
Bernoulli 25(1), 2019, 521–548
https://doi.org/10.3150/17-BEJ996

A multidimensional analogue of the arcsine
law for the number of positive terms in a
random walk
ZAKHAR KABLUCHKO1, VLADISLAV VYSOTSKY2,3,* and
DMITRY ZAPOROZHETS3,**

1Institut für Mathematische Stochastik, Universität Münster, Orléans–Ring 10, 48149 Münster, Germany.
E-mail: zakhar.kabluchko@uni-muenster.de
2University of Sussex, Pevensey 2 Building, BN1 9RH Brighton, United Kingdom.
E-mail: v.vysotskiy@sussex.ac.uk
3St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, 191011 St. Petersburg, Russia.
E-mail: *vysotsky@pdmi.ras.ru; **zap1979@gmail.com

Consider a random walk Si = ξ1 + · · · + ξi , i ∈N, whose increments ξ1, ξ2, . . . are independent identically
distributed random vectors in R

d such that ξ1 has the same law as −ξ1 and P[ξ1 ∈ H ] = 0 for every affine
hyperplane H ⊂R

d . Our main result is the distribution-free formula

E

[ ∑
1≤i1<···<ik≤n

1{0/∈Conv(Si1 ,...,Sik
)}

]
= 2

(
n

k

)
B(k, d − 1) + B(k, d − 3) + · · ·

2kk! ,

where the B(k, j)’s are defined by their generating function (t +1)(t +3) . . . (t +2k−1) = ∑k
j=0 B(k, j)tj .

The expected number of k-tuples above admits the following geometric interpretation: it is the expected
number of k-dimensional faces of a randomly and uniformly sampled open Weyl chamber of type Bn that
are not intersected by a generic linear subspace L ⊂ R

n of codimension d. The case d = 1 turns out to be
equivalent to the classical discrete arcsine law for the number of positive terms in a one-dimensional ran-
dom walk with continuous symmetric distribution of increments. We also prove similar results for random
bridges with no central symmetry assumption required.

Keywords: absorption probability; arcsine law; convex cone; convex hull; distribution-free probability;
finite reflection group; hyperplane arrangement; random linear subspace; random walk; random walk
bridge; Weyl chamber

1. Introduction and main results

1.1. Introduction

Let ξ1, . . . , ξn ∈ R
1 be i.i.d. random variables with continuous, symmetric distribution, that is,

P[ξ1 = x] = 0 and P[ξ1 < −x] = P[ξ1 > x] for all x ∈R. Consider the one-dimensional random
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walk Si := ξ1 + · · · + ξi , 1 ≤ i ≤ n. We are interested in the random variable

Nn =
n∑

i=1

1{Si>0} (1)

counting the number of positive terms in the random walk. The classical discrete arcsine law due
to Sparre Andersen [8], Theorem 1 and Eq. (8), and [10], Theorem 4, states that

P[Nn = m] = 1

22n

(
2m

m

)(
2n − 2m

n − m

)
, m = 0, . . . , n. (2)

Passing to the limit gives

lim
n→∞P

[
Nn

n
≤ x

]
= 2

π
arcsin

√
x, 0 ≤ x ≤ 1, (3)

which justifies the name of the law in (2).
A discussion of this remarkable result, together with a simplified, purely combinatorial proof,

can be found in Feller’s book [5], Vol. II, Section XII.8. Observe that formula (2) is distribution-
free since the values on the right-hand side do not depend on the distribution of ξ1 as long as this
distribution is continuous and symmetric.

The aim of the present paper is to obtain a multidimensional generalization of this result to
random walks in R

d . Let us start with a special case. For m = 0 and m = n, formula (2) provides
an expression for the so-called persistence probability

P[Nn = 0] = P[S1 < 0, . . . , Sn < 0] = P[S1 > 0, . . . , Sn > 0] = P[Nn = n] = 1

22n

(
2n

n

)
. (4)

This formula has been generalized to the d-dimensional case in the following way [6]. Consider
a d-dimensional random walk Si = ξ1 +· · ·+ ξi , 1 ≤ i ≤ n, whose increments ξ1, ξ2, . . . are i.i.d.

random vectors in R
d , d ∈N, with centrally symmetric distribution, that is ξ1

d= −ξ1. Denote by
Conv(x1, . . . , xk) the convex hull of any k points x1, . . . , xk ∈ R

d , that is

Conv(x1, . . . , xk) = {α1x1 + · · · + αkxk : α1, . . . , αk ≥ 0, α1 + · · · + αk = 1},
and consider the non-absorption probability P[0 /∈ Conv(S1, . . . , Sn)]. If d = 1, this probabil-
ity equals 2P[Nn = 0] because 0 /∈ Conv(S1, . . . , Sn) if and only if either S1 > 0, . . . , Sn > 0 or
S1 < 0, . . . , Sn < 0, and the probabilities of these two events are equal by the symmetry assump-
tion. For general d ∈ N, a distribution-free formula for the non-absorption probability has been
obtained in [6] and will be recalled in Example 1.4 below. In the special case d = 1, this formula
reduces to (4).

When searching for a multidimensional generalization of (2) for general 0 ≤ m ≤ n, the basic
question is how to define positivity in R

d . One possible approach is to declare a vector positive
if all of its components are positive. This leads to the question on how much time a random walk
or a Brownian motion spends in the positive orthant Rd+; see the work of Bingham and Doney
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[3] which contains a review on the higher-dimensional analogues of the arcsine law of this type.
In the present paper, we choose a different, coordinate-free approach.

The main idea is that instead of looking at the random variable Nn itself, we shall find an
appropriate generalization of its factorial moments. The advantage of working with factorial
moments instead of the usual power moments will become evident later.

Observe that we can rewrite (2) as follows:

E

[(
Nn

k

)]
=

n∑
m=k

1

22m

(
2m

m

)(
2n − 2m

n − m

)(
m

k

)
= 1

22k

(
2k

k

)(
n

k

)
, k = 0,1, . . . , n. (5)

We omit a direct proof of the second equality because it will be recovered as a special case
of Theorem 1.2 presented below. Note that since Nn takes values in {0, . . . , n}, the factorial
moments in (5) determine the law of Nn uniquely and therefore statements (2) and (5) are indeed
equivalent. In fact, (5) can be viewed as a system of n + 1 linear equations in the unknowns
P[Nn = i], 0 ≤ i ≤ n, with a non-degenerate upper triangular matrix.

We shall give our multidimensional arcsine law in the form of a d-dimensional version of (5).
Our main result is in showing that this statement admits an interpretation in terms of an equiv-
alent geometric problem concerning Weyl chambers intersected by a generic linear subspace;
see Theorem 2.1. This geometric interpretation seems to be new even in the one-dimensional
case of the discrete arcsine law while the proofs of the arcsine law given in [5,8,10] are purely
combinatorial.

Moreover, in the special one-dimensional case there is a different (and new) geometric inter-
pretation of the discrete arcsine law (2) itself. Let us describe it. Consider the simplex{

(β1, . . . , βn) ∈R
n : 1 ≥ β1 ≥ β2 ≥ · · · ≥ βn ≥ 0

}
or, equivalently, the convex hull of the following n + 1 points:

(0,0, . . . ,0), (1,0, . . . ,0), (1,1, . . . ,0), . . . , (1,1, . . . ,1).

There are 2nn! isometric simplices obtained by applying to the above simplex orthogonal trans-
formations of R

n that permute the coordinates and change their signs. In other words, these
simplices are the closed Weyl chambers of type Bn (see Section 2.1 below for the definition)
intersected with the cube [−1,1]n. Their union is exactly [−1,1]n, and the interiors of the sim-
plices are disjoint.

Let H ⊂ R
n be any generic open half-space with the boundary passing through the origin. It

will be shown that the discrete arcsine probability in (2) equals the fraction of the above simplices
with exactly m vertices lying in H ; see Corollary 2.2 in Section 2 below. The asymptotic arcsine
law (3) interprets as follows: for any fixed x ∈ [0,1], the relative fraction of the simplices having
at most xn vertices in H tends to 2

π
arcsin

√
x as n → ∞.

1.2. Arcsine law for random walks

We shall give a generalization of (5) to random walks in R
d . Let ξ1, . . . , ξn be random d-

dimensional vectors. To avoid trivialities, we always assume that n ≥ d + 1. The d-dimensional
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random walk (Si)
n
i=1 with increments ξ1, . . . , ξn is defined by

Si := ξ1 + · · · + ξi, 1 ≤ i ≤ n.

We impose the following assumptions on the increments ξ1, . . . , ξn:

(±Ex) Symmetric exchangeability: For every permutation σ of the set {1, . . . , n} and every
ε1, . . . , εn ∈ {−1,+1} there is the distributional equality

(ξ1, . . . , ξn)
d= (ε1ξσ(1), . . . , εnξσ(n)).

