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Let R be the Pearson correlation matrix of m normal random variables. The Rao’s score test for the inde-
pendence hypothesis H0 : R = Im, where Im is the identity matrix of dimension m, was first considered by
Schott (Biometrika 92 (2005) 951–956) in the high dimensional setting. In this paper, we study the exact
power function of this test, under an asymptotic regime in which both m and the sample size n tend to in-
finity with the ratio m/n upper bounded by a constant. In particular, our result implies that the Rao’s score
test is minimax rate-optimal for detecting the dependency signal ‖R − Im‖F of order

√
m/n, where ‖ · ‖F

is the matrix Frobenius norm.

Keywords: Frobenius norm; high dimensionality; minimax optimality; Pearson correlation; power; Rao’s
score

1. Introduction

Let (X1, . . . ,Xm)′ be an m-variate normal vector with population Pearson correlation matrix
denoted by R = (ρpq)1≤p,q≤m. Suppose we observe n independent samples Xp1, . . . ,Xpn for
each component Xp , 1 ≤ p ≤ m. When the dimension m can be larger than the sample size n,
Schott [19] was the first to consider the Rao’s score statistic

T =
∑

1≤p<q≤m

ρ̂2
pq, (1.1)

for testing the independence null hypothesis

H0 : R = Im, (1.2)

where ρ̂pq , 1 ≤ p �= q ≤ m is the sample correlation of the pair (Xp,Xq) computed from the
data, and Im is the m-by-m identity matrix. It was shown to be asymptotically normal under
H0 as both m and n go to infinity with the ratio m/n converging to a positive constant. The
purpose of this paper is to complement the theoretical study of T by investigating its power
under alternatives of the form

H1 : R ∈ �(b),
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where for any constant b > 0 and matrix Frobenius norm ‖ · ‖F , we define the set of Pearson
correlation matrices

�(b) := {
R : ‖R − Im‖F ≥ b

√
m/n,diag(R) = Im

}
, (1.3)

which comprises a composite alternative hypothesis delineated by a signal size ‖R − Im‖F of
order no less than

√
m/n.

There are three major approaches to testing independence with growing dimension m in the
literature, to the best of our knowledge. The first is the statistic T considered in this paper.
Being a “sum” of squared pairwise sample correlation as in (1.1), it is good at detecting diffuse
dependency among many pairs of variables. Such dependency is most naturally described by the
signal ‖R − Im‖F . In fact, the main result in this paper will show that T is minimax rate optimal
for detecting such signal. The second approach considers the “max” statistic,

max
1≤p<q≤m

ρ̂2
pq.

Following many previous works [12,16–18,21], Cai and Jiang [3] showed that it admits an
asymptotic Gumbel distribution under H0 in the ultra high dimensional regime when m can
be as large as enc

for some constant 0 < c < 1, as m,n −→ ∞. Naturally, it is good at detecting
a structured alternative whose population correlation matrix R has sparse non-zero off-diagonal
entries with considerable magnitudes. Both the “sum” and “max” approaches base their test on
forming intuitive statistics that measure the overall dependency among the m variables, with their
respective non-parametric extensions; see Leung and Drton [14] and Han and Liu [7]. The third
is likelihood ratio test (LRT), which is well known to give implementable test only if the dimen-
sion m is smaller than n. Despite this limitation, Jiang and Qi [13] showed the LRT statistic to
be asymptotically normal when m,n −→ ∞, as long as m + 4 is less than n.

We remark that the derivation of (1.1) as the Rao’s score statistic involves taking derivatives of
the log-normal likelihood with respect to the mean vector and the precision matrix. The interested
reader is referred to Appendix A in Leung and Drton [14] for those calculations.

2. Notations and main results

For any positive integer k, [k] is defined as the set {1, . . . , k}. Sk is the symmetric group of or-
der k. Depending on the context, its elements will sometimes be treated as permutation functions
on k elements, or simply permutations of the set [k]. C always denotes a positive constant that
is universal, that is, its value may change from place to place but does not depend on m and n.
“a � b” means that a ≤ Cb for some constant C > 0. E[·], Var[·] and P [·] are expectation,
variance and probability operators, respectively.

In this paper, we shall always assume that, for all 1 ≤ p ≤ m, Var[Xp] = 1 and E[Xp] = 0.
Thus, for a duple (p, q) ∈ [m] × [m], E[XpXq ] = ρpq , and its corresponding squared sample
correlation is defined as

ρ̂2
pq := S2

pq

SppSqq

= f (Spp,Sqq, Spq), (2.1)
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where f :R2
>0 ×R−→R is the function

f (u1, u2, u3) := u−1
1 u−1

2 u2
3, (2.2)

and

Spq :=
∑n

i=1 XpiXqi

n
. (2.3)

We will also use

S̄pq := Spq − ρpq

to denote the centered sample covariance. Imposing the assumption Var[Xp] = 1 is always per-
mitted, even if we use the more general form of Pearson correlations with all sample covariances
Spq defined alternatively as∑n

i=1(Xpi − n−1 ∑n
j=1 Xpj )(Xqi − n−1 ∑n

j=1 Xqj )

n − 1
(2.4)

in (2.1), since the distribution of ρ̂pq is invariant to the scaling of variables. Under normality, the
restrictions E[Xp] = 0 and (2.3) can be still be assumed without forgoing any generality of our
results to follow; see the classical result in Anderson [1], Theorem 3.3.2.

According to Chen and Shao [5], Theorem 2.2, who refined the asymptotic result of [19] under
H0, for a given α ∈ (0,1), a test of asymptotic level α based on (1.1) is given as

ψ = I

(
T − m(m − 1)

2n
>

m

n
zα

)
, (2.5)

where I (·) is the indicator function , zα := �̄−1(α) , and � and �̄(x) := 1 − �(x) are respec-
tively the cumulative distribution function and tail probability of a standard normal variate. Be-
low, ER[·] simply emphasizes that the expectation is taken with respect to a particular correlation
matrix R ∈ �(b).

Theorem 2.1 (Main result: asymptotic power). Suppose m,n −→ ∞ such that m
n

≤ κ for
some constant κ < ∞. For any significance level α ∈ (0,1), the asymptotic power of ψ is given
as

lim
n→∞ inf

�(b)
ER[ψ] = �̄

(
zα − 2−1b2).

