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The monotone rearrrangement algorithm was introduced by Hardy, Littlewood and Pólya as a sorting device
for functions. Assuming that x is a monotone function and that an estimate xn of x is given, consider the
monotone rearrangement x̂n of xn. This new estimator is shown to be uniformly consistent as soon as xn

is. Under suitable assumptions, pointwise limit distribution results for x̂n are obtained. The framework is
general and allows for weakly dependent and long range dependent stationary data. Applications in mono-
tone density and regression function estimation are detailed. Asymptotics for rearrangement estimators with
vanishing derivatives are also obtained in these two contexts.

Keywords: density estimation; dependence; limit distributions; monotone rearrangement; regression
function estimation

1. Introduction

Assume that (ti , x(ti))
n
i=1, for some points ti ∈ [0,1] (e.g. (ti = i/n)), are pairs of data points.

The (decreasing) sorting of the points x(ti) is then an elementary operation and produces the
new sorted sequence of pairs (ti , y(ti)) where y = sort(x) is the sorted vector. Let # denote the
counting measure of a set. Then we can define the sorting y of x by

z(s) = #
{
ti : x(ti) ≥ s

}
,

y(t) = z−1(t),

where z−1 denotes the inverse of a function (if the points x(ti) are not unique it denotes the
generalized inverse).

The “sorting” of a function {x(t), t ∈ [0,1]} can then analogously be defined by the monotone
rearrangement (cf. Hardy et al. [22]),

z(s) = λ
{
t ∈ [0,1] : x(t) ≥ s

}
,

y(t) = z−1(t),
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where the counting measure # has been replaced by the Lebesgue measure λ, and z−1 denotes
the generalized inverse.

The monotone rearrangement algorithm of a set or a function has mainly been used as a device
in analysis, see, for example, Lieb and Loss [24], Chapter 3, or in optimal transportation (see
Villani [39], Chapter 3). Fougères [16] was the first to use the algorithm in a statistical context, for
density estimation under order restrictions. Meanwhile, Polonik [30,31] also developed tools of a
similar kind for density estimation for multivariate data. More recently, several authors revisited
the monotone rearrangement procedure in the estimation context under monotonicity; see Dette
et al. [13], Neumeyer [29], Chernozhukov et al. [10], Birke and Dette [6], Jankowski and Wellner
[23], Volgushev and Dette [42], Birke et al. [7], Volguchev [40]. Some tests of monotonicity have
also been recently introduced, see, for example, Volguchev et al. [41] and Birke et al. [8].

We introduce the following two-step approach for estimating a monotone function. Assume
that x is a monotone function on an interval I ⊂R. Assume also that we already have an estimate
xn of x, but that this estimate is not necessarily monotone. The procedure adopted in this paper
is to use the monotone rearrangement x̂n of xn as an estimate of x.

Under the assumption that we have process limit distribution results for (a localized version
of) the stochastic part of xn and that the deterministic part of xn is asymptotically differentiable
at a fixed point t0, with strictly negative derivative, we obtain pointwise limit distribution results
for x̂n(t0). The framework is general and allows for weakly dependent as well as long range
dependent data. This is the topic for Section 3, where we also explore in more detail the appli-
cations of our general results to monotone density and regression function estimation. These are
the problems of estimating f and m respectively in

(i) t1, . . . , tn stationary observations with marginal decreasing density f on R
+,

(ii) (ti , yi) observations from yi = m(ti) + εi , ti = i/n, i = 1, . . . , n,m decreasing on [0,1],
{εi} stationary sequence with mean zero.

The standard approaches in these two problems have been isotonic regression for the regres-
sion problem, first studied by Brunk [9], and (nonparametric) Maximum Likelihood estimation
(NPMLE) for the density estimation problem, first introduced by Grenander [19]. A wide lit-
erature exists for regression and density estimation under order restrictions. One can refer for
example, to Mukerjee [28], Ramsay [33], Mammen [25], Hall and Huang [20], Mammen et al.
[26], Gijbels [18], Birke and Dette [5], Dette and Pilz [14], Dette et al. [13] for the regression
context. Besides, see Eggermont and Lariccia [15], Fougères [16], Hall and Kang [21], Meyer
and Woodroofe [27], Polonik [30], Van der Vaart and Van der Laan [38], among others, for a
focus on monotone (or unimodal) density estimation. Anevski and Hössjer [2] gave a general
approach unifying both contexts. In their introduction, Birke and Dette [6] provide nice refer-
ences in which physical or economical arguments justify the assumption of monotonicity. Our
approach is similar in spirit to the general methods studied in Anevski and Hössjer [2] and first
introduced in the regression estimation setting by Mammen [25]: Start with a preliminary esti-
mator and make it monotone by projecting it on the space of monotone functions. The present
approach can however at some point be considered preferable: The monotone rearrangement,
being basically a sorting, is a simpler procedure than an L2-projection. Furthermore, the con-
sistency and limit distribution results indicate similar properties to Mammen’s and Anevski and
Hössjer’s estimators. Besides, an important advantage of our estimator is the finite sample be-
havior: Mammen’s estimator is monotone but not necessarily smooth; Mammen actually studied
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two approaches, one with kernel smoothing followed by monotonization and the other approach
the other way around, that is, monotonization followed by kernel smoothing. Mammen showed
that the two proposals are first-order equivalent. However, their finite sample size properties are
very different: the first resulting estimator is monotone but not necessarily smooth, while the
other is smooth but not necessarily monotone, so that one needs to choose which property is
more important. This is not the case with our estimator, since if we start with a smooth estimator
of the function, for example, a kernel estimator, the monotone rearrangement will be smooth as
well. This can however become a disadvantage for instance, when the estimand is discontinuous:
then the monotone rearrangement will “oversmooth” since it will give a continuous result, while
Mammen’s estimator will keep more of the discontinuity intact.

Note that our results are geared towards local estimates, that is, estimates that use only a subset
of the data and that are usually estimators of estimands that can be expressed as non-differentiable
maps of the distribution function such as for example, density functions, regression functions, or
spectral density functions. This differs from global estimates, as those considered for example,
by Chernozhukov et al. [11] for quantile estimation. Chernozhukov et al. [11] rearrange the em-
pirical quantile function, and use the fact that the rearrangement map is Hadamard differentiable
together with Donsker type results, to obtain general statements about the final estimator. This
approach is however not applicable in our case. In fact, our preliminary estimators are all local
estimators, and they do not converge weakly as processes. Therefore the Hadamard differentia-
bility of T has no implication in our estimation problems; we need to make a more detailed
reasoning, assuming local limit process results for the preliminary estimator, together with prop-
erties of the map T. These two features may be seen as replacements for the Donsker result and
the Hadamard differentiability result of T , that are used in [11].

An approach similar to ours for local estimates is given in Dette et al. [13], using a modified
version of the Hardy–Littlewood–Pólya monotone rearrangement: The first step consists of cal-
culating the upper level set function and is identical to ours. However, in the second step they
use a smoothed version of the (generalized) inverse, which avoids nonregularity problems for the
inverse map. The resulting estimator is therefore not rate-optimal, and the limit distributions are
standard Gaussian due to the oversmoothing.

Using kernel estimators as preliminary estimators of f and m on which the monotone re-
arrangement is then applied, we are able to derive limit distribution results for quite general
dependence situations, demanding essentially stationarity for the underlying random parts {ti}
and {εi}, respectively. The results are however stated in a form that allows for other estimators
than the kernel based as starting points, for example, wavelet or splines estimators.

The paper is organized as follows: In Section 2, we present the monotone rearrangement al-
gorithm as classically defined, and we derive some simple properties that will be used in the
sequel. Then we define the generic estimator of the monotone function of interest, and state the
consistency for the estimator.

In Section 3, the pointwise limit distribution properties are considered. For this purpose, we
need to generalise the monotone rearrangement map for some specific functions, as will be done
in Sections 3.1 and 3.2. The limit distribution given in Theorem 4 is of the general form

d−1
n

[
x̂n(t0) − x(t0)

] L→ T
(
A · +ṽ(·; t0)

)
(0) + �,
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where T is the monotone rearrangement map;

� = lim
n→∞d−1

n

[
E
{
xn(t0 + sdn)

}− x(t0)
]

is the asymptotic local bias of the preliminary estimator; A is the uniform limit, in s over compact
intervals,

d−1
n

{
xb,n(t0 + sdn) − xb,n(t0)

} → A

(typically with A = x′(t0) in our applications); and

ṽ(s; t0) L= lim
n→∞d−1

n

[
xn(t0 + sdn) −E

{
xn(t0 + sdn)

}]
is the weak local limit of the process part of the preliminary estimator; here dn ↓ 0 is a deter-
ministic sequence that is determined by the dependence structure of the data. We then apply
the obtained results to regression function estimation and density estimation under order restric-
tions, and derive the limit distributions for the estimators. This gives rise to some new universal
limit random variables, such as for example, in the regression context T (s + B(s))(0) with T

the monotone rearrangement map and B standard two sided Brownian motion for independent
and weakly dependent data, or T (s + B1,β(s))(0) with B1,β fractional Brownian motion with
self similarity parameter β , when data are long range dependent. The rate of convergence dn is
e.g. for the regression problem the optimal n−1/3 in the i.i.d. and weakly dependent data con-
text and of a non-polynomial rate in the long range dependent context, similarly to previously
obtained results in isotonic regression for long range dependent data, cf. Anevski and Höss-
jer [2].

In Section 4, we derive limit distribution results for the proposed estimator in the case
when the estimand has q vanishing derivatives while its (q + 1)st derivative is strictly nega-
tive. The limit results are given in a general setting, and applied to both the density function
and regression function estimation cases, and in similar dependence settings as for the “regu-
lar” case, that are derived in Sections 3.3 and 3.4. The limit distribution results are now of the
form

d−1
n

[
x̂n(t0) − x(t0)

] L→ T
(
Ax(·) + ṽ(·; t0)

)
(0),

where T is the monotone rearrangement map, Ax(s) is a function that is given as a uniform limit
over compact intervals,

d
−(q+1)
n

(
xb,n(t0 + sdn) − x(t0)

) → Ax(s)

as dn → 0, which (for symmetric kernels) is a convolution of a degree q + 1 monomial with the
kernel, while ṽ is the limit process that turns up in the above. The rate dn is now different: It
is slower than above, and for example, for independent data, in both the density estimation and
regression function estimation contexts, it is dn = n−1/(3+2q).