(GP) General position: For every 1 ≤ i1 < · · · < id ≤ n, the probability that the vectors
Si1, . . . , Sid are linearly dependent, is 0.

Remark 1.1. If ξ1, ξ2, . . . are independent identically distributed in R
d and such that ξ1 has the

same distribution as −ξ1, then (±Ex) is satisfied and the following conditions are equivalent:

(i) (GP) holds for all n ≥ d + 1;
(ii) for every affine hyperplane H ⊂R

d we have P[ξ1 ∈ H ] = 0;
(iii) for every hyperplane H0 ⊂ R

d passing through the origin and every i ∈ N, we have
P[Si ∈ H0] = 0.

This statement is proved in [6], Proposition 2.5 (which does assume that ξ1
d= −ξ1 but does not

state this explicitly in the published version).

For 1 ≤ k ≤ n we are interested in the random variable equal to half the number of polytopes
of the form Conv(Si1 , . . . , Sik ) that do not contain the origin:

M
(d)
n,k = 1

2

∑
1≤i1<···<ik≤n

1{0/∈Conv(Si1 ,...,Sik
)}. (6)

In the one-dimensional case d = 1 the convex hull of Si1, . . . , Sik does not contain the origin
if and only if the numbers Si1, . . . , Sik have the same sign, whence

M
(1)
n,k = 1

2

(
Nn

k

)
+ 1

2

(
n − Nn

k

)
a.s.

Here we used that P[Si = 0] = 0, 1 ≤ i ≤ n, which holds by the general position assumption
(GP). Using the fact that Nn has the same distribution as n − Nn, which is a consequence of
assumption (±Ex), we deduce that

EM
(1)
n,k = E

[(
Nn

k

)]
. (7)

Therefore, we can view EM
(d)
n,k as a d-dimensional generalization of E[(Nn

k

)]. Our main result
generalizes (5) to arbitrary dimension as follows.
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Theorem 1.2. Consider a random walk (Si)
n
i=1 in R

d , n ≥ d + 1, with increments ξ1, . . . , ξn

satisfying assumptions (±Ex) and (GP). For every k = 1, . . . , n we have

EM
(d)
n,k =

(
n

k

)
B(k, d − 1) + B(k, d − 3) + · · ·

2kk! =
(

n

k

)
EM

(d)
k,k , (8)

where the B(k, j)’s are defined by their generating function

(t + 1)(t + 3) · · · (t + 2k − 1) =
k∑

j=0

B(k, j)tj . (9)

We put B(k, j) = 0 for j < 0 and j > k so that the sum in (8) has only finitely many non-zero
terms.

Example 1.3. For d = 1 Theorem 1.2 reduces to (5) in view of B(k,0) = (2k − 1)!!:

E

[(
Nn

k

)]
= EM

(1)
n,k =

(
n

k

)
(2k − 1)!!

2kk! = 1

22k

(
2k

k

)(
n

k

)
.

Note in passing that this proves the second equality in (5).

Example 1.4. In the case k = n Theorem 1.2 provides a formula for the non-absorption proba-
bility

P
[
0 /∈ Conv(S1, . . . , Sn)

] = 2(B(n, d − 1) + B(n,d − 3) + · · · )
2nn! . (10)

This formula was obtained in [6].

Remark 1.5. For the number of polytopes of the form Conv(Si1, . . . , Sik ) containing the origin
we have the formula

E

[ ∑
1≤i1<···<ik≤n

1{0∈Conv(Si1 ,...,Sik
)}
]

= 2

(
n

k

)
B(k, d + 1) + B(k, d + 3) + · · ·

2kk! (11)

which follows from (8) and the identities

B(k,2) + B(k,4) + · · · = B(k,1) + B(k,3) + · · · = 2k−1k!.

To prove these identities, take t = ±1 in (9). Note that for 1 ≤ k ≤ d both sides of (11) vanish
(the left-hand side vanishes by assumption (GP)).

Let us now pass to the large n limit. The classical arcsine law [4,8] for the number of positive
terms in a one-dimensional random walk (whose increments are symmetrically distributed or
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have zero mean and finite positive variance, the case not considered in our paper) can be stated
as follows:

lim
n→∞P

[
Nn

n
≤ x

]
= 2

π
arcsin

√
x, 0 ≤ x ≤ 1. (12)

In terms of moments (which fully define any distribution concentrated on [0,1]), this can equiv-
alently be written as

lim
n→∞E

[
Nk

n

nk

]
= 1

22k

(
2k

k

)
, k ∈ N. (13)

Note that

ENk
n = k!E

[(
Nn

k

)](
1 + o(1)

)
, n → ∞, (14)

which together with (7) implies that (13) is equivalent to

lim
n→∞E

[
k!M(1)

n,k

nk

]
= 1

22k

(
2k

k

)
, k ∈N.

From Theorem 1.2, we obtain the following d-dimensional generalization of (14):

lim
n→∞E

[
k!M(d)

n,k

nk

]
= B(k, d − 1) + B(k, d − 3) + · · ·

2kk! = EM
(d)
k,k , k ∈N. (15)

Remark 1.6. Thus, in the d-dimensional setting, the sequence in (15) is analogous to the se-
quence of moments of the arcsine distribution. However, unlike the one-dimensional case, for
d ≥ 2 this sequence does not correspond to a distribution on [0,1] because both the first and the
second moments of such hypothetical distribution should be 1

2 . On the other hand, it allows the
following natural interpretation.

Let W(d)(t), t ∈ [0,1], be a standard Brownian motion taking values in R
d . Consider the

random variable

M
(d)
∞,k := 1

2

∫
0<t1<···<tk<1

1{0/∈Conv(W(d)(t1),...,W
(d)(tk))} dt1 · · ·dtk.

Note that if U1, . . . ,Uk are i.i.d. random variables distributed uniformly on [0,1] and indepen-
dent of W(d), then

EM
(d)
∞,k = 1

2 · k!P
[
0 /∈ Conv

(
W(d)(U1), . . . ,W

(d)(Uk)
)]

.

Let k and d be fixed, while n → ∞. Using Donsker’s invariance principle, it is possible to show
that 1

nk M
(d)
n,k converges weakly (together with all moments) to M

(d)
∞,k . Hence, by (15),

lim
n→∞E

[
k!M(d)

n,k

nk

]
= k!EM

(d)
∞,k = EM

(d)
k,k = 1

2
P
[
0 /∈ Conv

(
W(d)(U1), . . . ,W

(d)(Uk)
)]

. (16)
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The same result may be obtained by observing that the increments of the sequence
W(d)(U(1)), . . . ,W

(d)(U(k)), where U(1), . . . ,U(k) are the order statistics of U1, . . . ,Uk , are ex-

changeable, and applying Example 1.4 directly. This explains why EM
(d)
k,k appears in (16). We

also note that the equality EM
(1)
k,k = k!EM

(1)
∞,k implies directly that EM

(1)
k,k is the k-th moment of

the arcsine law. This is easily seen from the definition of M
(1)
∞,k and the following arcsine law for

the Brownian motion:

P

[∫ 1

0
1{W(1)(t)>0} dt ≤ x

]
= 2

π
arcsin

√
x, 0 ≤ x ≤ 1.

Remark 1.7. Theorem 1.2 shows that the expectation of M
(d)
n,k does not depend on the distribu-

tion of increments of the random walk. One may ask whether the distribution of M
(d)
n,k has the

same property. Our simulations gave a strong evidence against this conjecture.

We shall give two proofs of Theorem 1.2. The first proof deduces Theorem 1.2 from a ge-
ometric result on the number of k-faces of a random Weyl chamber that are intersected by a
linear subspace. This result, which is of an independent interest, will be stated in Theorem 2.1,
Section 2. The second proof, given in Section 3.1, is based on (10). Both proofs strongly rely
on the ideas and results of [6]. The second proof is shorter but it does not allow any interpreta-
tion of Theorem 1.2. In the next section, a similar statement for random bridges is formulated in
Theorem 1.8 (which will be proved in Section 2.6).

1.3. Uniform law for random bridges

Similar results can be obtained for random bridges which are essentially random walks required
to return to the origin after n steps. Let ξ1, . . . , ξn be random vectors in R

d , where the reader
may always assume that n ≥ d + 2 to avoid trivialities. We define the partial sums (Si)

n
i=1 by

Si := ξ1 + · · · + ξi, 1 ≤ i ≤ n,

and impose the following assumptions on the increments ξ1, . . . , ξn:

(Br) Bridge property: Sn = ξ1 + · · · + ξn = 0 a.s.
(Ex) Exchangeability: For every permutation σ of the set {1, . . . , n} we have the distribu-

tional equality

(ξσ(1), . . . , ξσ(n))
d= (ξ1, . . . , ξn).

(GP′) General position: For every 1 ≤ i1 < · · · < id ≤ n − 1, the probability that the vectors
Si1, . . . , Sid are linearly dependent, is 0.