This theorem resembles Cai and Ma [4], Theorem 4, in which the different problem of testing
H0 : � = Im, where � is the covariance matrix of (X1, . . . ,Xm)′, is studied. Despite this, Theo-
rem 1 and Remark 1 in their paper indicate that a matching lower bound on the detectable signal
size as measured by ‖R − Im‖F can be established for our problem (1.2), which we restate next
for our readers’ convenience. We add that Theorem 2.1 is slightly weaker than the parallel result
of Cai and Ma [4] in that an upper bound on the ratio m/n is imposed, which we believe to be
merely a proof artifact not necessary for the theorem to hold. Discussion on this will be deferred
later.
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Theorem 2.2 (Matching lower bound, Cai and Ma [4]). Let 0 < α < β < 1. Suppose m,n −→
∞ such that m

n
≤ κ for some constant κ < ∞. Then there exists a constant b = b(κ,β − α) < 1,

such that

lim sup
n−→∞

inf
�(b)

ER[φ] < β

for any test φ with significance level α for testing H0.

The lower bound result says that no α-level test for H0 can achieve a preset target power if the
signal size ‖R − Im‖F falls below a certain threshold modulo the separation rate

√
m/n . Our

main result in Theorem 2.1 hence suggests that our test ψ is “rate” optimal when the ratio m/n

is bounded, since the asymptotic power limn−→∞ inf�(b) ER[ψ] tends to one as b −→ ∞.
Although the result in Theorem 2.1 is neat, its proof, which occupies the rest of this paper,

is quite involved. As it will become clear later, this is because our statistic T is constructed
with Pearson correlations whose higher order moment properties involve a lot of computations
to be understood; see Hotelling [10], Section 7, for classical work on this. At some point in
this paper, we will use mathematica to help us with certain symbolic calculations. We shall
begin with a Taylor expansion of the expression for ρ̂2

pq in terms of the function f in (2.1).
We need the multi-index notations: For a vector λ = (λ1, . . . , λk) of k non-negative integers,
λ! = λ1! . . . λk! and |λ| = λ1 + · · · + λk , and if g = g(u1, . . . , uk) is a function in k arguments,

∂λg(ũ1, . . . , ũk) = ∂ |λ|g
∂u

λ1
1 ··· ∂u

λk
k

|ui=ũi
is its partial derivative with respect to λ evaluated at the

point (ũ1, . . . ũk). Since ρ2
pq = f (1,1, ρpq) = f (ρpp,ρqq, ρpq), by Taylor’s theorem, for each

pair 1 ≤ p �= q ≤ m,

ρ̂2
pq − ρ2

pq =
∑

λ∈N3≥0:
1≤|λ|≤4

∂λf (1,1, ρpq)

λ! S̄λ1
ppS̄λ2

qq S̄λ3
pq + IIIpq a.s., (2.6)

where

IIIpq :=
∑

λ∈N3≥0:|λ|=5

(ρpq + kpqS̄pq)
2−λ1

S̄
λ1
ppS̄

λ2
qq S̄

λ3
pq

(1 + kpqS̄pp)
1+λ2

(1 + kpqS̄qq)
1+λ3

, (2.7)

for some kpq = kpq(Spp,Sqq, Spq) ∈ (0,1), is the remainder in Lagrange’s form. The “almost
surely” qualifier is in (2.6) because on an event of measure zero, either Spp or Sqq may be zero,
in which case the Taylor’s theorem doesn’t apply since f is defined on R

2
>0 × R. Our proof

depends crucially on recognizing that, when λ = (λ1, λ2, λ3) = (0,0,2),

∂λf (1,1, ρpq)

λ! S̄λ1
ppS̄λ2

qq S̄λ3
pq

= S̄2
pq =

∑n
i=1(XpiXqi − ρpq)2

n2
+ 2

∑
1≤i<j≤n(XpiXqi − ρpq)(XpjXqj − ρpq)

n2
,
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in light of Lemma A.1 which specifies the partial derivatives of f . One can then equivalently
write (2.6) as

ρ̂2
pq − ρ2

pq = Ipq + IIpq + IIIpq, (2.8)

where

Ipq := 2
∑

1≤i<j≤n(XpiXqi − ρpq)(XpjXqj − ρpq)

n2
, and (2.9)

IIpq :=
∑n

i=1(XpiXqi − ρpq)2

n2
+

∑
λ∈N3≥0:
1≤|λ|≤4
λ�=(0,0,2)

∂λf (1,1, ρpq)

λ! S̄λ1
ppS̄λ2

qq S̄λ3
pq. (2.10)

Defining I := ∑
1≤p<q≤m Ipq , II := ∑

1≤p<q≤m IIpq and III := ∑
1≤p<q≤m IIIpq by summing

over all 1 ≤ p < q ≤ m, from (2.8) one can write

T − m(m − 1)

2n
− 2−1‖R − Im‖2

F = I +
(

II − m(m − 1)

2n

)
+ III, (2.11)

realizing that 2−1‖R − Im‖2
F = ∑

1≤p<q≤m ρ2
pq . We are now in the position to introduce three

supporting lemmas that are the building blocks of Theorem 2.1. The first lemma gives a Berry–
Esseen bound for the cumulative distribution function of the term I with �(·) after standardiza-
tion. This will ultimately drive the form of our power function in Theorem 2.1. The next two
lemmas control the variability of the extra terms, (II − m(m−1)

2n
) and III. From now on, for the

rest of this paper all the big O , little o notations are with respect to our considered asymptotic
regime m,n −→ ∞, m/n ≤ κ .

Lemma 2.3 (Berry Esseen theorem for I ). The following are true for I :

i. Variance:

Var[I ] = E
[
I 2]= m2

n2
+ o

(
m2(1−γ )

n2

) 2∑
k=0

‖R − Im‖2k
F

for any 0 < γ < 1/2.
ii. Berry–Esseen bound:

sup
t∈R

∣∣∣∣P
(

I√
Var(I )

≤ t

)
− �(t)

∣∣∣∣�
{

o(m4/n4)
∑8

k=0 ‖R − Im‖k
F

Var(I )2

}1/5

.
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Lemma 2.4 (Bound on the 2nd moment of II − m(m−1)
2n

).

E

[(
II − m(m − 1)

2n

)2]

�
‖R − Im‖2

F + ‖R − Im‖4
F

n
+ o

(
m2(1−γ )

n2

) 4∑
k=0

‖R − Im‖k
F ,

(2.12)

for any fixed 0 < γ < 1/2.

Lemma 2.5 (Probability bound for III). For any 0 < c < 1
2 , there exists C > 0 such that

P

(
|III| > C

m2

n5c

)
�
(
nc−1 logm + nc−1/2

√
logm

)
for large enough m,n.