In Appendix A, we give some proofs for the results of Section 2. In Appendix B, we state
a general result on maximal bounds on the rescaled process part. The proof of this result is
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provided in Section 1 of the supplemental article (Anevski and Fougères [1]). Therein, further
useful but technical results on maximal bounds on the rescaled process parts in the density and
regression estimation problems are also derived, that is, for the local partial sum process and
empirical processes, for weakly dependent as well as long range dependent data. Furthermore, in
Section 2 of the supplemental article (Anevski and Fougères [1]), we present a simulation study
that illustrates the finite sample behaviour of our estimator, and compare it to other estimators
that are considered in the paper of Birke and Dette [6].

In this context, it may be instructive to compare our results with previously obtained results,
for similar procedures. The estimator defined by Dette et al. [13], is a two step procedure sim-
ilar to ours for regression estimation problems, consisting of first defining a smooth estimate
of the estimand and next do the monotone rearrangement of that estimator. We would like to
point out that the assumptions in the two approaches are somewhat different: In our paper, we
use a fixed design setting, which enables us to use the Gasser–Müller estimator as the first step
estimator, while the results in Dette et al. [13] are derived in a random design setting. In [13],
is used however an extra smoothing procedure in the second step, and therefore their obtained
estimator is not the same as ours, and in fact their estimator may be seen as a smooth monotone
rearrangement of the preliminary estimator. More interestingly, the two estimators give quali-
tatively very different results, with different rates and different limit random variables. Within
the class of continuously differentiable monotone functions, the estimator considered in [13] is
not rate optimal (for the independent data case, which is the only case they consider), they get a
slower rate than the optimal, cf. Theorem 3.2 in [13]. Furthermore, their limit random variable
is Gaussian, with the Gaussian distribution turning up due to the over smoothing in the second
extra step, whereas ours converge to the above defined new universal random variable. We would
like to also emphasize that we are able to state our results for also dependent data, covering both
weak and strong dependence. In Neumeyer [29], the same estimator as ours is treated, for general
estimands and thus treating both regression and density estimation problem; the consistency of
the resulting estimator is derived (see Neumeyer [29], Theorem 3.1).

2. The monotone estimation procedure

2.1. Monotone rearrangement: First definitions

Monotone rearrangements were originally defined by Hardy et al. [22], Chapter 10.12, for non-
negative and integrable functions on [0,1]. In Lieb and Loss [24], Chapter 3, the definition is
extended to Borel measurable functions from R

n into C that vanish at infinity. We use their defi-
nition for Borel measurable functions from R into R

+ that vanish at infinity, in the sense that for
each positive u

rf (u) := λ
{
t ∈ R : f (t) > u

}
< +∞, (1)

where λ(A) denotes the Lebesgue measure of any Borel set A on R. Note that this definition
holds in particular for integrable functions like densities on R

+ as considered in Fougères [16].
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Definition 1. Let f be a positive function defined on R
+ satisfying (1). The monotone rear-

rangement of f is defined as the (right continuous) generalized inverse of rf , namely

T (f )(t) := inf
{
u ∈R

+ : rf (u) ≤ t
}
, (2)

for each positive t .

This rearrangement satisfies several properties that will be listed later in this section, see Lem-
mas 2 and 3 and Theorem 1. Note that related results were obtained by Chernozhukov et al.
[11].

A particular class of functions for which (1) is satisfied is the set of bounded functions
defined on a finite interval I ⊂ R. Denote B(I ) = {f : f (I) bounded} and D(I ) = {f :
f decreasing on I }. Let rf,I be the right continuous map from f (I) to R

+, defined for each
u ∈ f (I) by

rf,I (u) := λ
{
t ∈ I : f (t) > u

}= λ
{
I ∩ f −1(u,∞)

}
as the (right continuous) generalized inverse of rf,I

TI (f )(t) := inf
{
u ∈ f (I) : rf,I (u) ≤ t − inf I

}
. (3)

The following lemmas and theorem are listing some simple and useful properties of the maps
u �→ rf,I (u), f �→ rf,I and f �→ TI (f ) respectively. The proofs are straightforward and rele-
gated to Appendix A for more clarity.

Lemma 1. Assume I ⊂R is a finite interval, and f ∈ B(I ). Then

(i) If f has no flat regions on I , that is, λ{I ∩ f −1({u})} = 0 for all u ∈ f (I), then rf,I is
continuous,

(ii) If there is a u0 ∈ f (I) such that λ{I ∩ f −1({u0})} = c > 0, then rf,I has a discontinuity
at u0 of height c,

(iii) If f has a discontinuity at t0 ∈ I and f is decreasing, then rf,I admits a flat region with
level t0.

Lemma 2. Let I ⊂R be a finite interval, and assume f ∈ B(I ). Then

(i) If c is a constant then rf +c,I (u) = rf,I (u − c), for each u ∈ f (I) + c.
(ii) rcf,I (u) = rf,I (u/c) if c > 0, for each u ∈ cf (I ).

(iii) f ≤ g ⇒ rf,I ≤ rg,I .
(iv) Let fc(t) = f (tc). Then crfc,I = rf,I .
(v) Let fc(t) = f (t + c). Then rfc,I = rf,I .

Lemma 3. Let I ⊂ R be a finite interval and assume f,g are functions in B(I ). The monotone
rearrangement map TI satisfies the following:

(i) TI (f + c) = TI (f ) + c, if c is a constant;
(ii) TI (cf ) = cTI (f ), if c > 0 is a constant;
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(iii) f ≤ g ⇒ TI (f ) ≤ TI (g);
(iv) Let fc(t) = f (ct); then TI/c(fc)(t) = TI (f )(ct);
(v) Let fc(t) = f (t + c); then TI−c(fc)(t) = TI (f )(t + c).

The previous result implies that the map TI is continuous, as stated in the following theorem.

Theorem 1. Let ‖ · ‖ be the supremum norm on B(I ). Then the map TI is a contraction, i.e.
‖TI (f ) − TI (g)‖ ≤ ‖f − g‖. In particular, TI is a continuous map, that is, for all fn,f ∈ B(I ),

‖fn − f ‖ → 0 ⇒ ∥∥TI (fn) − TI (f )
∥∥→ 0,

as n tends to infinity.

Note that Lemma 2 holds (with identical proof) for T as defined in (2), and Lemma 3 follows
from that. Thus Theorem 1 also holds in this case for the supremum norm over R+, with identical
proof.

Remark 1. One can also refer to Lieb and Loss [24], Theorem 3.5, for a proof of the contraction
property (the “non expansivity” property of the map TI ), for the Lp-norms for functions f and
g vanishing at infinity.

Finally, observe that when the function f is replaced by a stochastic process x defined almost
surely, then for almost every realisation of x, one can define rx (resp. rx,I ) and thereafter its
generalized inverse. Thus one can define the monotone rearrangement almost surely for every
stochastic process with finite support or satisfying (1) almost surely. We will make use of this
last concept to define new estimators in the next section.

2.2. The new estimators: Definition and first properties

Let x be a function of interest such as a density function, a regression function, or a spectral
density, for example. Assume x is non increasing. Consider an estimator xn of x constructed
from n observations, which is not supposed to be monotone. Typically, xn can be an estimator
based on kernel, wavelets, splines, etc. Let ℵn denote the support of xn. Assume that xn is such
that it is possible to define either T (xn) as in (2) (when ℵn is infinite) or Tℵn(xn) as in (3) (when
ℵn is finite). This will in particular be the case as soon as xn is a density of B(R+), or xn is
a regression function on [0,1]. For sake of simplicity, a unique notation T will be used in the
following to refer equally to T or Tℵn .

Definition 2. We define as a new estimator of x the monotone rearrangement of xn, namely
T (xn). This is a nonincreasing estimator of x.

Theorem 2. (i) Assume that {xn}n≥1 is a uniformly consistent estimator of x (in probability,
uniformly on a compact set B ⊂ R). If x is nonincreasing, then {T (xn)}n≥1 is also a uniformly
consistent estimator of x (in probability, uniformly on B).
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(ii) Assume that {xn}n≥1 is an estimator that converges in probability in L
p-norm to x, and that

{xn}n≥1 and x are vanishing at infinity. If x is nonincreasing, then {T (xn)}n≥1 also converges in
probability in L

p-norm to x.

Proof. Part (i) follows from the fact that ‖x‖ = supt∈K |x(t)| is a norm (for every compact
K ⊂R), that T (x) = x if x is non increasing, and that T is a contraction with respect to ‖ · ‖, by

Theorem 1. To get (ii), assume that ‖xn − x‖Lp
P→ 0, and then note that∥∥T (xn) − x

∥∥
Lp = ∥∥T (xn) − T (x)

∥∥
Lp ≤ ‖xn − x‖Lp ,

thanks to Lieb and Loss [24], Theorem 3.5. �

Remark 2. The strong convergence in L
p-norm of T (fn) to f , as a consequence of the corre-

sponding result for fn, was first established in Fougères [16], Theorem 5, in the case when fn is
the kernel estimator of a density function f ; the assumption that the functions {fn}, f vanish at
infinity are then naturally satisfied. Chernozhukov et al. [10] give a refinement of the non expan-
sivity property, see their Proposition 1, part 2, providing a bound for the gain done by rearranging
fn and examining the multivariate framework as well.

3. Limit distribution results

Simple monotone estimators have been defined in Section 2.2 that satisfy several desired consis-
tency properties. The aim of this section is to go further into asymptotic properties, focusing on
pointwise limit distribution results for these estimators. To this purpose, we will first provide a
more general definition of monotone rearrangement for some specific functions (and processes),
and then state in Section 3.2 the main result of the paper in a general setting. The particular
results obtained for density regression function estimations will next be developed.

