp(ε2
i /K

2
ε ) ≤ 2 implies E exp(tεi) ≤ exp(3K2

ε t/2), see Vershynin
[21]. Then we get

E exp

(
t

(
1

n

n∑
i=1

εiX̃ij

))
=

n∏
i=1

E exp

(
t

n
X̃ij εi

)
≤

n∏
i=1

exp

(
3

2
K2

ε

(
t2

n2
X̃2

ij

))

= exp

(
3

2
K2

ε

t2

n
‖X̃j‖2

n

)
,

which implies given X̃ fixed, for t > 0 and all j ,

P

{∣∣∣∣∣1n
n∑

i=1

εiX̃ij

∣∣∣∣∣>
√

t

n
2‖X̃j‖n

√
3

2
Kε

}
≤ exp(−t),

see Vershynin [21]. Hence,

P

{
max

1≤j≤p

∣∣∣∣∣1n
n∑

i=1

εiX̃ij

∣∣∣∣∣>
√

t + logp

n
2‖X̃j‖n

√
3

2
Kε

}
≤ exp(−t).

Note that πX|Z,U = fX(Z) + gX(U) with fX ∈ Wα,2(L1) and gX ∈ Wγ,2(L2). Therefore,
we have X̃ = X − πX|Z,U is sub-Gaussian. Then by Bernstein’s inequality, we have for some
constant KX̃ ≥ 1 that

P

{
max

1≤j≤p

∣∣‖X̃j‖2
n −E‖X̃j‖2

n

∣∣≥ KX̃

√
log(2p)

n

}
≤ 1/(2p),

which further implies

P

{
max

1≤j≤p
‖X̃j‖2

n ≥ 2KX̃

}
≤ P

{
max

1≤j≤p
‖X̃j‖2

n ≥ E‖X̃j‖2
n + KX̃

√
log(2p)

n

}
≤ 1/(2p), (A.34)

Now take t = log(2p). With probability at least 1 − 1/p,

∥∥PnεX̃
T
∥∥∞ ≤ √

6
√

2KX̃Kε

√
2 log(2p)

n
.

Noting that λ�
√

logp/n, we can have 2‖PnεX̃
T ‖∞ ≤ 4

√
6KX̃Kε

√
log(2p)/n ≤ λ/10. �

Lemma A.8. With probability at least 1−5/(2p)−C exp(−nρ2/c) for some constants c,C > 0,

2
∣∣Pn(f̂ − f0 + ĝ − g0)X̃

T (β̂ − β0)
∣∣+ 2

∣∣Pn

(
f T

X (β̂ − β0) + gT
X(β̂ − β0)

)
X̃T (β̂ − β0)

∣∣
≤ λ

10
‖β̂ − β0‖1,∣∣∥∥X̃(β̂ − β0)

∥∥2
n
− ∥∥X̃(β̂ − β0)

∥∥2∣∣≤ λ

2
‖β̂ − β0‖1.



High dimensional partially linear additive model 1319

Proof. On the set T (R), we have∣∣Pn(f̂ − f0 + ĝ − g0)X̃
T (β̂ − β0)

∣∣≤ (∥∥Pn(f̂ − f0 + ĝ − g0)X̃
T
∥∥∞
)‖β̂ − β0‖1

≤ max
1≤j≤p

(∣∣∣∣∣1n
n∑

i=1

(f̂ − f0 + ĝ − g0)iX̃ij

∣∣∣∣∣
)

‖β̂ − β0‖1.

Note that given X̃, we have for each 1 ≤ j ≤ p,∣∣(f̂ − f0 + ĝ − g0)iX̃ij

∣∣≤ 2R/
√

1 − γ2|X̃ij |.

By Lemma 14.15 of Bühlmann and van de Geer [2], we have

P

{
max

1≤j≤p

∣∣∣∣∣1n
n∑

i=1

(f̂ − f0 + ĝ − g0)iX̃ij

∣∣∣∣∣
≥ max

1≤j≤p

√
(2R/

√
1 − γ2)2

∑n
i=1 X̃2

ij

n

√
2

(
t2 + log(p)

n

)}
≤ exp

(−nt2).
Take t2 = δ2

3ρ2 for some δ3 > 0. Again by (A.34) and noticing that δ3ρ >
√

logp/n, we have
that with probability at least 1 − 1/(2p) − exp(−nδ3ρ

2),

max
1≤j≤p

∣∣∣∣∣1n
n∑

i=1

(f̂ − f0 + ĝ − g0)iX̃ij

∣∣∣∣∣≤√2KX(2R/
√

1 − γ2)2δ3μ.

Therefore, by choosing δ3 suitably small, we can have

max
1≤j≤p

∣∣∣∣∣1n
n∑

i=1

(f̂ − f0 + ĝ − g0)iX̃ij

∣∣∣∣∣≤ λ/20.