The proofs of Lemmas 2.3 and 2.4 are separately given in the next two sections. Lemma 2.5 is
proved by a standard maximal inequality in Appendix A. With these tools, we can now establish
Theorem 2.1 based on the general approach laid out in Cai and Ma [4].

Proof of Theorem 2.1. From (2.5) and (2.11), the power of our test can be written as

E[ψ] = P

(
I + II + III − m(m − 1)

2n
>

m

n
zα − 2−1‖R − Im‖2

F

)
. (2.13)

By dividing the set �(b) into two subsets

�(b,B) = {
R : B√m/n > ‖R − Im‖F ≥ b

√
m/n

}
and

�(B) = {
R : ‖R − Im‖F ≥ B

√
m/n

}
,

where B is a sufficiently large constant depending on (α, b, κ), it suffices to show

lim inf
n→∞ inf

�(B)
ER[ψ] ≥ �̄

(
zα − b2

2

)
(2.14)

and

sup
�(b,B)

∣∣∣∣ERψ − �̄

(
zα − ‖R − Im‖2

F

2m/n

)∣∣∣∣−→ 0 (2.15)

as m,n −→ ∞, m/n ≤ κ . Together, they lead to the theorem since (2.15) implies that

lim
n→∞ inf

�(b,B)
ERψ = lim

n→∞ inf
�(b,B)

�̄

(
zα − ‖R − Im‖2

F

2m/n

)
= �̄

(
zα − b2

2

)
.
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To prove (2.14), we first suppose that B is larger than
√

3zα , and let δ be any positive constant
satisfying 0 < δ ≤ 4−1zα . By definition, for any R ∈ �(B), it must be the case that ‖R− Im‖F =
τ
√

m/n for some τ ≥ B . Together with the fact that mn−1zα − 2−1‖R − Im‖2
F ≤ −mτ 2

n6 and
δ ≤ 12−1τ 2 which are consequences of the choice of B , by a union bound and Chebyshev’s
inequality we continue from (2.13) and obtain

1 −E[ψ] ≤ P

(∣∣∣∣I + II − m(m − 1)

2n

∣∣∣∣≥ τ 2m

6n
− δ

m

n

)
+ P

(
|III| > δ

m

n

)

≤ 288τ−4n2m−2
(
E
[
I 2]+E

[(
II − m(m − 1)

2n

)2])
+ P

(
|III| > δ

m

n

)
.

(2.16)

Substituting ‖R − Im‖F for τ
√

m/n into the bounds for E[I 2] and E[(II − m(m−1)
2n

)2] in Lem-
mas 2.3 and 2.4, it is seen that the first term in (2.16) is bounded by a term of order

τ−4 + o(1)

(
4∑

k=0

τ−k

)
.

Moreover, the second term in (2.16) converges to 0 as m,n −→ ∞ by Lemma 2.5 since δm/n

is larger than m2/n5c asymptotically for any constant 2/5 < c < 1/2, given that m/n ≤ κ . They
together imply that the constant B = B(α,b, κ) can be taken large enough so that

1 − inf
�(B)

ER[ψ] ≤ �

(
zα − b2

2

)
as m,n −→ ∞,

which is equivalent to (2.14).
To show (2.15), the uniform convergence of power on the “stripe” of alternatives with the

signal ‖R − Im‖F bounded from above and below in size, we shall first establish that

P

(
|Ĩ | ≥ m1−γ

n

)
= o(1) as m,n −→ ∞ and m/n ≤ κ, (2.17)

uniformly over the set �(b,B), where

Ĩ := II − m(m − 1)

2n
+ III.

and γ is any number such that 0 < γ < 1/2. By a union bound, we have

P

(
|Ĩ | ≥ m1−γ

n

)
≤ P

(
|III| ≥ m1−γ

2n

)
+ P

(∣∣∣∣II − m(m − 1)

2n

∣∣∣∣≥ m1−γ

2n

)

� nc−1 logm + nc−1/2
√

logm + n2

m2(1−γ )
E

[(
II − m(m − 1)

2n

)2] (2.18)
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for any (2 + γ )/5 < c < 1/2 and large enough m,n. The last inequality comes from the Cheby-
shev inequality and the fact that, by taking (2 + γ )/5 < c < 1/2 in Lemma 2.5, for large enough
m,n, under m/n ≤ κ , we have

P

(
|III| ≥ m1−γ

2n

)
≤ P

(
|III| ≥ m2

2κ1+γ n2+γ

)
≤ P

(
|III| ≥ C

m2

n5c

)
,

where the constant C is same as the one in Lemma 2.5. Since R ∈ �(b,B), it must be that
‖R − Im‖F = τ

√
m/n for some b ≤ τ ≤ B , and substituting this into the variance bound in

Lemma 2.4 it can be easily seen that

n2

m2(1−γ )
E

[(
II − m(m − 1)

2n

)2]
−→ 0 (2.19)

uniformly over �(b,B) as m,n −→ ∞, m/n ≤ κ . This gives (2.17) since c < 1/2 in (2.18).
To finish the proof of (2.15), by union bound arguments one has

E[ψ] ≤ P

(
I ≥ mzα

n
− ‖R − Im‖2

F

2
− m1−γ

n

)
+ P

(
|Ĩ | ≥ m1−γ

n

)
and

E[ψ] ≥ P

(
I ≥ mzα

n
− ‖R − Im‖2

F

2
+ m1−γ

n

)
− P

(
|Ĩ | ≥ m1−γ

n

)
,

which collectively imply∣∣∣∣E[ψ] − �̄

(
mzαn−1 − 2−1‖R − Im‖2

F√
Var(I )

)∣∣∣∣
≤ sup

t∈R

∣∣∣∣P
(

I√
Var(I )

≥ t

)
− �̄(t)

∣∣∣∣+ 2P

(
|Ĩ | ≥ m1−γ

n

)
+ 2m1−γ n−1

√
Var(I )

(2.20)

since |�̄(x ± ε) − �̄(x)| ≤ ε for any x ∈ R and ε ≥ 0. Moreover, all three terms on the right-
hand side of (2.20) are of order o(1) uniformly over �(b,B). The first two terms are so by
Lemma 2.3(ii) and (2.17), and the last term is so since by Lemma 2.3(i),

√
Var(I ) = m/n +

o(m1−γ /n) where the o(m1−γ /n) term is also uniform over �(b,B). Finally, by Lemma 2.3(i)
as m,n −→ ∞, m/n ≤ κ , we also have

sup
�(b,B)

∣∣∣∣Var(I )

m2/n2
− 1

∣∣∣∣−→ 0, (2.21)

and it is not hard to see that this implies

sup
�(b,B)

∣∣∣∣�̄
(

zα − ‖R − Im‖2
F

2m/n

)
− �̄

(
mzαn−1 − 2−1‖R − Im‖2

F√
Var(I )

)∣∣∣∣−→ 0.