3.1. Extension of monotone rearrangement algorithm

If ϕ is a function for which rϕ(u) is possibly infinite for some positive u, a definition of T (ϕ) can
be given locally around a fixed point x ∈ I0, where I0 is a finite interval, as soon as the function
ϕ satisfies the following property:

Let I0 and the function ϕ be given. Assume there exists a constant M = M(ϕ, I0) < ∞ and
a finite interval I1 = I1(ϕ, I0) ⊃ I0 such that

inf
t∈(inf I1,sup I0)

ϕ(t) > −M and sup
t∈(sup I1,∞)

ϕ(t) < −M, (4)

inf
t∈(−∞,inf I1)

ϕ(t) > +M and sup
t∈(inf I0,sup I1)

ϕ(t) < +M. (5)

Theorem 3. Let I0 be a finite and fixed interval, and let ϕ be a continuous function R such that
(4) and (5) are satisfied. Then for any finite interval J containing I1, one has TJ (ϕ) ≡ TI1(ϕ)

on I0.
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Proof. The proof consists of the following three steps: (i) We construct a point y∗ on which TJ

and TI1 agree, that is, such that TJ (ϕ)(y∗) = TI1(ϕ)(y∗). (ii) We show that inf I1 ≤ y∗ ≤ inf I0.
(iii) We show that if TJ (ϕ) and TI1(ϕ) agree at y∗, they will coincide on [y∗, sup Io] =: Ĩ .

(i) Define y1 := inf{y ∈ I1 : ϕ(y) < ϕ([infJ,y))}. Then by (5) we have that ϕ(y1) ≥ +M ,
which by the definition of y1 implies that also infϕ([infJ,y1)) ≥ +M . Furthermore, from the
left part of (4) and the right part of (5) it follows that ϕ(I0) ⊂ (−M,+M). This implies that

y1 < inf
{
y ∈ J : ϕ(y) ∈ (−M,M)

}
≤ inf

{
y ∈ J : ϕ(y) ∈ ϕ(I0)

}
=: z0,

where the first inequality follows from continuity of ϕ, the definition of y1 and the theorem of
intermediate values. Thus y1 ∈ I1, z0 ≤ inf I0 and y1 < z0 and so also z0 ∈ I1.

As a consequence, one has

rϕ,J

{
ϕ(y1)

} = λ
{
t ∈ J : ϕ(t) > ϕ(y1)

}
= λ

{
t ∈ J ∩ (−∞, y1) : ϕ(t) > ϕ(y1)

}
+ λ

{
t ∈ J ∩ (y1,∞) : ϕ(t) > ϕ(y1)

}
= y1 − infJ + λ

{
t ∈ I1 ∩ (y1,∞) : ϕ(t) > ϕ(y1)

}
,

where the first two terms in the last equality follow since from the definition of y1, ϕ(t) > ϕ(y)

for all t ∈ J ∩ (y1,∞), while the last term in the last equality follows from y1 ∈ I1. Similarly,
one has

rϕ,I1

{
ϕ(y1)

} = λ
{
t ∈ I1 ∩ (−∞, y1) : ϕ(t) > ϕ(y1)

}
+ λ

{
t ∈ I1 ∩ (y1,∞) : ϕ(t) > ϕ(y1)

}
= y1 − inf I1 + λ

{
t ∈ I1 ∩ (y1,∞) : ϕ(t) > ϕ(y1)

}
,

Thus the following equality holds

rϕ,J

{
ϕ(y1)

}+ infJ = rϕ,I1

{
ϕ(y1)

}+ inf I1 := y�. (6)

Then TJ (ϕ)(y�) = inf{u ∈ ϕ(J ) : rϕ,J (u) ≤ rϕ,J (ϕ(y1))}, which since rϕ,J is a decreasing
function, is equal to ϕ(y1). Similarly, ϕ(y1) = TI1(ϕ)(y�), and we have shown that TJ (ϕ)(y�) =
ϕ(y1) = TI1(ϕ)(y�), and thus the two maps agree at y�.

(ii) From the right-hand parts of (4) and (5) follow that

TJ (ϕ)(inf I0) ≤ M. (7)

Furthermore,

TJ (ϕ)(y∗) = ϕ(y1) ≥ M. (8)
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Since TJ (ϕ) is a decreasing function (7) and (8) imply that y∗ ≤ inf I0, and (6) implies that
y∗ ≤ inf I1.

(iii) Finally, we prove that if TJ (ϕ) and TI1(ϕ) coincide at y�, they will coincide on Ĩ =
[y∗, sup I0]. Let u ∈ [−M,ϕ(y1)] =: Ỹ be arbitrary, and write on one hand

rϕ,J (u) = λ
{
t ∈ J : ϕ(t) > u

}
= λ

{
t ∈ J : ϕ(t) > ϕ(y1)

}+ λ
{
t ∈ J : ϕ(y1) ≥ ϕ(t) > u

}
= rϕ,J

{
ϕ(y1)

}+ λ
{
t ∈ J ∩ (y1,∞) : ϕ(y1) ≥ ϕ(t) > u

}
= rϕ,I1

{
ϕ(y1)

}+ inf I1 − infJ

+ λ
{
t ∈ I1 ∩ (y1,∞) : ϕ(y1) ≥ ϕ(t) > u

}
,

where the next to last equality follows since by the definition of y1, ϕ(t) ≤ ϕ(y1) only for t > y1,
and the last equality follows from (6) and since y1 ∈ I1. On the other hand,

rϕ,I1(u) = rϕ,I1

{
ϕ(y1)

}+ λ
{
t ∈ I1 : ϕ(y1) ≥ ϕ(t) > u

}
= rϕ,I1

{
ϕ(y1)

}+ λ
{
t ∈ I1 ∩ (y1,∞) : ϕ(y1) ≥ ϕ(t) > u

}
,

so that

rϕ,J (u) + infJ = rϕ,I1(u) + inf I1. (9)

Next, since TJ (ϕ) and TI1(ϕ) are decreasing, TJ (ϕ)(y∗) = TI1(ϕ)(y∗) = ϕ(y1), inf I1 ≤ y∗ ≤
inf I0, and infϕ([y�, sup I0]) > −M , we obtain

TJ (ϕ)(Ĩ ) ⊂ Ỹ ,

TI1(ϕ)(Ĩ ) ⊂ Ỹ . (10)

Therefore, for t ∈ Ĩ ,

TJ (ϕ)(t) = inf
{
u ∈ ϕ(J ) : rϕ,J (u) ≤ t − infJ

}
= inf

{
u ∈ Ỹ : rϕ,J (u) ≤ t − infJ

}
= inf

{
u ∈ Ỹ : rϕ,I1(u) ≤ t − inf I1

}
= inf

{
u ∈ ϕ(I1) : rϕ,I1(u) ≤ t − inf I1

}
= TI1(ϕ)(t).

The second equality above holds since TJ (ϕ)(y∗) = ϕ(y1) = sup Ỹ , inf Ĩ = y∗, TJ (ϕ) is decreas-
ing and because of the first part of (10), the third equality follows from (9), and the next to last
equality is similar to the second (with TI1 replacing TJ and using the second part of (10)). �

Note also that the interval I1 can without loss of generality be taken to be symmetric around 0
e.g. as I1 = [−k, k]: In fact assuming that (4) and (5) hold with some I1 and M we can replace
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I1 with [−k, k], with k = max(| inf I1|, | sup I1|), then (4) and (5) will hold for I1 = [−k, k] and
with the same M .

Corollary 1. Let I0 ⊂ R be a finite and fixed interval. Assume ϕ is continuous and satisfies (4)
and (5). Then for each t ∈ I0, one can define

T (ϕ)(t) := lim
k→+∞T[−k,k](ϕ)(t). (11)

Remark 3. Even if this definition seems to be dependent on I1 = I1(ϕ, I0), it is not, because
of Theorem 3 and since we define T (ϕ) locally, namely only on I0. So in particular one has
T (ϕ)(t) = TI1(t) for each t ∈ I0.

We next state a simple condition that ensures (4) and (5).

Lemma 4. Let ϕ be a locally bounded function on R, such that

lim
x→−∞ϕ(x) = − lim

x→+∞ϕ(x) = +∞.

Then for any interval I0 there exists a finite interval I1 ⊃ I0 and a finite constant M such that (4)
and (5) hold.

Proof. Let I0 = [a, b] and put M = supx≥a ϕ(x). Since ϕ is locally bounded and
limx→+∞ ϕ(x) = −∞ it follows that M < ∞. Since limx→−∞ ϕ(x) = +∞ there is a c < a

such that ϕ(x) > M for all x ≤ c. Let cM := sup{x < a : ϕ(t) > M ∀t ≤ x}. Define then
m = infx∈[cM,b] ϕ(x). Since limx→∞ ϕ(x) = −∞, there exists a d > b such that for all x ≥ d ,
ϕ(x) < min(m,−M). Let dm,M := inf{x > b : ϕ(t) < min(m,−M) ∀t > x}. Then (4) and (5)
hold with I1 = [cM,dm,M ]. �

Note that T as defined in (2) is a continuous map with the metric generated by the supnorm
on compact intervals, while T defined as a extension via the local definition in (11) is not. The
first statement follows from the fact that T as defined in (2) is easily seen to satisfy the prop-
erties in Theorem 1, with the supnorm over I replaced by the the supnorm metric on compact
intervals. The lack of continuity with the respect of uniform convergence on compact intervals
is however of no importance for us, in our use of continuity for deriving consistency and limit
distributions: We will derive limit distribution results only via local versions T[−c,c], for which
we have established continuity in Theorem 1. The consistency is derived using the global map
only in the density estimation problem, for which we use definition (2) for T . For the regression
problem, we apply our results to functions defined on [0,1] and thus there is no need for a global
definition then.

3.2. Asymptotic distribution in a general framework

Let J ⊂ R be a finite or infinite interval, and C(J ) the set of continuous functions on J . Let
{xn}n≥1 be a sequence of stochastic processes in C(J ) and let t0 be a fixed interior point in J .
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Assume that either J is finite or that xn satisfies (1) almost surely, so that T (xn) the monotone
rearrangement of xn can be defined almost surely, as seen in Section 2.1. In this section, limit
distribution results for the random variable T (xn)(t0) will be derived, where T is the monotone
rearrangement map defined as TJ if J is finite or T if J is infinite. The proof of these results are
along the lines of Anevski and Hössjer [2], and their notation will be used for clarity. Decompose
in particular xn into a deterministic part and a stochastic part

xn(t) = xb,n(t) + vn(t),

for t ∈ J . Given a sequence dn ↓ 0 and an interior point t0 in J define Jn,t0 = d−1
n (J − t0). Then,

for s ∈ Jn,t0 , it is possible to rescale respectively the stochastic and deterministic parts of xn as

w̃n(s; t0) = d−1
n

{
vn(t0 + sdn) − vn(t0)

}
,

g̃n(s) = d−1
n

{
xb,n(t0 + sdn) − xb,n(t0)

}
.

