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We discuss nonparametric tests for parametric specifications of regression quantiles. The test is based on the
comparison of parametric and nonparametric fits of these quantiles. The nonparametric fit is a Nadaraya–
Watson quantile smoothing estimator.

An asymptotic treatment of the test statistic requires the development of new mathematical arguments.
An approach that makes only use of plugging in a Bahadur expansion of the nonparametric estimator is not
satisfactory. It requires too strong conditions on the dimension and the choice of the bandwidth.

Our alternative mathematical approach requires the calculation of moments of Nadaraya–Watson quan-
tile regression estimators. This calculation is done by application of higher order Edgeworth expansions.

Keywords: Bahadur expansions; goodness-of-fit tests; kernel smoothing; nonparametric regression;
nonparametric testing; quantiles

1. Introduction

Consider a data set of n i.i.d. tuples (Xi, Yi), where Yi is a one-dimensional response variable
and Xi is a d-dimensional covariate. For 0 < α < 1, we denote the conditional α-quantile of Yi

given Xi = x by mα(x). Thus, we can write

Yi = mα(Xi) + εi,α (i = 1, . . . , n), (1)

with error variables εi,α that fulfill qα(εi,α|Xi) = 0. Here, qα(εi,α|Xi) is the α-quantile of the
conditional distribution of εi,α given Xi . Consider the null hypothesis

H0 : For all α ∈ A there exists a θ(α) ∈ �, such that mα = mα,θ(α), (2)

where {mα,θ : θ ∈ �} is a parametric class of regression quantiles, � is a compact subset of Rk

and A ⊂ (0,1). The set A can be a singleton A = {α}, but can also be a closed subset of (0,1) if
a set of quantile functions is checked.

In this paper, we aim at studying a test statistic for H0, and to study its asymptotic properties
under the null and the alternative. We will see that this problem is an example of a quantile model
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where the asymptotics cannot be developed by standard tools of quantile regression. In particular,
a direct application of Bahadur expansions requires assumptions that are too restrictive.

Our test statistic is based on kernel smoothing. Let K(u1, . . . , ud) = ∏d
j=1 k(uj ), where k

is a one-dimensional density function defined on [−1,1], and let h = (h1, . . . , hd) be a d-
dimensional bandwidth parameter. We assume that all bandwidths h1, . . . , hd are of the same
order. For simplicity of notation, we further assume that they are identical and by abuse of no-
tation we write h = h1 = · · · = hd . For any 0 < α < 1 and any x in the support RX of X, let
Fεα |X(·|x) be the conditional distribution function of εα = Y − mα(X), given X = x, and let
rα,θ(α)(x) be the α-quantile of Y − mα,θ(α)(X) given that X = x. Define

r̂α(x) = arg min
r

n∑
i=1

K

(
x − Xi

h

)
τα

(
Yi − mα,θ̂(α)(Xi) − r

)
,

where τα(u) = αu+ − (1 − α)u−, u+ = uI (u > 0) and u− = uI (u < 0) and where θ̂ (α) is an
estimator of θ(α).

Note that instead of estimating the conditional quantile rα,θ(α)(x) by the above estimator, we
could have considered the alternative estimator

r̂alt
α (x) = arg min

m

n∑
i=1

K

(
x − Xi

h

)
τα(Yi − m) − mα,θ̂(α)(x).

However, the latter estimator has the important drawback that the consideration of responses Yi

in a neighborhood of x induces a smoothing bias, whereas r̂α(x) has no smoothing related bias,
since it is based on the errors Yi − mα,θ(α)(Xi), whose conditional quantile of order α is exactly
zero under H0 for all Xi .

We suppose that A is a closed subinterval of (0,1). We define the following test statistic:

T̂A =
∫

A

∫
RX

r̂α(x)2w(x,α)dx dα (3)

for some weight function w(x,α). For the case that A contains only one value α we use

T̂α =
∫

RX

r̂α(x)2w(x)dx (4)

for some weight function w(x). One could also generalize our results to the case that A is a
finite set that contains more than one element. To keep notation simple we omit this case in our
mathematical analysis.

Our test is an omnibus test that has power against all types of alternatives. It is based on the
comparison of a kernel quantile estimator with the parametric fit. We will show that the test
statistic is asymptotically equivalent to a weighted L2-distance between the nonparametric and
the parametric estimator. Similar tests have been used in a series of papers for mean regression.
Early references are Härdle and Mammen [19], González Manteiga and Cao [15], Hjellvik, Yao
and Tjøstheim [23], Zheng [44] and Fan, Zhang and Zhang [13]. Furthermore recent references
are Dette and Spreckelsen [10], Kreiss, Neumann and Yao [34], Haag [18], Leucht [36], Gao and
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Hong [14] and Aït-Sahalia, Fan and Peng [1]. Most of the more recent work concentrates on time
series data.

The classical way to carry over results from parametric and nonparametric mean regression to
quantile regression is the use of Bahadur expansions. The main point is that asymptotically quan-
tile regression is equivalent to weighted mean regression. This approach has been used in Chaud-
huri [6], Truong [40], He and Ng [20], He, Ng and Portnoy [21] and more recently in Hoderlein
and Mammen [24], Hong [25], Kong, Linton and Xia [33], Lee and Lee [35], El Ghouch and Van
Keilegom [11], Li and Racine [37], and De Backer, El Ghouch and Van Keilegom [8], see also
the papers Chao, Volgushev and Cheng [5] and Volgushev, Chao and Cheng [42] where refine-
ments of Bahadur expansions have been discussed. A detailed review of quantile regression can
be found in the book by Koenker [30]. Testing procedures in quantile regression were considered
in Zheng [45], Koenker and Machado [31], Bierens and Ginther [4], Horowitz and Spokoiny
[26], Koenker and Xiao [32], and He and Zhu [22], among others. They all considered tests for
the parametric form of the quantile function. More recently, Rothe and Wied [38] proposed a
test statistic for the hypothesis that the conditional distribution belongs to a certain parametric
class. Tests based on quantiles of the errors have also been considered in Su and White [39] in
the context of testing conditional independence. Other recent papers are the ones by Volgushev
et al. [41] and Conde-Amboage, Sánchez-Sellero and González-Manteiga [7], who considered
significance tests in quantile regression and developed a test statistic based on marked empirical
processes.

In this paper, we will discuss how results from mean regression carry over to our case. Whereas
elsewhere a first attempt could be based on the application of a Bahadur expansion, we will see
that in our setting the accuracy of a direct application of Bahadur expansions is too poor. We will
shortly explain this here for the testing problem where A contains only one value α. Suppose
for simplicity at this stage that the parametric model contains only one value θ0 = θ0(α) and that
θ̂ = θ̂ (α) = θ0. The Bahadur expansion of r̂α(x) is given by

r̃α(x) = −
∑n

i=1 K(
x−Xi

h
){I (εi,α ≤ 0) − α}∑n

i=1 K(
x−Xi

h
)fεα |X(0|Xi)

, (5)

where fεα |X is the conditional density of εα given X. This gives the following approximation for
T̂α :

T̃α =
∫

RX

r̃α(x)2w(x)dx.

One can show that up to a logarithmic factor supx |̂rα(x) − r̃α(x)| and supx |̂rα(x)| are of order
(nhd)−3/4 and (nhd)−1/2, respectively. This implies that up to a logarithmic factor, the difference
T̂α − T̃α is of order (nhd)−5/4. On the other hand as it is also the case in mean regression T̃α is
equal to the sum of a deterministic term and a random term of order n−1h−d/2. Thus, the above
approximation only helps if (nhd)−5/4 � n−1h−d/2 or equivalently if nh3d → ∞ for sample
size n going to ∞. For example, if one applies a bandwidth h ∼ n−1/(4+d) that leads to rate
optimal estimation of twice differentiable functions this assumption would allow only a one-
dimensional setting d = 1. Also in the case of minimax optimal testing with twice differentiable
functions under the alternative (see Ingster [27–29] and Guerre and Lavergne [16]), the optimal
bandwidth h ∼ n−2/(8+d) is only allowed for dimension d = 1. In this paper, we develop an
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asymptotic theory for L2-type quantile tests that works under the assumption that nh3d/2 → ∞.
In the above examples, this allows dimensions d ≤ 7 and d ≤ 3. Furthermore, for our asymptotic
discussion of the distribution of the test statistic on the hypothesis we only need the assumption
that nhd → ∞. Thus on the hypothesis, our basic assumptions coincide with conditions needed
for the asymptotics of mean regression. We conjecture that also for the alternative the assumption
nh3d/2 → ∞ could be weakened but that then the asymptotic mean of the test statistic changes.
We will comment on this after the statement of Theorem 2.

In our approach, we will make use of the fact that Bahadur expansions of kernel quantile
estimators calculated at two different points are asymptotically independent if they are calculated
at points that are such that the supports of the kernels do not overlap. Thus, the variance of an
integral over a Bahadur expansion should be of smaller order than the variance of the Bahadur
expansion at a fixed point. The main technical difficulty that will come up when applying this
idea is the need to calculate moments of the kernel regression quantiles. We will introduce a
method for the expansion of such moments that is based on Edgeworth expansions in a related
problem. Our main result gives a bound between the moments of kernel regression quantiles and
the moments of its Bahadur approximation.

The paper is organized as follows. In the next section, we will state our result on moments of
kernel regression quantiles. Our main result on the asymptotics of L2-type quantile tests is given
in Section 3. We will also introduce some kind of wild bootstrap procedure adapted to quantile
regression and give a theoretical result on its consistency. In Section 4, we present the results of
a simulation study, and we analyze data on Engel curves. The proofs are postponed to the last
three sections.