Applying these facts to (2.20) leads to (2.15). �
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In establishing the normal tail form of our power function, perhaps the most important step is
singling out I as the main term that drives the asymptotic normality of the left-hand side in (2.11)
under the “stripe” of alternative �(b,B) via the Berry–Esseen bound in Lemma 2.3(ii). We note
that I is already a rather simple term to handle, but proving Lemma 2.3(ii) for it still takes
considerable effort in the next section. Moreover, m/n ≤ κ has been used at different places, the
convergences in (2.19) and (2.21) for instances. However, the assumption is mostly a convenient
one for such statements regarding terms I and II, since the estimates presented in Lemmas 2.3
and 2.4 are not the sharpest possible, for either aesthetic purpose or saving us some effort on
refining them in the next two sections.

It is the remainder term III that truly prevents us from removing the upper bound on m/n.
In order to show it tends to zero in probability, as in (2.18), we applied the crude tail bound in
Lemma 2.5 based on a maximal inequality (see Appendix A). Such an estimate doesn’t take the
correlations among the constituent summands IIIpq into account, as was done for the IIpq ’s with
respective to II − (m − 1)m(2n)−1 via explicitly estimating its second moment in Lemma 2.4.
The major obstacle to computing E[III2] is the random coefficients

(ρpq + kpqS̄pq)2−λ1

(1 + kpqS̄pp)
1+λ2

(1 + kpqS̄qq)
1+λ3

(2.22)

attached to the products S̄
λ1
ppS̄

λ2
qq S̄

λ3
pq in definition (2.7). Unlike II, where the constituents IIpq

have constant coefficients, not only is the coefficient in (2.22) a rational functions in S̄pp , S̄pq ,
S̄qq , but it also involves the intractable random quantity kpq = kpq(S̄pp, S̄pq, S̄qq) ∈ (0,1). As
such, there is no straightforward way of applying Isserlis’s theorem (Theorem A.2) to compute
the moment E[III2] like we did for E[(II − (m − 1)m(2n)−1)2] in Section 4. In fact, even with
the help of mathematica, it still took us substantial effort to get our bound in Lemma 2.4 as
seen later. At this moment, we cannot think of other ways to control term III.

3. The Berry Esseen bound for I

We will prove Lemma 2.3 in this section. For our presentation, given a finite set D and |D| duples
(pd, qd) ∈ [m] × [m] indexed by a subscript d that ranges over D, we define the central moment
quantities

M(pd ,qd )
d∈D

:= E

[∏
d∈D

(Xpd
Xqd

− ρpdqd
)

]
.

Recall that I is defined as
∑

p<q Ipq , where each Ipq is given in (2.9). We first observe that I

has a natural martingale structure: For each i = 1, . . . , n, let Fi be the sigma-algebra generated
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by {Xpj : 1 ≤ p ≤ m;1 ≤ j ≤ i} and F0 be the trivial sigma algebra, and define

Yi := 2

n2

∑
p<q

∑
j<i

(XpiXqi − ρpq)(XpjXqj − ρpq) for i = 2, . . . , n (3.1)

as well as

Y0 = Y1 := 0. (3.2)

Then I =∑n
i=0 Yi , and (Yi)

n
i=0 is a the sequence of martingale differences since

E[Yi |Fi−1] =
∑
p<q

2

n2

∑
j<i

(XpjXqj − ρpq)E[XpiXqi − ρpq ] = 0

for i ≥ 2, where E[Yi |Fi−1] = 0 is trivial for i = 0,1.
With the observations just made it is easy to see that E[I ] = 0 and

Var[I ] = E
[
I 2]=

n∑
i=2

E
[
Y 2

i

]
. (3.3)

By the i.i.d. of the samples, for each i = 2, . . . , n,

E
[
Y 2

i

]= 4

n4

∑
1≤pd<qd≤m

d=1,2

M(pd ,qd )
d∈[2]

( ∑
1≤j,j ′<i

E
[
(Xp1j

′Xq1j
′ − ρp1q1)(Xp2jXq2j − ρp2q2)

])

= 4(i − 1)

n4

∑
1≤pd<qd≤m

d=1,2

M2
(pd ,qd )
d∈[2]

,

(3.4)

where, to clarify,
∑

1≤pd<qd≤m
d=1,2

means a summation over all pairs of duples {(p1, q1), (p2, q2)}
such that 1 ≤ pd < qd ≤ m for each d = 1,2. We have the equality in (3.4) because
E[(Xp1j

′Xq1j
′ − ρp1q1)(Xp2jXq2j − ρp2q2)] equals M(pd ,qd )

d∈{1,2}
when j = j ′ and zero otherwise.

For k = 2,3,4, let

S(k) :=
∑

1≤pd<qd≤m
d=1,2

|⋃2
d=1{pd,qd }|=k

M2
(pd ,qd )
d∈[2]

(3.5)

correspond to a sum over all duples 1 ≤ pd < qd ≤ m, d = 1,2 such that as a set
⋃2

d=1{pd, qd}
has cardinality k. From (3.3) and (3.4), we can write

Var[I ] = 2n(n − 1)

n4

4∑
k=2

S(k). (3.6)
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since
∑n

i=2(i − 1) = 2−1(n2 − n). In Appendix C.1 of our supplement [15], we will show the
following estimates hold:

S(2) = 2−1m(m − 1) + O
(‖R − Im‖2

F

)
, (3.7)

S(3) = O
(
m‖R − Im‖2

F + ‖R − Im‖4
F

)
, (3.8)

S(4) = O
(‖R − Im‖4

F

)
. (3.9)

Substituting these into (3.6) results in Lemma 2.3(i). In fact, this general strategy of decomposing
a sum according to the cardinality of an index set as in (3.5) and forming separate estimates will
be employed repeatedly in the sequel.

We shall now prove the normal approximation in Lemma 2.3(ii). With a Berry–Esseen theorem
for martingale central limit theorem in Heyde and Brown [8], it suffices to verify the fourth
moment conditions

n∑
i=2

E
[
Y 4

i

]= o
(
m4/n4) 4∑

k=0

‖R − Im‖k
F (3.10)

and

E

[(
n∑

i=2

E
[
Y 2

i |Fi−1
]− Var(I )

)2]
= E

[(
n∑

i=2

E
[
Y 2

i |Fi−1
])2]

− Var(I )2

= o
(
m4/n4) 8∑

k=0

‖R − Im‖k
F .