This decomposes the rescaling of xn as

d−1
n

{
xn(t0 + sdn) − xn(t0)

} = g̃n(s) + w̃n(s; t0).
However, due to the fact that the final estimator needs to be centered at the estimand x(t0) and
not at the preliminary estimator xn(t0), it is more convenient to introduce the following rescaling

ṽn(s; t0) = d−1
n vn(t0 + sdn)

= w̃n(s; t0) + d−1
n vn(t0),

gn(s) = d−1
n

{
xb,n(t0 + sdn) − x(t0)

}
= g̃n(s) + d−1

n

{
xb,n(t0) − x(t0)

}
,

so that

yn(s) := gn(s) + ṽn(s; t0) = d−1
n

{
xn(t0 + sdn) − x(t0)

}
. (12)

This definition of the rescaled deterministic and stochastic parts is slightly different from the one
in Anevski and Hössjer [2], and is due to the fact that we only treat the case where the preliminary
estimator and the final estimator have the same rates of convergence, in which case our definition
is more convenient, whereas in Anevski and Hössjer [2] other possibilities occur.

The limit distribution results will be derived using a classical two-step procedure, cf. e.g.
Prakasa Rao [32]: A local limit distribution is first obtained, under Assumption 1, stating that the
estimator T (xn) converges weakly in a local and shrinking neighbourhood around a fixed point.
Then it is shown, under Assumption 2, that the limit distribution of T (xn) is entirely determined
by its behaviour in this shrinking neighbourhood.

Assumption 1. There exists a stochastic process ṽ(·; t0) �= 0 such that

ṽn(·; t0) L→ ṽ(·; t0),
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on C(−∞,∞) as n → ∞. The functions {xb,n}n≥1 are monotone and there are constants A < 0
and � ∈ R such that for each c > 0,

sup
|s|≤c

∣∣gn(s) − (As + �)
∣∣ → 0,

as n → ∞.

In the applications typically

A = lim
n→∞

g̃n(s)

s
= x′(t0),

� = lim
n→∞d−1

n

{
xb,n(t0) − x(t0)

}
,

so that A is the local asymptotic linear term and � is the local asymptotic bias, both properly
normalized, of the preliminary estimator xn. Define the (limit) function

y(s) = As + � + ṽ(s; t0). (13)

We next give a condition that enables a definition of the monotone rearrangement for pro-
cesses. Let {zn} be an arbitrary sequence of stochastic processes.

Assumption 2. Let I0 be a given compact interval and δ > 0. There exists a positive constant
c = c(δ) such that [−c, c] ⊃ I0 and a finite positive M = M(δ) such that

lim inf
n→∞ P

{
inf

s∈(−c,sup I0)
zn(s) > −M, sup

s∈(c,∞)

zn(s) < −M
}

> 1 − δ, (14)

and

lim inf
n→∞ P

{
inf

s∈(−∞,−c)
zn(s) > +M, sup

s∈(inf I0,c)

zn(s) < +M
}

> 1 − δ. (15)

Note that in the applications typically both c(δ) → ∞ and M(δ) → ∞ as δ ↓ 0. There
is no restriction in assuming this, so in the sequel we assume that limδ→0 c(δ) = ∞ and
limc→∞ δ(c) = 0. Denote Tc = T[−c,c]. Consider Dn(δ) = Dn(δ(c)) as the set of ω such that
it is possible to define the monotone rearrangement T (zn)|I0 of zn on I0.

Lemma 5. Let I0 be a finite and fixed interval in R, and {zn} be a sequence of continuous
stochastic processes on R such that Assumption 2 holds. Then

lim
c→∞ lim inf

n→∞ P
[
Dn

(
δ(c)

)] = 1,

lim
c→∞ lim inf

n→∞ P
(

sup
I0

∣∣Tc(zn)(·) − T (zn)(·)
∣∣= 0

)
= 1.
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Proof. Let δ > 0 be arbitrary. Let An(δ, c,M) and Bn(δ, c,M) be the sets for which the probabil-
ities are bounded in (14) and (15), respectively, for some finite c = c(δ). Then, using Theorem 3
with I1 = [−c, c] and I0 = I , it follows that An ∩Bn ⊂ {supI |Tc(zn)−TJ (zn)| = 0 for each com-
pact interval J ⊃ [−c, c]} := Cn(δ, c,M). Therefore lim infn→∞ P(Cn(δ, c,M)) ≥ 1 − 2δ. Note
that Cn(δ, c,M) is included in the set Dn(δ) on which it is possible to define T (zn)|I0 , namely as
limk→∞ Tk(zn)|I0 , and which is further included in the set En(δ, c) := {supI |Tc(zn) − T (zn)| =
0}. A priori the definition of T depends on δ, so that T (zn)|I0 = T δ(zn)|I0 . We will show, how-
ever, that the definition is independent of δ. In fact, consider δ1 < δ2, so that c1 = c(δ1) > c2 =
c(δ2) and M1 = M(δ1) > M2 = M(δ2). Then by the triangle inequality

sup
I0

∣∣T δ1(zn) − T δ2(zn)
∣∣ ≤ sup

I0

∣∣T δ1(zn) − Tc1(zn)
∣∣+ sup

I0

∣∣T
J̃
(zn) − T δ2(zn)

∣∣,
with J̃ := [−c1, c1].

Then the first term on the right-hand side is zero on Cn(δ1, c1,M1), since Cn(δ1, c1,M1) ⊂
En(δ1), and the second term on the right-hand side is zero on Cn(δ2, c2,M2) since J̃ is a com-
pact set containing [−c2, c2]. Therefore, on the set Cn(δ1, c1,M1) ∩ Cn(δ2, c2,M2) the left-
hand side is zero, and thus T δ1 |I0 = T δ2 |I0 on that set. Note also that P(Dn(δ1) ∩ Dn(δ2)) ≥
P(Cn(δ1, c1,M1) ∩ Cn(δ2, c2,M2)) ≥ 1 − 2δ1 − 2δ2. Thus, T δ1 |I0 = T δ2 |I0 when both defini-
tions exist, and they do with an as high probability as desired. This shows that the definition of
T does not depend on δ.

Now, since δ > 0 is arbitrary, letting δ ↓ 0 and noting that this implies that c → ∞, and using

P
(
En(δ, c)

) ≥ P
(
Cn(δ, c,M)

)≥ 1 − 2δ

proves the second statement of the lemma. Noting that Dn ⊃ Cn(δ, c,M) proves the first state-
ment of the lemma. �

The next result is the main limit distribution result, stating that the rescaled estimator converges
in distribution to a “universal” limit random variable T (y)(0). The existence of the limit r.v. is
made explicit in the proof of the theorem, we can for now define it (when it exists, and the proof
of the following theorem shows that the limit exists as soon as y satisfies Assumption 2) as a
limit in probability

T (y)(0)
P= lim

c→∞Tc(y)(0).

In the following theorem, J ⊂ R will be a (finite or infinite) interval, in our applications J =
[0,1] or J =R+.

Theorem 4. Let J ⊂ R be an interval, and t0 be a fixed point belonging to the interior of J .
Suppose Assumption 1 holds. Assume moreover that {yn}n≥1 and y are continuous processes
and that Assumption 2 holds for both {yn}n≥1 and y respectively defined by (12) and (13). Then

d−1
n

[
TJ (xn)(t0) − x(t0)

] L→ T
[
A· + ṽ(·; t0)

]
(0) + �, (16)

as n → ∞.
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Proof. Let c be a positive and finite constant and denote Tc,n = T[t0−cdn,t0+cdn]. We can decom-
pose

d−1
n

{
TJ (xn)(t0) − x(t0)

} = d−1
n

{
TJ (xn)(t0) − Tc,n(xn)(t0)

}
(17)

+ d−1
n

{
Tc,n(xn)(t0) − x(t0)

}
.

Let us first consider the second term of the right-hand side of (17) and introduce

χn(s) := xn(t0 + sdn) = x(t0) + dnyn(s). (18)

Applying Lemma 3 leads to

Tc,n(xn)(t0 + sdn) = Tc(χn)(s) = dnTc(yn)(s) + x(t0),

which gives

d−1
n

{
Tc,n(xn)(t0) − x(t0)

} = Tc(yn)(0).

Assumption 1 implies that yn
L→ y on C[−c, c], with y defined in (13). Applying the continuous

mapping theorem on Tc, cf. Theorem 1, proves

d−1
n

{
Tc,n(xn)(t0) − x(t0)

} L→ Tc(y)(0) (19)

as n → ∞. Lemma 5 via Assumption 2 with zn = y shows that we can define the limit random
variable T (y)(0) as a limit in probability so that, as c → ∞,

Tc(y)(0)
P→ T (y)(0). (20)

Next, we consider the first term of the right-hand side of (17). Let ∇ be a positive and finite
constant and denote An,∇ = [t0 − ∇dn, t0 + ∇dn]. From (18) and Lemma 3 it follows that

sup
An,∇

d−1
n

∣∣Tc,n(xn)(·) − TJ (xn)(·)
∣∣= sup

[−∇,∇]
∣∣Tc(yn)(·) − TJn,t0

(yn)(·)
∣∣,

with yn as defined in (12). Using Lemma 5 with I = [−∇,∇] shows that

d−1
n

{
Tc,n(xn)(t0) − TJ (xn)(t0)

} P→ 0 (21)

when n → ∞.
Let first n tend to infinity in (17), and apply Slutsky’s theorem with the use of (19), (21). Note

that when c → ∞, (20) gives the result. �

Remark 4. The approach for deriving the limit distributions is similar to the general approach
in Anevski and Hössjer [2] with a preliminary estimator that is made monotone via the L

2-
projection on the space of monotone functions. There are however a few differences:
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– Anevski and Hössjer look at rescaling of an integrated preliminary estimator of the mono-
tone functions, whereas we rescale the estimator directly. Our approach puts a stronger as-
sumption on the asymptotic properties of the preliminary estimator, which is however traded
off against weaker conditions on the map T , since we only have to assume that the map T

is continuous; had we dealt with rescaling as in Anevski and Hössjer we would have had to
prove that the composition d

dt
(T̃ ) (with T̃ defined by T̃ (F )(t) = ∫ t

0 T (F ′)(u) du) is a con-
tinuous map, which is generally not true for T equal to the monotone rearrangement map;
it is however true, under certain conditions, for T̃ equal to the least concave minorant map
(when T becomes the L

2-projection on the space of monotone functions), cf. Proposition 2
in Anevski and Hössjer [2].