2. Asymptotic moments

In this section, we will present an asymptotic result on higher order moments of kernel regression
quantiles. This result will be our most important ingredient for getting our result on the asymp-
totic distribution of our test statistic. In our result the moments of kernel regression quantiles are
compared with the moments of their Bahadur approximations. Recall that we are interested in
the null hypothesis H0 defined in (2). We suppose that for all α ∈ A,

mα(·) = mα,θ0(α)(·) + n−1/2h−d/4�α(·). (6)

For the case �α ≡ 0 the function mα lies on the hypothesis. In order to develop our asymptotic
theory, we need to work under the following assumptions. In the formulation of the assumptions
and in the proofs, we use the convention that C,C1,C2, . . . are generic strictly positive constants
that are chosen large enough, that c, c1, c2, . . . are generic strictly positive constants that are
chosen small enough, and that C∗,C∗

1 ,C∗
2 , . . . are generic strictly positive constants that are

arbitrarily chosen. Using this convention, we write Ln = (logn)C for a sequence with C > 0
large enough and L∗

n = (logn)C
∗

for a sequence with an arbitrarily chosen constant C∗ > 0. All
these variable names are used for different constants and sequences, even in the same equation.

We will make use of the following assumptions.

(B1) The support RX of X is a compact convex subset of Rd . The density fX of X is bounded
and bounded away from zero on RX . The function �α is uniformly absolutely bounded
for α ∈ A.
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(B2) The conditional distribution of εα given X = x allows a density fεα |X(e|x) that is twice
differentiable with respect to e. For this derivative it holds that |f ′′

εα |X(e|x)| ≤ C for
|e| ≤ c, x ∈ RX , and α ∈ A. The density fεα |X(e|x) also satisfies fεα |X(e|x) > 0 and
|fεα |X(e′|x′) − fεα |X(e|x)| ≤ C(‖x′ − x‖ + |e′ − e|) for x, x′ ∈ RX and e, e′ ∈R, where
‖ · ‖ is the Euclidean norm. Moreover, the functions fX(x), mα(x) and �α(x) are con-
tinuously differentiable with respect to x.

(B3) The bandwidth h satisfies h = o(1) and nhd/L∗
n → ∞. The kernel k is a symmetric, con-

tinuously differentiable probability density function with compact support, [−1,1], say.
It fulfills a Lipschitz condition and it is monotone strictly increasing on [−1,0]. It holds
that k′(k−1(u)) ≥ min c{uκ, (k(0) − u)κ } for some 0 ≤ κ < 1 where k−1 : [0, k(0)] →
[−1,0] denotes the inverse of k : [−1,0] → [0, k(0)].

In our asymptotics, the density fX and the functions �α are fixed and do not depend on n. The
cumulative distribution function F(·|x) of Y given X = x may depend on n. We do not indicate
this in our notation.

Assumptions (B1)–(B3) are standard assumptions for the study of smoothing estimators,
with the exception of the last assumption in (B3). We now shortly explain why this as-
sumption is needed here. For fixed u and x = (x1, . . . , xd)�, define the random vector Vn =∑n

j=1(k(
x1−X1,j

h
), . . . , k(

xd−Xd,j

h
))�{I (ε�

j,α ≤ �h
α(x) + u(nhd)−1/2) − α} with ε�

j,α = εj,α +
n−1/2h−d/4�α(Xj ), and where �h

α(x) is defined in (10) below. In the proof of the following
Theorem 1 we will develop Edgeworth expansions for the distribution of Vn. Typically, the
summands of Vn do not fulfill non-lattice type assumptions that are needed for the verifica-
tion of Edgeworth expansions. But under (B3) a non-lattice assumption can be verified for the
conditional distribution of a finite sum of summands of Vn. For more details, we refer to the
proof of Theorem 1. The last assumption in (B3) can be easily verified. It just puts a simple
bound on the derivative of k−1. For example, it can be easily checked for the triangle ker-
nel and for all kernels of the form k(z) = 1(|z| ≤ 1)cr (1 − z2)r with r ≥ 1. In case that k′ is
bounded away from zero on bounded intervals of (−1,0) the assumption follows if for some
l, l∗ ∈N, it holds that k′(x) = (x + 1)l + o((x + 1)l) for x ≥ −1 and x + 1 small enough and that
k′(x) = −x2l∗+1 + o(x2l∗) for x in a neighborhood of 0.

We put

r̂�
α (x) = arg min

r

n∑
i=1

K

(
x − Xi

h

)
τα

(
ε�
i.α − r

)
, (7)

r�
α (x) =

{
r̂�
α (x) if

∣∣̂r�
α (x)

∣∣ ≤ Ln

(
nhd

)−1/2
,

0 otherwise.
(8)

In the main result of this section, we will consider conditional moments of the truncated kernel
smoothing quantiles r�

α , conditioned on the number of covariables falling into local neighbor-
hoods. Note that, with positive probability, kernel smoothing quantiles are not defined because
there is no covariable in the support of the kernel, with positive probability. Thus unconditional
moments are not defined. In the following theorem, we will condition on local neighborhoods
N−(x) = {u : xj − h ≤ uj ≤ xj + h for all j = 1, . . . , d} that are designed such that the result
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can be easily used for the asymptotic analysis of our test statistic in the next section. Note that
N−(x) is the support of the kernel h−dK(h−1[x − ·]). The theorem could also easily be stated
with other local neighborhoods. The conditional moments of the truncated kernel smoothing
quantiles r�

α will be compared with the conditional moments of the following modified Bahadur
expansion, denoted by r̃�

α (x):

r̃�
α (x) = r̃�,−

α (x) + �h
α(x), (9)

where �h
α(x) is defined such that

E
j
x

[
K

(
x − Xj

h

){
I
(
ε�
j,α ≤ �h

α(x)
) − α

}] = 0. (10)

Here E
j
x denotes the conditional expectation, given that j ∈ N−(x). Furthermore, r̃�,−

α (x) is
defined as

r̃�,−
α (x) = −

∑n
i=1 K(

x−Xi

h
){I (ε�

i,α ≤ �h
α(x)) − α}∑n

i=1 K(
x−Xi

h
)fεα |X(�h

α(x,Xi)|Xi)

= −
∑n

i=1 K(
x−Xi

h
){I (εi,α ≤ �h

α(x,Xi)) − α}∑n
i=1 K(

x−Xi

h
)fεα |X(�h

α(x,Xi)|Xi)
,

where

�h
α(x,Xj ) = �h

α(x) − n−1/2h−d/4�α(Xj ).

We have the following asymptotic result for the moments of kernel quantile estimators and their
Bahadur approximations.

Theorem 1. Assume (B1)–(B3). Then, for natural numbers l ≥ 1,

E
{
r�,−
α (x)2l − r̃�,−

α (x)2l |N−(x) = m
} = O

(
Ln

(
nhd

)−l−1)
, (11)

E
{
r�,−
α (x)2l−1 − r̃�,−

α (x)2l−1|N−(x) = m
} = O

(
Ln

(
nhd

)−l) (12)

uniformly in x ∈ RX , α ∈ A and C∗
1nhd ≤ m ≤ C∗

2nhd where N−(x) is the random number of
Xi ’s that lie in N−(x), and where r�,−

α (x) = r�
α (x) − �h

α(x). For the second moments of the
uncentered estimators r�

α and r̃�
α we have that

E
{
r�
α (x)2 − r̃�

α (x)2|N−(x) = m
} = O

(
Lnn

−3/2h−5d/4). (13)

Under the additional assumption that �α ≡ 0, we get that

E
{
r�
α (x)2 − r̃�

α (x)2|N−(x) = m
} = O

(
Ln

(
nhd

)−2)
. (14)

We can apply the theorem when �α ≡ 0, in which case �h
α ≡ 0 and r̃�

α (x) = r̃�,−
α (x) and

r�
α (x) = r�,−

α (x). Hence, (11) and (12) hold with r�,−
α (x) and r̃�,−

α (x) replaced by r�
α (x) and

r̃�
α (x). In particular, for l = 1 (14) follows directly from (11).
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3. Asymptotic theory

We suppose that there exists an estimator θ̂ (α) that converges to θ0(α). Hence, on the hypothesis
the true value of θ(α) is equal to θ0(α). On the alternative, θ0(α) may depend on the chosen
estimator θ̂ (α).

In order to develop the asymptotic distribution of T̂A and T̂α , we need the following additional
assumptions.

(B4) We assume that

sup
x∈RX,α∈A

∣∣mα,θ̂(α)(x) − mα,θ0(α)(x) − (
θ̂ (α) − θ0(α)

)�
γα(x)

∣∣ = OP

(
n− 1

2 −c
)

for some function γα(x). The function w(x) is continuous, and the functions w(x,α),
γα(x) and �α(x) are continuous with respect to (α, x). For g(x) = w(x,α) and g(x) =
w(x), it holds that |g(x′) − g(x)| ≤ C‖x′ − x‖, and |γα(x′) − γα(x)| ≤ C‖x′ − x‖δ for
some 0 < δ < 1 and for all x, x′ ∈ RX and all α ∈ A.

(B5) For some ρ > 0, it holds that

sup
α∈A

∥∥θ̂ (α) − θ0(α)
∥∥ = OP

((
n−1/2h−d/4)/L∗

n ∧ (
h−δn− 1

2 −ρ
) ∧ (

n− 1
4 h

d
4 /L∗

n

))
.

The first assumption in (B4) can be shown under smoothness conditions on the relation θ →
mα,θ (x). For the case that A contains only one single element, this assumption in (B4) would
directly follow from (B5) and the assumption that θ → mα,θ (x) has a derivative that is continuous
in x. Assumption (B5) states that θ̂ (α) achieves at least a nearly parametric rate. In the case
of linear quantile regression (i.e., mα(X) = θ(α)�X), such an assumption has been shown in
Angrist, Chernozhukov and Fernández-Val [2]. Note that supα∈A ‖θ̂ (α) − θ0(α)‖ = OP (n−1/2)

implies (B5) if ρ is chosen such that hδnρ → 0. Note that n− 1
2 = o(n− 1

4 h
d
4 /L∗

n) because of
nhd/L∗

n → ∞.
We now state our main result on the asymptotic distribution of our test statistics.