(3.11)

Note that the equality before (3.11) holds because E[∑n
i=2 E[Y 2

i |Fi−1]] = E[∑n
i=2 Y 2

i ] =
Var(I ).

We will first show (3.10). For any 2 ≤ i ≤ n, on raising Yi to the 4th power and taking expec-
tation, by the i.i.d. of samples, we have

E
[
Y 4

i

]
= 16

n8

∑
1≤pd<qd≤m

d=1,2,3,4

{
E

[
4∏

d=1

(XpdiXqd i − ρpdqd
)

] ∑
1≤jd<i

d=1,2,3,4

E

[
4∏

d=1

(Xpdjd
Xqdjd

− ρpdqd
)

]}

= 16

n8

∑
1≤pd<qd≤m

d=1,2,3,4

{
M(pd ,qd )

d∈[4]

∑
1≤jd<i

d=1,2,3,4

E

[
4∏

d=1

(Xpdjd
Xqdjd

− ρpdqd
)

]}

= O

(
i2

n8

) ∑
1≤pd<qd≤m

d=1,2,3,4

M(pd ,qd )
d∈[4]

,

(3.12)
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where the summations
∑

1≤pd<qd≤m
d=1,2,3,4

and
∑

1≤jd<i
d=1,2,3,4

are defined similarly as the one in (3.4).

The last equality in (3.12) is explained as follows: For a fixed i and a given set of variables index
pairs {(pd, qd) : d = 1, . . . ,4}, with any choice of the sample indices j1, . . . , j4 in order for the
expectation

E

[
4∏

d=1

(Xpdjd
Xqdjd

− ρpdqd
)

]
(3.13)

to be non-zero, by independence it must be true that there exists a permutation function π ∈ S4

so that

jπ(1) = jπ(2), jπ(3) = jπ(4). (3.14)

Since the condition in (3.14) implies that |⋃4
d=1{jd}| ≤ 2, at most O

((
i−1

2

)) = O(i2) many ex-
pectations in (3.13) can be non-zero. This leads to (3.12) since the expectations in (3.13), when
they are non-zero, can be uniformly bounded regardless of the choice for {(pd, qd, jd);d =
1, . . . ,4}, owing to our assumptions at the beginning of Section 2 and Isserlis’ theorem (The-
orem A.2) on higher order normal moments. Provided that

∑n
i=2 i2 = 6−1(2n3 + 3n2 + n − 6),

with (3.12), we further write

n∑
i=2

E
[
Y 4

i

]= O
(
n−5) ∑

1≤pd<qd≤m
d=1,2,3,4

M(pd ,qd )
d∈[4]

. (3.15)

Now the last term in (3.15) can be decomposed, according to the cardinality of the set of duples⋃4
d=1{pd, qd}, as

∑
1≤pd<qd≤m

d=1,2,3,4

M(pd ,qd )
d∈[4]

=
8∑

k=5

T(k) + O
(
m4), (3.16)

where for k = 2, . . . ,8,

T(k) :=
∑

1≤pd<qd≤m
d=1,2,3,4

|⋃4
d=1{pd ,qd }|=k

M(pd ,qd )
d∈[4]

and the O(m4) term comes from the fact that there are only O(m4) many uniformly bounded
extra summands under the restriction |⋃4

k=1{pd, qd}| ≤ 4. In Appendix C.2 [15] we will show
that

T(k) = O
(
m4)‖R − Im‖k−4

F (3.17)

for each k = 5, . . . ,8. Collecting (3.15), (3.16) and (3.17), we get (3.10).



Power of Rao’s score for testing independence 253

To show (3.11) it suffices to understand the term E[(∑n
i=1 E[Y 2

i |Fi−1])2] since the form of
Var(I ) has been proven in Lemma 2.3(i). On expansion,

n∑
i=2

E
[
Y 2

i |Fi−1
]

= 4

n4

n∑
i=2

∑
1≤pd<qd≤m

d=1,2

M(pd ,qd )
d∈[2]

[ ∑
1≤j,k<i

(Xp1jXq1j − ρp1q1)(Xp2kXq2k − ρp2q2)

]
.

(3.18)

Proceeding with our calculations,

E

[(
n∑

i=2

E
[
Y 2

i |Fi−1
])2]

= 16

n8

∑
1≤pd<qd≤m

d=1,2,3,4

{
P1 ×

∑
2≤i,j≤n

∑
1≤i1,i2<i
1≤i3,i4<j

E

[
4∏

d=1

(Xpdid Xqd id − ρpdqd
)

]}
,

(3.19)

where

P1 = P1(p1, q1, . . . , p4, q4) := M(pd ,qd )
d∈{1,2}

M(pd ,qd )
d∈{3,4}

. (3.20)

By independence, we note that the expression

E

[
4∏

d=1

(Xpdid Xqd id − ρpdqd
)

]

on the right-hand side of (3.19) can be non-zero only if the four sample indices i1, . . . , i4 are
such that either

i1 = · · · = i4, (3.21)

i1 = i2, i3 = i4,
∣∣{i1, . . . , i4}∣∣= 2, (3.22)

i1 = i3, i2 = i4,
∣∣{i1, . . . , i4}∣∣= 2 (3.23)

or

i1 = i4, i2 = i3,
∣∣{i1, . . . , i4}∣∣= 2. (3.24)

For any fixed given pair 2 ≤ i, j ≤ n, by simple counting, there are, respectively, i ∧ j − 1,
(i ∧ j − 1)(i ∨ j − 2), (i ∧ j − 1)(i ∧ j − 2), (i ∧ j − 1)(i ∧ j − 2) combinations of (i1, i2, i3, i4)

that satisfy (3.21), (3.22), (3.23), (3.24) for which 1 ≤ i1, i2 < i and 1 ≤ i3, i4 < j , where a ∨b =
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max(a, b) and a ∧ b = min(a, b) . Hence,

∑
2≤i,j≤n

∑
1≤i1,i2<i
1≤i3,i4<j

E

[
4∏

d=1

(Xpdid Xqd id − ρpdqd
)

]

=M(pd ,qd )
d∈[4]

{ ∑
2≤i,j≤n

(i ∧ j − 1)

}
︸ ︷︷ ︸

=6−1(2n3−3n2+n)

+ P1

∑
2≤i,j≤n

(i ∧ j − 1)(i ∨ j − 2)