– We are able to do rescaling for the preliminary estimator directly since it is a smooth func-
tion. On the contrary, for some of the cases treated in Anevski and Hössjer this is not pos-
sible, for example, for the isotonic regression and the NPMLE of a monotone density the
rescaled stochastic part is asymptotically white noise. As a consequence our rescaled deter-
ministic function is assumed to be approximated by a linear function, whereas the rescaled
deterministic function in Anevski and Hössjer [2] is assumed to be approximated by a con-
vex or concave function.

– The rescaling is here centered at x(t0), and not at xn(t0), which makes it more convenient
to apply the limit distribution result we get.

The rest of this section is to apply the previous result to two nonparametric inference prob-
lems: next subsection deals with the estimation of a monotone density function, and the last one
with estimating a monotone regression function. Limit distributions for estimators of a marginal
decreasing density f for stationary weakly dependent data with marginal density f as well as of
a monotone regression function m with stationary errors, that are weakly or strongly dependent,
will be derived.

All limit distribution results stated will be for processes in C(−∞,∞) with the uniform metric
on compact intervals and the Borel σ -algebra.

3.3. Application to monotone density estimation

For the density estimation problem, let {ti}∞i=1 denote a stationary process with marginal den-
sity function f . Define the empirical distribution function Fn(t) = 1

n

∑n
i=1 1{ti≤t} and the cen-

tered empirical process F 0
n (t) = 1

n

∑n
i=1(1{ti≤t} − F(t)). Consider a sequence δn such that

δn ↓ 0, nδn ↑ ∞ as n → ∞, and define the centered empirical process locally around t0 on scale
δn as

wn,δn(s; t0) = σ−1
n,δn

n
{
F 0

n (t0 + sδn) − F 0
n (t0)

}
= σ−1

n,δn

n∑
i=1

(
1{ti≤t0+sδn} − 1{ti≤t0}

− F(t0 + sδn) + F(t0)
)
,
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where

σ 2
n,δn

= Var
[
n
{
F 0

n (t0 + δn) − F 0
n (t0)

}]
= Var

[
n∑

i=1

{
1{t0<ti≤t0+δn} − F(t0 + δn) + F(t0)

}]
.

In this section, we introduce a (monotone) estimator of a monotone density function for sta-
tionary data, for which we derive consistency and limit distributions.

Let t1, t2, . . . denote a stationary process with marginal density function f lying in the class
of decreasing density functions on R

+, and define the following estimator of the marginal de-
creasing density for the sequence {ti}i≥1: Let xn(t) = (nh)−1∑n

i=1 k{(t − ti )/h} be the kernel
estimator of the density f , with k a bounded density function supported on [−1,1] such that∫

k′(u) du = 0, and h > 0 the bandwidth (cf. e.g., Wand and Jones [43]), and define the (mono-
tone) density estimate

f̂n(t) = T (xn)(t), (22)

where T is the monotone rearrangement map on R+ as defined in (2). Note that f̂n is monotone
and positive, and integrates to one, cf. equation (4) of Section 3.3 in Lieb and Loss [24].

A straightforward consequence of Theorem 2 and standard convergence results for the kernel
density estimate is the following consistency result.

Proposition 1. The random function f̂n defined by (22) is a uniformly consistent estimator of f

in probability uniformly on compact sets, and in probability in L
p-norm.

In the following, the limit distributions for f̂n in the independent and weakly dependent cases

are derived. We will in particular make use of recent results on the weak convergence wn,δn

L→ w,
on D(−∞,∞), as n → ∞, for independent and weakly dependent data {ti}, derived in Anevski
and Hössjer [2].

The kernel estimator can be written xn = xb,n + vn with

xn(t) = h−1
∫

k′(u)Fn(t − hu)du,

xb,n(t) = h−1
∫

k′(u)F (t − hu)du, (23)

vn(t) = h−1
∫

k′(u)F 0
n (t − hu)du.

Rescaling is done on a scale dn that is of the same asymptotic order as h, so that we put dn = h.
The rescaled process is

ṽn(s; t0) = cn

∫
k′(u)wn,dn(s − u; t0) du,

with cn = d−1
n (nh)−1σn,dn .
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Theorem 5. Let {ti}i≥1 be a stationary sequence with a monotone marginal density function f

such that supt∈It0
f ′(t) < 0 and f ∈ C1(It0) for an open interval It0 � t0 where t0 > 0. Assume

that Et4
i < ∞. Let xn be the kernel density function defined above, with k a bounded and com-

pactly supported density such that k′ is bounded. Suppose that one of the following conditions
holds:

(a) {ti}i≥1 is an i.i.d. sequence,
(b) (1) {ti}i≥1 is a stationary φ-mixing sequence with

∑∞
i=1 φ1/2(i) < ∞;

(2) f (t0) = F ′(t0) exists, as well as the joint density fk(s1, s2) of (t1, t1+k) on [t0 −
δ, t0 + δ]2 for some δ > 0, and k ≥ 1;

(3)
∑∞

k=1 Mk < ∞ holds, for Mk = supt0−δ≤s1,s2≤t0+δ |fk(s1, s2) − f (s1)f (s2)|.
Then choosing h = an−1/3 and a > 0 an arbitrary constant, we obtain

n1/3{f̂n(t0) − f (t0)
} L→ aT

[
f ′(t0)· + ṽ(·; t0)

]
(0) + f ′(t0)a

∫
uk(u)du,

as n → ∞, where ṽ(s; t) is as in (42), with c = a−3/2f (t0)
1/2, and w a standard two sided

Brownian motion.

Proof. If k′ is bounded and k has compact support, the continuity of the map

C(−∞,∞) � z(s) �→
∫

z(s − u)k′(u) du ∈ C(−∞,∞)

implies that, choosing dn such that cn → c as n → ∞ for some constant c, one gets:

ṽn(s; t0) L→ c

∫
k′(u)w(s − u; t0) du =: ṽ(s; t0), (24)

on C(−∞,∞), as n → ∞, thanks to the continuous mapping theorem. Here w is the weak

limit of {wn}. Theorems 7 and 8 of Anevski and Hössjer [2] state that wn,δn(s, t0)
L→ B(s)

on D(−∞,∞) under the respective assumptions in (a) and (b), where B(s) is a two sided
standard Brownian motion. This establishes the first part of Assumption 1 for both cases
(a) and (b). Next notice that xb,n(t) = h−1

∫
k( t−u

h
)f (u)du is monotone. A change of vari-

able and a Taylor expansion in xb,n prove the second part of Assumption 1 with A = f ′(t0)
and

d−1
n

{
xb,n(t0) − f (t0)

} → f ′(t0)
∫

uk(u)du = �.

The statement of Assumption 2 is relegated to the appendix, see Corollary 2 in the supplemen-
tal article (Anevski and Fougères [1]). Theorem 5 therefore holds as an application of Theo-
rem 4.

Let us finally check that the scale dn can be chosen so that cn → c, as assumed at the beginning
of the proof:
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– Independent data case (a): We have σ 2
n,dn

∼ ndnf (t0), so that

d−1
n (nh)−1σn,dn ∼ d

−3/2
n n−1/2f (t0)

1/2.

Choosing dn = an−1/3 we get c = a−3/2f (t0)
1/2.

– Mixing data case (b): Similar to the proof of case (a). �

Remark 5. The present estimator was first proposed for independent data by Fougères [16],
who stated the strong consistency uniformly over R+ for T (fn) and derived some partial results
for the limit distribution. The results for the monotone density function estimator are similar to
the results for the Grenander estimator (the NPMLE) of a monotone density, in that we have
cube root asymptotics and a limit random variable that is a nonlinear functional of a Gaussian
process, for independent and weak dependent data; see Prakasa Rao [32] and Wright [44] for
the independent data cases, and Anevski and Hössjer [2] for the weak dependent data cases. In
our case however we obtain one extra term that arises from the bias in the kernel estimator. Our
estimator is really closer in spirit to the estimator obtained by projecting the kernel estimator
on the space of monotone functions (i.e. kernel estimation followed by isotonic regression) first
proposed by Anevski and Hössjer [2]; note that we obtain the same bias term as in Anevski and
Hössjer [2].

Remark 6. The results for the long range dependence case is similar to the result for the isotonic
regression of a kernel estimator, cf. Anevski and Hössjer [2]. In this situation, ṽn(s; t0) is asymp-
totically a linear function of s with a random slope, implying that the monotone rearrangement of
gn + ṽn is just gn + ṽn which evaluated at zero is zero. This is due to the fact that for long range
dependent data the limit process of the empirical process is a deterministic function multiplied
by a random variable, cf. the remark after Theorem 12 in Anevski and Hössjer [2]. Thus, the
limit distribution for the final estimator for long range dependent data is the same as the limit
distribution for the kernel estimator itself, that is, nd/2{f̂n(t) − f (t)} and nd/2{fn(t) − f (t)}
have the same distributional limit. See Csörgö and Mielniczuk [12] for a derivation of this limit
distribution.

3.4. Application to monotone regression function estimation

For the regression function estimation problem, let {εi}∞i=−∞ be a stationary sequence of random
variables with E(εi) = 0 and Var(εi) = σ 2 < ∞. Let σ 2

n = Var(
∑n

i=1 εi). The two sided partial
sum process wn is defined by

wn

(
ti + 1

2n

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

σn

(
ε0

2
+

i∑
j=1

εj

)
, i = 0,1,2, . . . ,

1

σn

(
−ε0

2
−

−1∑
j=i+1

εj

)
, i = −1,−2, . . . ,

and linearly interpolated between these points. Note that wn ∈ C(R).
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Let Cov(k) = E(ξ1ξ1+k) denote the covariance function of a generic stationary sequence {ξi},
and distinguish between three cases (of which (a) is a special case of (b)).

(a) Independence: the εi are independent.
(b) Weak dependence:

∑
k |Cov(k)| < ∞.

(c) Strong (long range) dependence:
∑

k |Cov(k)| = ∞.