The stochastic process (Si)
n
i=1 is called a random bridge. Note that assumption (Ex) does not

require invariance with respect to sign changes and thus is weaker than (±Ex).
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For d = 1 the distribution of the random variable Nn counting the number of positive terms
among S1, . . . , Sn−1 is discrete uniform on {0, . . . , n − 1} by a result of Sparre Andersen [9],
Corollary 2. That is,

P[Nn = m] = 1

n
, m = 0, . . . , n − 1. (17)

Alternatively, this formula follows easily from [11], Theorem 2.1. In terms of factorial moments,
(17) can be stated as follows:

E

[(
Nn

k

)]
= 1

n

n−1∑
m=k

(
m

k

)
= 1

k + 1

(
n − 1

k

)
, k = 0, . . . , n − 1. (18)

The second equality in (18) follows easily by induction over n. Note that (17) and (18) are
equivalent similarly to the case of random walks we seen above.

To state a d-dimensional generalization of (18), we consider a slight modification of M
(d)
n,k ,

namely

M
(d)
n,k = 1

2

∑
1≤i1<···<ik≤n−1

1{0/∈Conv(Si1 ,...,Sik
)}. (19)

We excluded the case ik = n because the corresponding convex hulls would contain 0 by the
assumption Sn = 0 a.s. The following is our main result for random bridges.

Theorem 1.8. Consider a random bridge (Si)
n
i=1 in R

d , n ≥ d + 2, whose increments ξ1, . . . , ξn

satisfy assumptions (Br), (Ex), (GP′). For all k = 1, . . . , n − 1 we have

EM
(d)
n,k = 1

(k + 1)!
(

n − 1

k

)([
k + 1

d

]
+

[
k + 1

d − 2

]
+ · · ·

)
=

(
n − 1

k

)
EM

(d)
k+1,k, (20)

where
[
k+1

1

]
, . . . ,

[
k+1
k+1

]
are the Stirling numbers of the first kind defined by the formula

t (t + 1) . . . (t + k) =
k+1∑
j=1

[
k + 1

j

]
tj . (21)

We use the convention
[
k+1
j

] = 0 for j < 0 and j > k + 1, so the sum in (20) contains a finite
number of non-zero terms.

Example 1.9. In the one-dimensional case d = 1, we have

M
(1)
n,k = 1

2

(
Nn

k

)
+ 1

2

(
n − Nn − 1

k

)
a.s.

Theorem 1.8 yields

1

2
E

[(
Nn

k

)
+

(
n − Nn − 1

k

)]
= EM

(1)
n,k = 1

(k + 1)!
(

n − 1

k

)[
k + 1

1

]
= 1

k + 1

(
n − 1

k

)
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in view of
[
k+1

1

] = k!. Then we recover (18) using the distributional equality Nn
d= n − 1 − Nn,

which itself follows by (Si)
n
i=1

d= (Sn − Sn−i )
n
i=1

a.s.= −(Sn−i )
n
i=1, a consequence of (Ex) and

(Br).

Example 1.10. In the case k = n−1, Theorem 1.8 reduces to the formula for the non-absorption
probability

P
[
0 /∈ Conv(S1, . . . , Sn−1)

] = 2

n!
([

n

d

]
+

[
n

d − 2

]
+ · · ·

)
which was obtained in [6].

As n → ∞, the random variable Nn/n converges weakly to the uniform distribution on the
interval [0,1], namely

lim
n→∞P

[
Nn

n
≤ x

]
= x, x ∈ [0,1].

In terms of moments, we can write this as

lim
n→∞E

[
Nk

n

nk

]
= 1

k + 1
, k ∈N,

which is a bridge analogue of (13) and, similarly, equivalent to

lim
n→∞E

[
k!M(1)

n,k

nk

]
= 1

k + 1
, k ∈N.

Theorem 1.8 yields the following d-dimensional version of this relation:

lim
n→∞E

[
k!M(d)

n,k

nk

]
= 1

(k + 1)!
([

k + 1

d

]
+

[
k + 1

d − 2

]
+ · · ·

)
= EM

(d)
k+1,k, k ∈N.

Finally, there is the following analogue of (16): if W
(d)
0 (t), t ∈ [0,1], is a Brownian bridge in

R
d and U1, . . . ,Uk are i.i.d. random variables distributed uniformly on [0,1] and independent of

W
(d)
0 , then

lim
n→∞E

[
k!M(d)

n,k

nk

]
= EM

(d)
k+1,k = 1

2
P
[
0 /∈ Conv

(
W

(d)
0 (U1), . . . ,W

(d)
0 (Uk)

)]
.

2. Relation to linear subspaces intersecting Weyl chambers

In this section, we prove Theorems 1.2 and 1.8 by deducing them from certain geometric results
on linear subspaces intersecting Weyl chambers of types Bn and An−1, respectively. We start by
recalling the necessary definitions.
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2.1. The reflection group and Weyl chambers of type Bn

The reflection group G(Bn) of type Bn acts on R
n by permuting the coordinates in an arbitrary

way and by multiplying any number of coordinates by −1. That is, the elements of G(Bn) are
isometries of the form

gε,σ :Rn → R
n, (β1, . . . , βn) 
→ (ε1βσ(1), . . . , εnβσ(n)),

where σ ∈ Sym(n) is a permutation of the set {1, . . . , n} and ε = (ε1, . . . , εn) ∈ {−1,+1}n. Here
we denote by Sym(n) the symmetric group on the set {1, . . . , n}. The group G(Bn) is the sym-
metry group of the n-dimensional cube [−1,1]n and the number of elements in this group is
2nn!.

A set Q ⊂R
n is called a convex cone if for all x, x′ ∈ Q and α,α′ > 0 we have αx +α′x′ ∈ Q.

We refer to [1,2] and [7], Section 6.5, for information on convex cones and spherical convex
geometry. We shall consider only polyhedral cones. These are defined as finite intersections of
half-spaces whose boundaries pass through the origin. The faces of the cone are obtained by
replacing in the above definition some of the half-spaces by their boundaries and taking the
intersection. The fundamental Weyl chamber of type Bn is the convex cone given by

C(Bn) = {
(β1, . . . , βn) ∈R

n : 0 < β1 < β2 < · · · < βn

}
.

This is a fundamental domain for G(Bn), meaning that the cones gC(Bn), g ∈ G(Bn), are disjoint
and their closures (which will be called closed Weyl chambers or, without any risk of confusion,
simply Weyl chambers) cover the whole R

n. Thus, the closed Weyl chambers are the convex
cones given by

CB
ε,σ := {

(β1, . . . , βn) ∈R
n : ε1βσ(1) ≥ ε2βσ(2) ≥ · · · ≥ εnβσ(n) ≥ 0

}
,

where ε ∈ {−1,+1}n, σ ∈ Sym(n). The terms are required to be non-increasing rather than in-
creasing for convenience of proofs, and the superscript B refers to the type of the chambers. We
denote by Fk(Q) the set of all (closed) k-dimensional faces of a convex cone Q. For 1 ≤ k ≤ n,
the k-dimensional faces of CB

ε,σ are indexed by collections 1 ≤ i1 < · · · < ik ≤ n and have the
form

CB
ε,σ (i1, . . . , ik)

:= {
(β1, . . . , βn) ∈ R

n : ε1βσ(1) = · · · = εi1βσ(i1)

≥ εi1+1βσ(i1+1) = · · · = εi2βσ(i2) ≥ · · · ≥ εik−1+1βσ(ik−1+1) = · · · = εikβσ(ik)

≥ βσ(ik+1) = · · · = βσ(n) = 0
}
.

(22)

In the case ik = n, no βi ’s are required to be 0. In particular, #Fk(C
B
ε,σ ) = (

n
k

)
.
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A hyperplane arrangement is a finite set of (distinct) hyperplanes in R
n. The reflection ar-

rangement A(Bn) of type Bn consists of the hyperplanes

{βi = βj } (1 ≤ i < j ≤ n),

{βi = −βj } (1 ≤ i < j ≤ n),

{βi = 0} (1 ≤ i ≤ n).

(23)

The name is due to the fact that reflections with respect to these hyperplanes generate the group
G(Bn). The lattice L(Bn) generated by the reflection arrangement of type Bn consists of linear
subspaces of Rn which can be represented as intersections of the hyperplanes (23). We say that
a linear subspace L ⊂ R

n of codimension d is in general position with respect to the reflection
arrangement if for every linear subspace K ∈ L(Bn) we have

dim(L ∩ K) =
{

dimK − d, if dimK ≥ d,

0, if dimK ≤ d.
(24)

2.2. Subspaces intersecting faces of Weyl chambers of type Bn

The next theorem, which is the main result of the present section, will be shown to imply Theo-
rem 1.2.

