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The purpose of this paper is to introduce a new Markov chain Monte Carlo method and to express its
effectiveness by simulation and high-dimensional asymptotic theory. The key fact is that our algorithm has
a reversible proposal kernel, which is designed to have a heavy-tailed invariant probability distribution.
A high-dimensional asymptotic theory is studied for a class of heavy-tailed target probability distributions.
When the number of dimensions of the state space passes to infinity, we will show that our algorithm has a
much higher convergence rate than the pre-conditioned Crank–Nicolson (pCN) algorithm and the random-
walk Metropolis algorithm.
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1. Introduction

The Markov chain Monte Carlo method (MCMC) is a commonly used technique for evaluating
complicated integrals, particularly in the high-dimensional state space. Many new methods have
been developed over the last few decades. However, it is still very difficult to choose an MCMC
that works well for a given function and a given measure, which is called the target probability
distribution. The choice of MCMC strongly depends on the tail behavior of the target probability
distribution. In particular, it is well known that many MCMC algorithms behave poorly for heavy-
tailed target probability distributions.

In our previous work, in [10], we studied some asymptotic properties of the random-walk
Metropolis (RWM) algorithm for a class of heavy-tailed target probability distributions. The
algorithm has a very slow convergence for this class. Finding a more effective strategy is an
important unresolved problem.

A candidate of this algorithm, the pre-conditioned Crank–Nicolson algorithm (pCN), appeared
for the first time in [17]. The method is a simple modulation of a classical Gaussian RWM
algorithm, and therefore their computational costs are almost identical. The effectiveness of this
simple candidate was provided in the simulation by [3] and its theoretical effect was provided
in [1,4,21] and [8]. However, our simulation shows that it works only for a specific light-tailed
distribution and does not work well otherwise, especially for the class of heavy-tailed target
probability distributions considered in this paper. In Theorem 3.1, we will prove its regarding
convergence rate.
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In this paper, we introduce a new algorithm which is a slight modification of the original pCN
algorithm although their performance is completely different. It works well for a large class of
target probability distributions. Let us describe our new algorithm, the mixed pre-conditioned
Crank–Nicolson algorithm (MpCN). Let P(dx) = p(x)dx be the target probability distribution
on R

d . Fix ρ ∈ (0,1). Set initial value x = (x1, . . . , xd) ∈ R
d and let ‖x‖ = (

∑d
i=1 x2

i )1/2. The
algorithm goes as follows:

• Generate r ∼ Gamma(d/2,‖x‖2/2).
• Generate x∗ = ρ1/2x + (1−ρ)1/2r−1/2w where w follows the standard normal distribution.
• Accept x∗ as x with probability α(x, x∗), and otherwise, discard x∗, where

α(x, y) = min

{
1,

p(y)‖x‖−d

p(x)‖y‖−d

}
.

Here, Gamma(ν,α) is the Gamma distribution with probability density function g(x;ν,α) =
xν−1αν exp(−αx)/�(ν).

The key fact is that the proposal kernel of the proposed algorithm has the heavy-tailed invariant
probability distribution. Thus, it is reasonable that the new method works better than the pCN
algorithm for the class of heavy-tailed target probability distributions. In addition, we show by
simulation that the new method is at least as good as that of the pCN algorithm, even for the light-
tailed target probability distribution. Our method works well for a wide class of target probability
distributions.

We study its theoretical properties via high-dimensional asymptotic theory. The high-
dimensional asymptotic theory for MCMC was first appeared in [24] and further developed
in [25]. See [3] for recent results. We use this framework together with the study of consistency
of MCMC by [11].

The main technical tools are the Malliavin calculus and Stein’s techniques. The reader is re-
ferred to [20] for the former and [2] for the latter and see [19] for the connection of the two
fields. The analysis of this connection is a very active area of research, and our paper illustrates
the usefulness of the analysis even for MCMC.

The paper is organized as follows. The numerical simulations are provided in the next section.
We also illustrate the limitation of the MpCN algorithm in Section 2.3.4. In Section 3, high-
dimensional asymptotic properties will be studied. We will show that the pCN algorithm is worse
than the classical RWM algorithm for the class of heavy-tailed target probability distributions. On
the other hand, the MpCN algorithm attains a better convergence rate than the RWM algorithm.
Proofs are relegated to Section 4. In the appendix, Section A includes a short introduction to the
Malliavin calculus and Stein’s techniques. Section B provides some properties for consistency of
MCMC.

Finally, we note that, in our current study, we only describe the usefulness of our algorithm
for the class of heavy-tailed target probability distributions. However, this heavy tail assumption
is just an example of target probability distribution that is difficult to approximate by MCMC.
Our method works well for a large class of target probability distributions. These include the
Bayesian posterior distributions for ergodic/non-ergodic settings of diffusion processes, point
processes such as Hawkes process, and other i.i.d. models. Some diffusion results can be found
in [14] and [13]. (More precisely, a version of MpCN. See Section 3.4 for the detail.) The target
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probability distribution is very complicated although it is not heavy-tailed. The performance of
the Gaussian RWM algorithm was quite poor due to the complexity. However, the new method
worked well as described in Figure 1 of [14].

1.1. Notation

For a real number x, [x] is the integer part of x > 0. The Euclidean space R
d is equipped

with the norm ‖x‖ = (
∑d

i=1 x2
i )1/2 and inner product 〈x, y〉 = ∑d

i=1 xiyi for vectors x =
(x1, . . . , xd), y = (y1, . . . , yd) ∈ R

d . The d × d-identity matrix is denoted by Id . In this space,
the normal distribution with mean μ ∈ R

d and variance covariance matrix � is denoted by
Nd(μ,�), and its density is denoted by φd(x;μ,�). When d = 1, we use simpler notation
N(μ,σ 2) for the normal distribution with mean μ and variance σ 2 with its density φ(x;μ,σ 2).

For a real-valued function f : E → R, we consider the supremum norm ‖f ‖∞ =
supx∈E |f (x)|. For a signed measure ν on (E,E), we consider the total variation norm ‖ν‖TV =
supA∈E |ν(A)| = 2−1 sup‖f ‖≤1 |ν(f )| where ν(f ) = νf = ∫

E
f (x)ν(dx).

For a probability space (	,F,P), L(X) is the law of random variable X. For a random vari-
able X with an event A ∈ F , we write

E[X,A] = E[X1A].
The weak convergence of the random variable is denoted by Xn ⇒ X. When the sequence L(Xn)

(n = 1,2, . . . , ) is tight, we write Xn = OP(1), and write Xn = oP(1) if Xn ⇒ 0. Write X|Y for
the conditional distribution of X given Y .