Weak dependence can be further formalized using mixing conditions as follows: Define two
σ -algebras of a sequence {ξi} as Fk = σ {ξi : i ≤ k} and F̄k = σ {ξi : i ≥ k}, where σ {ξi : i ∈ I }
denotes the σ -algebra generated by {ξi : i ∈ I }. The stationary sequence {ξi} is said to be “ϕ-
mixing” or “α-mixing” respectively if there is a function ϕ(n) or α(n) → 0 as n → ∞, such
that

sup
A∈F̄n

∣∣P(A|F0) − P(A)
∣∣ ≤ ϕ(n),

(25)
sup

A∈F0,B∈F̄n

∣∣P(AB) − P(A)P (B)
∣∣ ≤ α(n),

respectively. Finally, long range dependence is usually formalized using subordination or assum-
ing the processes are linear; we will treat only (Gaussian) subordination.

In this section, we introduce an estimator of a monotone regression function. We derive con-
sistency and limit distributions, under general dependence assumptions.

Assume m is a C1-function on a compact interval J ⊂ R, say J = [0,1] for simplicity; let
(yi, ti), i = 1, . . . , n be pairs of data satisfying

yi = m(ti) + εi,

where ti = i/n. Define ȳn : [1/n,1] �→ R by linear interpolation of the points {(ti , yi)}ni=1, and
let

xn(t) = h−1
∫

k
(
(t − u)/h

)
ȳn(u) du, (26)

be the Gasser–Müller kernel estimate of m(t), cf. Gasser and Müller [17], where k is a density
in L2(R) with compact support, for simplicity take supp(k) = [−1,1]. Let h be the bandwidth,
for which we assume that h → 0, nh → ∞.

To define a monotone estimator of m, we put

m̃(t) = T[0,1](xn)(t), t ∈ J, (27)

where T[0,1] is the monotone rearrangement map on [0,1]. A straightforward application of The-
orem 2 and standard consistency results for regression function estimators imply the following
consistency result.

Proposition 2. The random function m̃ defined by (27) is a uniformly consistent estimator of m

in probability uniformly on compact sets, and in probability in L
p norm.
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Clearly xn(t) = xb,n(t) + vn(t), with

xb,n(t) = h−1
∫

k

(
t − u

h

)
m̄n(u) du,

(28)

vn(t) = h−1
∫

k

(
t − u

h

)
ε̄n(u) du,

where the functions m̄n and ε̄n are obtained by linear interpolation of {(ti ,m(ti))}ni=1 and
{(ti , εi)}ni=1 respectively. For the deterministic term xb,n(t) → xb(t) = m(t), as n → ∞. Note
that m̄n, and thus also xb,n, is monotone. Put

w̄n(t) = n

σn

∫ t

0
ε̄n(u) du.

Since supp(k) = [−1,1] and if t ∈ (1/n + h,1 − h), from a partial integration and change of
variable, we obtain

vn(t) = σn

nh

∫
k′(u)w̄n(t − uh)du.

It can be shown that w̄n and wn are asymptotically equivalent for all dependence structures
treated in this paper. Let us now recall how the two sided partial sum process behaves in the
different cases of dependence we consider:

(a) When the εi are independent, we have the classical Donsker theorem, cf. Billingsley [4],
implying that

wn
L→ B, (29)

as n → ∞, with B a two sided standard Brownian motion on C(R).
(b) Define

κ2 = Cov(0) + 2
∞∑

k=1

Cov(k). (30)

Assumption 3 (φ-mixing). Assume {εi}i∈Z is a stationary φ-mixing sequence with Eεi = 0 and
Eε2

i < ∞. Assume further
∑∞

k=1 φ(k)1/2 < ∞ and κ2 > 0 in (30).

Assumption 4 (α-mixing). Assume {εi}i∈Z is a stationary α-mixing sequence with Eεi = 0 and
Eε4

i < ∞, κ2 > 0 in (30) and
∑∞

k=1 α(k)1/2−ε < ∞, for some ε > 0.

Assumption 3 or 4 imply that σ 2
n → κ2 and that Donsker’s result (29) is valid, cf. Anevski and

Hössjer [2] and references therein.
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(c) We model long range dependent data {εi}i≥1 using Gaussian subordination: More pre-
cisely, we write εi = g(ξi) with {ξi}i∈Z a stationary Gaussian process with mean zero and co-
variance function Cov(k) = E(ξiξi+k) such that Cov(0) = 1 and Cov(k) = k−d l0(k), with l0
a slowly varying function at infinity1 and 0 < d < 1 fixed. Furthermore g : R �→ R is a mea-
surable function with E{g(ξ1)

2} < ∞. An expansion g(ξi) in Hermite polynomials is avail-
able

g(ξi) =
∞∑

k=r

1

k!ηkhk(ξi),

where equality holds as a limit in L2(ϕ), with ϕ the standard Gaussian density function.
The functions hk(t) = t−k(d/dt)k(tke−t2

) are the Hermite polynomials of order k, the func-
tions

ηk = E
{
g(ξ1)hk(ξ1)

}=
∫

g(u)hk(u)φ(u)du,

are the L2(ϕ)-projections on hk , and r is the index of the first non-zero coefficient in the expan-
sion. Assuming that 0 < dr < 1, the subordinated sequence {εi}i≥1 exhibits long range depen-
dence (see, e.g., Taqqu [35,36]), and Taqqu [35] also shows that

σ−1
n

∑
i≤nt

g(ξi)
L→ zr,β(t),

in D[0,1] equipped with the Skorokhod topology, with variance σ 2
n = Var{∑n

i=1 g(ξi)} =
η2

r n
2−rd l1(n)(1 + o(1)), where

l1(k) = 2

r!(1 − rd)(2 − rd)
l0(k)r . (31)

The limit process zr,β is in C[0,1] a.s., and is self similar with parameter

β = 1 − rd/2. (32)

The process z1,β(t) is fractional Brownian motion, z2,β(t) is the Rosenblatt process, and the
processes zr,β(t) are all non-Gaussian for r ≥ 2, cf. Taqqu [35]. From these results follows
a two sided version of Taqqu’s result stating the behavior of the two sided partial sum pro-
cess:

wn
L→ Br,β,

in D(−∞,∞), as n → ∞, where Br,β are the two sided versions of the processes zr,β .

1i.e. l0(tk)/ l0(t) → 1 as t → ∞ for each positive k.
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In the sequel, rescaling is done at the bandwidth rate, so that dn = h. For s > 0, let consider
the following rescaled process:

ṽn(s; t) = d−1
n (nh)−1σn̂

∫
w̄n̂

(
h−1t + s − u

)
k′(u) du

L= d−1
n (nh)−1σn̂

∫
w̄n̂(s − u)k′(u) du, (33)

with n̂ = [nh] the integer part of nh, where the last equality holds due to the stationarity (exactly
only for t = ti and asymptotically otherwise). Note that the right-hand side holds also for s < 0.

With the bandwidth choice dn = h we obtain a non-trivial limit process ṽ; choosing dn such
that dn/h → 0 leads to a limit “process” equal to a random variable and dn/h → ∞ to white
noise. In the first case, the limit distribution of T (xn) on the scale dn will be the constant 0, while
in the second case it will (formally) be T (m′(t0) · +ṽ(·))(0) which is not defined (T can not be
defined for generalized functions, in the sense of L. Schwartz [34]).

Theorem 6. Assume m is monotone on [0,1] and for some open interval It0 � t0, m ∈ C1(It0)

and supt∈It0
m′(t) < 0 with t0 ∈ (0,1). Let xn be the kernel estimate of m defined in (26), with

a nonnegative and compactly supported kernel k such that k′ is bounded, and with bandwidth h

specified below. Suppose that one of the following conditions holds.

(a) {εi} are independent and identically distributed, Eεi = 0; σ 2 = Var(εi) < ∞, and h =
an−1/3, for an arbitrary a > 0,

(b) Assumption 3 or 4 holds, σ 2
n = Var(

∑n
i=1 εi), κ2 is defined in (30), and h = an−1/3, with

a > 0 an arbitrary constant,
(c) εi = g(ξi) is a long range dependent subordinated Gaussian sequence with parameters d

and r , h = l2(n;a)n−rd/(2+rd) with a > 0 and n �→ l2(n;a) is a slowly varying function defined
in the proof below.

Then, correspondingly, we obtain

h−1{m̃(t0) − m(t0)
} L→ T

[
m′(t0)· + ṽ(·; t0)

]
(0) + m′(t0)

∫
uk(u)du,

as n → ∞, where m̃ is defined in (27),

ṽ(s; t) = c

∫
w(s − u)k′(u) du, (34)

and respectively,

(a) w = B; c = σa−3/2,
(b) w = B; c = κa−3/2,
(c) w = Br,β ; c = |ηr |a (where β defined in (32)).
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Proof. The conclusions of the theorem follow by an application of Theorem 4 in the context of
monotone regression function. Assume first that dn = h is such that

d−1
n (nh)−1σn̂ = d−2

n n−1σn̂ → c > 0. (35)

Then wn
L→ w in D(−∞,∞), using the supnorm over compact intervals metric, under the re-

spective assumptions in (a), (b) and (c). Besides, note that if k′ is bounded and k has compact
support, the map

C(−∞,∞) � z(s) �→
∫

z(s − u)k′(u) du ∈ C(−∞,∞)

is continuous, in the supnorm over compact intervals metric. Thus, under the assumptions that k′
is bounded and k has compact support, the continuous mapping theorem implies that

ṽn(s; t) L→ ṽ(s; t), (36)

where ṽ(s; t) is defined in (43). This yields the first part of Assumption 1. Furthermore

g̃n(s) = h−1
∫

�(u)m̄n(t0 − hu)du

= h−1
∫

�(u)m(t0 − hu)du + rn(s),

with �(v) = k(v + s) − k(v) and rn a remainder term. Since

∫
vλ�(v) dv =

{
0, if λ = 0,

−s, if λ = 1,

it follows by a Taylor expansion of m around t0 that the first term converges towards As, with
A = m′(t0). The remainder term is bounded for any c > 0 as

sup
|s|≤c

∣∣rn(s)∣∣ ≤ h−1 sup
|s|≤c

∫ ∣∣�(u)
∣∣du sup

|u−t0|≤(c+1)h

∣∣m̄n(u) − m(u)
∣∣

= O
(
n−1h−1)= o(1).