Theorem 2.1. Let L ⊂R
n be a deterministic linear subspace of codimension d in general posi-

tion with respect to the reflection arrangement (23) of type Bn. Let Q be sampled randomly and
uniformly among the 2nn! closed Weyl chambers CB

ε,σ of type Bn. Then the expected number of
k-dimensional faces of Q intersected by L in a trivial way is given by

E

[ ∑
F∈Fk(Q)

1{F∩L={0}}
]

def= 1

2nn!
∑

ε∈{−1,+1}n

∑
σ∈Sym(n)

∑
F∈Fk(C

B
ε,σ )

1{F∩L={0}}

= 2

(
n

k

)
B(k, d − 1) + B(k, d − 3) + · · ·

2kk! ,

where the B(k, j)’s are defined in Theorem 1.2.

Here, we say that Q and L intersect in a trivial way if Q ∩ L = {0}.

Corollary 2.2. Let d = 1 (so L is a hyperplane) and let H be either of the open half-spaces with
the boundary L. Then the number of vertices Vn of the random simplex Q ∩ [−1,1]n lying in H

follows the discrete arcsine distribution (2).

Proof of Corollary 2.2. The number of the k-dimensional faces of Q intersected by L in a
trivial way equals

(
Vn

k

) + (
n−Vn

k

)
. By taking the expectations and using the distributional identity
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Vn
d= n − Vn and the result of Theorem 2.1, we conclude that the random variables Vn and Nn

have the same factorial moments given in (4). As we argued in the Introduction, these are factorial
moments of the discrete arcsine distribution, which is the unique distribution on {0, . . . , n} with
the given factorial moments. Therefore Vn and Nn have the same distribution. �

2.3. Proof of Theorem 1.2 given Theorem 2.1

We shall need a short notation for one of the closed Weyl chambers:

CB := {
(β1, . . . , βn) ∈R

n : β1 ≥ β2 ≥ · · · ≥ βn ≥ 0
}
.

The next lemma records the relation between random walks and linear subspaces intersecting
Weyl chambers. The case k = n of this lemma appeared in [6].

Lemma 2.3. Let x1, . . . , xn ∈ R
d be arbitrary vectors and denote by si = x1 + · · · + xi , 1 ≤

i ≤ n, their partial sums. Let A : Rn → R
d be the linear operator defined on the standard basis

e1, . . . , en of Rn by Ae1 = x1, . . . ,Aen = xn. Then, the number of collections of indices 1 ≤ i1 <

· · · < ik ≤ n such that 0 ∈ Conv(si1, . . . , sik ) is equal to the number of k-dimensional faces F in
the convex cone CB intersected non-trivially by the linear subspace KerA.

Proof. For a given collection of indices 1 ≤ i1 < · · · < ik ≤ n we have 0 ∈ Conv(si1 , . . . , sik ) if
and only if there exist α1, . . . , αk ≥ 0 (not all of them being 0) such that α1si1 + · · · + αksik = 0,
or, equivalently,

α1(x1 + · · · + xi1) + α2(x1 + · · · + xi2) + · · · + αk(x1 + · · · + xik ) = 0.

Rearranging the terms, we rewrite this condition as

x1(α1 + · · · + αk) + · · · + xi1(α1 + · · · + αk)

+ xi1+1(α2 + · · · + αk) + · · · + xi2(α2 + · · · + αk)

+ · · · + xik−1+1αk + · · · + xikαk = 0.

(25)

Introducing the new variables β1, . . . , βn as the coefficients of x1, . . . , xn, that is,

β1 = · · · = βi1 := α1 + · · · + αk,

βi1+1 = · · · = βi2 := α2 + · · · + αk,

. . . ,

βik−1+1 = · · · = βik := αk,

βik+1 = · · · = βn := 0,
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we can rewrite (25) as β1x1 + · · · + βnxn = 0 or, equivalently, (β1, . . . , βn) ∈ KerA. Our condi-
tions on the αi ’s translate into the following equivalent condition on the βi ’s:

β1 = · · · = βi1 ≥ βi1+1 = · · · = βi2 ≥ · · · ≥ βik−1+1 = · · · = βik ≥ βik+1 = · · · = βn = 0, (26)

where at least one inequality should be strict, that is (β1, . . . , βn) �= 0. If ik = n, then there
are no βi ’s required to vanish. Summarizing, we have 0 ∈ Conv(si1 , . . . , sik ) if and only if F ∩
KerA �= {0}, where F ⊂ R

n is the closed convex cone defined by (26). Since any such F is a
k-dimensional face of the convex cone CB and, conversely, any k-face has this form, we obtain
the required statement. �

Proof of Theorem 1.2 given Theorem 2.1. Let A : Rn → R
d be the random linear operator

defined on the standard basis e1, . . . , en of Rn by Ae1 = ξ1, . . . ,Aen = ξn. By Lemma 2.3,

M
(d)
n,k = 1

2

∑
1≤i1<···<ik≤n

1{0/∈Conv(Si1 ,...,Sik
)} = 1

2

∑
F∈Fk(C

B)

1{F∩KerA={0}} a.s., (27)

where we used that both sums have the same number of terms #Fk(C
B) = (

n
k

)
. Let us show that

together with symmetric exchangeability assumption (±Ex), this implies that for every closed
Weyl chamber CB

ε,σ ,

M
(d)
n,k

d= 1

2

∑
F∈Fk(C

B
ε,σ )

1{F∩KerA={0}}. (28)

First note that CB
ε,σ = g(CB) for g := gε((σ̄ )−1),(σ̄ )−1 , where the permutation σ̄ is defined by

σ̄ = (σ (n), . . . , σ (1)). This holds by the fact that gek = εσ̄ (k)eσ̄ (k) (where 1 ≤ k ≤ n), which
ensures that σ̄ arranges the absolute values of coordinates of points in g(CB) in an increasing
order, so σ arranges them in a decreasing order as needed for CB

ε,σ . Further, for any k-face
F ∈ Fk(C

B),{
g(F ) ∩ KerA = {0}} = {

F ∩ g−1(KerA) = {0}} = {
F ∩ Ker(Ag) = {0}}.

Since the random linear operator Ag satisfies (Ag)e1 = εσ(n)eσ(n), . . . , (Ag)en = εσ(1)eσ(1),

from (±Ex) it follows that Ker(Ag)
d= KerA. Hence, (28) follows from (27) as required.

Taking the expectation in (28) and then the mean over all 2nn! pairs (ε, σ ), we obtain

2EM
(d)
n,k = E

[
1

2nn!
∑

ε∈{−1,+1}n

∑
σ∈Sym(n)

∑
F∈Fk(C

B
ε,σ )

1{F∩KerA={0}}
]

= 2

(
n

k

)
B(k, d − 1) + B(k, d − 3) + · · ·

2kk! ,

where the second equality is by Theorem 2.1 applied to L := KerA. The fact that with probability
one, KerA has codimension d and is in general position with respect to the reflection arrangement
of type Bn is proved in [6], Lemma 6.3. �
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We finish this section with the following observation discussed in the Introduction and related
to Corollary 2.2. In the case d = 1, the random subspace KerA is a hyperplane a.s. It is easy to
see that Nn, the number of positive terms of the random walk (Si)

n
i=1, is a.s. equal to the number

of vertices of the simplex{
(β1, . . . , βn) ∈ R

n : 1 ≥ β1 ≥ β2 ≥ · · · ≥ βn ≥ 0
}

lying is the open half-space {β ∈ R
n : A · β > 0} with the boundary KerA.

2.4. Proof of Theorem 2.1

In the special case n = k Theorem 2.1 gives a formula for the number of Weyl chambers of type
Bn intersected non-trivially by a linear subspace of codimension d in general position. It was
established in [6] using the theory of hyperplane arrangements. Let us state this result.

Theorem 2.4 ([6]). Let L ⊂ R
n be a deterministic linear subspace of codimension d in general

position with respect to the reflection arrangement of type Bn. Let Q be sampled randomly and
uniformly among the 2nn! closed Weyl chambers CB

ε,σ of type Bn. Then,

P
[
L ∩ Q = {0}] def= 1

2nn!
∑

ε∈{−1,+1}n

∑
σ∈Sym(n)

1{L∩CB
ε,σ ={0}}

= 2(B(n, d − 1) + B(n,d − 3) + · · · )
2nn! .

The following combinatorial proof deduces the assertion of Theorem 2.1 for general k from
Theorem 2.4 without using any additional tools.

Enumeration of the k-faces of Weyl chambers of type Bn

Before proceeding to the proof, we introduce some notation and give few combinatorial
examples. Recall that the k-dimensional faces of the Weyl chamber CB

ε,σ are denoted by
CB

ε,σ (i1, . . . , ik); see (22). It is important to stress that the k-face CB
ε,σ (i1, . . . , ik) may be a k-

face of another Weyl chamber CB
ε′,σ ′ with some (ε′, σ ′) �= (ε, σ ).