2. The MpCN algorithm and its performance

2.1. The pCN algorithm

In this section, we describe two Metropolis–Hastings algorithms. Let P(dx) be a probability
measure on (E,E) with the probability density function p(x) with respect to a σ -finite measure
ν(dx). The Metropolis–Hastings algorithm generates a Markov chain {Xm}m with the Markov
kernel K(x,dy) on (E,E) defined by the following: Let R(x,dy) be a Markov kernel with E⊗2-
jointly measurable probability density function r(x, y) of R(x,dy) with respect to ν(dy). Set
X0 ∈ E and for m ≥ 1,⎧⎪⎨

⎪⎩
X∗

m ∼ R(Xm−1,dx),

Xm =
{

X∗
m with probability α

(
Xm−1,X

∗
m

)
,

Xm−1 with probability 1 − α
(
Xm−1,X

∗
m

)
,

where R(x,dy) is called the proposal kernel, and α(x, y) is called the acceptance ratio which is
defined by

α(x, y) = min

{
1,

p(y)r(y, x)

p(x)r(x, y)

}
.
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This acceptance probability is designed to satisfy

P(dx)R(x,dy)α(x, y) = P(dy)R(y,dx)α(y, x). (2.1)

The Markov chain is called reversible with respect to P(dx) if

P(dx)K(x,dy) = P(dy)K(y,dx).

If the acceptance ratio satisfies (2.1), then the Markov chain has reversibility. See monograph
[23] or review [29] for further details.

When E =R
d , the most popular choice is R(x,dy) = Nd(x,�) where � is a positive definite

matrix. However, this popular choice reveals the limitation in high-dimension as described in
[24]. Another approach was proposed by [17] which sometimes works better. Let Pd be a proba-
bility measure on R

d with density pd(x) with respect to the Lebesgue measure. In this paper, the
following algorithm that generate a Markov chain Xd = {Xd

m}m∈N0 is called the pre-conditioned
Crank–Nicolson (pCN) algorithm for the target probability distribution Pd if ρ ∈ (0,1) and Xd

0
is a R

d -valued random variable, and for m ≥ 1,⎧⎪⎪⎨
⎪⎪⎩

Xd∗
m = √

ρXd
m−1 + √

1 − ρWd
m, Wd

m ∼ Nd(0, Id),

Xd
m =

{
Xd∗

m with probability αd

(
Xd

m−1,X
d∗
m

)
,

Xd
m−1 with probability 1 − αd

(
Xd

m−1,X
d∗
m

)
,

(2.2)

where αd(x, y) = min{1,pd(y)φd(x;0, Id)/pd(x)φd(y;0, Id)}. In this case, the proposal kernel
is Rd(x,dy) = Nd(

√
ρx, (1 − ρ)Id). Then

φd(x;0, Id)dxRd(x,dy) = φd(y;0, Id)dyRd(y,dx).

Thus, the proposal kernel is reversible with respect to the standard normal distribution.
The pCN algorithm works well when the target probability distribution Pd is approximately

Gaussian distribution. However, we will see that the algorithm becomes even worse for a class
of heavy-tailed target probability distributions.

2.2. The MpCN algorithm

In this paper, we propose the following algorithm that generates a Markov chain Xd =
{Xd

m}m∈N0 : Set ρ ∈ (0,1) and set Xd
0 as a R

d -valued random variable, and for m ≥ 1, gener-
ates independent random variables Wd

m, W̃ d
m ∼ Nd(0, Id) and set

Xd∗
m = √

ρXd
m−1 + √

1 − ρ
∥∥Xd

m−1

∥∥ Wd
m

‖W̃ d
m‖ .

Then we set

Xd
m =

{
Xd∗

m with probability αd

(
Xd

m−1,X
d∗
m

)
,

Xd
m−1 with probability 1 − αd

(
Xd

m−1,X
d∗
m

)
,
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where

αd(x, y) = min
{
1,pd(y)‖x‖−d/pd(x)‖y‖−d

}
.

In this paper, this algorithm is called the mixed pre-conditioned Crank–Nicolson (MpCN) algo-
rithm for the target probability distribution Pd .

Since d1/2Wd
m/‖W̃ d

m‖ follows the t -distribution with d-degrees of freedom in R
d (see (3.3)),

the proposal kernel Rd(x,dy) of the MpCN algorithm is expressed by

Rd(x,dy) = rd(x, y)dy := c

(
1√

1 − ρ‖x‖d−1/2

)d[
1 + 1

d

∥∥∥∥ y − √
ρx√

1 − ρ‖x‖d−1/2

∥∥∥∥
2]−d

dy,

where c = �(d)/�(d/2)dd/2πd/2 is the normalizing constant. Then, by taking a σ -finite mea-
sure P d(dx) = pd(x)dx := ‖x‖−d dx, we have

P d(dx)Rd(x,dy) = c(1 − ρ)d/2dd/2[‖x‖2 + ‖y‖2 − 2
√

ρ〈x, y〉]−d dx dy = P d(dy)Rd(y,dx).

Thus, the proposal kernel is P d -reversible. The expression of the acceptance probability of the
MpCN algorithm comes from this property, since

rd(y, x)

rd(x, y)
= pd(x)

pd(y)
= ‖x‖−d

‖y‖−d
.

Since P d has a heavier tail than those of Gaussian distributions, we expect that this new method
works well even for heavy-tailed target probability distributions. We will now check the perfor-
mance of simulation.

2.3. Numerical results

We consider two kinds of numerical experiments.
Efficiency of MpCN algorithm: In Sections 2.3.1–2.3.3, we illustrate efficiency of the MpCN

algorithm. We run M = 108 iterations (no burn-in) for each of the following algorithms:

1. The RWM algorithm with Gaussian proposal distribution. More precisely, the update x∗
from the current value x is generated by x∗ = x +σdε where ε follows the standard normal
distribution and σ 2

d = 1/d in this simulation.
2. The RWM algorithm with the t -distribution as the proposal distribution (two degrees of

freedom). More precisely, x∗ = x +σdε where ε follows the t -distribution with two degrees
of freedom and σ 2

d = 1/d in this simulation.
3. The pCN algorithm for ρ = 0.8.
4. The MpCN algorithm for ρ = 0.8.

The target probability distributions are the following.

(a) The standard normal distribution.
(b) The t -distribution (two degrees of freedom).
(c) A perturbation of the t -distribution.
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Figure 1. The RWM algorithm with Gaussian proposal distribution for Pd = Nd(0, Id ) for d = 2.

For each target probability distribution and each algorithm, we generate a single Markov chain
{Xd

m}m with initial value Xd
0 ∼ Nd(0, Id) and plot four figures as in Figure 1.

This example is just for an illustration. The target probability distribution is the two dimen-
sional standard normal distribution and the MCMC is the RWM algorithm with Gaussian pro-
posal distribution. These four plots are

(i) Trajectory of the normalized distance from the origin. When the target probability dis-
tribution is the standard normal distribution, we plot {(2d)−1/2(‖Xd

m‖2 − d)}m and for
other cases, we plot {‖Xd

m‖2/d}m (upper left).
(ii) The autocorrelation plot of the above (bottom left).