︸ ︷︷ ︸
=12−1(−2n+9n2−10n3+3n4)

+ (P2 + P3)

{ ∑
2≤i,j≤n

(i ∧ j − 1)(i ∧ j − 2)

}
︸ ︷︷ ︸

=6−1(n4−4n3+5n2−2n)

=M(pd ,qd )
d∈[4]

O
(
n3)+ P1

(
n4

4
+ O

(
n3))+ (P2 + P3)O

(
n4),

(3.25)

where

P2 = P2(p1, q1, . . . , p4, q4) := M(pd ,qd )
d∈{1,3}

M(pd ,qd )
d∈{2,4}

,

P3 = P3(p1, q1, . . . , p4, q4) := M(pd ,qd )
d∈{1,4}

M(pd ,qd )
d∈{2,3}

are the value of E[∏4
d=1(Xpdid Xqd id − ρpdqd

)] when i1, . . . , i4 satisfy the criteria (3.23) and
(3.24), respectively. Substituting (3.25) into (3.19) gives

E

[(
n∑

i=2

E
[
Y 2

i |Fi−1
])2]

= O
(
n−5) ∑

1≤pd<qd≤m
d=1,2,3,4

P1 +
(

4

n4
+ O

(
n−5)) ∑

1≤pd<qd≤m
d=1,2,3,4

P
2
1

+ O
(
n−4) ∑

1≤pd<qd≤m
d=1,2,3,4

3∑
u=2

P1Pu,

(3.26)

where the terms M(pd ,qd )
d∈[4]

in(3.25) are absorbed into the first O(n−5) term because they are

uniformly bounded regardless of the choice of p1, q1, . . . , p4, q4, again by our assumptions and
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Theorem A.2. From this it remains to show the estimates

∑
1≤pd<qd≤m

d=1,2,3,4

P1 = O
(
m4) 4∑

k=0

‖R − Im‖k
F , (3.27)

∑
1≤pd<qd≤m

d=1,2,3,4

P
2
1 = m4

4
+ O

(
m3) 8∑

k=0

‖R − Im‖k
F , (3.28)

and

∑
1≤pd<qd≤m

d=1,2,3,4

3∑
u=2

P1Pu = O
(
m3) 8∑

k=0

‖R − Im‖k
F , (3.29)

which, together with Lemma 2.3(i) and (3.26), imply (3.11). The proofs of these estimates will,
again, be deferred to Appendix C.3 [15].

4. The second moment bound for II − m(m−1)
2n

We will now prove Lemma 2.4. Recall that II :=∑
p<q IIpq , and from the definition of IIpq in

(2.10) we can equivalently write it as

IIpq = IIpq,1 + IIpq,2,

where

IIpq,1 :=
∑n

i=1(XpiXqi − ρpq)2

n2
+

∑
λ∈N3≥0:
3≤|λ|≤4

λ3=2
λ�=(1,1,2)

∂λf (1,1, ρpq)

λ! S̄λ1
ppS̄λ2

qq S̄λ3
pq (4.1)

and

IIpq,2 := ∂(1,1,2)f (1,1, ρpq)

1!1!2! S̄ppS̄qq S̄2
pq +

∑
λ∈N3≥0:
1≤|λ|≤4

λ3 �=2

∂λf (1,1, ρpq)

λ! S̄λ1
ppS̄λ2

qq S̄λ3
pq. (4.2)

We form this grouping of terms for reasons that will be explained later. As such, by defining
II1 :=∑

p<q IIpq,1 and II2 :=∑
p<q IIpq,2, one can write

II = II1 + II2.

To finish the proof of Lemma 2.4, it suffices to bound the second moments of II1 − m(m−1)
2n

and
II2, respectively in terms of ‖R − Im‖F .
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Lemma 4.1 (Bound on the second moment of II1 − m(m−1)
2n

).

E

[(
II1 − m(m − 1)

2n

)2]
� o

(
m2(1−γ )

n2

) 4∑
k=0

‖R − I‖k
F

for any 0 < γ < 1/2.

Lemma 4.2 (Bound on the second moment of II2).

E
[
(II2)

2]�
‖R − Im‖2

F + ‖R − Im‖4
F

n
+ o

(
m2(1−γ )

n2

) 2∑
k=0

‖R − I‖k
F (4.3)

for any 0 < γ < 1/2.

Using Lemmas 4.1 and 4.2, Lemma 2.4 immediately follows from i. II2 = (II1 − m(m−1)
2 )2 +

II2
2 + 2(II1 − m(m−1)

2 )II2 and ii. 2|(II1 − m(m−1)
2 )II2| ≤ (II1 − m(m−1)

2 )2 + II2
2.

For each pair p < q , the main difference between IIpq,1 and IIpq,2 is that when λ3 �= 2, all

the coefficients ∂λf (1,1,ρpq )

λ! appearing in the second term of (4.2) can be bounded by either |ρpq |
or ρ2

pq up to some multiplicative constants. This makes proving the useful bound for E[II2
2] in

terms of the norm ‖R − Im‖F amenable to the straightforward approach of squaring and taking
expectation. Thus we shall defer the proof of Lemma 4.2 to Appendix D of our supplement [15]
and address the bound in Lemma 4.1 for the rest of this section.

We will start with the fact that

E

[(
II1 − m(m − 1)

2n

)2]
≤ 2

{
Var[II1] +

(
E[II1] − m(m − 1)

2n

)2}
(4.4)

and form estimates for the terms on the right hand side. To understand the mean and variance
of II1, it is more instructive to first recognize that each term in (4.1) can be written as a U-
statistic of degree 4. For instance, for any four distinct indices 1 ≤ i, j, k, l ≤ n, if we only treat
Xpq,i = (Xpi,Xqi)

′, . . . ,Xpq,l = (Xpl,Xql)
′ as a four tuple in R

2, the function

h1,pq(Xpq,i ,Xpq,j ,Xpq,k,Xpq,l) :=
(
n
4

)
n2
(
n−1

3

) ∑
i′∈{i,j,k,l}

{
(Xpi′Xqi′ − ρpq)2}, (4.5)

is symmetric in its four arguments, and the first term in (4.1) can be written as the U-statistic

n−2
n∑

i=1

(XpiXqi − ρpq)2 =
(

n

4

)−1 ∑
h1,pq(Xpq,i ,Xpq,j ,Xpq,k,Xpq,l), (4.6)

where the summation on the right-hand side is over all distinct unordered qradruples i, j, k, l that
can be formed from [n]. We note that the factor

(
n−1

3

)
appears as a denominator in (4.5) because

for each i ∈ {1, . . . , n}, the summand (XpiXqi − ρpq)2 will appear only once on the left-hand
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side of (4.6), while by the definition of h1,pq it will appear in
(
n−1

3

)
kernels that are summed

over on the right-hand side of (4.6) (Since for each i, there will be
(
n−1

3

)
choices of j, k, l to

form a quadruple (i, j, k, l) from {1, . . . , n}). Thus, the factor
(
n−1

3

)
appears as a denominator in

definition (4.5) to account for the multiple counting.