Example 2.5. Consider the case n = 8, k = 3 and the convex cone given by the following set of
conditions:

−β2 = β4︸ ︷︷ ︸
group 1

≥ β1 = −β6︸ ︷︷ ︸
group 2

≥ β3︸︷︷︸
group 3

≥ β5 = β7 = β8︸ ︷︷ ︸
group 4

= 0. (29)

This cone is a 3-dimensional face of the Weyl chamber

−β2 ≥ β4 ≥ β1 ≥ −β6 ≥ β3 ≥ β5 ≥ β7 ≥ β8 ≥ 0. (30)
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However, it is also a 3-face of

β4 ≥ −β2 ≥ −β6 ≥ β1 ≥ β3 ≥ −β8 ≥ −β5 ≥ β7 ≥ 0

and, more generally, any of the chambers obtained from (30) by permuting the β’s inside the
groups (−β2, β4), (β1,−β6), β3, (β5, β7, β8), and by changing any number of signs in the last
group. The total number of such chambers is 2!2!1!3!23.

We now introduce an enumeration of all k-faces of all Weyl chambers such that each face is
counted exactly once. Let Pn,k be the set of all pairs (I, η), where I = (I1, . . . , Ik+1) is a partition
of the set {1, . . . , n} into k + 1 disjoint distinguishable subsets (“groups”) such that I1, . . . , Ik are
non-empty, whereas Ik+1 may be empty or not, and η : I1 ∪ · · · ∪ Ik → {−1,+1}. We shall write
ηi := η(i). Given a pair (I, η) ∈ Pn,k define a closed k-dimensional convex cone

QI,η := {
(β1, . . . , βn) ∈ R

n :
for all 1 ≤ l1 ≤ l2 ≤ k and i1 ∈ Il1, i2 ∈ Il2 we have ηi1βi1 ≥ ηi2βi2 ≥ 0;
for all i ∈ Ik+1 we have βi = 0

}
.

As a consequence of these conditions, for all 1 ≤ l ≤ k and i1, i2 ∈ Il we have ηi1βi1 = ηi2βi2 .

Example 2.6. If n = 8, k = 3 and the partition I is given by I1 = {2,4}, I2 = {1,6}, I3 = {3},
I4 = {5,7,8}, and the signs are η1 = η3 = η4 = +1, η2 = η6 = −1, then the cone QI,η is given
by the set of inequalities (29).

Given (I, η) ∈Pn,k denote by VI,η the k-dimensional linear subspace of Rn spanned by QI,η ,
that is

VI,η := {
(β1, . . . , βn) ∈R

n :
for all 1 ≤ l ≤ k and i1, i2 ∈ Il we have ηi1βi1 = ηi2βi2;
for all i ∈ Ik+1 we have βi = 0

}
.

Using γl := ηiβi , where i ∈ Il is arbitrary and l = 1, . . . , k, as coordinates on VI,η allows us
to identify this linear space with R

k . There is a natural decomposition of VI,η into 2kk! Weyl
chambers of type Bk which have the form

VI,η(ζ, τ ) = {
(β1, . . . , βn) ∈ VI,η : ζ1γτ(1) ≥ · · · ≥ ζkγτ(k) ≥ 0

}
,

where ζ ∈ {−1,+1}k , τ ∈ Sym(k). One of these chambers, corresponding to ζi = +1, τ(i) = i

for all 1 ≤ i ≤ k, is QI,η .
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Example 2.7. If the pair (I, η) is the same as in Example 2.6, then the linear subspace VI,η is
given by the following set of conditions

γ1 := −β2 = β4︸ ︷︷ ︸
group 1

∈ R, γ2 := β1 = −β6︸ ︷︷ ︸
group 2

∈ R,

γ3 := β3︸︷︷︸
group 3

∈R, β5 = β7 = β8︸ ︷︷ ︸
group 4

= 0.
(31)

It should be stressed that the linear subspaces VI,η are not pairwise different. For example, the
set of conditions (31) is clearly equivalent to the following one:

−β3︸︷︷︸
former group 3

∈R, β1 = −β6︸ ︷︷ ︸
former group 2

∈R, β2 = −β4︸ ︷︷ ︸
former group 1

∈R, β5 = β7 = β8︸ ︷︷ ︸
group 4

= 0.

More generally, we can interchange the first k groups in an arbitrary way and multiply any
number of groups by ±1, giving a total number of 2kk! possibilities. Clearly, the cone QI,η

given by (29) is one of the 2kk! Weyl chambers which constitute VI,η. However, as was explained
above, there are other pairs (I ′, η′) such that VI,η = VI ′,η′ and QI,η coincides with one of the
chambers VI ′,η′(ζ, τ ).

Proof of Theorem 2.1. The cones QI,η , where (I, η) ∈ Pn,k , are pairwise different and ex-
haust all k-dimensional faces of the Weyl chambers of type Bn. The cone QI,η belongs to
(#I1)! · · · (#Ik+1)!2#Ik+1 Weyl chambers because, as was explained in Example 2.5, in the def-
inition of the Weyl chamber containing QI,η we can postulate any order of the elements ηiβi ,
i ∈ Il , for all 1 ≤ l ≤ k, and, additionally, we can postulate any order of the elements ±βi ,
i ∈ Ik+1, with arbitrary chosen signs. It follows that∑

ε∈{−1,+1}n

∑
σ∈Sym(n)

∑
F∈Fk(C

B
ε,σ )

1{F∩L={0}}

=
∑

(I,η)∈Pn,k

(#I1)! · · · (#Ik+1)!2#Ik+11{QI,η∩L={0}}.
(32)

In the rest of the proof, we compute the right-hand side of (32). We may suppose that k ≥ d

because otherwise Theorem 2.1 becomes trivial (L intersects all k-faces trivially). Then, the
codimension of L ∩ VI,η in VI,η (which is an element of L(Bn)) is d because L is in general
position with respect to the reflection arrangement of type Bn in R

n; see (24). Also, L∩VI,η is in
general position with respect to the reflection arrangement of type Bk in VI,η , as can be checked
using the definition. It follows from Theorem 2.4 applied to the linear subspace L ∩ VI,η ⊂ VI,η

that ∑
ζ∈{−1,+1}k

∑
τ∈Sym(k)

1{L∩VI,η(ζ,τ )={0}} = 2
(
B(k, d − 1) + B(k, d − 3) + · · · ).
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Multiplying this equality by (#I1)! · · · (#Ik+1)!2#Ik+1 and taking the sum over all (I, η) ∈Pn,k we
obtain ∑

(I,η)∈Pn,k

∑
ζ∈{−1,+1}k

∑
τ∈Sym(k)

(#I1)! · · · (#Ik+1)!2#Ik+11{L∩VI,η(ζ,τ )={0}}

= 2
(
B(k, d − 1) + B(k, d − 3) + · · · ) ∑

(I,η)∈Pn,k

(#I1)! · · · (#Ik+1)!2#Ik+1 .

(33)

Let us look at the triple sum on the left-hand side of (33). Since any convex cone QI,η can be
represented in the form VI ′,η′(ζ ′, τ ′) in 2kk! different ways, we have

LHS(33) = 2kk!
∑

(I,η)∈Pn,k

(#I1)! · · · (#Ik+1)!2#Ik+11{QI,η∩L={0}}. (34)

Let us now compute the sum on the right-hand side of (33). For j1, . . . , jk ∈N such that j1 +· · ·+
jk ≤ n denote by Pn,k(j1, . . . , jk) the set of all pairs (I, η) ∈ Pn,k such that #I1 = j1, . . . ,#Ik =
jk . Let jk+1 = n − j1 − · · · − jk . The number of elements in Pn,k(j1, . . . , jk) is given by

#Pn,k(j1, . . . , jk) = n!2j1+···+jk

j1! · · · jk+1! .

It follows that∑
(I,η)∈Pn,k

(#I1)! · · · (#Ik+1)!2#Ik+1 =
∑

j1,...,jk∈N
j1+···+jk≤n

∑
(I,η)∈Pn,k(j1,...,jk)

(#I1)! · · · (#Ik+1)!2#Ik+1

=
∑

j1,...,jk∈N
j1+···+jk≤n

n!2j1+···+jk

j1! · · · jk+1! · j1! · · · jk+1!2n−(j1+···+jk)

=
∑

j1,...,jk∈N
j1+···+jk≤n

n!2n

= n!2n

(
n

k

)
.

(35)

Taking (33), (34), (35) together yields

∑
(I,η)∈Pn,k

(#I1)! · · · (#Ik+1)!2#Ik+11{QI,η∩L={0}} = 2nn!
(

n

k

)
2(B(k, d − 1) + B(k, d − 3) + · · · )

2kk! .

In view of (32), this completes the proof of Theorem 2.1. �
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2.5. The reflection group and Weyl chambers of type An−1

We proceed to a geometric interpretation of Theorem 1.8. In the same way as random walks are
related to the reflection group of type Bn, random bridges are related to the reflection group of
type An−1. We start by recalling some definitions.