(iii) Trajectory {Xd
m,1}m where Xd

m = (Xd
m,1, . . . ,X

d
m,d) (upper right).

(iv) The autocorrelation plot of the above (bottom right).

The simulation results are illustrated in Sections 2.3.1–2.3.3.
Shift perturbation effect: We also illustrate the limitation of our algorithm and how to avoid

it in Section 2.3.4. The target probability distribution is Pd(ξ1 − dx) where 1 = (1, . . . ,1) ∈ R
d

and

ξ = 0,1,2,3, or 4

and Pd is

(a) the standard normal distribution, or
(b) the t -distribution (two degrees of freedom).

We plot

(ii) the autocorrelation plot of {(2d)−1/2(‖Xd
m − ξ1‖2 − d)}m for the standard normal distri-

bution, and plot that of {‖Xd
m − ξ1‖2/d}m for the t -distribution for ξ ∈ {0,1,2,3,4}.
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Although we can not apply our theoretical results to this non-spherically symmetric target prob-
ability distribution, it is a good example to illustrate the limitation of our algorithm. The perfor-
mance of MCMC for the shift ξ1 will illustrate shift sensitivity of the MCMC algorithms. The
RWM algorithms are, essentially, free from the shift. However, the pCN and MpCN are sensitive
to this effect. Fortunately, this effect can be avoided by a simple estimate of the center of the tar-
get probability distribution. We will show the results with and without this estimation. Therefore,
in practice, sometimes the performance can be improved by using the estimates of the center and
the covariance structure.

Since RWM algorithm is free from this effect, we only consider the pCN and MpCN algo-
rithms. We can compare the results in this section to that of the RWM algorithms in Sections 2.3.1
and 2.3.2.

2.3.1. The standard normal distribution in R
20

Set Pd = Nd(0, Id) for d = 20. For this case, the convergence rate for the RWM algorithm is d .
On the other hand, the pCN and MpCN algorithms attain consistency, and so these algorithms
are better than the RWM algorithm (see Section 3.4). The simulation shows that the performance
of the RWM algorithm for the Gaussian proposal and the t -distribution proposal are similar
(Figures 2 and 3), and that for the pCN and MpCN algorithms are also similar (Figures 4 and 5)
and are much better than the former two algorithms.

We also observed the effective sample size (ESS; [6]. See also 12.3.5 of [23]) by using coda
package ([22]) in R. The results in Table 1 are calculated from 5000 samples after 5000 burn-in
samples for 50 parallel runs and calculated the average over d coordinates. The value of the ESS
was multiplied by a factor of 100 to reflect the percentage of the total MCMC iterations that can
be considered as independent draws from the posterior. We choose the tuning parameter of the
RWM algorithm so that the acceptance probability is around 25%. The results are not surprising;
as in autocorrelation plot, the pCN and MpCN algorithms work better than the RWM algorithm.

Figure 2. The RWM algorithm with Gaussian proposal distribution for Pd = Nd(0, Id ) for d = 20.
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Figure 3. The RWM algorithm with t-distribution as the proposal distribution for Pd = Nd(0, Id ) for
d = 20.

2.3.2. Pd is the t -distribution with two degrees of freedom in R
20

Set Pd as the t -distribution with ν = 2 degrees of freedom with the scale parameter σ = 5 and
shift μ = 0 for d = 20. Recall that the probability distribution function is given by

pd(x) = �((ν + d)/2)

�(ν/2)νd/2πd/2σd(1 + ‖(x − μ)/σ‖2/ν)(ν+d)/2
. (2.3)

For this case, the convergence rate for the RWM algorithm is d2. The pCN algorithm is much
worse than the rate, and the MpCN algorithm attains much better rate d (Theorems 3.1 and 3.2).

Figure 4. The pCN algorithm for Pd = Nd(0, Id ) for d = 20.
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Figure 5. The MpCN algorithm for Pd = Nd(0, Id ) for d = 20.

In the simulation, the MpCN algorithm is much better than other algorithms which correspond
to the theoretical result (Figures 6–9).

As in Table 2, the estimated value of the ESS also reveals the limitation of the pCN, and
efficiency of the MpCN. The estimated ESS for the MpCN algorithm is better than that of the
RWM algorithm as in autocorrelation plots. However, we remark that for this high-dimension
heavy tail case, the estimate of the ESS may not be reliable.

2.3.3. A perturbation of the t -distribution

We show the performance of the MpCN algorithm when the target probability distribution is
not spherically symmetric. Let P20 be a probability measure in R

20 with the probability density
function

p20(x1, x2, . . . , x20) ∝
(

1 +
20∑
i=1

(
xi − 1

5

)2

+ |x1| + sin(x2)/2

)−(4+20)/2

.

Table 1. Effective sample size for Pd = Nd(0, Id ) for d = 20

Method Effective sample size Acceptance probability

RWM 0.828 0.226
RWM t-distribution 0.594 0.254
pCN 2.770 0.980
MpCN 2.375 0.801
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Figure 6. The RWM algorithm with Gaussian proposal distribution when t-distribution is the target prob-
ability distribution.

The distribution is not scaled mixture, and so we can not say anything for the convergence rate
for this case. However, by simulation, we observe that the MpCN algorithm is much better than
other algorithms (Figures 10–13).

Again, we calculated the ESS in Table 3. We can still observe the gap between the MpCN and
other algorithms though it is smaller than that of the t -distribution case.

2.3.4. Shift-perturbation of spherically symmetric target probability distributions

Let Pd = Nd(ξ1, Id), where ξ = 0,1,2,3,4 for d = 20 and consider the pCN and MpCN algo-
rithms. Compare the results of the RWM algorithms in Section 2.3.1 (bottom left figures of Fig-

Figure 7. The RWM algorithm with t-distribution as the proposal distribution and the target probability
distribution is also the t-distribution.
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Figure 8. The pCN algorithm when t-distribution is the target probability distribution.

Figure 9. The MpCN algorithm when t-distribution is the target probability distribution.

Table 2. Effective sample size for t-distribution

Method Effective sample size Acceptance probability

RWM 0.385 0.194
RWM t-distribution 0.498 0.259
pCN 0.052 0.053
MpCN 3.300 0.941
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Figure 10. The RWM algorithm with Gaussian proposal distribution when the perturbed t-distribution is
the target probability distribution.

ures 2 and 3). Figure 14 illustrates that although the performances of pCN and MpCN algorithms
are much better than the RWM algorithms when ξ = 0, it is sensitive to the value of ξ . Therefore
for the light-tail target probability distribution in high-dimension, when the high-probability re-
gion is far from the origin, it is important to shift the target probability distribution in advance.
For example, first, calculate rough estimate ξ̂ of the center of the target probability distribution
Pd(dx), and then run the MCMC algorithm for Pd(−ξ̂ + dx). Tempering strategies might be
useful for the rough estimate of the center of the target probability distribution as in [14].