Next, note that∣∣∣∣∣1n
n∑

i=1

(
(fX + gX)T (β̂ − β0)

)
i
X̃ij

∣∣∣∣∣
≤
∣∣∣∣∣1n

n∑
i=1

p∑
k=1

(fX + gX)ik(β̂ − β0)kX̃ij

∣∣∣∣∣≤
∣∣∣∣∣

p∑
k=1

(β̂ − β0)k

(
1

n

n∑
i=1

(fX + gX)ikX̃ij

)∣∣∣∣∣
≤ ‖β̂ − β0‖1 max

1≤k≤p

∣∣∣∣∣1n
n∑

i=1

(fX + gX)ikX̃ij

∣∣∣∣∣≤ δ0
R2

λ
max

1≤k≤p

∣∣∣∣∣1n
n∑

i=1

(fX + gX)ikX̃ij

∣∣∣∣∣,
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where E(fX +gX)ikX̃ij = 0 and |(fX +gX)ikX̃ij | ≤ M0|X̃ij | conditional on X̃. By Lemma 14.15
in Bühlmann and van de Geer [2], we obtain that given X̃,

P

(
max

1≤j≤p
max

1≤k≤p

∣∣∣∣∣1n
n∑

i=1

(fX + gX)ikX̃ij

∣∣∣∣∣≥ max
1≤j≤p

√
M2

0

∑n
i=1 X̃2

ij

n

√
2

(
t2 + 2 log 2p

n

))

≤ exp
(−nt2).

Similarly, letting t2 = log(2p)/n and revoking (A.34) gives

P

(
max

1≤j≤p
max

1≤k≤p

∣∣∣∣∣1n
n∑

i=1

(fX + gX)ikX̃ij

∣∣∣∣∣>√2KXM0

√
log 2p

n

)
≤ 1/p.

Choose λ > 2KXM0
√

log(2p)/n. We finally get with probability at least 1 − 1/p,

2
∣∣Pn

(
f T

X (β̂ − β0) + gT
X(β̂ − β0)

)
X̃T (β̂ − β0)

∣∣≤ δ0R
2‖β̂ − β0‖1

which can be smaller than λ
20‖β̂ − β0‖1 by taking suitable choices of δ0.

Now, we show the second part of the lemma. Similarly, we have on the set T (R),

∣∣∥∥X̃(β̂ − β0)
∥∥2

n
− ∥∥X̃(β̂ − β0)

∥∥2∣∣≤ δ0
R2

λ
max

1≤k,j≤p

∣∣∣∣∣1n
n∑

i=1

(X̃ikX̃jk −EX̃ikX̃jk)

∣∣∣∣∣‖β̂ − β0‖1,

where X̃ikX̃jk −EX̃ikX̃jk is sub-exponential. By Bernstein’s inequality, we have for some con-
stant KX̃ that

P

(
max

1≤j,k≤p

∣∣∣∣∣1n
n∑

i=1

(X̃ikX̃jk −EX̃ikX̃jk)

∣∣∣∣∣> KX̃

√
log 2p

n

)
≤ 1/(2p).

Therefore, by choosing λ > 2δ0KX̃

√
log 2p/n, we have |‖X̃(β̂ − β0)‖2

n − ‖X̃(β̂ − β0)‖2| ≤
λ‖β̂ − β0‖1/2, with probability at least 1 − 1/(2p). Recalling the probability of T (R) from
Lemma A.4, this lemma is proved. �

Lemma A.9. Assume

ρ2 ≤ δ2
0R2

2(L1 + Jα(f0))L1
.

Then on the set T (R),

∣∣ρ2J 2
α

(
f̂ + f T

X (β̂ − β0)
)− ρ2J 2

α (f̂ )
∣∣≤ λ

10
‖β̂ − β0‖1.
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Proof.

ρ2J 2
α

(
f̂ + f T

X (β̂ − β0)
)− ρ2J 2

α (f̂ ) = ρ2[J 2
α

(
f T

X (β̂ − β0)
)+ 2Jα(f̂ , f T

X (β̂ − β0)
]

≤ ρ2 δ0R
2

λ
L2

1‖β̂ − β0‖1 + 2Jα(f̂ )Jα(f T
X (β̂ − β0)

≤
[
δ0ρ

2L2
1 + 2ρ2

(
R

ρ
+ Jα(f0)

)
L1

]
‖β̂ − β0‖1

≤
(

1

2
δ3

0R2 +
√

2

2
δ0R

2 + δ2
0R2
)

‖β̂ − β0‖1

≤ 3δ0R
2‖β̂ − β0‖1,

where the first equality follows from definition of Jα(·), the second inequality follows from

Assumption A.5 and ‖β̂ − β0‖1 ≤ δ0R
2

λ
on T (R), and the third one is true due to triangular

inequality. Choosing δ0 such that 3δ0R
2 ≤ λ/10, we get the desired result. �

Lemma A.10. Assume

μ2 ≤ δ2
0R2

(L2 + Jγ (g0))L2
. (A.35)

Then on the set T (R),

∣∣μ2J 2
γ

(
ĝ + gT

X(β̂ − β0)
)− μ2J 2

γ (ĝ)
∣∣≤ λ

10
‖β̂ − β0‖1

Proof.