The reflection group G(An−1) is the symmetric group Sym(n) acting on R
n by permuting the

coordinates in an arbitrary way. The number of elements in G(An−1) is n!. Note that this group
leaves the hyperplane

L0 := {
(β1, . . . , βn) ∈R

n : β1 + · · · + βn = 0
}

invariant. The fundamental Weyl chamber of type An−1 is the convex cone

C(An−1) := {
(β1, . . . , βn) ∈R

n : β1 < · · · < βn

}
.

Acting on the closure of this cone by the elements of the group G(An−1), we obtain the closed
Weyl chambers of type An−1 given by

CA
σ := {

(β1, . . . , βn) ∈R
n : βσ(1) ≥ · · · ≥ βσ(n)

}
, (36)

where σ ∈ Sym(n). Note that
⋃

σ∈Sym(n) C
A
σ = R

n, and the interiors of these convex cones are
disjoint. The reflection arrangement A(An−1) of type An−1 consists of the hyperplanes

{βi = βj }, 1 ≤ i < j ≤ n. (37)

The lattice L(An−1) generated by the reflection arrangement A(An−1) and the notion of gen-
eral position are defined in the same way as in the Bn-case. The next result is an analogue of
Theorem 2.1 for Weyl chambers of type An−1.

Theorem 2.8. Let L ⊂ R
n be a deterministic linear subspace of codimension d in general po-

sition with respect to the reflection arrangement (37) of type An−1. Let Q be sampled randomly
and uniformly among the n! closed Weyl chambers CA

σ of type An−1. Then, the expected number
of k-dimensional faces of Q intersected by L in a trivial way is given by

E

[ ∑
F∈Fk(Q)

1{F∩L={0}}
]

def= 1

n!
∑

σ∈Sym(n)

∑
F∈Fk(C

A
σ )

1{F∩L={0}}

= 2

k!
(

n − 1

k − 1

)([
k

d − 1

]
+

[
k

d − 3

]
+ · · ·

)
,

where the
[
k
j

]
’s are the Stirling numbers of the first kind defined in Theorem 1.8.

In the special case k = n, Theorem 2.8 reduces to the formula, which was proved in [6]:

P
[
L ∩ Q = {0}] def= 1

n!
∑

σ∈Sym(n)

1{L∩CA
σ ={0}} = 2

n!
([

n

d − 1

]
+

[
n

d − 3

]
+ · · ·

)
. (38)



A multidimensional analogue of the arcsine law 539

2.6. Proof of Theorem 1.8 given Theorem 2.8

We shall need a short notation for one of the closed Weyl chambers of type An−1:

CA := {
(β1, . . . , βn) ∈R

n : β1 ≥ · · · ≥ βn

}
.

The next lemma is an analogue of Lemma 2.3. The case k = n of this lemma appeared in [6].

Lemma 2.9. Let x1, . . . , xn ∈R
d , where n ≥ 2, be arbitrary vectors such that x1 + · · ·+ xn = 0.

Denote by si = x1 +· · ·+xi , 1 ≤ i ≤ n, their partial sums. Let A : Rn →R
d be a linear operator

defined on the standard basis e1, . . . , en of Rn by Ae1 = x1, . . . ,Aen = xn. Then the number of
collections 1 ≤ i1 < · · · < ik ≤ n − 1 such that 0 ∈ Conv(si1 , . . . , sik ) is equal to the number
of (k + 1)-dimensional faces F of the convex cone CA intersected non-trivially by the linear
subspace L0 ∩ KerA.

Proof. For a given collection of indices 1 ≤ i1 < · · · < ik ≤ n−1, we have 0 ∈ Conv(si1 , . . . , sik )

if and only if there exist α1, . . . , αk ≥ 0 (not all of them being 0) such that α1si1 +· · ·+αksik = 0,
or, equivalently,

α1(x1 + · · · + xi1) + α2(x1 + · · · + xi2) + · · · + αk(x1 + · · · + xik ) = 0.

After rearranging the terms, we can rewrite this condition as β1x1 + · · · + βnxn = 0, where

β1 = · · · = βi1 := α1 + · · · + αk − b,

βi1+1 = · · · = βi2 := α2 + · · · + αk − b,

. . . ,

βik−1+1 = · · · = βik := αk − b,

βik+1 = · · · = βn := −b,

and b ∈ R can be arbitrary due to the assumption x1 + · · · + xn = 0. Choose b := 1
n
(i1α1 +

· · · + ikαk), which ensures that β1 + · · · + βn = 0. Our conditions on the αi ’s translate into the
following equivalent conditions on the βi ’s:

β1 = · · · = βi1 ≥ βi1+1 = · · · = βi2 ≥ · · · ≥ βik−1+1 = · · · = βik ≥ βik+1 = · · · = βn, (39)

β1 + · · · + βn = 0, (40)

where at least one inequality in (39) should be strict, i.e. (β1, . . . , βn) �= 0. That is, we have
0 ∈ Conv(si1 , . . . , sik ) if and only if F ∩ L0 ∩ KerA �= {0}, where F ⊂ R

n is the closed convex
cone defined by (39). Since any such F is a (k + 1)-dimensional face of the Weyl chamber CA

and, conversely, any (k + 1)-face has this form, we obtain the required statement. �
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Proof of Theorem 1.8 given Theorem 2.8. Let A : Rn → R
d be a random linear operator de-

fined on the standard basis e1, . . . , en of Rn by Ae1 = ξ1, . . . ,Aen = ξn. By Lemma 2.9,

M
(d)
n,k = 1

2

∑
1≤i1<···<ik<n

1{0/∈Conv(Si1 ,...,Sik
)} = 1

2

∑
F∈Fk+1(C

A)

1{F∩L0∩KerA={0}} a.s.,

where we also used that #Fk+1(C
A) = (

n−1
k

)
. By the exchangeability assumption (Ex), for every

closed Weyl chamber CA
σ ,

M
(d)
n,k

d= 1

2

∑
F∈Fk+1(C

A
σ )

1{F∩L0∩KerA={0}}.

Taking the expectation and then the mean over all n! permutations σ ∈ Sym(n), we obtain

2EM
(d)
n,k = E

[
1

n!
∑

σ∈Sym(n)

∑
F∈Fk+1(C

A
σ )

1{F∩L0∩KerA={0}}
]

= 2

(k + 1)!
(

n − 1

k

)([
k + 1

d

]
+

[
k + 1

d − 2

]
+ · · ·

)
,

where the second equality is by Theorem 2.8 applied to the linear subspace L := L0 ∩KerA. The
fact that with probability one, the linear subspace L0 ∩ KerA is in general position with respect
to the hyperplane arrangement A(An−1) and the codimension of this subspace in R

n is d + 1 is
proved in [6], Lemma 6.2. �

2.7. Proof of Theorem 2.8

The proof is similar to that of Theorem 2.1, but several simplifications are possible.

Enumeration of the k-faces of Weyl chambers of type Bn

Again, we start with notation and examples. The k-dimensional faces of the Weyl chamber CA
σ ,

see (36), are enumerated by collections 1 ≤ i1 < · · · < ik−1 ≤ n − 1 as follows:

CA
σ (i1, . . . , ik−1) := {

(β1, . . . , βn) ∈ R
n : βσ(1) = · · · = βσ(i1)

≥ βσ(i1+1) = · · · = βσ(i2) ≥ · · · ≥ βσ(ik−1+1) = · · · = βσ(n)

}
.

(41)

The next example shows that the k-face CA
σ (i1, . . . , ik−1) may be a k-face of another Weyl cham-

ber CA
σ ′ with some σ ′ �= σ .

Example 2.10. Consider the case n = 5, k = 3 and the convex cone given by the following set
of conditions:

β2 = β4︸ ︷︷ ︸
group 1

≥ β1 = β5︸ ︷︷ ︸
group 2

≥ β3︸︷︷︸
group 3

. (42)
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This cone is a 3-dimensional face of the Weyl chamber

β2 ≥ β4 ≥ β1 ≥ β5 ≥ β3. (43)

However, it is also a 3-face of

β4 ≥ β2 ≥ β5 ≥ β1 ≥ β3.

and, more generally, any of the chambers obtained from (43) by permuting the βi ’s inside the
groups (β2, β4), (β1, β5), β3. The total number of such chambers is 2!2!1!.

Next, we shall introduce a notation for all k-faces of all Weyl chambers such that each face is
counted exactly once. Let Rn,k be the set of all partitions I = (I1, . . . , Ik) of the set {1, . . . , n}
into k disjoint non-empty distinguishable subsets I1, . . . , Ik . Given a partition I ∈ Rn,k , define
the closed k-dimensional convex cone

QI := {
(β1, . . . , βn) ∈ R

n : for all 1 ≤ l1 ≤ l2 ≤ k and i1 ∈ Il1 , i2 ∈ Il2 we have βi1 ≥ βi2

}
.

It follows from these conditions that for all 1 ≤ l ≤ k and i1, i2 ∈ Il we have βi1 = βi2 .