Next figure (Figure 15) is a result of the pCN and MpCN algorithm with a simple estimation of
the center of the target probability distribution. We run M = 103 iteration of the pCN or MpCN

Figure 11. The RWM algorithm with t-distribution as the proposal distribution and the target probability
distribution is the perturbed t-distribution.
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Figure 12. The pCN algorithm when the perturbed t-distribution is the target probability distribution.

Figure 13. The MpCN algorithm when the perturbed t-distribution is the target probability distribution.

Table 3. Effective sample size for the perturbed t-distribution

Method Effective sample size Acceptance probability

RWM 0.549 0.226
RWM t-distribution 0.484 0.195
pCN 0.129 0.088
MpCN 1.863 0.418
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Figure 14. Autocorrelation plots for the pCN and MpCN algorithms for shifted normal distributions.

algorithm to calculate

ξ̂ = M−1
M−1∑
m=0

Xd
m (2.4)

and then run M = 108 iteration of the pCN or MpCN algorithm for the target probability distri-
bution Pd(−ξ̂ + dx). The effect of the shift is considerably weakened.

We consider the t -distribution (2.3) with ν = 2 and σ = 5 and μ = ξ1 where ξ = 0,1,2,3,4
for d = 20. Compare it to the results in Section 2.3.2 for the RWM algorithms (bottom left figures
of Figures 6 and 7). Compared to the light-tailed distribution, the effect of the shift is small for
the MpCN algorithm, and the five autocorrelation plots are overlapped in Figure 16.

The next figure (Figure 17), which is almost identical to the previous one, is a result of M =
108 iteration of the pCN and MpCN algorithm with a simple estimation of the target probability
distribution (2.4) by M = 103 iteration. Thus for heavy-tailed target probability distribution, the
effect of shift perturbation is small, and the gain of the estimation of the center is also small.

3. High-dimensional asymptotic theory

We consider a sequence of the target probability distributions {Pd}d∈N indexed by the number
of dimension d . For a given d , Pd is a d-dimensional probability distribution that is a scale

Figure 15. Autocorrelation plots for the pCN and MpCN algorithms for shifted normal distributions with
an initial estimate of the center of the target probability distribution.
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Figure 16. Autocorrelation plots for the pCN and MpCN algorithms for shifted t-distributions.

mixture of the normal distribution. Furthermore, our asymptotic setting is that the number of
dimension d goes to infinity while the mixing distribution Q of Pd is unchanged. Note that
in our results, stationarity and reversibility of the Markov chains generated by Markov chain
Monte Carlo algorithms are essential. However, this can be weakened as explained in Lemma 4
of [11].

3.1. Consistency

In this section, we generalize the consistency of MCMC studied in [11]. For each d ∈ N, suppose
that Markov chain Monte Carlo method Md generates a Markov chain {Xd

m;m ∈ N0} with the
invariant probability distribution Pd . The consistency defined in [11] is the property such that
the integral Pd(f ) = ∫

f (x)Pd(dx) we want to calculate is approximated by a Monte Carlo sim-
ulated value 1

M

∑M−1
m=0 f (Xd

m) after a reasonable number of iterations M . For example, regular
Gibbs sampler should satisfy this type of property (more precisely, local consistency, see [11])
when d is the sample size of the data.

In the current context, the state space for Xd = {Xd
m;m ∈ N0} (d ∈ N) changes as d → ∞

that is inconvenient for further analysis. As in [24] and [10], to overcome the difficulty, we set a
projection πd,k (k ≤ d) to a finite subset by

πd,k(x) = (xi)i=1,...,k

(
x = (xi)i=1,...,d

)
.

Figure 17. Autocorrelation plots for the pCN and MpCN algorithms for shifted t-distributions with an
initial estimate of the center of the probability measure.
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Other possibility to overcome this difficulty is to embed R
d into R

N under suitable metric as
in [1]. We do not follow this approach since it is not obvious how to embed our new algorithm
into R

N, and also, we want to avoid further technical difficulties to deal with infinite dimensional
convergence of Markov processes.

Definition 3.1 (Consistency for non-fixed dimensional case). A family Md (d ∈ N) is called
consistent if for any k ∈N, Md → ∞ and for any bounded continuous function f :Rk →R,

1

Md

Md−1∑
m=0

f ◦ πd,k

(
Xd

m

) − Pd(f ◦ πd,k) = oP(1)(d → ∞). (3.1)

It is not hard to show that the pCN and MpCN algorithms are consistent for a class of light-
tailed target probability distributions. However, when Pd is a heavy-tailed distribution, these
methods do not have consistency, but weak consistency defined by the following.

Definition 3.2 (Weak Consistency). A family Md (d ∈ N) is called weakly consistent with
rate Td if (3.1) is satisfied for any Md → ∞ such that Md/Td → ∞. We will call the rate Td ,
the convergence rate. If Td/dk → 0 for some k ∈ N, we call that it has a polynomial rate of
convergence.

The rate Td corresponds to the number of iterations until good convergence. Therefore the
smaller, the better. Note that if the family Md is consistent, then the convergence rate is Td = 1.

Example 3.1. Let Md be the RWM algorithm with target probability distribution Pd =
Nd(0, Id) and the proposal distribution Nd(x,σ 2/d) for σ > 0. We assume stationarity, that
is, Xd

0 ∼ Pd for the Markov chain {Xd
m}m generated by Md . Then as in Theorem 1.1 of [24], for

any k ∈ N, Yd
t := πd,k(X

d[dt]) converges weakly to a k-dimensional Ornstein–Uhlenbeck process.

Then Md is weakly consistent and the rate is d by Lemma B.3.

When the target probability distribution is heavy-tailed, the performance of MCMC algorithms
is quite different from that for the light-tailed case. In [10], we showed that the convergence rate
for the RWM algorithm is d2 for heavy-tailed target probability distribution. We will show that
this rate becomes d for the MpCN algorithm.

3.2. Assumption for the target probability distribution

In this subsection, we describe the class of target probability distributions considered in this
paper. We want to study the property of the MpCN algorithm for this class. The analysis becomes
much more complicated than that for the light-tailed target probability distribution. To avoid
technical difficulties, we want to set the class as minimal as possible. More precisely, we only
consider scale mixtures of the normal distribution. The class is not so rich, but it is sufficient for
our purpose since it includes many important heavy-tailed target probability distributions such
as the t -distribution and the stable distribution.
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Let Q(dσ 2) be a probability measure on (0,∞). Let Pd be a scale mixture of the normal
distribution defined by

Pd = L
(
Xd

0

)
, Qd = L

(∥∥Xd
0

∥∥2
/d

)
, (3.2)

where Xd
0 |σ 2 ∼ Nd(0, σ 2Id) and σ 2 ∼ Q. Note that Qd → Q as d → ∞ since ‖Xd

0 ‖2/d → σ 2

a.s. In this setup, Pd and Qd have probability density functions pd and qd that satisfy

pd(x) ∝ ‖x‖2−dqd

(‖x‖2

d

)
.