μ2J 2
γ

(
ĝ + gT

X(β̂ − β0)
)− μ2J 2

γ (ĝ) ≤ μ2(2J (ĝ)J
(
gT

X(β̂ − β0)
)+ 2J 2

γ

(
gT

X(β̂ − β0)
))

Note that J (gT
X(β̂ − β0)) ≤ L2‖β̂ − β0‖1 by Assumption A.5 and ‖β̂ − β0‖1 ≤ δ0R

2

λ
on T (R).

We have

μ2J 2
γ

(
ĝ + gT

X(β̂ − β0)
)− μ2J 2

γ (ĝ) = μ2[2Jγ (ĝ, gT
X(β̂ − β0) + J 2

γ

(
gT

X(β̂ − β0)
)]

≤ μ2(2(R/μ + Jγ (g0)
)
L2‖β̂ − β0‖1 + L2

2‖β̂ − β0‖2
1

)
≤
(

2δ0R
2 + 2δ2

0R2 + δ2
0R2
(

δ0R
2

λ

))
‖β̂ − β0‖1

≤ 5δ0R
2‖β̂ − β0‖1,

where the first inequality follows from definition and the second one follows from the condition
(A.35). Choosing δ0 such that 5δ0R

2 ≤ λ/10, we get the desired result. �
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A.2.3. Proof of Theorem 2.5

Proof. Let λ = 4
√

logp/n, ρ2 = n−2α/(2α+1), μ2 = n−2γ /(2γ+1). And recall that R2 � μ2 +
λ2s0 and R2

I � ρ2 + λ2s0. It follows from the definition of (β̂, f̂ , ĝ) that

‖Y − Xβ̂ − f̂ − ĝ‖2
n + λ‖β̂‖1 + ρ2J 2

α (f̂ ) + μ2J 2
γ (ĝ)

≤ ∥∥Y − XT β0 − f0 − g0
∥∥2

n
+ λ‖β0‖1 + ρ2J 2

α (f0) + μ2J 2
γ (g0).

(A.36)

We first show the risk bound for β̂ . Triangle inequality and (A.36) imply

λ‖β̂ − β0‖1 ≤ λ‖β̂‖1 + λ‖β̂0‖1 ≤ ‖ε‖2
n + 2λ‖β0‖1 + ρ2J 2

α (f0) + μ2J 2
γ (g0),

which further implies for any k ≥ 1,

E‖β̂ − β0‖k ≤ E‖β̂ − β0‖k
1 ≤ E

(‖ε‖2
n/λ + ‖β0‖1 + ρ2J 2

α (f0)/λ + μ2J 2
γ (g0)/λ

)k
.

Note that n‖ε‖2
n follows chi-squared distribution with degree of freedom n. Thus, we have

E‖ε‖(1/2α)
n = O(1). Also we have that ‖β0‖1 = O(

√
s0). Therefore, it follows that

E‖β̂ − β0‖k ≤ E‖β̂ − β0‖k
1 ≤ O(1/λ + √

s0)
k.

Define the set T1 = {‖X̃(β̂ − β0)‖2 ≤ λ2s0}. Then it’s known from the proof of Lemma 2.4
that P(T c

1 ) ≤ c/p4 + c exp(−nρ2/c) for some constant c > 0. Hence, we have

E‖β̂ − β0‖2 = E‖β̂ − β0‖21T1 +E‖β̂ − β0‖21T c
1

≤ O
(
λ2s0

)+√E‖β̂ − β0‖4
√
P
(
T c

1

)
≤ O

(
λ2s0

)+ O
(
1/λ2 + s0

)√
exp
(−nρ2

)+ 1/p4

≤ O
(
λ2s0

)
.

The last inequality holds due to the following arguments,

(i) (1/λ2)
√

exp(−n1/(2α+1)) = O(λ2s0), since n2 exp(−n1/(2α+1)) = O(s0 log2 p);
(ii) (1/λ2)(1/p2) = O(λ2s0), since 1 = O((p2s0 log2 p)/n2);

(iii) s0
√

exp(−n1/(2α+1)) = O(λ2s0), since n exp(−n1/(2α+1)) = O(logp);
(iv) s0(1/p2) = O(λ2s0), since 1 = O((p2 logp)/n).