Theorem 2. Assume (B1)–(B5). For the case that �α �≡ 0, make the additional assumption that
nh3d/2/L∗

n → ∞. Then,

nhd/2T̂A − bh,A
d→ N(DA,VA),

nhd/2T̂α − bh,α
d→ N(Dα,Vα),

where

DA =
∫

A

∫
RX

�α(x)2w(x,α)dx dα,

bh,A = h−d/2K(2)(0)

∫
A

α(1 − α)

∫
RX

w(x,α)

fX(x)f 2
εα |X(0|x)

dx dα,



800 E. Mammen, I. Van Keilegom and K. Yu

VA = 4K(4)(0)

∫
α,β∈A,α<β

α2(1 − β)2
∫

RX

w(x,α)w(x,β)

f 2
X(x)f 4

εα |X(0|x)
dx dα dβ,

Dα =
∫

RX

�α(x)2w(x)dx,

bh,α = h−d/2K(2)(0)α(1 − α)

∫
RX

w(x)

fX(x)f 2
εα |X(0|x)

dx,

Vα = 4K(4)(0)α2(1 − α)2
∫

RX

w2(x)

f 2
X(x)f 4

εα |X(0|x)
dx,

and where for any j , K(j)(0) denotes the j -times convolution product of K at 0.

In our theorem for the alternative, we make the additional assumption that nh3d/2/L∗
n con-

verges to ∞. This assumption is used in the proof for the treatment of the deterministic term
Tn,2, see Lemma 5. The assumption nh3d/2/L∗

n → ∞ can be weakened but with another limit
for Tn,2. This would result in a limit theorem for the test statistic with a mean that differs from
bh,α . We have added a short discussion of this point after the statement of Lemma 5.

We expect that Theorem 2 cannot be used for an accurate calculation of critical values. The
asymptotic normality result of Theorem 2 is based on the fact that kernel smoothers are asymptot-
ically independent if they are calculated at points that differ more than 2h. Thus, the convergence
is comparable to the convergence of the sum of h−d independent summands. This would moti-
vate a rate of convergence of order h−d/2. As has been suggested for other goodness-of-fit tests
in the literature, also here a way out is to use a bootstrap procedure. We will introduce some kind
of wild bootstrap for quantiles in which the Bahadur expansion r̃α of r̂α is resampled. For the
definition of r̃α see (5) in Section 2. For the bootstrap, we define

r̃∗
α(x) = −

∑n
i=1 K(

x−Xi

h
){I (Ui ≤ α) − α}∑n

i=1 K(
x−Xi

h
)f̂εα |X(0|Xi)

,

where f̂εα |X is an estimator of fεα |X and Ui are independent random variables with uniform
distribution on [0,1] that are independent of the sample. The bootstrap test statistics are defined
as:

T̂ ∗
A =

∫
A

∫
RX

r̃∗
α(x)2w(x,α)dx dα

and

T̂ ∗
α =

∫
RX

r̃∗
α(x)2w(x)dx.

For proving the consistency of this bootstrap procedure, we do not specify the choice of the
estimator f̂εα |X that is used in the construction of the bootstrap procedure. We only assume that
the estimator is consistent:
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(B6) It holds that

sup
α∈A,x∈RX

∣∣f̂εα |X(0|x) − fεα |X(0|x)
∣∣ → 0,

in probability.

The next theorem shows the consistency of the above bootstrap approach.

Theorem 3. Assume (B1)–(B6). Then,

dK

(
L∗(nhd/2T̂ ∗

A − bh,A

)
,N(DA,VA)

) p→ 0,

dK

(
L∗(nhd/2T̂ ∗

α − bh,α

)
,N(Dα,Vα)

) p→ 0,

where L∗(. . .) denotes the conditional distribution, given the sample. Furthermore, dK is the Kol-
mogorov distance, that is, the sup norm of the difference between the corresponding distribution
functions.

Theorem 3 remains to hold if we replace (B1)–(B5) by weaker conditions. We do not pursuit
this because we need for consistency of bootstrap that both, Theorem 2 and Theorem 3, hold.

4. Numerical study

In this section, we present the results of our numerical studies. In our first simulation, we show
that a direct application of the Bahadur representation is not accurate enough for studying the ap-
proximation of the distribution of our test statistics T̂α and T̂A. For this purpose, we compare the
differences D1 = ∫ |̂rα(x)2 − r̃α(x)2|w(x)dx and D2 = | ∫ r̂α(x)2w(x)dx − ∫

r̃α(x)2w(x)dx|.
Here D1 is the integrated difference between the quantile regression and its Bahadur represen-
tation and D2 is the difference between the test statistic and its approximation based on Ba-
hadur representation. It is clear that D2 ≤ D1. Our point is not that D2 is smaller than D1
but that the ratio D1/D2 is large and that it is decreasing for an increasing bandwidth. This
result supports our theory that a direct use of Bahadur expansions only works under very re-
strictive assumptions on the bandwidth. Table 1 shows the results of D1 and D2 for the one
dimensional case. We also simulated a two dimensional model, whose results are shown in Ta-
ble 2. In the one dimensional model, we set Yi = Xi + (0.5Xi + 0.5)εi , where εi has a stan-
dard normal distribution. This results in the αth quantile function mα(x) = x + 0.5zα(x + 1),
where zα stands for the αth quantile of the standard normal distribution. For the two dimen-
sional model, we set Yi = X1i + X2i + (0.5X1i − 0.5X2i + 1)εi , where εi has a standard normal
distribution and we get the αth quantile function mα(x1, x2) = x1 + 2x2 + 0.5zα(x1 − x2 + 2).
For the one dimensional model, we generated Xi from the uniform distribution supported on
the unit interval (0,1). For the two dimensional model, we generated (X1i ,X2i ) from a dis-
tribution on the unit square (0,1) × (0,1) which has uniform marginals but where the joint
distribution differs from a uniform distribution. This is done to allow for a dependence be-
tween the two regressors. We generated random vectors from a bivariate normal distribution
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Table 1. Difference between two approximations: D1 is the integrated squared approximation error of a
quantile estimator by its Bahadur representation and D2 is the approximation error of the test statistic T̂α

by T̃α

Bandwidth

0.05 0.08 0.1 0.12 0.15

n = 200 α = 0.25 D1 0.195 0.116 0.091 0.077 0.059
D2 0.067 0.044 0.037 0.034 0.028
Ratio 2.922 2.653 2.473 2.284 2.073

α = 0.5 D1 0.231 0.139 0.110 0.091 0.071
D2 0.124 0.078 0.065 0.056 0.046
Ratio 1.865 1.779 1.687 1.635 1.547

α = 0.75 D1 0.196 0.117 0.092 0.077 0.059
D2 0.065 0.044 0.037 0.033 0.029
Ratio 3.028 2.696 2.481 2.305 2.070

n = 400 α = 0.25 D1 0.094 0.057 0.045 0.037 0.029
D2 0.033 0.022 0.019 0.017 0.014
Ratio 2.899 2.536 2.338 2.170 2.027

α = 0.5 D1 0.109 0.068 0.054 0.045 0.036
D2 0.058 0.039 0.032 0.028 0.023
Ratio 1.867 1.755 1.684 1.614 1.552

α = 0.75 D1 0.094 0.056 0.045 0.037 0.029
D2 0.032 0.022 0.019 0.017 0.015
Ratio 2.959 2.604 2.378 2.192 1.982

with correlations ρ = 0.2 and 0.8 and then transformed them with their marginal distribution
functions. We generated 400 data sets of size 200 and 400 for each model. For the one di-
mensional model, we used the bandwidths h = 0.05,0.08,0.1,0.12 and 0.15 and we used the
bandwidths h = 0.125,0.150,0.175 and 0.200 for the two dimensional model. We used the R
package quantreg for fitting quantile functions. From Table 1 and Table 2, one can see that the
ratio of D1 over D2 is large for small bandwidths and decreases as the bandwidth grows. This
observation supports our approach for the asymptotic theory. This implies that when we approx-
imate the test statistic it requires less strict assumptions on the bandwidth if we approximate the
integrated function rather than when we approximate the quantile function itself.

The second simulation study is conducted to show the validity of our bootstrap procedure. We
considered four scenarios:

I. All quantiles are linear:

Yi = m0(Xi) + σ0(Xi)εi .

II. The median is linear and other quantiles are not linear:

Yi = m0(Xi) + σ1(Xi)εi .
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Table 2. Difference between two approximations under a two dimensional model: D1 is the integrated squared approximation error of a quantile
estimator by its Bahadur representation and D2 is the approximation error of the test statistic T̂α by T̃α . The left panel in the table is the result for
ρ = 0.2 and the right panel shows the result for ρ = 0.8

Weak dependence Strong dependence

Bandwidths

0.125 0.150 0.175 0.200 0.125 0.150 0.175 0.200

n = 200 α = 0.25 D1 0.249 0.139 0.086 0.058 0.153 0.105 0.077 0.059
D2 0.081 0.051 0.036 0.029 0.044 0.037 0.033 0.029
Ratio 3.065 2.716 2.369 1.983 3.445 2.828 2.371 2.024

α = 0.5 D1 0.296 0.164 0.102 0.072 0.180 0.126 0.094 0.072
D2 0.142 0.087 0.061 0.048 0.089 0.069 0.056 0.048
Ratio 2.093 1.884 1.667 1.500 2.021 1.832 1.659 1.504

α = 0.75 D1 0.247 0.138 0.085 0.058 0.153 0.106 0.077 0.059
D2 0.077 0.047 0.035 0.029 0.045 0.037 0.032 0.029
Ratio 3.221 2.929 2.446 1.990 3.355 2.831 2.378 2.022

n = 400 α = 0.25 D1 0.249 0.139 0.086 0.058 0.074 0.051 0.038 0.029
D2 0.081 0.051 0.036 0.029 0.023 0.019 0.017 0.015
Ratio 3.066 2.716 2.369 1.983 3.273 2.716 2.278 1.958

α = 0.5 D1 0.296 0.166 0.102 0.072 0.087 0.061 0.046 0.035
D2 0.142 0.087 0.061 0.048 0.044 0.034 0.028 0.024
Ratio 2.093 1.884 1.667 1.500 1.991 1.785 1.610 1.467

α = 0.75 D1 0.247 0.138 0.085 0.058 0.073 0.051 0.037 0.028
D2 0.077 0.047 0.035 0.029 0.022 0.019 0.017 0.015
Ratio 3.221 2.929 2.446 1.990 3.274 2.666 2.230 1.899
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Figure 1. Shape of quantile curves in each scenario. The three curves in each panel represent the 0.25, 0.5,
and 0.75-quantile curves in each scenario.