Assumption 3.1. Probability distribution Q has the strictly positive continuously differentiable
probability density function q(y). Each q(y) and q ′(y) vanishes at +0 and +∞.

Example 3.2 (Student t -distribution). The probability distribution function of the t -distribution
with ν > 0 degree of freedom is

pd(x) = �((ν + d)/2)

�(ν/2)νd/2πd/2(1 + ‖x‖2/ν)(ν+d)/2
. (3.3)

In this case, Q is the inverse chi-squared distribution with ν-degree of freedom with probability
distribution function q(y) ∝ y−ν/2−1e−ν/(2y). It is straightforward to check that q(y) and q ′(y)

vanishes at +0 and +∞. For properties of the (multivariate) t -distribution, see [16].

Example 3.3 (Stable distribution). Let α ∈ (0,2). If Pd is the rotationally symmetric α-stable
distribution with characteristic function

∫
exp(i〈t, x〉)Pd(dx) = exp(−‖t2/2‖−α/2), then Q is

α/2-stable distribution on the half line with Laplace transform
∫

exp(−ty)Q(dy) = exp(−tα/2)

for t > 0. Although there is no closed form of probability density function q(x), all derivatives
of q(x) are continuous and vanishes at 0 and ∞. See Section 14 of [26].

For this class of target probability distributions, the acceptance ratio of the MpCN algorithm
can be written in the following form:

αd(x, y) = min

{
1,

pd(y)‖x‖−d

pd(y)‖y‖−d

}
= min

{
1,

q̃d(rd(y))

q̃d(rd(x))

}
, (3.4)

where

q̃(r) = 2e2rq
(
e2r

)
, q̃d(r) = 2e2rqd

(
e2r

)
, rd(x) = 1

2
log

(‖x‖2/d
)
.

We write Q̃ and Q̃d for probability measure with densities q̃ and q̃d . Note that if y ∼ Q(dy) and
yd ∼ Qd(dyd), then (logy)/2 ∼ Q̃ and (logyd)/2 ∼ Q̃d . In particular, Q̃d → Q̃.
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3.3. Main results

We describe the main results in this paper. The proofs will be given in Section 4. Set ρ ∈ (0,1).
We assume that Q is a probability measure on (0,∞) and for each d ∈ N, Pd is the scale mixture
of the normal distribution defined in (3.2) with the mixing measure Q. We also assume station-
arity of the process, that is, Xd

0 ∼ Pd . The pCN algorithm does not work well for the class of
target probability distribution.

Theorem 3.1. The pCN algorithm does not have a polynomial rate of convergence if Assump-
tion 3.1 is satisfied.

On the other hand, the MpCN algorithm still has a good convergence property for this class.
Recall that the convergence rate for the RWM algorithm is d2 as studied in [10]. Let η = η(ρ) =√

1 − ρ/2.

Proposition 3.1. Let Q satisfy Assumption 3.1. Let Xd be a stationary Markov chain generated
by the MpCN algorithm and let Yd

t = rd(Xd[dt]). Then Yd = (Y d
t )t converges to the stationary

ergodic process Y = (Yt )t (in Skorohod’s topology) that is the solution of

dYt = a(Yt )dt + √
b(Yt )dWt ; Y0 ∼ Q̃, (3.5)

where {Wt }t is the standard Brownian motion and

a(y) = η

2
(log q̃)′(y), b(y) = η2.

Theorem 3.2. Let Q satisfy Assumption 3.1. Then the MpCN algorithm has the convergence
rate d .

3.4. Discussion

In this article, we proposed the MpCN algorithm and provide high-dimensional asymptotic re-
sults. The proposal kernel Rd(x,dy) used in MpCN is P̃d -reversible where P̃d(dx) = ‖x‖−d dx,
and so this is a special case of MCMC that uses reversible proposal kernel. The relation to the tar-
get probability distribution Pd and P d is quite important. If P d has a heavier-tail than that of Pd ,
then MCMC behaves relatively well. On the other hand, if P d has a lighter-tail, it becomes quite
poor. The RWM algorithm has P d = Lebesgue measure. This is a robust choice in the sense that
supx∈Rd dPd/dP d is bounded for large class of target probability distributions, but it loses effi-
ciency to pay the price as described in [10]. On the other hand, the pCN algorithm, which has
P d = Nd(0, Id), does not work well except some specific cases. The proposed algorithm, MpCN
is in the middle of these algorithms. It is robust and works well.

It is possible to consider a more general class of the MpCN algorithm: Let Q be any σ -finite
measure on (0,∞) and set P d(dx) = pd(x)dx where pd(x) := ∫ ∞

z=0 φd(x;0, zId)Q(dz). For
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m ≥ 1, set

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zd
m ∼ φd

(
Xd

m−1;0, zId

)
Q(dz)/pd

(
Xd

m−1

)
,

Xd∗
m = √

ρXd
m−1 +

√
(1 − ρ)Zd

mWd
m, Wd

m ∼ Nd(0, Id),

Xd
m =

{
Xd∗

m with probability αd

(
Xd

m−1,X
d∗
m

)
,

Xd
m−1 with probability 1 − αd

(
Xd

m−1,X
d∗
m

)
,

where αd(x, y) = min{1,pd(y)pd(x)/pd(x)pd(y)} assuming that pd(x) < ∞ for any x ∈ R
d .

For example, in [14], they set Q(dz) ∝ z−ν/2−1e−ν/(2z). See also [7]. The MpCN algorithm
studied in this paper corresponds to Q(dz) = z−1 dz.

In this article, we did not mention ergodic properties. Ergodicity is also studied for this algo-
rithm. It is geometrically ergodic for broader class of target probability distributions than that of
the RWM algorithm. In particular, the MpCN algorithm can be geometrically ergodic even for a
class of heavy-tailed target probability distributions. See [12].

Also, we did not prove asymptotic properties for a class of light-tailed target probability dis-
tributions, such as Pd = Nd(0, σ 2Id) for σ 2 > 0. The MpCN algorithm has consistency in this
class, but the pCN algorithm has consistency only if σ 2 = 1. The proof is not difficult but bit
complicated which uses different techniques from that used in this paper. Therefore we omit the
proof in this paper to focus on the heavy tail case.

Finally, we want to remark that the class of target probability distributions that we consider is
fairly restrictive. The extension of the class is not simple and probably requires new techniques.
However, as illustrated in the simulation, we believe that by using our restrictive class, we have
successfully described the actual behavior of the MCMC algorithms. In practice, as discussed
in Section 2.3.3, normalizing the target probability distribution may improves the performance.
That is, it might be better to apply the pCN and the MpCN algorithms for the target probability
distribution Pd(dx) with scaling x �→ �−1/2(x − μ), where μ and � are estimated values of the
center and the covariance (correlation structure) of Pd .