Note that the other terms of the form ∂λf (1,1,ρpq )

λ! S̄
λ1
ppS̄

λ2
qq S̄

λ3
pq in (4.1) are indexed by λ equal to

(1,0,2), (0,1,2), (2,0,2), (0,2,2). These terms can be represented as U-statistics of degree 4
using a similar strategy: With four distinct indices i, j, k, l from [n], by defining the symmetric
kernel function

h2,pq(Xpq,i ,Xpq,j ,Xpq,k,Xpq,l)

:=
(

n

4

)
n−3(
n−3

1

)︸ ︷︷ ︸
O(1)

×
∑

{i′,j ′,k′}
⊂{i,j,k,l}

i′,j ′,k′ distinct
and unordered

∑
π∈S3

{(
X2

pπ(i′) − 1
)
(Xpπ(j ′)Xqπ(j ′) − ρpq)(Xpπ(k′)Xqπ(k′) − ρpq)

}

+
(

n

4

)
n−3(
n−2

2

)︸ ︷︷ ︸
O(n−1)

∑
{i′,j ′}

⊂{i,j,k,l}
i′,j ′distinct

and unordered

∑
π∈S2

{(
X2

pπ(i′) − 1
)
(Xpπ(j ′)Xqπ(j ′) − ρpq)2

+ 2
(
X2

pπ(i′) − 1
)
(Xpπ(i′)Xqπ(i′) − ρpq)(Xpπ(j ′)Xqπ(j ′) − ρpq)

}
+
(

n

4

)
n−3(
n−1

3

)︸ ︷︷ ︸
O(n−2)

∑
i′∈{i,j,k,l}

{(
X2

pi′ − 1
)
(Xpi′Xqi′ − ρpq)2},

(4.7)

for λ = (1,0,2), where above we interpret π as permutation functions on distinct elements, we
have the U-statistic representation of degree 4

∂(1,0,2)f (1,1, ρpq)

(1,0,2)! S̄ppS̄2
pq

= −n−3
n∑

ĩ,j̃ ,k̃=1

(
X2

pĩ
− 1

)
(X

pj̃
X

qj̃
− ρpq)(X

pk̃
X

qk̃
− ρpq)

= −
(

n

4

)−1 ∑
unordered
& distinct

i,j,k,l
from [n]

h2,pq(Xpq,i ,Xpq,j ,Xpq,k,Xpq,l).

(4.8)
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Note that (4.8) simply comes from Lemma A.1. What we have done here is that, for each term
(X2

pĩ
− 1)(X

pj̃
X

qj̃
− ρpq)(X

pk̃
X

qk̃
− ρpq) in (4.8) with ĩ, j̃ , k̃ not necessarily distinct, we find

any 4 distinct indices i, j, k, l that contain ĩ, j̃ , k̃ as sets, and arrange the term into one of the three
summands of order O(1), O(n−1) and O(n−2) in (4.7) according to the actual set cardinality

|{ĩ, j̃ , k̃}|, which can be equal to 1, 2 or 3. Since there are
(n−|{ĩ,j̃ ,k̃}|

4−|{ĩ,j̃ ,k̃}|
)

choices of distinct i, j, k, l

that contain {ĩ, j̃ , k̃} as sets, to account for the duplications we put the factors
(
n−3

1

)
,
(
n−2

2

)
,(

n−1
3

)
as denominators for the three summands in the definition (4.7) of the kernel. By a simple

symmetry argument if we define the kernel

h̄2,pq(Xpq,i ,Xpq,j ,Xpq,k,Xpq,l) := h2,pq(X̄pq,i , X̄pq,j , X̄pq,k, X̄pq,l), (4.9)

where X̄pq,i := (Xqi,Xpi)
′, we have

∂(0,1,2)f (1,1, ρpq)

(0,1,2)! S̄qq S̄2
pq

= −
(

n

4

)−1 ∑
unordered
& distinct

i,j,k,l
from [n]

h̄2,pq(Xpq,i ,Xpq,j ,Xpq,k,Xpq,l).

In the same vein, for λ equals (2,0,2) or (0,2,2) and four distinct indices i, j, k, l from [n], we
leave it to the reader to check that one can define a symmetric kernel h3,pq of degree 4 as shown
in Appendix D [15] such that

∂(2,0,2)f (1,1, ρpq)

(2,0,2)! S̄2
ppS̄2

pq =
(

n

4

)−1

h3,pq(Xpq,i ,Xpq,j ,Xpq,k,Xpq,l)

and

∂(0,2,2)f (1,1, ρpq)

(0,2,2)! S̄2
qq S̄2

pq =
(

n

4

)−1

h̄3,pq(Xpq,i ,Xpq,j ,Xpq,k,Xpq,l),

where

h̄3,pq(Xpq,i ,Xpq,j ,Xpq,k,Xpq,l) := h3,pq(X̄pq,i , X̄pq,j , X̄pq,k, X̄pq,l). (4.10)

Letting Xi = (X1i , . . . ,Xmi)
′ denote the entire i-th sample, we have the degree-4 U-statistic

representation for II1:

II1 =
(

n

4

)−1 ∑
1≤i<j<k<l≤n

h(Xi ,Xj ,Xk,Xl), (4.11)
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where

h(Xi ,Xj ,Xk,Xl)

:=
∑

1≤p<q≤m

(h1,pq − h2,pq − h̄2,pq + h3,pq + h̄3,pq)(Xpq,i ,Xpq,j ,Xpq,k,Xpq,l).
(4.12)

Hence,

E[II1]
=

∑
1≤p<q≤m

E
[
(h1,pq − h2,pq − h̄2,pq + h3,pq + h̄3,pq)(Xpq,1,Xpq,2,Xpq,3,Xpq,4)

]
.