III. All quantiles are non-linear:

(a) Yi = m1(Xi) + σ0(Xi)εi;
(b) Yi = m1(Xi) + σ1(Xi)εi .

Here m0(x) = x, m1(x) = sin(2π(x − 0.5)), σ0(x) = 1
2 (1 + x), and σ1(x) = 2(1.1 +

sin(2π(x − 0.5))). The covariates Xi are generated from a uniform distribution on the unit inter-
val (0,1). We generated 200 samples of size 400. We generated 201 bootstrap samples for each
data set. The three scenarios are shown in Figure 1. In the bootstrap procedure, we used a kernel
density estimator for estimating the conditional density fεα |X(0|x).

We tried three bandwidths 0.075, 0.100, and 0.125 for the test statistic, and fifteen choices of
bandwidths (0.1,0.2,0.3) × (0.050,0.075,0.100,0.125,0.150) for estimating the conditional
density of the error used in the bootstrap procedure. We applied the proposed bootstrap test for
testing the linearity of the lower quartile, the median, and the upper quartile functions. We also
tested the linearity hypothesis over these three different quantile levels. In our scenarios, there
are four models under the null hypothesis: all three quantiles in scenario I and the median in
scenario II. In Table 3, we report the summary statistics of rejection ratios of 45 different choices
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Table 3. First quartile, median and third quartile (obtained from 45 choices of the bandwidth) of the rejec-
tion proportions based on 200 generated samples

Quartile functions

1st quartile Median 3rd quartile Sum quartiles

Scenario I Q1 0.005 0.000 0.005 0.000
Med 0.010 0.005 0.010 0.005
Q3 0.010 0.010 0.015 0.010

Scenario II Q1 0.470 0.030 0.450 0.380
Med 0.575 0.055 0.545 0.550
Q3 0.630 0.105 0.610 0.695

Scenario III(a) Q1 0.985 1.000 0.995 1.000
Med 1.000 1.000 1.000 1.000
Q3 1.000 1.000 1.000 1.000

Scenario III(b) Q1 0.065 0.300 0.735 0.545
Med 0.135 0.385 0.865 0.770
Q3 0.155 0.440 0.935 0.895

of bandwidths. Among 45 different choices of bandwidths, there was no case where the bootstrap
test did not keep the significance level of 5% under scenario I. In slightly more than half of the
cases, the bootstrap test did not keep the significance level in testing the linearity of the median
under scenario II. These cases appeared when we used large bandwidths. Concerning the power
of the bootstrap test, we observed that almost all choices of the bandwidth showed a power
near one under scenario III(a). One exception is the case with the smallest bandwidths where
we observe an empirical power around 0.8. One interesting observation is that the bootstrap
test shows a poor power for the lower quartile in scenario III(b) where the empirical power
ranges from 0.045 to 0.27. This is however natural since the function is not so far from a linear
function as one can see in Figure 1. We also observed that the median and the upper quartile
in scenario III(b) showed much stronger power. The result of the test based on the test statistic
integrated over levels shows a similar result. In this case, only scenario I is in the null hypothesis
and there was no case where the empirical size of the bootstrap test is bigger than 5%. The power
behavior is also similar. The test showed the strongest power with the bigger bandwidths.

Figure 2 shows the distributions of estimated p-values by using the proposed bootstrap. The
plots are based on 200 simulated data sets for scenario II. The left panel shows the distribution
of estimated p-values for testing the linearity of the median, which lies in the null and the right
panel shows the distribution of estimated p-values for testing the linearity of the upper quartile,
which lies in the alternative. The distribution in the left panel is close to the uniform distribution
which we expect for the null hypothesis and the right panel shows that the bootstrap p-values are
close to zero, which we also expect.

To summarize our observations from this simulation study, in our setting the bootstrap test
keeps the level well except for cases where we use too large bandwidths. On the other hand,
too small bandwidths lead to relatively poor power. Interesting cases are scenario II and sce-
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Figure 2. The left panel shows the distribution of estimated p-values under the null and the right panel
shows the distribution of estimated p-values under the alternative.

nario III(b). Under scenario II, the median is linear but both quartiles are not. The simulation
result shows that the bootstrap test keeps the level for the median and has some power for the
other quantiles. Under scenario III(b), the lower quartile is non-linear but close to the null. We
observe that here the bootstrap test has stronger power for the median and the upper quartile than
for the lower quartile.

In the last simulation study, we compared our test with the test proposed by Zheng [45]. We
considered the same four scenarios as in the previous simulation study. In this simulation, we
generated 500 data sets of 400 observations. For the bootstrap, we generated 501 bootstrap sam-
ples. The other simulation settings are the same as in the previous simulation study. To choose
the bandwidth for Zheng’s test, we applied the function npregbw in the R package np, which is
based on cross-validation with AIC. For the nonparametric quantile estimator in our procedure,
we used the bandwidth proposed in Yu and Jones [43]. The bandwidths for the kernel estimator
for the conditional density in the bootstrap procedure were chosen by a rule of thumb using the
function bw.nrd in R. The level of the tests was set to 0.05. We observe in Table 4 that the level
of our test is close to the nominal level. None of the two tests is always more powerful than
the other. In the null model, both tests keep the level well. In scenario II, Zheng’s test shows
stronger power than the proposed test, whereas in scenario III(b), the proposed test has higher
power.

Finally, as an illustrating example, we applied the proposed test to a historic data set of Ernst
Engel. The data set was used in Koenker [30], among many other publications. The data set was
first presented by Engel [12] to support his famous Engel’s law. The data set has two variables,
household income and food expenditure and it contains 235 observations. Figure 3 shows the
scatter plot of this dataset and the scatter plot of the data after a log transform with base 10. As
one can see in Figure 3, there is one outlier. We removed this point from the data. Hence, the
analysis below is based on 234 observations. We first analyzed the log transformed income versus
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Table 4. Rejection proportions based on 500 generated samples

Quartile functions

1st quartile Median 3rd quartile Sum quartiles

Scenario I Zheng 0.006 0.000 0.000 ·
MVY 0.024 0.052 0.048 0.028

Scenario II Zheng 0.954 0.008 0.950 ·
MVY 0.696 0.002 0.650 0.884

Scenario III(a) Zheng 0.974 0.994 0.984 ·
MVY 0.994 0.992 0.990 1.000

Scenario III(b) Zheng 0.034 0.334 0.460 ·
MVY 0.048 0.404 0.992 0.954

Figure 3. The left panel shows the scatter plot of the original Engel data. The right panel shows the scatter
plot of log transformed data after removing one influential point. The lines in the right panel represent linear
quantile fits of levels 0.1, 0.3, 0.5, 0.7, and 0.9.
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Table 5. Estimated p-values for testing the linearity of conditional quantiles of Engel’s data. The upper ta-
ble shows the estimated p-values for testing the linearity of conditional quantiles of log10(food expenditure)
as a function of log10(income) and the lower table shows the estimated p-values for testing the linearity of
conditional quantiles of food expenditure as a function of log10(income)

Quantile level

Bandwidth 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

log10(income) vs log10(food expenditure)
0.050 0.289 0.246 0.629 0.999 0.996 1.000 0.999 1.000 1.000
0.075 0.152 0.383 0.997 0.992 0.993 0.979 1.000 1.000 1.000
0.100 0.105 0.745 0.997 0.964 0.971 0.970 0.999 1.000 0.993
0.125 0.100 0.986 0.988 0.908 0.895 0.992 1.000 1.000 0.963
0.150 0.149 0.996 0.976 0.894 0.843 0.997 0.999 1.000 0.935

log10(income) vs food expenditure
0.050 0.305 0.675 0.413 0.135 0.031 0.008 0.012 0.004 0.000
0.075 0.569 0.498 0.268 0.140 0.046 0.027 0.003 0.002 0.000
0.100 0.640 0.324 0.181 0.047 0.015 0.004 0.003 0.001 0.000
0.125 0.531 0.235 0.150 0.034 0.009 0.001 0.002 0.001 0.000
0.150 0.664 0.197 0.088 0.012 0.003 0.002 0.002 0.003 0.000

the log transformed food expenditure. We used five different bandwidths for calculating the test
statistic. The bandwidth for the conditional density estimator used in the bootstrap resampling
was chosen by a rule of thumb. To obtain the bootstrap distribution, we resampled the data set
1001 times. We test the linearity of quantiles for α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and
0.9. As can be seen from Table 5, the test did not reject linearity of quantiles for any of these
values at the significance level 5%. This was the case for all five bandwidth choices. We also
used the log transformed income with the original untransformed food expenditure as a further
example. Figure 4 shows the scatter plot of this dataset together with 0.1, 0.3, 0.5, 0.7, 0.9 linear
quantile fits. The figure shows that high level quantiles deviate from their linear fits. This is also
seen by our test, since it rejects the linearity for high level quantiles. The estimated p-values for
the conditional quantiles of level 0.5 or higher are smaller than 0.05 for every bandwidth we
used.