Furthermore

d−1
n

{
xb,n(t0) − m(t0)

} → m′(t0)
∫

uk(u)du =: �,

as n → ∞, which proves Assumption 1.
Proof that Assumption 2 holds is relegated to the appendix, see Corollary 1 in the supple-

mental article (Anevski and Fougères [1]). An application of Theorem 4 then finishes the proof
of Theorem 6. It only remains to check whether d−1

n (nh)−1σn̂ → c > 0 for the three types of
dependence.
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– Independent case (a): We have σ 2
n̂

= σ 2ndn. Thus d−1
n (nh)−1σn̂ = σn−1/2h−3/2, and (45)

is satisfied with c = σa−3/2 if dn = h = an−1/3.
– Mixing case (b): The proof is similar to the proof of (a), replacing σ by κ .
– Long range data case (c): Since σ 2

n̂
= η2

r (ndn)
2−rd l1(ndn), if we choose dn = h we will

have

d−2
n n−1σn̂ = d−2

n n−1|ηr |(ndn)
1−rd/2l1(ndn)

1/2 → |ηr |a (37)

if and only if

dn = n−rd/(2+rd)l2(n;a), (38)

where l2 is another function slowly varying at infinity, implicitly defined in (37). Thus (45)
follows with c = |ηr |a and h = dn given in (47). �

Remark 7. The present estimator is similar to the estimator first presented by Mammen [25]:
Mammen proposed to do isotonic regression of a kernel estimator of a regression function (using
bandwidth h = n−1/5), whereas we do monotone rearrangement of a kernel estimator. Mammen’s
estimator was extended to dependent data and other bandwidth choices by Anevski and Hössjer
[2] who derived limit distributions for weak dependent and long range dependent data that are
analogous to our results; for the independent data case and bandwidth choice h = n−1/3 the limit
distributions are similar with rate of convergence n1/3 and nonlinear maps of Gaussian processes.

4. Limit results for density and regression function estimators
with q vanishing derivatives

The results we have established in the previous section can in fact be extended to the case when
the estimand x is monotone and has q vanishing moments at the point of interest t0, so when
x(t0) �= 0, x(i)(t0) = 0 for j = 1, . . . , q and x(q+1)(t0) < 0. We present these results here. We
will make an analogous derivation to the case when x′(t0) < 0, and we will highlight when there
is a difference to the case already treated.

We give proofs for the independent data, the weak dependent and the long range dependent
cases. Our results give other rates of convergence and other (new) limit random variables. For
instance, the limit results that we obtain for the independent data case will be with the (slower
rate of convergence) n−1/(q+3), and the limit r.v. will be of the form

T
(
A(s) + ṽ(s)

)
(0),

where A is (when k is a symmetric kernel) a convolution of the monomial sq+1, of order q + 1,
with the kernel function k(s) and ṽ is the same process as the one already treated, while T is the
monotone rearrangement map.

Thus let x be a function satisfying the above assumption that it has q vanishing derivatives at a
point t0 that is in the interior of its support, while xq+1(t0) < 0. Suppose that xn is a preliminary
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estimator of x that we partition as

x(t) = xb,n(t) + vn(t).

Let dn ↓ 0 as n → ∞, be a deterministic sequence. Define the rescaled deterministic and stochas-
tic parts, respectively, by

gn(s) = d
−(q+1)
n

(
xb,n(t0 + sdn) − x(t0)

)
,

ṽn(s; t0) = d
−(q+1)
n vn(t0 + sdn),

as in Section 3.2 and also

yn(s) = gn(s) + ṽn(s; t0) (39)

= d
−(q+1)
n

(
xn(t0 + sdn) − x(t0)

)
. (40)

Then Assumption 1 is replaced by

Assumption 5. There exists a stochastic process ṽ(·; t0) �= 0 such that

ṽn(·; t0) L→ ṽ(·; t0),
on C(−∞,∞) as n → ∞. The functions {xb,n}n≥1 are monotone and there exists a function
A(s) such that for each c > 0

sup
|s|≤c

∣∣gn(s) − A(s)
∣∣

as n → ∞.

Let us also define the limit process

y(s) = A(s) + ṽ(s; t0). (41)

Then we have the following general theorem.

Theorem 7. Let J ⊂ R be an interval, and t0 a fixed point in the interior of J . Suppose that
Assumption 5 holds. Assume furthermore that {yn}n≥1 and y are continuous processes and that
Assumption 2 holds for both {yn}n≥1 and y, defined in (40) and (41) respectively. Then

d
−(q+1)
n

[
TJ

(
xn(t0)

)− x(t0)
] L→ T

[
A(·) + ṽ(·; t0)

]
(0),

as n → ∞.

Proof. The proof is completely analogous to the proof of Theorem 4: At appropriate places,
simply replace the factor dn with d

q+1
n and d−1

n with d
−(q+1)
n . �
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4.1. Monotone density function estimation

We now apply the above general result to the estimation of a monotone density f function such
that f (j)(t0) = 0 for j = 1, . . . , q and f (q+1)(t0) < 0.

Recall the definition of the empirical distribution function Fn and centered empirical distri-
bution function F 0

n in Section 3.3. Let δn be a sequence such that δn ↓ 0, nδn ↑ ∞ as n → ∞,
and define the centered empirical process wn,δn locally around t0 on the scale δn, exactly as in
Section 3.3, with the same definition of normalising factor σ 2

n,δn
. Furthermore, define the kernel

function xn as the preliminary estimator of f as in Section 3.3, and note that we can write the
kernel estimator as xn = xb,n + vn, with xn, xb,n, vn given in Equation (23) in Section 3.3. Again
we will choose the bandwidth and the local scale to be the same dn = h.

We now however obtain the rescaled process

ṽn(s; t0) = cn

∫
k′(u)wn,dn(s − u; t0) du,

with a (different) scale factor cn = d
−(q+1)
n (nh)−1σn,dn .

Theorem 8. Let {ti}i≥1 be a stationary sequence with a monotone marginal density function f

such that

(i) f (j)(t0) = 0 for j = 1, . . . , q ,
(ii) supt∈It0

f (q+1)(t) < 0,

(iii) f ∈ Cq+1(It0),

for an open interval It0 � t0 where t0 > 0. Assume that Et4
i < ∞. Let xn be the kernel den-

sity function defined above, with k a bounded and compactly supported density such that k′ is
bounded. Suppose that one of the following conditions holds:

(a) {ti}i≥1 is an i.i.d. sequence,
(b) (1) {ti}i≥1 is a stationary φ-mixing sequence with

∑∞
i=1 φ1/2(i) < ∞;

(2) f (t0) = F ′(t0) exists, as well as the joint density fk(s1, s2) of (t1, t1+k) on [t0 −
δ, t0 + δ]2 for some δ > 0, and k ≥ 1;

(3)
∑∞

k=1 Mk < ∞ holds, for Mk = supt0−δ≤s1,s2≤t0+δ |fk(s1, s2) − f (s1)f (s2)|.
Then choosing h = an−1/(3+2q) and a > 0 an arbitrary constant, we obtain

n1/(3+2q)
{
f̂n(t0) − f (t0)

} L→ T
(
Af (·) + ṽn(·; t0)

)
(0),

as n → ∞, where ṽ(s; t) is as in (42), with c = a−(q+3/2)f (t0)
1/2, the function Af (s) is defined

as

Af (s) = 1

(q + 1)!f
(q+1)(t0)

∫
k(u)(s + u)q+1 du

and w a standard two sided Brownian motion.



576 D. Anevski and A.-L. Fougères

Proof. The first part of Assumption 1 is established as in the proof of Theorem 5, with

ṽ(s; t0) = c

∫
k′(u)w(s − u; t0) du (42)

and w a two sided standard Brownian motion, under the respective assumptions in (a) and (b).
Again we notice that xb,n(t) = h−1

∫
k( t−u

h
)f (u)du is monotone. A change of variable and

a Taylor expansion in the expression for xb,n proves the second part of Assumption 1 with limit
function

A(s) = 1

(q + 1)!f
(q+1)(t0)

∫
k(u)(s + u)q+1 du.

To check Assumption 2 for the case q ≥ 1 is much easier than for the case q = 0, which is the
case treated in Section 3. This can be seen in the statement of Lemma 1 in Anevski and Fougères
[1]: the rescaled processes ṽn are the same for this new case q ≥ 1 as for the already treated case
q = 0. However, the rescaled limit deterministic part A(s) is, for q ≥ 1, a smoothed out higher
order monomial (s + u)q+1, which of course has not linear increase/decrease (as when r = 0)
but polynomial increase. That means that one should compare ṽn in A and B of Lemma 1 not
with for example, in A of Lemma 1 the linear function τ(s − c) but instead with τ(s − c)q+1.
But bounds of this form are easier to establish for polynomial increase than for linear increase,
and in fact if we have established bounds for linear increase then we automatically get (at least)
the same bounds for polynomial increase.

Finally in order to check that we can choose the scale dn so that cn → c, we make the following
calculations.

(1) Independent data case (a): We have σ 2
n,dn

∼ ndnf (t0), so that

cn = d
−(q+1)
n (nh)−1σn,dn

∼ d
−(q+3/2)
n n−1/2f (t0)

1/2.

This tells us that we should choose dn = an−1/(3+2q) we get c = a−3/2f (t0)
1/2.

(2) Mixing data case (b): Similar to the proof of case (a). �

4.2. Monotone regression function estimation

Next, we treat the regression estimation problem for a regression function m such that m(j)(t0) =
for j = 1, . . . , q and m(q)(t0) < 0 for t0 the point of interest. We have the same setting for the
regression problem as in Section 3.4, so m is a function defined on [0,1], equidistant design
ti = i/n, and data (ti , yi) from the model yi = m(ti) + εi where {εi} is a stationary sequence of
independent, weakly dependent or long range dependent data. Define the two-sided partial sum
process wn and the function ȳn exactly as in Section 3.4, and the Gasser–Müller kernel estimate
as in Equation (26). The monotone estimator of m is defined as m̃(t) = T[0,1](xn)(t). Again we
can write xn = xb,n + vn, with xb,n and vn given in Equation (28). We note that since the process
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wn is defined exactly the same way as in Section 3.4, we have that wn converges to a limit process
which is Brownian motion or Fractional Brownian motion, or something else, depending on the
dependence structure for the data {εi}, as in Section 3.4.

We choose bandwidth equal to the local scale factor h = dn, and rescale the process part as

ṽn = d
−(q+1)
n (nh)−1σn̂

∫
w̄n̂(s − u)k′(u) du,

while the deterministic part is rescaled as

gn(s) = d
−(q+1)
n

(
xb,n(t0 + sdn) − x(t0)

)
.