Example 2.11. If n = 5, k = 3 and the partition I is given by I1 = {2,4}, I2 = {1,5}, I3 = {3},
then the cone QI is given by the set of inequalities (42).

For a partition I ∈ Rn,k , denote by WI the k-dimensional linear subspace of Rn spanned by
Qi , that is

WI := {
(β1, . . . , βn) ∈ R

n : for all 1 ≤ l ≤ k and i1, i2 ∈ Il we have βi1 = βi2

}
.

Using γl := βi , where i ∈ Il is arbitrary and l = 1, . . . , k, as coordinates on WI allows us to
identify this linear space with R

k . There is a natural decomposition of WI into k! Weyl chambers
of type Ak−1 of the form

WI(τ) = {
(β1, . . . , βn) ∈ WI : γτ(1) ≥ · · · ≥ γτ(k)

}
,

where τ ∈ Sym(k). One of these chambers, corresponding to the identity permutation τ(i) = i

for all 1 ≤ i ≤ k, is QI .

Example 2.12. If the partition I is the same as in Example 2.11, then the linear space WI is
given by the following set of conditions

γ1 := β2 = β4︸ ︷︷ ︸
group 1

∈ R, γ2 := β1 = β5︸ ︷︷ ︸
group 2

∈R, γ3 := β3︸︷︷︸
group 3

∈R. (44)

The spaces WI are not pairwise distinct. For example, the set of conditions (44) is equivalent to
the following one:

β3︸︷︷︸
former group 3

∈R, β1 = β5︸ ︷︷ ︸
former group 2

∈R, β2 = β4︸ ︷︷ ︸
former group 1

∈R.
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More generally, we can interchange the k groups of equal βi ’s in an arbitrary way, so that in the
list WI , I ∈Rn,k , each linear subspace appears k! times under different names.

Proof of Theorem 2.8. The cones QI , where I ∈ Rn,k , are pairwise distinct and exhaust all k-
dimensional faces of the Weyl chambers of type An−1. The cone QI belongs to (#I1)! · · · (#Ik)!
different Weyl chambers because in the definition of the Weyl chamber containing QI we can
impose an arbitrary ordering of the elements βi , i ∈ Il , for all 1 ≤ l ≤ k; see Example 2.10. It
follows that ∑

σ∈Sym(n)

∑
F∈Fk(C

A
σ )

1{F∩L={0}} =
∑

I∈Rn,k

(#I1)! · · · (#Ik)!1{QI ∩L={0}}. (45)

In the rest of the proof we compute the right-hand side of (45). We may assume that k ≥ d + 1
since otherwise Theorem 2.8 is trivial. Recall that the linear space L has codimension d in R

n

and is in general position with respect to the reflection arrangement of type An−1 in R
n. It follows

from the definition of the general position, see (24), that the linear subspace L ∩ WI ⊂ WI has
codimension d in WI and is in general position with respect to the reflection arrangement of type
Ak−1 in WI . It follows from (38) applied to L ∩ WI ⊂ WI that

∑
τ∈Sym(k)

1{L∩WI (τ)={0}} = 2

([
k

d − 1

]
+

[
k

d − 3

]
+ · · ·

)
.

Multiplying this equality by (#I1)! · · · (#Ik)! and taking the sum over all partitions I ∈ Rn,k , we
obtain ∑

I∈Rn,k

∑
τ∈Sym(k)

(#I1)! · · · (#Ik)!1{L∩WI (τ)={0}}

= 2

([
k

d − 1

]
+

[
k

d − 3

]
+ · · ·

) ∑
I∈Rn,k

(#I1)! · · · (#Ik)!.
(46)

Since any k-face QI can be represented as WI ′(τ ′) in k! ways, see Example 2.12, and the sets
I1, . . . , Ik are (up to their order) the same in all representations,

LHS(46) = k!
∑

I∈Rn,k

(#I1)! · · · (#Ik)!1{QI ∩L={0}}. (47)

Let us now compute the sum on the right-hand side of (46). For j1, . . . , jk ∈ N such that j1 +· · ·+
jk = n denote by Rn,k(j1, . . . , jk) the set of all partitions I ∈Rn,k such that #I1 = j1, . . . ,#Ik =
jk . The number of elements in Rn,k(j1, . . . , jk) is given by

#Rn,k(j1, . . . , jk) = n!
j1! · · · jk! .
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It follows that ∑
I∈Rn,k

(#I1)! · · · (#Ik)! =
∑

j1,...,jk∈N
j1+···+jk=n

∑
I∈Rn,k(j1,...,jk)

(#I1)! · · · (#Ik)!

=
∑

j1,...,jk∈N
j1+···+jk=n

n!
j1! · · · jk! · j1! · · · jk!

= n!
(

n − 1

k − 1

)
.

(48)

Taking (46), (47), (48) together yields

∑
I∈Rn,k

(#I1)! · · · (#Ik)!1{QI ∩L={0}} = n!
(

n − 1

k − 1

)
2

k!
([

k

d − 1

]
+

[
k

d − 3

]
+ · · ·

)
.

In view of (45), this completes the proof of Theorem 2.8. �

3. Proofs by reduction to non-absorption probability

In this section, we give alternative proofs of Theorems 1.2 and 1.8.

3.1. Proof of Theorem 1.2

This proof rests on the following result obtained in [6], which is the special case of Theorem 1.2
with k = n:

Theorem 3.1 ([6]). Let (Si)
n
i=1 be a random walk in R

d satisfying assumptions (±Ex) and (GP).
Then

P
[
0 /∈ Conv(S1, . . . , Sn)

] = 2(B(n, d − 1) + B(n,d − 3) + · · · )
2nn! .

We want to use this result to compute P[0 /∈ Conv(Si1, . . . , Sik )] but we cannot apply it directly
because the increments ξ ′

1 := Si1, . . . , ξ
′
k := Sik − Sik−1 in general are not exchangeable. We re-

store the exchangeability by introducing an additional random reshuffling of the ξ ′
i ’s, which is

the main idea of the following proof.

Proof of Theorem 1.2. Take some 1 ≤ i1 < · · · < ik ≤ n and let i0 := 0. We subdivide the
collection (ξ1, . . . , ξn) into k groups of lengths

j1 := i1 > 0, j2 := i2 − i1 > 0, . . . , jk := ik − ik−1 > 0
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and one group of length n − (j1 + · · · + jk) = n − ik ≥ 0 as follows:

(ξ1, . . . , ξi1)︸ ︷︷ ︸
length j1

, (ξi1+1, . . . , ξi2)︸ ︷︷ ︸
length j2

, . . . , (ξik−1+1, . . . , ξik )︸ ︷︷ ︸
length jk

, (ξik+1, . . . , ξn). (49)

The last, (k + 1)-st group, will be mostly ignored in the sequel since the outcome of the corre-
sponding terms in the definition of M

(d)
n,k does not depend on these values.

Denote by ξ ′
l the sum of the ξi ’s in the l-th group above, that is

ξ ′
l := ξil−1+1 + · · · + ξil , l = 1, . . . , k.

Let τ be a random permutation that is uniformly distributed on Sym(k) and independent of
(ξ1, . . . , ξn). We reshuffle the ξ ′

i ’s as follows:

ηi := ξ ′
τ(i), i = 1, . . . , k.

We claim that these k random vectors satisfy the symmetric exchangeability assumption (±Ex)

(with k substituted for n). The exchangeability is by the construction and the symmetry follows
by the symmetry of the joint distribution of (ξ1, . . . , ξn). Let us give the details.

Let σ1 be any permutation of the set {1, . . . , k} and let ε = (ε1, . . . , εk) ∈ {−1,+1}k be a

sequence of ±1’s of length k. By the fact that τσ1
d= τ , we have the distributional identity

(ε1ησ1(1), . . . , εkησ1(k)) = (
ε1ξ

′
τ(σ1(1)), . . . , εkξ

′
τ(σ1(k))

) d= (ε1η1, . . . , εkηk),

from which we deduce

P
[
(ε1ησ1(1), . . . , εkησ1(k)) ∈ ·] = 1

k!
∑

σ∈Sym(k)

P
[(

ε1ξ
′
σ(1), . . . , εkξ

′
σ(k)

) ∈ ·]. (50)

Let σ ∈ Sym(k) be any permutation of length k. Permute the first k groups of the list
(49) according to σ and then multiply the reordered groups by ε1, . . . , εk , respectively. The
(k + 1)-st group stays unchanged. Clearly, our symmetric exchangeability assumption (±Ex)

on (ξ1, . . . , ξn) implies that this operation does not change the distribution. That is, ignoring the
last group, we have the distributional equality

(ξ1, . . . , ξik )
d= (ε1ξiσ(1)−1+1, . . . , ε1ξiσ(1)︸ ︷︷ ︸

length jσ(1)

, ε2ξiσ(2)−1+1, . . . , ε2ξiσ(2)︸ ︷︷ ︸
length jσ(2)

, . . . , εkξiσ(k)−1+1, . . . , εkξiσ(k)︸ ︷︷ ︸
length jσ(k)

).