5. Proof of Theorem 1

We need to show equations (11)–(13). Claim (13) follows from (11)–(12) because of �h
α(x) =

O(n−1/2h−d/4). Furthermore, (14) is a direct consequence of (11), see the remark after the state-
ment of the theorem. It remains to show (11)–(12).

It holds that P(cm0 ≤ N−(x) ≤ Cm0) → 1, where we use the shorthand notation m0 = nhd .
At this point and in the following proofs, we will make use of our convention of using the
symbols, c,C, . . . .
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Figure 4. The figure shows the scatter plot of log transformed income versus food expenditure after re-
moving one influential point. The lines represent linear quantile fits of level 0.1, 0.3, 0.5, 0.7, and 0.9.
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uniformly in |u| ≤ C∗L∗
n, because of Assumption (B2). Then, with

ηj,α,u,x = K

(
x − Xj

h

){
I
(
ε�
j,α ≤ �h

α(x) + um
−1/2
0

) − α
} − gx,α(u),

we have that

P
(̂
r�,−
α (x) ≤ um

−1/2
0 |N−(x),N−(x) = m

)
= P

(
m−1/2

∑
j∈N−(x)

ηj,α,u,x ≥ −m1/2gx,α(u)

∣∣∣N−(x),N−(x) = m

)
.

We now argue that an Edgeworth expansion holds for the conditional density of Tη =
m−1/2 ∑

j∈N−(x) ηj,α,u,x , given N−(x),N−(x) = m, that is of the form

σ−1
s−3∑
r=0

m−r/2Pr

(−φ : {χν}
)(

σ−1[· − x]) + O
(
m−(s−2)/2[1 + ∣∣σ−1[· − x]∣∣s]−1)

, (16)

where the error term holds uniformly in α ∈ A, |u| ≤ L∗
n and x ∈ RX for C∗

1m0 ≤ m ≤ C∗
2m0

and constants C∗
1 < C∗

2 . Here, we use standard notation used for example, in Bhattacharya and
Ranga Rao [3], page 53. In particular, σ 2 denotes the conditional variance of ηj,α,u,x , given that
j ∈ N−(x), and Pr(−φ : {χν}) denotes a product of a standard normal density φ with a poly-
nomial that has coefficients depending only on the conditional cumulants χν of ηj,α,u,x of order
ν ≤ s −1, given that j ∈ N−(x). Note that σ 2 and χν depend on u, α, x and n and that we do not
indicate this in our notation. Furthermore, the cumulants and the variance converge to constants
depending on α, uniformly in |u| ≤ L∗

n and x ∈ RX . Note that for n → ∞ the conditional distri-
bution of ηj,α,u,x , given that j ∈ N−(x), converges to the distribution of K(U)(Z − α) where
U and Z are independent random variables, U has a uniform distribution on [−1,1] and Z is
{0,1}-valued with P(Z = 1) = α. This helps to understand that limit theorems hold uniformly.
The function Pr(−φ : {χν}) is defined as

Pr

(−φ : {χν}
)
(u) =

r∑
m=1

1

m! (−1)r
∑

j1+···+jm=r

χj1+2

(j1 + 2)! · . . . · χjm+2

(jm + 2)!φ
(r+2m)(u),

see Section 7 in Bhattacharya and Ranga Rao [3]. In our case expansion, (16) follows from
Theorem 19.3 in Bhattacharya and Ranga Rao [3]. For this claim, we have to verify that their
conditions (19.27), (19.29) and (19.30) hold. Our setting is slightly different from theirs, since
we consider triangular arrays of independent identically distributed random variables instead of
a sequence of independent random variables as is the case in Theorem 19.3 in Bhattacharya and
Ranga Rao [3]. But the same proof applies because in our setting we can verify the following
uniform versions of (19.27), (19.29) and (19.30):

sup
α∈A,|u|≤L∗

n,x∈RX,n≥n0

E
j
x

[|ηj,α,u,x |s
]
< ∞, (17)
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sup
α∈A,|u|≤L∗
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∫
g

q
α,u,x(t) dt < ∞ for some q > 0, (18)
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{
gα,u,x(t) : |t | ≥ b

}
< 1 for all b > 0 (19)

with gα,u,x(t) = |Ej
x [exp(itσ−1ηj,α,u,x)]| for some n0 > 0. Note that gα,u,x , σ and ηj,α,u,x de-

pend on n.
Claim (17) follows by a direct argument using brute force bounds. For the proof of (18),
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. For simplification of notation, we assume
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get that the conditional density of Up is uniformly bounded. This follows by an evaluation
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the density of Up is uniformly bounded. We now use that the k-fold convolution of a bounded
density with bounded support [0, z] for some z > 0 is bounded by C|u1|k−1. This gives that the
density of Up∗ can be bounded by a constant times uκ∗
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We now apply the result that for p chosen large enough, the conditional density of∑p

j=1 ηj,α,u,x is bounded, given that Xj ∈ N−(x) for j = 1, . . . , p, uniformly over α, u and x.
This implies that the square of this conditional density is integrable and by the Fourier Inversion
theorem (see Theorem 4.1(vi) in Bhattacharya and Ranga Rao [3]) the same holds for the squared
modulus of its Fourier transform. Thus, the modulus of the Fourier transform of the conditional
density of

∑2p

j=1 ηj,α,u,x , given that Xj ∈ N−(x) for j = 1, . . . ,2p, is integrable. This shows
(18) for q = 2p.

For the proof of (19) one applies the Riemann–Lebesgue lemma (see Theorem 4.1 in
Bhattacharya and Ranga Rao [3]). Consider for simplicity the case where d = 1. For
E

j
x [exp(itηj,α,u,x)], one gets that

exp
[
itgx,α(u)

]
E

j
x

[
exp(itηj,α,u,x)

]
=

∫ x+h

x−h

∫
e∈R

exp

[
itK

(
x − z

h

){
I
(
e ≤ �h

α(x, z) + um
−1/2
0

) − α
}]

× fεα |X(e|z)fX(z) de dz
/∫ x+h

x−h

fX(z) dz

=
∫ 1

−1

∫
e∈R

exp
[
itK(v)

{
I
(
e ≤ �h

α(x, x + hv) + um
−1/2
0

) − α
}]

× fεα |X(e|x + hv)fX(x + hv)de dv
/∫ 1

−1
fX(x + hv)dv.

The right-hand side of this equation converges to

α

∫ 1

−1
exp

[
it (1 − α)K(v)

]
dv + (1 − α)

∫ 1

−1
exp

[−itαK(v)
]
dv.

This convergence holds uniformly in t ∈ R, α ∈ A, |u| ≤ L∗
nm

−1/2
0 and x ∈ RX . By using these

facts, we get (19) from the Riemann–Lebesgue lemma.
By applying Theorem 19.3 in Bhattacharya and Ranga Rao [3] with s ≥ 4, we get that

P
(̂
r�,−
α (x) ≤ um

−1/2
0 |N−(x),N−(x) = m

)
(20)

= 1 − �
(
μα(u)

) + m−1/2ρα(u)
(
1 − μα(u)2)φ(

μα(u)
) + O

(
m−1

0

(
1 + μα(u)2)−s)

uniformly in u, α and x for C∗
1m0 ≤ m ≤ C∗

2m0 and constants C∗
1 < C∗

2 . Here we have used
the fact that terms for r = 2, . . . , s − 3 in the expansion (16) can be bounded by O(m−1

0 (1 +
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μα(u)2)−s). We used the following notation

μα(u) = −m1/2gx,α(u)

σα(u)
and ρα(u) = E

j
x (η3

j,α,u,x)

6σ 3
α (u)

with σ 2
α (u) = E

j
x (η2

j,α,u,x). It is easy to show that, uniformly in |u| ≤ C∗L∗
n,

σ 2
α (u) = E

j
x

[
K2

(
x − Xi

h

)(
I
(
εj,α ≤ �h

α(x,Xj ) + um
−1/2
0

) − α
)2

]
+ O

(
Lnm

−1
0

)
= A1(α) + um

−1/2
0 A2(α) + O

(
Lnm

−1
0

)
,

E
j
x

(
η3

j,α,u,x

) = E
j
x

[
K3

(
x − Xi

h

)(
I
(
εj,α ≤ �h

α(x,Xj ) + um
−1/2
0

) − α
)3

]
+ O

(
Lnm

−1/2
0

)
= A3(α) + O

(
Lnm

−1/2
0

)
,

and that

μα(u) = −um1/2m
−1/2
0 A1(α)−1/2A5(α) − 1

2
u2m1/2m−1

0 A1(α)−1/2A6(α)

+ 1

2
u2m1/2m−1

0 A
−3/2
1 (α)A2(α)A5(α) + O

(
Lnm

−1
0

)
with

A1(α) = E
j
x

[
K2

(
x − Xi

h

)(
(1 − 2α)P

(
εj,α ≤ �h

α(x,Xj )
) + α2)],

A2(α) = E
j
x

[
K2

(
x − Xi

h

)
(1 − 2α)fεα |X

(
�h

α(x,Xj )|Xj

)]
,

A3(α) = E
j
x

[
K3

(
x − Xi

h

)((
1 − 3α + 3α2)P (

εj,α ≤ �h
α(x,Xj )

) − α3)],

A4(α) = E
j
x

[
K2

(
x − Xi

h

)(
(1 − 2α)P

(
εj,α ≤ �h

α(x,Xj )
) + α2)],

A5(α) = E
j
x

[
K

(
x − Xj

h

)
fεα |X

(
�h

α(x,Xj )|Xj

)]
,

A6(α) = E
j
x

[
K

(
x − Xj

h

)
f ′

εα |X
(
�h

α(x,Xj )|Xj

)]
.
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Note that μα(−u)2 = μα(u)2 + O(Lnm
−1/2
0 ). Thus, we get that uniformly in |u| ≤ C∗L∗

n,

m−1/2ρα(u)
(
1 − μα(u)2)φ(

μα(u)
) − m−1/2ρα(−u)

(
1 − μα(−u)2)φ(

μα(−u)
)

(21)

= O
(
Lnm

−1
0

)
,

m−1/2ρα(u)
(
1 − μα(u)2)φ(

μα(u)
) = O

(
Lnm

−1/2
0

)
. (22)

Note also that with um = um1/2m
−1/2
0 , uniformly in |u| ≤ C∗L∗

n,

1 − �
(
μα(u)

) = 1 − �
(−umA

−1/2
1 (α)A5(α)

)
+ φ

(−umA
−1/2
1 (α)A5(α)

) u2
m

2m1/2

(
A

−1/2
1 (α)A6(α) − A

−3/2
1 (α)A2(α)A5(α)

)
+ O

(
Lnm

−1
0

)
.