The expectation for each of h1,pq(·), h2,pq(·), h3,pq(·) in the preceding display can be computed
by taking expectation for each of the product terms appearing in {·} in definitions (4.5), (4.7) as
well as the counterparts in the definition of h3,pq in Appendix D [15] (Note that quite a few of
these expectations are simply zero due to independence of samples). Exploiting symmetry the
same can be done for (4.9) and (4.10). In principle, these higher-order normal moments can all
be obtained by repeatedly applying Isserlis’s theorem (Theorem A.2) laboriously. With symbolic
computational softwares such as mathematica they can however be much more effortlessly
computed. These computations lead to

E[II1] =
∑

1≤p<q≤m

16 + n2 + (80 + 8n + n2)ρ2
pq

n3

= m(m − 1)

2n
+ O

(
n−1)‖R − Im‖2

F + O
(
m2/n3)

(4.13)

and further details are given in Appendix D [15]. As a direct consequence of Hoeffding’s [9]
classical result on the variance of U-statistics, we also have the bound

Var[II1] �
4∑

c=1

n−cζc, (4.14)

where

ζc := E
[
gc(X1, . . . ,Xc)

2]
and the functions gc : (Rm)c −→R, c = 1, . . . ,4, are defined as

gc(x1, . . . , xc) := E
[
h(X1, . . . ,X4)|X1 = x1, . . . ,Xc = xc

]−E
[
h(X1, . . . ,X4)

]
. (4.15)

Hence, forming estimates of the quantities ζ1, . . . , ζ4 can lead to an estimate of Var[II1].
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Lemma 4.3 (Bound for the ζc’s).

ζ1 �
‖R − Im‖4

F + m2(1 + ‖R − Im‖2
F )

n2
+ m4

n4
, (4.16)

ζ2 � m3(1 + ‖R − Im‖F )

n2
+ m4

n4
, (4.17)

ζ3 � ‖R − Im‖4
F + m2(1 + ‖R − Im‖2

F

)
,+m4

n2
(4.18)

ζ4 � m3(‖R − Im‖F + 1
)+ m4

n2
. (4.19)

Again, proving these estimates involves repeatedly applying Theorem A.2 with the help of
mathematica and the details will be deferred to Appendix D [15]. We note that these estimates
are by no means sharp, but suffice for our purpose. Putting Lemma 4.3 and (4.14) together, it is
a routine task to check that

Var[II1] � o

(
m2(1−γ )

n2

) 4∑
k=0

‖R − I‖k
F

for any 0 < γ < 1/2. This, together with (4.4) and (4.13), proved Lemma 4.1.

5. Conclusion

In this paper, we studied the exact power of the Rao’s score statistic for testing independence,
under the asymptotic regime where both the dimension m and sample size n grow to infinity
when the ratio m/n is bounded. A consequence of our main result is that the Rao’s score test is
minimax rate optimal under this regime, with respect to a signal size ‖R − Im‖F of order

√
m/n.

While previous related work [5] on the null theory only requires the random variables to have
finite moments, our power analysis relied on the normality assumption in different ways. Via
applications of the Isserlis’ theorem on normal moments (Theorem A.2), all the higher moment
quantities involved in the calculations for the terms I and II in Sections 3 and 4 can be controlled
in terms of ‖R − Im‖F , a second moment quantity in the original variables X1, . . . ,Xm per se.
It is thus conceivable that one can replace normality with appropriate higher moment conditions
by carefully keeping track of these calculations. The tail bound for III in Lemma 2.5 relies on
a maximal inequality applicable to sub-exponential random variables, which is true for the cen-
tered sample covariances S̄pq when they are formed with normal data (see Appendix A). When
normality cannot be assumed, we expect that one can use more general maximal inequalities such
as Chernozhukov, Chetverikov and Kato [6], Lemma 8, along with their consequential moment
conditions. A final caveat for pursuing the non-normal generality is that one should consider the
more common definition of the sample covariance in (2.4) when constructing their Pearson cor-
relations. Comparing (2.3) with (2.4), the insertion of sample means will likely complicate the
calculations to follow under our current proof strategy.
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Appendix A: Probability tail bound of III and two other
lemmas

We will first prove the tail bound for III in Lemma 2.5.

Proof. For 1 ≤ p,q ≤ m, by a standard trick [2], page 221, for any t > 0, one can show the
sub-exponential inequality

P
(|S̄pq | > t

)≤ 4 exp

( −t2

n−12(1 + ρpq)(2(1 + ρpq) + t)

)

under our assumptions at the beginning of Section 2. Then by the maximal inequality in van der
Vaart and Wellner [20], Lemma 2.2.10, and a union bound, we have for any 0 < c < 1/2,

P
(

max
1≤p,q≤m

|S̄pq | > n−c
)

� nc−1 logm + nc−1/2
√

logm. (A.1)

Note that by the definition of III,

|III| ≤ max
1≤p,q≤m

|S̄pq |5
∑

1≤p<q≤m

∑
λ:|λ|=5

|ρpq + kpqS̄pq |2−λ1

|1 + kpqS̄pp|1+λ2 |1 + kpqS̄qq |1+λ3
(A.2)

for λ = (λ1, λ2, λ3). If max1≤p,q≤m |S̄pq | ≤ n−c, for all 1 ≤ p,q ≤ m it must be true that

|ρpq + kpqS̄pq | ≤ 1 + n−c, |1 + kpqS̄pp| ≥ 1 − n−c (A.3)

since kpq ∈ (0,1) Combining (A.1), (A.2), (A.3), with probability larger than 1−C(nc−1 logm+
nc−1/2√logm)

|III| ≤ Cn−5c m(m − 1)

2

(1 + n−c)2

(1 − n−c)7 ≤ C
m2

n5c

for large m,n. �

These are two technical lemmas we mentioned in the main text.

Lemma A.1. Let f be as defined in (2.2). For any λ = (λ1, λ2, λ3) ∈ N
3
≥0

∂λf (u1, u2, u3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−1)λ1+λ2λ1!λ2! u2
3

u
1+λ1
1 u

1+λ2
2

if λ3 = 0,

2(−1)λ1+λ2λ1!λ2! u
2−λ3
3

u
1+λ1
1 u

1+λ2
2

if λ3 = 1,2,

0 if λ3 > 2.
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Theorem A.2 (Isserlis [11]). For any natural number k ≥ 1, let (Z1, . . . ,Z2k) be a mean zero
normal vector with covariance matrix R = (ρpq)1≤p,q≤2k . Then

E[Z1 · · ·Z2k] =
∑

ρp1p2 · · ·ρp2k−1p2k
,

where the summation is over all possible (2k)!
2kk! partitions of the indices 1, . . . ,2k into k pairs

(p1,p2), . . . , (p2k−1,p2k).
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