Since the sum of random vectors in the l-th group is εlξ
′
σ(l), we see that the distributions under

the sum in (50) do not depend on ε1, . . . , εk . This proves the stated symmetric exchangeability
of (η1, . . . , ηk). This also gives the distributional identity

(Sjσ(1)
, Sjσ(1)+jσ(2)

, . . . , Sjσ(1)+···+jσ(k)
)

d= (
ξ ′
σ(1), ξ

′
σ(1) + ξ ′

σ(2), . . . , ξ
′
σ(1) + · · · + ξ ′

σ(k)

)
. (51)
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Now introduce the new random walk

Ti := η1 + · · · + ηi, i = 1, . . . , k.

From (51) it follows that the random walk (Ti)
k
i=1 satisfies the general position assumption (GP)

(with k substituted for n) since (Si)
n
i=1 satisfies (GP). Then Theorem 3.1 applies to (Ti)

k
i=1, and

by taking the mean over all σ ∈ Sym(k) in (51), we obtain

1

k!
∑

σ∈Sym(k)

P
[
0 /∈ Conv(Sjσ(1)

, Sjσ(1)+jσ(2)
, . . . , Sjσ(1)+···+jσ(k)

)
]

= P
[
0 /∈ Conv(T1, . . . , Tk)

]
= 2(B(k, d − 1) + B(k, d − 3) + · · · )

2kk! .

(52)

Finally, sum the equations above over all tuples (j1, . . . , jk) from the following set:

Jn,k := {
(j1, . . . , jk) ∈N

k : j1 + · · · + jk ≤ n
}
.

Since the cardinality of Jn,k is
(
n
k

)
and the last expression in (52) does not depend on (j1, . . . , jk),

we obtain

2

2kk!
(

n

k

)(
B(k, d − 1) + B(k, d − 3) + · · · )

= 1

k!
∑

σ∈Sym(k)

∑
(j1,...,jk)∈Jn,k

P
[
0 /∈ Conv(Sjσ(1)

, Sjσ(1)+jσ(2)
, . . . , Sjσ(1)+···+jσ(k)

)
]

=
∑

(j1,...,jk)∈Jn,k

P
[
0 /∈ Conv(Sj1, Sj1+j2, . . . , Sj1+···+jk

)
]

=
∑

1≤i1<···<ik≤n

P
[
0 /∈ Conv(Si1 , Si2, . . . , Sik )

]
.

To complete the proof, observe that the right-hand side is nothing but 2EM
(d)
n,k ; see (6). �

3.2. Proof of Theorem 1.8

The proof is based on the following result obtained in [6]:

Theorem 3.2 ([6]). Let (Si)
n
i=1, n ≥ 2, be a random bridge in R

d satisfying assumptions (Br),
(Ex), (GP′). Then,

P
[
0 /∈ Conv(S1, . . . , Sn−1)

] = 2

n!
([

n

d

]
+

[
n

d − 2

]
+ · · ·

)
.
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Proof of Theorem 1.8. Take some 1 ≤ i1 < · · · < ik ≤ n − 1 and put i0 := 0, ik+1 := n. We
subdivide the collection (ξ1, . . . , ξn) into k + 1 groups of lengths

j1 := i1 > 0, j2 := i2 − i1 > 0, . . . , jk+1 := n − ik > 0

as follows:

(ξ1, . . . , ξi1)︸ ︷︷ ︸
length j1

, (ξi1+1, . . . , ξi2)︸ ︷︷ ︸
length j2

, . . . , (ξik+1, . . . , ξn)︸ ︷︷ ︸
length jk+1

. (53)

Denote by ξ ′
l the sum of the ξi ’s in the l-th group above, that is

ξ ′
l := ξil−1+1 + · · · + ξil , l = 1, . . . , k + 1.

Let τ be a random permutation that is uniformly distributed on Sym(k +1) and independent with
(ξ1, . . . , ξn). We reshuffle the ξ ′

i ’s as follows:

ηi := ξ ′
τ(i), i = 1, . . . , k + 1.

By the construction, the k + 1 random vectors ηi satisfy the exchangeability assumption (Ex)

(with k + 1 substituted for n).
Take any permutation σ of the set {1, . . . , k + 1} and permute the k + 1 groups of the above

list (53) according to σ . The exchangeability assumption (Ex) implies that this does not change
the distribution of (ξ1, . . . , ξn), that is

(ξ1, . . . , ξn)
d= (ξiσ(1)−1+1, . . . , ξiσ(1)︸ ︷︷ ︸

length jσ(1)

, ξiσ(2)−1+1, . . . , ξiσ(2)︸ ︷︷ ︸
length jσ(2)

, . . . , ξiσ(k+1)−1+1, . . . , ξiσ(k+1)︸ ︷︷ ︸
length jσ(k+1)

).

The sum of random vectors in the l-th group is ξ ′
σ(l), which gives the distributional identity

(Sjσ(1)
, Sjσ(1)+jσ(2)

, . . . , Sjσ(1)+···+jσ(k+1)
)

d= (
ξ ′
σ(1), ξ

′
σ(1) +ξ ′

σ(2), . . . , ξ
′
σ(1) +· · ·+ξ ′

σ(k+1)

)
, (54)

which is analogous to (51). Note that the last vectors in both sides equal zero a.s. since j1 +· · ·+
jk+1 = n and Sn = 0 a.s.

Now introduce the partial sums

Ti := η1 + · · · + ηi, i = 1, . . . , k + 1.

It follows from (54) that Tk+1 = Sn = 0 a.s. and the random bridge (Ti)
k+1
i=1 satisfies the general

position assumption (GP′) (with k +1 substituted for n) since the random bridge (Si)
n
i=1 satisfies
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(GP′). Applying Theorem 3.2 to (Ti)
k+1
i=1 , we obtain

1

(k + 1)!
∑

σ∈Sym(k+1)

P
[
0 /∈ Conv(Sjσ(1)

, Sjσ(1)+jσ(2)
, . . . , Sjσ(1)+···+jσ(k)

)
]

= P
[
0 /∈ Conv(T1, . . . , Tk)

]
= 2

(k + 1)!
([

k + 1

d

]
+

[
k + 1

d − 2

]
+ · · ·

)
.

(55)

Now we take the sum over all (j1, . . . , jk+1) from the set

J ∗
n,k := {

(j1, . . . , jk+1) ∈N
k+1 : j1 + · · · + jk+1 = n

}
.

Since the cardinality of J ∗
n,k is

(
n−1
k

)
and the last expression in (55) does not depend on

(j1, . . . , jk+1), we obtain

(
n − 1

k

)
2

(k + 1)!
([

k + 1

d

]
+

[
k + 1

d − 2

]
+ · · ·

)

= 1

(k + 1)!
∑

σ∈Sym(k+1)

∑
(j1,...,jk+1)∈J ∗

n,k

P
[
0 /∈ Conv(Sjσ(1)

, Sjσ(1)+jσ(2)
, . . . , Sjσ(1)+···+jσ(k)

)
]

=
∑

(j1,...,jk+1)∈J ∗
n,k

P
[
0 /∈ Conv(Sj1, Sj1+j2, . . . , Sj1+···+jk

)
]

=
∑

1≤i1<···<ik≤n−1

P
[
0 /∈ Conv(Si1, Si2, . . . , Sik )

]
.

To complete the proof, observe that the right-hand side is nothing but 2EM
(d)
n,k ; see (19). �

Acknowledgments

We would like to thank the referee for his/her stimulating comments and suggestions.
This paper was written when V.V. was affiliated to Imperial College London, where his work

was supported by People Programme (Marie Curie Actions) of the European Union’s Seventh
Framework Programme (FP7/2007-2013) under REA grant agreement n◦[628803]. His work is
also supported in part by Grant 16-01-00367 by RFBR. The work of D.Z. is supported in parts by
Grant 16-01-00367 by RFBR, the Program of Fundamental Researches of Russian Academy of
Sciences “Modern Problems of Fundamental Mathematics”, and by Project SFB 1283 of Biele-
feld University.



548 Z. Kabluchko, V. Vysotsky and D. Zaporozhets

References

[1] Amelunxen, D., Lotz, M., McCoy, M.B. and Tropp, J.A. (2014). Living on the edge: Phase transitions
in convex programs with random data. Inf. Inference 3 224–294. MR3311453

[2] Amelunxen, D. and Lotz, N. (2017). Intrinsic volumes of polyhedral cones: A combinatorial perspec-
tive. Discrete Comput. Geom. 58 371–409.

[3] Bingham, N.H. and Doney, R.A. (1988). On higher-dimensional analogues of the arc-sine law. J. Appl.
Probab. 25 120–131. MR0929510
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