Hence, uniformly in |u| ≤ C∗L∗
n,

1 − �
(
μα(u)

) + �
(−μα(−u)

) = 2
[
1 − �

(−umA
−1/2
1 (α)A5(α)

)] + O
(
Lnm

−1
0

)
. (23)

From (21), (23) and the above calculations it now follows for l ≥ 1 that with Dm(α) =
m1/2m

−1/2
0 A

−1/2
1 (α)A5(α) and r̂�,−

α (x) = r̂�
α (x) − �h

α(x)

E
{
ml

0̂r
�,−
α (x)2lI

(∣∣̂r�,−
α (x)

∣∣ ≤ L∗
nm

−1/2
0

)|N−(x) = m
}

= 2l

∫ L∗
n

0
v2l−1P

(̂
r�,−
α (x) > vm

−1/2
0 |N−(x) = m

)
dv

− 2l

∫ 0

−L∗
n

v2l−1P
(̂
r�,−
α (x) ≤ vm

−1/2
0 |N−(x) = m

)
dv

= 2l

∫ L∗
n

0
v2l−1[P (̂

r�,−
α (x) > vm

−1/2
0 |N−(x) = m

)
+ P

(̂
r�,−
α (x) ≤ −vm

−1/2
0 |N−(x) = m

)]
dv

= 2l

∫ L∗
n

0
v2l−1[�(

μα(v)
) − m−1/2ρα(v)

(
1 − μα(v)2)φ(

μα(v)
)

+ 1 − �
(
μα(−v)

) + m−1/2ρα(−v)
(
1 − μα(−v)2)φ(

μα(−v)
)]

dv

+ O
(
Lnm

−1
0

)
= 4l

∫ L∗
n

0
v2l−1�

(−vDm(α)
)
dv + O

(
Lnm

−1
0

)
= 4lDm(α)−2l

∫ L∗
nDm(α)

0
w2l−1�(−w)dw + O

(
Lnm

−1
0

)



Moments of regression quantiles 815

= 2

[(
L∗

n

)2l
�

(−L∗
nDm(α)

) + Dm(α)−2l

∫ L∗
nDm(α)

0
v2lφ(v) dv

]
+ O

(
Lnm

−1
0

)
uniformly in C∗

1m0 ≤ m ≤ C∗
2m0 with constants C∗

1 < C∗
2 . If L∗

n = (logn)γ is chosen
with γ > 0 large enough, we get that the right-hand side of the last equation is equal to
Dm(α)−2l

∫ ∞
−∞ v2lφ(v) dv + O(Lnm

−1
0 ). This follows since it can be easily shown that

2
∫ L∗

nDm(α)

0
z2lφ(z) dz −

∫ ∞

−∞
z2lφ(z) dz = o

(
Lnn

−C∗) = o
(
m−C∗)

,

(
L∗

n

)2l
�

(−L∗
nDm(α)

) = o
(
m−C∗)

with γ chosen depending on C∗. Thus, we get for l ∈ N that

E
{̂
r�,−
α (x)2lI

(∣∣̂r�,−
α (x)

∣∣ ≤ L∗
nm

−1/2
0

)|N−(x) = m
}

(24)

= m−l Al
1(α)

A2l
5 (α)

∫ ∞

−∞
z2lφ(z) dz + O

(
Ln

(
nhd

)−l−1)
.

With similar arguments one can show that

E
{̂
r�,−
α (x)2l−1I

(∣∣̂r�,−
α (x)

∣∣ ≤ L∗
nm

−1/2
0

)|N−(x) = m
}

(25)

= m−(2l−1)/2 A
(2l−1)/2
1 (α)

A2l−1
5 (α)

∫ ∞

−∞
z2l−1φ(z) dz + O

(
Ln

(
nhd

)−l)
= O

(
Ln

(
nhd

)−l)
.

In this case, one applies (22) instead of (21).
For the proof of (11) and (12) it remains to show that uniformly in C∗

1m0 ≤ m ≤ C∗
2m0, with

constants C∗
1 < C∗

2 , and for l ∈N

E
{̃
r�,−
α (x)2l |N−(x) = m

} = m−κ/2 A
κ/2
1 (α)

Aκ
5(α)

∫ ∞

−∞
z2lφ(z) dz + O

(
Ln

(
nhd

)−l−1)
, (26)

E
{̃
r�,−
α (x)2l−1|N−(x) = m

} = O
(
Ln

(
nhd

)−l)
. (27)

It remains to show (26)–(27). For the proof of (26) note that for independent random variables
Z1, . . . ,Zm with mean zero, variance 1 and bounded 2lth absolute moment it holds that

E

{(
m−1/2

m∑
i=1

Zi

)2l}
=

∫ ∞

−∞
z2lφ(z) dz + O

(
m−1),
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because for Z∗
1 , . . . ,Z∗

m

i.i.d.∼ N(0,1) one has

E

{(
m−1/2

m∑
i=1

Zi

)2l}
= m−l

∗∑
E(Zi1 · · ·Zi2l

) + O
(
m−1)

= m−l

∗∑
E

(
Z∗

i1
· · ·Z∗

i2l

) + O
(
m−1)

= E

{(
m−1/2

m∑
i=1

Z∗
i

)2l}
+ O

(
m−1)

= E
((

Z∗
1

)2l) + O
(
m−1)

=
∫ ∞

−∞
z2lφ(z) dz + O

(
m−1),

where the sum
∑∗ runs over all indices i1, . . . , i2l that are such that each value of an index ap-

pears exactly two times. For the proof of (27), one applies that for independent random variables
Z1, . . . ,Zm with mean zero, variance 1 and bounded 2l + 1th absolute moment it holds that

E

{(
m−1/2

m∑
i=1

Zi

)2l−1}
= m−l+1m−1/2E

(
m∑

i=1

Zi

)2l−1

= m−l+1m−1/2
∗∗∑

E(Zi1 · · ·Zi2l−1) + O
(
m−3/2) = O

(
m−1/2),

where the sum
∑∗∗ runs over all indices that are such that one value of an index appears three

times and for all other 2l − 4 indices each value appears exactly two times. This concludes the
proof of the theorem.

6. Proof of Theorem 2

For the proof of Theorem 2, we will use the following corollary of Theorem 1. For the statement
of the corollary, we have to define another construction of local neighborhoods. For their defi-
nition, suppose first that X is one-dimensional. Then the support RX is a compact interval. For
arbitrary j and for k ∈ {1,2,3}, we can then define

Ijk = [
(3j + k − 1)h, (3j + k)h

]
and I∗

jk = [
(3j + k − 2)h, (3j + k + 1)h

]
.

The set of indices of the Xi (i = 1, . . . , n) that fall inside the interval I ∗
jk is denoted by Njk . We

write Njk for the number of elements of Njk . An arbitrary x ∈ RX belongs to a unique Ijk and
we define N (x) = Njk and N(x) = Njk . Thus, N (x) is an interval of length 3h, such that x

lies in the middle subinterval of N (x) of length h. If the dimension of X is larger than one, this
partition of the support into small intervals can be generalized in an obvious way.
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Corollary 1. Assume (B1)–(B3). Then, for natural numbers l ≥ 1,

E
{
r�,−
α (x)2l − r̃�,−

α (x)2l |N(x) = m
} = O

(
Ln

(
nhd

)−l−1)
,

E
{
r�,−
α (x)2l−1 − r̃�,−

α (x)2l−1|N(x) = m
} = O

(
Ln

(
nhd

)−l)
uniformly in x ∈ RX , α ∈ A and C∗

1nhd ≤ m ≤ C∗
2nhd , where N(x) is the random number of

Xi ’s that lie in N (x), and where r�,−
α (x) = r�

α (x) − �h
α(x). For the second moments of the

uncentered estimators r�
α and r̃�

α , we have that

E
{
r�
α (x)2 − r̃�

α (x)2|N(x) = m
} = O

(
Lnn

−3/2h−5d/4).
Under the additional assumption that �α ≡ 0, we get that

E
{
r�
α (x)2 − r̃�

α (x)2|N(x) = m
} = O

(
Ln

(
nhd

)−2)
.

Proof. For m+ ≥ m, we have by a simple argument with κ = 2l or κ = 2l + 1 that
E{r�,−

α (x)κ − r̃�,−
α (x)κ |N(x) = m+,N−(x) = m} = E{r�,−

α (x)κ − r̃�,−
α (x)κ |N−(x) = m}.