We next show the estimation risk for f̂ . Define T2 = {τ(β̂ − β0, f̂ − f0, ĝ − g0;R) ≤
R,τI (β̂ − β0, f̂ − f0;RI ) ≤ RI }. Note that f̂ ∈ W 2,α(L1), then together with (A.36), it im-
plies that, for some constant C > 0, supz∈[0,1] |f̂ (z)−f0(z)|2 ≤ CJ 2

α (f̂ −f0) = C
∫ 1

0 (f̂ (α)(z)−
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f
(α)
0 (z))2 dz ≤ C(‖ε‖2

n/ρ
2 + 2λ‖β0‖1/ρ

2 + J 2
α (f0) + μ2J 2

γ (g0)/ρ
2). Therefore, we have

E‖f̂ − f0‖2k
n ≤

(
E

∫ 1

0

(
f̂ (α)(z) − f

(α)
0 (z)

)2
dz

)k

≤ O
(
1/ρ2 + λ

√
s0/ρ

2 + μ2/ρ2)k = O
(
1/ρ2k

)
,

(A.37)

for any k ≥ 1. Hence, we have

E‖f̂ − f0‖2
n = E‖f̂ − f0‖2

n1T2 +E‖f̂ − f0‖2
n1T c

2

≤ O
(
ρ2 + λ2s0

)+√E‖f̂ − f0‖4
n

√
P
(
T c

2

)
≤ O

(
ρ2 + λ2s0

)+ O
(
1/ρ2)√exp

(−ncρ2
)

≤ O
(
ρ2 + λ2s0

)
,

where the second inequality follows from Lemma 2.3 and the last step is true since√
exp(−n1/(2α+1)) = O(n−4/(2α+1)).
Now, we are going to show the risk bound for ĝ. Define T3 = {τ(β̂ −β0, f̂ − f0, ĝ − g0;R) ≤

R}. By similar arguments as (A.37), we have E‖ĝ − g0‖2k
n = O(1/μ2k). Then together with

Lemma 2.3, it shows

E‖ĝ − g0‖2
n = E‖ĝ − g0‖2

n1T3 +E‖ĝ − g0‖2
n1T c

3
≤ O

(
μ2 + λ2s0

)+ O
(
1/μ2)√exp

(−ncρ2
)

≤ O
(
μ2 + λ2s0

)
,

where the last step is true since
√

exp(−n1/(2α+1)) = O(n−4/(2γ+1)).
Finally it follows from Lemma 4.1 of Nussbaum [12] that E

∫ 1
0 |f̂ (u) − f0(u)|2 du = O(μ2 +

λ2s0) and E
∫ 1

0 |̂g0(u) − g0(u)|2 du = O(ρ2 + λ2s0). �

A.3. Results from empirical process theory

In this section, we include two theorems of empirical process theory, A.11 and A.12, which are
Theorems 2.1 and 3.1 from van de Geer [19], respectively.

Let R∗
1 = supf ∈F∗ ‖f ‖,K∗

1 = supf ∈F∗ ‖f ‖∞, and R∗
2 = supg∈G∗ ‖g‖,K∗

2 = supg∈G∗ ‖g‖∞.

Theorem A.11. For all t > 0, with probability at least 1 − exp(−t),

sup
f ∈F∗

∣∣‖f ‖2
n − ‖f ‖2

∣∣/C1 ≤ 2R1J∞(K∗
1 ,F∗) + R∗

1K∗
1

√
t√

n
+ 4J 2∞(K∗

1 ,F∗) + K∗2
1 t

n

for some constant C1 > 0.



1324 Z. Yu, M. Levine and G. Cheng

Theorem A.12. Suppose that R∗
1/R∗

2 ≤ K∗
1 /K∗

2 . For any t ≥ 4 and n such that

2R∗
1J∞(K∗

1 ,F∗) + R∗
1K∗

1

√
t√

n
+ 4J 2∞(K∗

1 ,F∗) + K∗2
1 t

n
≤ R∗2

1

C1

and

2R∗
2J∞(K∗

2 ,G∗) + R∗
2K∗

2

√
t√

n
+ 4J 2∞(K∗

2 ,G∗) + K∗2
2 t

n
≤ R∗2

2

C2
,

we have with probability at least 1 − 12 exp(−t),

1

8C1
sup

f ∈F∗,g∈G∗

∣∣(Pn − P)fg
∣∣

≤ R∗
1J∞(K∗

2 ,G∗) + R∗
2J∞(R∗

1K∗
2 /R∗

2 ,F∗) + R∗
1K∗

2

√
t√

n
+ K∗

1 K∗
2 t

n
.
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