4. Proofs

Let ρ ∈ (0,1), d ∈ N and let ‖ · ‖ and 〈·, ·〉 be the usual Euclidean norm and the inner product.
For x ∈ R

d\{0} and for independent random variables Wd, W̃ d ∼ Nd(0, Id), let

Fd(x) = d1/2

2η

{
log

∥∥∥∥√
ρx + √

1 − ρ‖x‖ Wd

‖W̃ d‖
∥∥∥∥

2

− log‖x‖2
}
.

This random variable essentially determines the behavior of the asymptotic properties of the
Markov chain generated by the MpCN kernel since the law of log‖Xd∗

m ‖ − log‖Xd
m−1‖ is the

same as that of d−1/2ηFd(Xd
m−1). We first describe some properties of Fd which is useful to

analyze asymptotic properties of the MpCN algorithm and then study some properties of Qd .
The proofs of the main results will be described in Section 4.3.
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4.1. Some properties of Fd

To establish asymptotic properties of the MpCN kernel, we need to know some asymptotic be-
haviors of the random variable Fd(x). We will prove that the law of Fd is very close to N(0,1)

and so the behavior of log‖Xd∗
m ‖ − log‖Xd

m−1‖ is similar to the Gaussian random-walk. First,
we observe that Fd(x) is symmetric about the origin.

Proposition 4.1. The law of Fd(x) does not depend on the choice of x ∈ R
d\{0} and it is sym-

metric about the origin, that is, P(Fd(x) < η) = P(Fd(x) > −η) for any η ∈R.

Proof. Observe that for independent random variables Wd, W̃d ∼ Nd(0, Id),

Fd(x) = d1/2

2η
log

∥∥∥∥√
ρ

x

‖x‖ + √
1 − ρ

Wd

‖W̃ d‖
∥∥∥∥

2

= d1/2

2η
log

(
ρ + 2

√
ρ(1 − ρ)

‖Wd‖
‖W̃ d‖Ud(x) + (1 − ρ)

‖Wd‖2

‖W̃ d‖2

)
,

where

Ud(x) =
〈

x

‖x‖ ,
Wd

‖Wd‖
〉
.

In order to prove that L(Fd(x)) does not depend on x, we show that L(Ud(x)) has the property.
But it is obvious since L(Ud(x)) = L(Ud(αV x)) for any unitary matrix V and α > 0.

Next, we prove that the law of Fd is symmetric about the origin. Since the law of Fd(x) does
not depend on x, it has also the same law as that of

Fd := Fd

(
W̃ d

‖W̃ d‖
)

= d1/2

2η

(
log

∥∥√
ρW̃d + √

1 − ρWd
∥∥2 − log

∥∥W̃ d
∥∥2)

,

where we used the fact that the random variables Wd and ‖W̃ d‖ in Fd(x) are independent from
W̃ d/‖W̃ d‖. Recall that (W̃ d,

√
ρW̃d + √

1 − ρWd) is an exchangeable pair, that is,

L
(
W̃ d,

√
ρW̃d + √

1 − ρWd
) = L

(√
ρW̃d + √

1 − ρWd, W̃ d
)
.

Thus L(Fd) = L(−Fd), that is, the law of Fd is symmetric about the origin. �

By the above result, without loss of generality, we can set

Fd := d1/2

2η

(
log

∥∥√
ρW̃d + √

1 − ρWd
∥∥2 − log

∥∥W̃ d
∥∥2)

, (4.1)

for independent random variables Wd, W̃d ∼ Nd(0, Id), since the law does not change. The other
properties of Fd can be studied via the Malliavin calculus in Section A. The results are summa-
rized as follows.
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Proposition 4.2. The random variable Fd has a density with respect to the Lebesgue measure
and the following properties are satisfied.

1. supd∈NE[|Fd |4] < ∞.
2. There exists a constant C > 0 such that for any absolutely continuous function f :R→ R,∣∣E[

Fdf (Fd)
] −E

[
f ′(Fd)

]∣∣ ≤ Cd−1/2
∥∥f ′∥∥∞.

3. ‖L(Fd) − N(0,1)‖TV → 0.

4.2. Some properties of Qd

We need the following technical result for the chi-squared distribution.

Lemma 4.1. For d ∈ N, let ξd follows the chi-squared distribution with d degrees of freedom.
For k ∈ Z there exists C > 0 such that for any d ∈ N with −2k < d ,∣∣∣∣E

[(
ξd

d

)k]
− 1

∣∣∣∣ ≤ C

d
.

Moreover, for k > 2,

E

[{
d1/2

(
ξd

d
− 1

)}k]1/k

≤ (k − 1)
√

2.

Proof. The first clam follows from

E

[(
ξd

d

)k]
= 2k

dk

�(k + d/2)

�(d/2)
=

⎧⎪⎪⎨
⎪⎪⎩

(
1 + 2

d

)
· · ·

(
1 + 2

d
(k − 1)

)
if k > 0,(

1 − 2

d

)
· · ·

(
1 − 2

d
k

)
if k < 0

The second part follows from Example A.2. �

An immediate corollary from the lemma is E[(d/ξd − 1)2] = o(1) since

E

[(
d

ξd

− 1

)2]
= E

[(
d

ξd

)2

− 1

]
− 2E

[(
d

ξd

)
− 1

]
= O

(
d−1) = o(1). (4.2)

Proposition 4.3. ‖qd − q‖∞ → 0,‖q ′
d − q ′‖∞ → 0.

Proof. The probability density qd is

qd(x) =
∫ ∞

0
g

(
y; d

2
,
d

2

)
q

(
x

y

)
dy

y
,
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where g(y;ν,α) is the probability density function of the Gamma distribution defined in Intro-
duction. Therefore, in expectation form,

qd(x) = E

[
q

(
x

d

ξd

)
d

ξd

]
,

where ξd follows the chi-squared distribution with d-degrees of freedom. Then

∣∣qd(x) − q(x)
∣∣ =

∣∣∣∣E
[
q

(
x

d

ξd

)
d

ξd

]
− q(x)

∣∣∣∣
≤ ‖q‖∞E

[∣∣∣∣ d

ξd

− 1

∣∣∣∣
]

+E

[∣∣∣∣q
(

x
d

ξd

)
− q(x)

∣∣∣∣
]
.