Note that N−(x) ≤ N(x) because of N−(x) ⊂N (x). Using (11) and

P

(
N−(x) ≤ m+

4

∣∣∣N(x) = m+
)

≤ C exp
(−cnhd

)
uniformly in m+ ≥ 1

2 3dfX(x)nhd we conclude that

E
{
r�,−
α (x)κ − r̃�,−

α (x)κ |N(x) = m+} = O
(
Ln

(
nhd

)−l−1)
uniformly in x ∈ RX , α ∈ A and 1

2 3dfX(x)nhd ≤ m+ ≤ 23dfX(x)nhd .
Since

P

(
1

2
3dfX(x)nhd ≤ N(x) ≤ 23dfX(x)nhd for all x ∈ RX

)
→ 1,

we get the statement of the corollary. �

We now come to the proof of Theorem 2.
We only prove the statement for T̂A. The asymptotic result for T̂α follows similarly. We need

to introduce a few more notations. With δθ,α(x) = −(θ(α) − θ0(α))�γα(x) + n−1/2h−d/4�α(x)

and ε�
i,α = εi,α + n−1/2h−d/4�α(Xi), we define r̃�

α as in (9) and we put

r̂�
α,θ (x) = arg min

r

n∑
i=1

K

(
x − Xi

h

)
τα

(
εi.α + δθ,α(Xi) − r

)
.
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Note that r̂�
α (x) = r̂�

α,θ0
(x), and that r̂α(x) = r̂�

α,θ̂
(x) + OP (n−1/2−c) by Assumption (B4). We

also define r�
α as in (8). Let also

Wni(x,h) = Kh(x − Xi)
/[∑

j

Kh(x − Xj)

]

with Kh(·) = K(·/h)/hd .
The proof of Theorem 2 will make use of the following lemmas.

Lemma 1. Suppose that the assumptions of Theorem 2 are satisfied. Then,

sup
α∈A

sup
x∈RX

∣∣̂rα(x)
∣∣ = OP

((
nhd

)−1/2
Ln

)
, (28)

sup
α∈A

sup
x∈RX

∣∣̂r�
α (x)

∣∣ = OP

((
nhd

)−1/2
Ln

)
. (29)

Proof. As is known for the case where there is no parametric part and where �α ≡ 0, one has
that

sup
α∈A

sup
x∈RX

∣∣̂r�
α,θ0

(x) − r̃α(x)
∣∣ = OP

((
nhd

)−3/4
Ln

)
with r̃α defined as in (5). For a proof see Theorem 2 in Guerre and Sabbah [17]. By standard
smoothing theory, we have that (still when �α ≡ 0)

sup
α∈A

sup
x∈RX

∣∣̃rα(x)
∣∣ = OP

((
nhd

)−1/2
Ln

)
. (30)

This shows (29) when �α ≡ 0. We can move from this case to �α �= 0 by adding to the observa-
tions terms of order OP (n−1/2h−d/4). This changes the local quantiles by at most this amount,
and hence (29) still holds when �α �= 0.

In the case of r̂α(x) = r̂�
α,θ̂

(x)+OP (n−1/2−c), we have to add to the observations terms of the

order OP (Lnn
−1/2h−d/4) = OP ((nhd)−1/2Ln). This shows the first statement of the lemma. �

Lemma 2. Suppose that the assumptions of Theorem 2 are satisfied. Then,

sup
α∈A

sup
x∈RX

∣∣̂rα(x) − r̂�
α (x) + (

θ̂ (α) − θ0(α)
)�

γα(x)
∣∣ = OP

(
n− 1

2 −c
)
.

Proof. First note that r̂α(x) + (θ̂ (α) − θ0(α))�γα(x) is equal to the quantile estimator we
would obtain when we shift all observations Yi in the window around x by the amount
(θ̂ (α)− θ0(α))�γα(x), and hence we need to show that the distance between this latter estimator

(say r̂α,mod(x)) and r̂�
α (x) is OP (n− 1

2 −c) uniformly in α and x.
Next, note that if now in addition we perturb all observations in the window around x by

adding mα,θ̂(α)(Xi) − mα,θ0(α)(Xi) − (θ̂(α) − θ0(α))�γα(Xi), the quantile estimator r̂α,mod(x)
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will get perturbed by at most the maximal perturbation of the observations, which is of the order
OP (n−1/2−c) by Assumption (B4).

After these two perturbations, the quantile estimator is now based on Yi − mα,θ0(α)(Xi) +
(θ̂(α) − θ0(α))�(γα(x) − γα(Xi)) instead of Yi − mα,θ̂(α)(Xi). Finally note that if we apply one
more perturbation by subtracting (θ̂(α) − θ0(α))�(γα(x) − γα(Xi)) for all Xi in the window
around x, the estimator changes by at most OP (h−δn−1/2−ρhδ) = OP (n−1/2−ρ) by Assumption
(B5). The so-obtained estimator equals r̂�

α (x), which shows the statement of the lemma. �

Lemma 3. Suppose that the assumptions of Theorem 2 are satisfied. Then,

sup
α∈A

sup
x∈RX

∣∣̂r�
α (x) − r̃�

α (x)
∣∣ = OP

((
nhd

)−3/4
Ln

)
.

Proof. Write∣∣̂r�
α (x) − r̃�

α (x)
∣∣

≤ 1

infx,α fεα |X(0|x)

∣∣∣∣∣
n∑

i=1

Wni(x,h)fεα |X(0|Xi)̂r
�
α (x) +

n∑
i=1

Wni(x,h)
(
I
(
ε�
i,α ≤ 0

) − α
)∣∣∣∣∣

= 1

infx,α fεα |X(0|x)

∣∣∣∣∣
n∑

i=1

Wni(x,h)fεα |X(0|Xi)̂r
�
α (x) − F̂ε�

α |X
(̂
r�
α (x)|x) + F̂ε�

α |X(0|x)

∣∣∣∣∣
+ OP

((
nhd

)−1)
, (31)

where F̂ε�
α |X(y|x) = ∑

i Wni(x,h)I (ε�
i,α ≤ y). The latter equality follows from the fact that∣∣F̂ε�

α |X
(̂
r�
α (x)|x) − α

∣∣ ≤ ∣∣F̂ε�
α |X

(̂
r�
α (x)|x) − F̂ε�

α |X
(̂
r�
α (x) − |x)∣∣

= OP

((
nhd

)−1)
.

The following expansion follows from standard kernel smoothing theory, uniformly for x ∈
RX,α ∈ A, |y| ≤ an and for sequences an with a−1

n = O(nhd):

F̂ε�
α |X(y|x) − F̂ε�

α |X(0|x)

=
∑

i

Wni(x,h)

∫ y

0
fεα |X

(
u − n−1/2h−d/4�α(Xi)|Xi

)
du + OP

((
nhd

)−1/2
Lna

1/2
n

)
=

∑
i

Wni(x,h)

∫ y

0
fεα |X(u|Xi)du + OP

((
nhd

)−1/2
Lna

1/2
n

) + OP

(
n−1/2h−d/4an

)
= y

∑
i

Wni(x,h)fεα |X(0|Xi) + OP

((
nhd

)−1/2
Lna

1/2
n + a2

n

) + OP

(
n−1/2h−d/4an

)
.
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We now apply this bound to an = (nhd)−1/2Ln and y = r̂�
α (x), which is possible thanks to

Lemma 1. This combined with (31) shows the statement of the lemma. �

For proving Theorem 2, we will make use of the following decomposition, which follows from
Lemma 2:

T̂A =
∫

A

∫
RX

[̂
r�
α (x) − (

θ̂ (α) − θ0(α)
)�

γα(x)
]2

w(x,α)dx dα + oP

(
n−1h−d/2)

=
∫

A

∫
RX

[̂
r�
α (x)2 − r�

α (x)2]w(x,α)dx dα

+
∫

A

∫
RX

E
{
r�
α (x)2 − r̃�

α (x)2|N(x)
}
w(x,α)dx dα

+
∫

A

∫
RX

[
r�
α (x)2 − r̃�

α (x)2 − E
{
r�
α (x)2 − r̃�

α (x)2|N(x)
}]

w(x,α)dx dα

− 2
∫

A

∫
RX

[(̂
r�
α (x) − r̃�

α (x)
){(

θ̂ (α) − θ0(α)
)�

γα(x)
}]

w(x,α)dx dα

− 2
∫

A

∫
RX

[̃
r�
α (x)

{(
θ̂ (α) − θ0(α)

)�
γα(x)

}]
w(x,α)dx dα

+
∫

A

∫
RX

[(
θ̂ (α) − θ0(α)

)�
γα(x)

]2
w(x,α)dx dα

+
∫

A

∫
RX

r̃�
α (x)2w(x,α)dx dα + oP

(
n−1h−d/2)

= Tn1 + · · · + Tn7 + oP

(
n−1h−d/2).

Lemma 4. Suppose that the assumptions of Theorem 2 are satisfied. Then,

Tn1 = oP (an)

for any sequence {an} of positive constants tending to zero as n → ∞.

Proof. Note that

Tn1 ≤ sup
α∈A

sup
x∈RX

∣∣̂r�
α (x)

∣∣2
∫

A

∫
RX

I
(∣∣̂r�

α (x)
∣∣ > Ln

(
nhd

)−1/2)
w(x,α)dx dα.

It is easily seen from Lemma 1 that∫
A

∫
RX

I
(∣∣̂r�

α (x)
∣∣ > Ln

(
nhd

)−1/2)
w(x,α)dx dα = oP (an)

for any an → 0, since the indicator inside the integral will be zero from some point on. �
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From Corollary 1, we get the following result.

Lemma 5. Suppose that the assumptions of Theorem 2 are satisfied. Then,

sup
α∈A

sup
x∈RX

∣∣E{
r�
α (x)2 − r̃�

α (x)2|N(x)
}∣∣ = oP

((
nhd/2)−1)

,

and hence, Tn2 = oP ((nhd/2)−1).