Theorem 9. Assume m is monotone on [0,1] and

(i) m(j)(t0) = 0 for j = 1, . . . , q ,
(ii) supt∈It0

m(q+1)(t) < 0,

(iii) m ∈ Cq+1(It0),

for an open interval It0 � t0, with t0 ∈ (0,1). Let xn be the kernel estimate of m defined above,
with a non-negative and compactly supported kernel k such that k′ is bounded, and with band-
width h specified below. Suppose that one of the following conditions holds.

(a) {εi} are independent and identically distributed, Eεi = 0; σ 2 = Var(εi) < ∞, and h =
an−1/(3+2q), for an arbitrary a > 0,

(b) Assumption 3 or 4 holds, σ 2
n = Var(

∑n
i=1 εi), κ2 is defined in (30), h = an−1/(3+2q), with

a > 0 an arbitrary constant,
(c) εi = g(ξi) is a long range dependent subordinated Gaussian sequence with parameters

d and r , h = l2(n;a)n−rd/(2+q+rd) with a > 0 and n �→ l2(n;a) is a slowly varying function
defined in the proof below.

Then, correspondingly, we obtain

d−1
n

{
m̃(t0) − m(t0)

} L→ T
[
Am(·) + ṽ(·; t0)

]
(0),

as n → ∞, where

ṽ(s; t) = c

∫
w(s − u)k′(u) du, (43)

Am(s) = m(q+1)(t0)

(q + 1)!
∫

(u + s)q+1k(u)du (44)

and respectively

(a) w = B; c = σa−(q+3/2),
(b) w = B; c = κa−(q+3/2),
(c) w = Br,β ; c = |ηr |a (where β defined in (32)).
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Proof. If we choose dn = h in such a way so that

d
−(q+1)
n (nh)−1σn̂ → c > 0, (45)

then we obtain the first part of Assumption 1

ṽn(s; t) L→ ṽ(s; t),
as in the proof of Theorem 6.

For the rescaling of the deterministic part gn, similarly to as in the proofs of Theorem 6 and
Theorem 8, one can show that the second part of Assumption 1 holds, with

Am(s) = m(q+1)(t0)

(q + 1)!
∫

(u + s)q+1k(u)du.

The proof that Assumption 2 holds is similar to the reasoning in the proof of Theorem 8.
It only remains to check whether d−1

n (nh)−1σn̂ → c > 0 for the three types of dependence.

1. Independent case (a): We have σ 2
n̂

= σ 2ndn. Thus d
−(q+1)
n (nh)−1σn̂ = σn−1/2d

−(q+3/2)
n ,

and (45) is satisfied with c = σa−(q+3/2) if dn = h = an−1/(3+2q).
2. Mixing case (b): The proof is similar to the proof of (a), replacing σ by κ .
3. Long range data case (c): Since σ 2

n̂
= η2

r (ndn)
2−rd l1(ndn), if we choose dn = h we will

have

d
−(q+1)
n (nh)−1σn̂ = d

−(q+1)
n (nh)−1|ηr |(ndn)

1−rd/2l1(ndn)
1/2

(46)
→ |ηr |a

if and only if

dn = n−rd/(q+2+rd)l2(n;a), (47)

where l2 is another function slowly varying at infinity, implicitly defined in (46). Thus, (45)
follows with c = |ηr |a and h = dn given in (47). �

5. Conclusions

We considered the feature of estimating an arbitrary monotone function x, via a monotone rear-
rangement of a “preliminary” estimator xn of the unknown x. We derived consistency and limit
distribution results for the monotonized estimator that hold under rather general dependence as-
sumptions.

The work done here has been with the use of kernel based methods for the preliminary estima-
tor xn of x. Other methods, such as wavelet based ones, are possible. We would like to emphasise
that the only assumptions required are given in Assumptions 1 and 2.
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The small simulation study that has been performed in Section 2 of Anevski and Fougères
[1] deals with independent data, as also done in Dette et al. [13] and Birke and Dette [6]. This
independence framework is the only one considered in the density context too. A larger panel of
dependence situations in the comparisons would clearly be of interest.

We have studied applications to density and regression function estimation. Other estimation
problems that are potentially possible to treat with our methods are for example, spectral density
estimation, considered by Anevski and Soulier [3], and deconvolution, previously studied by van
Es et al. [37].

Appendix A: Proofs of Section 2

Proof of Lemma 1. Assertions (i) and (ii) both follow from the fact that

lim
u→u0

∣∣rf,I (u) − rf,I (u0)
∣∣ = lim

u→u0
λ
{
t ∈ I : max(u,u0) ≥ f (t) > min(u,u0)

}
= λ

{
I ∩ f −1({u0}

)}
,

which is equal to 0 in (i), and to c in (ii). Finally, assertion (iii) arises from writing that rf,I (u) =
rf,I (f (t−0 )) = t0 for each u ∈ (f (t+0 ), f (t−0 )). �

Proof of Lemma 2. (i)–(iii) follow from the definition; indeed, for each u ∈ f (I) + c,
rf +c,I (u) = λ{t ∈ I : f (t) + c > u} = rf,I (u − c), and for each u ∈ cf (I ), rcf,I (u) = λ{t ∈
I : cf (t) > u} = rf,I (u/c) if c > 0. As for (iii), {t ∈ I : f (t) > u} ⊂ {t ∈ I : g(t) > u},
for each fixed u, if f ≤ g. Statement (iv) follows from rfc,I (u) = λ{t ∈ I/c : f (ct) > u} =
λ{s/c ∈ I/c : f (s) > u} = rf,I (u)/c, for each u ∈ f (I). Statement (v) is a consequence of
rfc,I (u) = λ{t ∈ I − c : f (t + c) > u} = λ{s − c ∈ I − c : f (s) > u} = λ{t ∈ I : f (t) > u},
for each u ∈ f (I). �

Proof of Lemma 3. Let I = [a, b]; each assertion is a consequence of its counterpart in
Lemma 2. Let t ∈ I ; statement (i) follows from TI (f + c)(t) = inf{u ∈ f (I) + c : rf,I (u − c) ≤
t −a} = TI (f )(t)+ c, whereas (ii) comes from TI (cf )(t) = inf{u ∈ cf (I ) : rf,I (u/c) ≤ t −a} =
cTI (f )(t). To show (iii), note that f ≤ g ⇒ rf,I ≤ rg,I ⇒ TI (f ) ≤ TI (g). Assertion (iv) follows
from the fact that for each t ∈ I/c, TI/c(fc)(t) = inf{u ∈ f (I) : rf,I (u) ≤ ct − a} = TI (f )(ct).
Finally, statement (v) follows since for each t ∈ I − c, TI−c(fc)(t) = inf{u ∈ f (I) : rf,I (u) ≤
t + c − a} = TI (f )(t + c). �

Proof of Theorem 1. Let f,g be functions in B(I ). Clearly g(u) − ‖f − g‖ ≤ f (u) ≤
g(u) + ‖f − g‖, which by Lemma 3(i) and (iii) implies that TI (g)(u) − ‖f − g‖ ≤ TI (f )(u) ≤
TI (g)(u)+‖f −g‖, so that |TI (f )−TI (g)|(u) ≤ ‖f −g‖, for each u. Since the right hand side
is independent of u, the absolute value on the left hand side can be replaced by the supremum
norm, which implies the statement of the theorem. �
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Appendix B: Maximal bounds for rescaled partial sum and
empirical processes

In this section, we state conditions under which Assumption 2 holds. Further specialisations
of these conditions to density and regression function estimation are given in the supplemental
article (Anevski and Fougères [1]).

Recall that

g̃n(s) = d−1
n

{
xb,n(t0 + sdn) − xb,n(t0)

}
,

(48)
ṽn(s) = d−1

n vn(t0 + sdn).

Since under Assumption 1

yn(s) − {
g̃n(s) + ṽn(s)

} = d−1
n

{
xb,n(t0) − x(t0)

}
→ �,

as n → ∞, and |�| < ∞, establishing Assumption 2 for the process g̃n + ṽn implies that it
holds also for the process yn = gn + ṽn. Therefore, it is enough to establish Assumption 2 for yn

replaced by g̃n + ṽn.
Recall that for the cases that we cover the rescaled processes are of the form

ṽn(s; t0) = cn

∫
k′(u)zn(s − u; t0) du,

with zn = wn,dn the local rescaled empirical process in the density estimation case and zn = wn

the partial sum process in the regression case. This implies that for the density estimation case the
support of ṽn is stochastic, since it depends on max1≤i≤n ti , while for the regression estimation
case it does not depend on the data {εi} and is as a matter of fact compact and deterministic.

The proof of the following Lemma is given in the supplemental article (Anevski and Fougères
[1]).

Lemma 6. Let supp(k) ⊂ [−1,1]. Suppose that Assumption 1 holds. Assume that t0 has a neigh-
bourhood I = [t0 − ε, t0 + ε] such that τ := supt∈I x′(t) < 0. Suppose also that

x′
b,n(t + sdn) → x′(t), (49)

as n → ∞, for all t ∈ I .
Then (14) and (15) written for zn = g̃n + ṽn are implied by the two results:

(A) For every δ > 0 and 0 < c < ∞ there is a finite M > 0

lim inf
n→∞ P

[ ⋂
s∈(c,d−1

n ε)

{
ṽn(s) <

M

2
− τ(s − c)

}]
> 1 − δ.
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(B) For every δ > 0 and finite M > 0 there is a finite C, not depending on δ, such that for
each c > C

lim sup
n→∞

P

{
sup

s∈d−1
n (0,�(n))

ṽn(s) >
M

2
− τ

(
d−1
n ε − c

)}
< δ, (50)

where �(n) is a deterministic function which satisfies either of

(i) lim infn→∞ P {max1≤i≤n ti < �(n)} = 1,

or

(ii) �(n) ≡ max supp(xn) if lim supn→∞ max supp(xn) ≤ K < ∞.
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Supplementary Material

Supplement to “Limit properties of the monotone rearrangement for density and regression
function estimation” (DOI: 10.3150/17-BEJ998SUPP; .pdf). The supplemental article Anevski
and Fougères [1] provides in a first section some technical results on maximal bounds for the
rescaled version partial sum and empirical process; it gives further conditions under which As-
sumption 2 holds, with application to the density and regression function estimation cases, stated
in Appendix B, as well as all proofs. Furthermore, Section 2 of Anevski and Fougères [1] con-
tains a simulation study that illustrates the finite sample behaviour of our estimator, and compare
it to other estimators that are considered in the paper of Birke and Dette [6].
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