The first term in the right-hand side is o(1) by (4.2). For the second term, by uniform continuity
of q(x) together with limx→∞ q(x) = 0, we can find δ > 0 and C > 0 for any ε > 0 such that
|x − y| ≤ δ implies |q(x) − q(y)| < ε and x ≥ C implies q(x) < ε. Then, for x ≤ 2C,

E

[∣∣∣∣q
(

x
d

ξd

)
− q(x)

∣∣∣∣
]

≤ E

[∣∣∣∣q
(

x
d

ξd

)
− q(x)

∣∣∣∣,
∣∣∣∣ d

ξd

− 1

∣∣∣∣ >
δ

2C

]

+E

[∣∣∣∣q
(

x
d

ξd

)
− q(x)

∣∣∣∣,
∣∣∣∣ d

ξd

− 1

∣∣∣∣ ≤ δ

2C

]

≤ ‖q‖∞
(

δ

2C

)−2

E

[∣∣∣∣ d

ξd

− 1

∣∣∣∣
2]

+ ε → ε (d → ∞)

and for x > 2C,

E

[∣∣∣∣q
(

x
d

ξd

)
− q(x)

∣∣∣∣
]

≤ E

[∣∣∣∣q
(

x
d

ξd

)
− q(x)

∣∣∣∣,
∣∣∣∣ d

ξd

− 1

∣∣∣∣ > 1/2

]

+E

[∣∣∣∣q
(

x
d

ξd

)
− q(x)

∣∣∣∣,
∣∣∣∣ d

ξd

− 1

∣∣∣∣ ≤ 1/2

]

≤ ‖q‖∞4E

[∣∣∣∣ d

ξd

− 1

∣∣∣∣
2]

+ ε → ε (d → ∞).

Thus ‖q∞ − q‖∞ → 0. The proof is completely the same for q ′
d . �

By this property, q̃d and q̃ ′
d converges to q̃ and q̃ ′ uniformly on any compact set.

4.3. Proof of Proposition 3.1

We prove convergence of Markov chain to the diffusion process. For this purpose, we embed

Markov chain to a continuous Markov process. Let rd(x) = 1
2 log(

‖x‖2

d
) (x ∈R

d\{0}) and write

Rd
m = rd

(
Xd

m

)
, Rd∗

m = rd
(
Xd∗

m

)
(4.3)
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Let Nd be a Poisson process which is independent of {Xd
m,Xd∗

m }m. We will assume that Nd has
the intensity dt , that is, E[Nd

t ] = dt . Set Ỹ d
t = Rd

Nd
t

. Then the process Ỹ d is a pure step Markov

process with generator

Af (y) = d−1(
E

[
f

(
Rd

1

)|Rd
0 = y

] − f (y)
)
.

See Section 4.2 of [5] for the detail. We will apply Theorem IX.4.21 of [9] to the process Ỹ d .
If Ỹ d converges to a limit, then Yd defined in Proposition 3.1 converges to the same limit by
Lemma B.1.

Proof of Proposition 3.1. For the proof, we need to show some asymptotic properties of con-
ditional distribution of Rd

1 given Rd
0 = y ∈ R. For notational simplicity, we write y for Rd

0 , and
write Py and Ey for the conditional probability and expectation given Rd

0 = y. By using this
notation, we have Rd∗

1 = y + ηd−1/2Fd regarding Wd
1 and W̃ d

1 as Wd and W̃ d . Let⎧⎪⎨
⎪⎩

ad(y) = dEy

[
Rd

1 − Rd
0

]
,

bd(y) = dEy

[(
Rd

1 − Rd
0

)2]
,

cd(y) = dEy

[(
Rd

1 − Rd
0

)4]
.

(4.4)

First, we consider estimate of ad(y). We have

ad(y) = dEy

[(
Rd∗

1 − Rd
0

)
min

{
1,

q̃d(Rd∗
1 )

q̃d(Rd
0 )

}]
= ηd1/2

Ey

[
Fd min

{
1,

q̃d (y + ηd−1/2Fd)

q̃d(y)

}]
.

Since q̃d may not be bounded, we introduce a localization function ψε : R → [0,1] which is a
C∞ function and satisfies ψε(x) = 1 if |x| ≤ ε and ψε(x) = 0 when |x| > 2ε for ε > 0. Then
ψε(d

−1/2Fd) = 1 + oP(1). Moreover,

E
[|Fd |∣∣1 − ψε

(
d−1/2Fd

)∣∣] ≤ E
[|Fd |, ∣∣d−1/2Fd

∣∣ > ε
] ≤ d−3/2

E
[|Fd |4]

/ε3 = O
(
d−3/2)

,

by Markov’s inequality. Suppose that q̃ ′(y) > 0. We can find an open bounded neighborhood O
of y such that infz∈O q̃ ′(z) > δ for some δ > 0. In addition, since q̃ ′

d converges to q̃ ′ uniformly
on a bounded set O, we have infz∈O q̃ ′

d(z) > δ/2 sufficiently large d , and so for z ∈ O,

min

{
1,

q̃d(z)

q̃d(y)

}
=

⎧⎨
⎩

1 if z > y,

q̃d(z)

q̃d(y)
if z ≤ y

= q̃d (min{z, y})
q̃d(y)

.

Choose ε so that (y − 2ε, y + 2ε) ⊂O. Then by Proposition 4.2

ad(y) = ηd1/2
Ey

[
Fd

q̃d(y + ηd−1/2 min{Fd,0})
q̃d(y)

ψε

(
d−1/2Fd

)]
+ o(1)

= η2
Ey

[
q̃ ′
d(y + ηd−1/2Fd)

q̃d(y)
ψε

(
d−1/2Fd

)
,Fd ≤ 0

]
+ o(1),
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where we note that contribution from the term which includes ψ ′
ε is o(1), and the convergence is

uniform on O. Then, since q̃d and q̃ ′
d converges to q̃ and q̃ ′ uniformly on O, and ψε(d

−1/2Fd) →
1 in probability, we have

ad(y) = η2 q̃ ′(y)

q̃(y)
Py(Fd ≤ 0) + o(1) = η2

2

q̃ ′(y)

q̃(y)
+ o(1),

where we used the fact that L(Fd) → N(0,1) in the last equation. We omit the proof of the case
q̃ ′(y) < 0 since the argument is the same.

Suppose that q̃ ′(y) = 0. Choose a bounded neighborhood O of y so that infy∈O q̃(y) > δ

for some δ > 0, and so infy∈O q̃d (y) > δ/2 sufficiently large d . For any ε > 0 we can find a
neighborhood O′ ⊂ O such that |q̃ ′(z)| ≤ εδ/4, and hence |q̃ ′

d(z)| ≤ εδ/2 for z ∈ O′ when d is
large enough. Then∣∣∣∣min

{
1,

q̃d (y + ηd−1/2Fd)

q̃d(y)

}
− 1

∣∣∣∣ ≤ supz∈O′ |q̃ ′
d(z)|

q̃d (y)
ηd−1/2|Fd | ≤ εηd−1/2|Fd |,

and hence ∣∣ad(y)
∣∣ ≤ εη2

Ey

[|Fd |2] ≤ εη2
Ey

[|Fd |4]1/2
.

Since we can choose any ε > 0, we have ad(y) → 0 locally uniformly in O. Thus, we proved
that

ad(y) → η2

2

q̃ ′(y)

q̃(y)

locally uniformly.
Next, we prove the convergence of bd and cd . Observe

bd(y) = dEy

[(
Rd

1 − Rd
0

)2] = η2
Ey

[
F 2

d min

{
1,

q̃d(y + ηd−1/2Fd)

q̃d(y)

}]
.