At this point, we needed the additional assumption nh3d/2/L∗
n → ∞ for the case that �α �≡ 0.

We now shortly outline what happens if we are on the alternative and if this assumption does not
hold. Note that for |m − m0| = o(m0)

E
{
r�
α (x)2 − r̃�

α (x)2|N(x) = m
}

= E
{(

r�,−
α (x) + �h

α(x)
)2 − (̃

r�,−
α (x) + �h

α(x)
)2|N(x) = m

}
= E

{
r�,−
α (x)2 − r̃�,−

α (x)2|N(x) = m
} + 2�h

α(x)E
{
r�,−
α (x)|N(x) = m

}
.

For the first term on the right-hand side we get from Corollary 1 that it is of order o((nhd/2)−1).
For �h

α(x), one can show that it is equal to n−1/2h−d/4�α(x) + O(Lnn
−1/2h−d/4h2). For the

term E{r�,−
α (x)|N(x) = m} one can show that it is equal to (nhd)−1ρ(x) + O(Ln(nhd)−3/2)

for some function ρ that does not depend on the function �α . This can be done by using the
arguments based on Edgeworth expansions that were central in the proof of Theorem 1. This
gives that

Tn2 = n−3/2h−5d/4
∫

A

∫
RX

�α(x)ρ(x)w(x,α)dx dα + oP

(
n−3/2h−5d/4) + oP

((
nhd/2)−1)

.

Suppose now that nh3d/2 → 0. Then it holds that (nhd/2)−1 = o(n−3/2h−5d/4) and using
Lemma 10 we get that

Tn = n−1h−dK(2)(0)

∫
A

α(1 − α)

∫
RX

w(x,α)

fX(x)f 2
εα |X(0|x)

dx dα

+ n−3/2h−5d/4
∫

A

∫
RX

�α(x)ρ(x)w(x,α)dx dα + oP

(
n−3/2h−5d/4).

This implies that the test rejects for large values of
∫
A

∫
RX

�α(x)ρ(x)w(x,α)dx dα. Thus, in
this high-dimensional setting the test behaves like a linear test and not like an omnibus test.

Lemma 6. Suppose the assumptions of Theorem 2 are satisfied. Then,

Tn3 = OP

(
Lnn

−5/4h−3d/4) = oP

((
nhd/2)−1)

.
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Proof. For simplicity of exposition of the argument, let us assume that Xi is one-dimensional.
For arbitrary j and for k ∈ {1,2,3}, define

Ujk =
∫

A

∫
Ijk

[
r�
α (x)2 − r̃�

α (x)2 − E
{
r�
α (x)2 − r̃�

α (x)2|N(x)
}]

w(x,α)dx dα.

Then we can write Tn3 = Tn31 + Tn32 + Tn33 with Tn3k = ∑
j Ujk (k = 1,2,3). The terms Tn31,

Tn32 and Tn33 are sums of O(h−1) conditionally independent summands. The summands are
uniformly bounded by a term of order OP (Lnn

−5/4h−1/4). This follows from Lemma 5, from
the fact that supα∈A supx |̃r�

α (x)| = OP (Ln(nh)−1/2), see also (30), and from the Bahadur rep-
resentation for r�

α (x), given in Lemma 3. It now follows that Tn3k = OP (Lnn
−5/4h−3/4), which

implies the statement of the lemma for d = 1. For d > 1 one can use the same approach. �

Lemma 7. Suppose the assumptions of Theorem 2 are satisfied. Then,

Tn4 = oP

((
nhd/2)−1)

.

Proof. This is obvious, since Tn4 = OP (Ln(nhd)−3/4n− 1
4 h

d
4 /L∗

n) = oP ((nhd/2)−1), thanks to
Assumption (B5) and Lemma 3. �

Lemma 8. Suppose the assumptions of Theorem 2 are satisfied. Then,

Tn5 = oP

((
nhd/2)−1)

.

Proof. Write

Tn5 = 2
∫

A

∫
RX

∑n
i=1 K(

x−Xi

h
){I (ε�

i,α ≤ 0) − α}∑n
i=1 K(

x−Xi

h
)fεα |X(0|Xi)

(
θ̂ (α) − θ0(α)

)�
γα(x)w(x,α)dx dα

= 2

n

∫
A

∫
RX

∑n
i=1 K(

x−Xi

h
){I (ε�

i,α ≤ 0) − α}
gh,α(x)

(
θ̂ (α) − θ0(α)

)�
γα(x)w(x,α)dx dα

+ oP

((
nhd/2)−1)

= 2
∫

A

(
θ̂ (α) − θ0(α)

)� 1

n

n∑
i=1

ρh,α(Xi)
{
I
(
ε�
i,α ≤ 0

) − α
}
dα + oP

((
nhd/2)−1)

, (32)

with gh,α(x) = E[K(x−X
h

)fεα |X(0|X)] and

ρh,α(v) =
∫

RX

K

(
x − v

h

)
γα(x)w(x,α)

gh,α(x)
dx.
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Using the notations Qh,α(Xi) = ρh,α(Xi)∑n
j=1 ρh,α(Xj )

, F̂ε�
α
(y) = ∑n

i=1 Qh,α(Xi)I (ε�
i,α ≤ y) and

Fε�
α
(y) = P(ε�

α ≤ y), we have that

1

n

n∑
i=1

ρh,α(Xi)
{
I
(
ε�
i,α ≤ 0

) − α
}

= [
F̂ε�

α
(0) − α

](1

n

n∑
i=1

ρh,α(Xi)

)

= [
F̂ε�

α
(0) − Fε�

α
(0)

](1

n

n∑
i=1

ρh,α(Xi)

)
+ [

Fε�
α
(0) − α

](1

n

n∑
i=1

ρh,α(Xi)

)

= OP

(
n−1/2) + OP

(
n−1/2h−d/4)

uniformly in α ∈ A, and hence the statement of the lemma holds because of (32) and (B5). �

Lemma 9. Suppose the assumptions of Theorem 2 are satisfied. Then,

Tn6 = oP

((
nhd/2)−1)

.

Proof. The statement of the lemma follows from (B5). �

Lemma 10. Suppose the assumptions of Theorem 2 are satisfied. Then,

nhd/2Tn7 − bh,A
d→ N(DA,VA).

Proof. The proof is very similar to the proof of for example, Proposition 1 in Härdle and Mam-
men [19]. Write

Tn7 = n−2
∑
i,j

∫
A

∫
RX

K

(
x − Xi

h

)
K

(
x − Xj

h

){
I
(
ε�
i,α ≤ 0

) − α
}{

I
(
ε�
j,α ≤ 0

) − α
}

× ĝα(x)−2w(x,α)dx dα,

where ĝα(x) = n−1 ∑n
i=1 K(

x−Xi

h
)fεα |X(0|Xi). By writing I (ε�

i,α ≤ 0) − α = [I (ε�
i,α ≤ 0) −

I (εi,α ≤ 0)] + [I (εi,α ≤ 0) − α], we can decompose Tn7 into Tn7 = Tn71 + Tn72 + 2Tn73. As
in Härdle and Mammen [19], Tn73 is negligible. Straightforward calculations show that Tn71 =
(nhd/2)−1(DA + oP (1)). Indeed,

E(Tn71|X1, . . . ,Xn)

= n−2
∑
i,j

∫
A

∫
RX

K

(
x − Xi

h

)
K

(
x − Xj

h

)
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× [
Fεα |X

(−n−1/2h−d/4�α(Xi)|Xi

) − Fεα |X(0|Xi)
]

× [
Fεα |X

(−n−1/2h−d/4�α(Xj )|Xj

) − Fεα |X(0|Xj)
]
ĝα(x)−2w(x,α)dx dα

= n−2
∑
i,j

∫
A

∫
RX

K

(
x − Xi

h

)
K

(
x − Xj

h

)
fεα |X(0|Xi)fεα |X(0|Xj)

× n−1h−d/2�α(Xi)�α(Xj )ĝα(x)−2w(x,α)dx dα
(
1 + oP (1)

)
= n−1h−d/2

∫
A

∫
RX

�2
α(x)w(x,α)dx dα

(
1 + oP (1)

)
= n−1h−d/2DA

(
1 + oP (1)

)
.

Next, write Tn72 = Tn72a + Tn72b with

Tn72a = 1

n2

n∑
i=1

Unii,

Tn72b = 1

n2

∑
i �=j

Unij ,

where

Unij =
∫

A

∫
RX

K

(
x − Xi

h

)
K

(
x − Xj

h

){
I (εi,α ≤ 0) − α

}{
I (εj,α ≤ 0) − α

}
× ĝα(x)−2w(x,α)dx dα.

By calculating its mean and variance it can be checked that nhd/2Tn72a = bh,A + oP (1). Thus

for the lemma it remains to check that nhd/2Tn72b
d→ N(0,VA). For the proof of this claim

one can proceed as in Härdle and Mammen [19] and apply the central limit theorem for
U-statistics of de Jong [9]. For this purpose, one has to verify that n2hdVar(Tn72b) → VA,
max1≤i≤n

∑n
j=1 Var(Unij )/Var(Tn72b) → 0 and E[T 4

n72b]/(Var(Tn72b))
2 → 3. This can be done

by straightforward but tedious calculations. �

Proof of Theorem 2. The theorem follows immediately from Lemmas 4–10. Lemmas 4–9 im-
ply the negligibility of the terms Tn1, . . . , Tn6. Lemma 10 shows the asymptotic normality of
nhd/2Tn7. �

7. Proof of Theorem 3

The theorem can be shown by verification of the conditions of the central limit theorem for U-
statistics of de Jong [9], in the same way as was done in the proof of Lemma 10. The crucial
point in the proof is to note that I (Ui ≤ α) has the same distribution as I (εi,α ≤ 0), and hence
the calculations in the proof of Lemma 10 go through in this proof.
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