Then,

bd(y) = η2
Ey

[
F 2

d min

{
1,

q̃d(y + ηd−1/2Fd)

q̃d(y)

}
, |Fd | ≤ d1/4

]
+ o(1)

= η2
Ey

[
F 2

d , |Fd | ≤ d1/4] + o(1)

= η2
Ey

[
F 2

d

] + o(1) → η2 + o(1),

where we used Markov’s inequality twice, and the moment convergence E[F 2
d ] → 1 comes from

convergence in distribution with supd E[F 4
d ] < ∞. In the same way,

cd(y) = dEy

[(
Rd

1 − Rd
0

)4] ≤ η4d−1
Ey

[|Fd |4] = o(1) (d → ∞).
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Thus, we obtain the convergence of the triplet (4.4). This convergence corresponds to the con-
ditions (i) and (ii) of Theorem IX.4.21 of [9], and the condition (iii) corresponds to L(Rd

0 ) =
Q̃d → Q̃, which is obvious. In addition, the existence and uniqueness of the stochastic differen-
tial equation (3.5) can be checked for example by Proposition 5.5.22 of [15] and hence condition
IX.4.3 (i) holds, and measurability follows by Exercise 6.7.4 of [28] and hence condition IX.4.3
(ii) holds. Thus, the convergence Ỹ d ⇒ Y follows from Theorem IX.4.21 of [9]. Hence Yd con-
verges to the same limit by Lemma B.1.

Stationarity and ergodicity of Y is yet to be proved. However, stationarity comes from the fact
that each Yd are stationary, and ergodicity comes from positive recurrence by Proposition 5.5.22
of [15]. Hence, the claim follows. �

Proof of Theorem 3.2. First, we note that all proposed values of the MpCN algorithm are ac-
cepted for a finite number of iterations M ∈N in probability 1 since

P
(
Xd

m−1 = Xd
m ∃m ∈ {1, . . . ,M − 1}) ≤ MP

(
Xd

0 = Xd
1

)
= M

(
1 −E

[
min

{
1,

q̃d(Rd
0 + ηd−1/2Fd)

q̃d(Rd
0 )

}])
→ 0.

Second, for a finite number of iterations, Rd
m is almost constant, and ‖W̃ d

m‖2/d − 1 is almost 0,
that is,

P
(∣∣Rd

m−1 − Rd
m

∣∣ ≥ ε ∃m ∈ {1, . . . ,M − 1}) ≤ MP
(∣∣ηd−1/2Fd

∣∣ ≥ ε
) → 0

and

P
(∣∣∥∥W̃ d

m

∥∥2
/d − 1

∣∣ ≥ ε ∃m ∈ {1, . . . ,M}) ≤ MP
(∣∣∥∥W̃ d

1

∥∥2
/d − 1

∣∣ ≥ ε
) → 0.

Let Sd
m = πd,k(X

d
m). By above properties of Rd

m and W̃ d
m, it is not difficult to check that the

joint process {(Rd
m,Sd

m)}m converges weakly to {(Rm,Sm)}m defined by{
Rm = R0,

Sm = √
ρSm−1 + √

1 − ρ exp(R0)Wm, Wm ∼ Nk(0, Ik)

for m ≥ 1, where R0 ∼ Q̃ and S0 ∼ Nk(0, exp(2R0)Ik). By Proposition 3.1, the process Yd =
{Rd[dt]}t converges to a stationary ergodic process. Hence, the claim follows by Lemma B.3. �

4.4. Inconsistency for the pCN algorithm

Lemma 4.2. Let {Xd
m}m be the Markov chain generated by the pCN algorithm. Then, for any

ε > 0, k ∈N,

dk
P

(∣∣Rd
0

∣∣ > ε,Xd
1 �= Xd

0

) = o(1).
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Proof. We have

Rd∗
1 − Rd

0 = 1

2
log

(‖Xd∗
1 ‖2

d

)
− 1

2
log

(‖Xd
0 ‖2

d

)

= 1

2
log

(
ρ + 2

√
ρ(1 − ρ)

‖Xd
0 ‖

〈
Xd

0

‖Xd
0 ‖ ,Wd

1

〉
+ (1 − ρ)

‖Wd
1 ‖2

‖Xd
0 ‖2

)
.

Let

Ad =
〈

Xd
0

‖Xd
0 ‖ ,Wd

1

〉
, Bd = d−1/2 ‖Wd

1 ‖2 − d

2
.

Remark here that E[Ad ] = E[Bd ] = 0 and supd E[|Ad |k] < ∞ and supd E[|Bd |k] < ∞ for any
k ∈N by Ad ∼ N(0,1) and the second part of Lemma 4.1.

Suppose now that Rd
0 > ε. Then e2ε ≤ ‖Xd

0 ‖2/d and

Rd∗
1 − Rd

0 ≤ 1

2
log

(
ρ + 2

√
ρ(1 − ρ)e−ε

∣∣d−1/2Ad

∣∣ + (1 − ρ)e−2ε
(
1 + 2d−1/2Bd

))
=: 1

2
log

(
1 − ξ + d−1/2Cd

)
,

where ξ = 1 − ρ − (1 − ρ)e−2ε > 0 and Cd = c1|Ad | + c2Bd for some c1, c2 > 0. Then
supd E[|Cd |k] < ∞. By this fact,

P
(
Rd

1 > Rd
0 > ε

) ≤ P
(
Rd

0 > ε,Rd∗
1 > Rd

0

) ≤ P
(
d−1/2Cd > ξ

) ≤ d−k
E

[{
Cd

ξ

}2k]
= O

(
d−k

)
for any k ∈ N. By the same argument, we can prove

P
(
Rd

1 < Rd
0 < −ε

) = O
(
d−k

)
.

Since the Metropolis–Hastings algorithm generates reversible Markov chain, and we assumed
stationarity in this paper, (Rd

0 ,Rd
1 ) is an exchangeable pair. Thus

P
(
Rd

0 > Rd
1 > ε

) = O
(
d−k

)
, P

(
Rd

0 < Rd
1 < −ε

) = O
(
d−k

)
and hence

P
(∣∣Rd

0

∣∣ > ε,Rd
1 �= Rd

0

) = O
(
d−k

)
.

On the other hand, since Xd
1 �= Xd

0 implies that Xd∗
1 is accepted, hence Rd

1 = Rd∗
1 if Xd

1 �= Xd
0 .

Thus

P
(
Rd

1 = Rd
0 ,Xd

1 �= Xd
0

) ≤ P
(
Rd∗

1 = Rd
0

) = P(Fd = 0) = 0,
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since Fd = d1/2(Rd∗
1 − Rd

0 )/η has a probability density function. By using these estimates, we
have

P
(∣∣Rd

0

∣∣ > ε,Xd
1 �= Xd

0

) ≤ P
(∣∣Rd

0

∣∣ > ε,Xd
1 �= Xd

0 ,Rd
1 �= Rd

0

) + P
(∣∣Rd

0

∣∣ > ε,Xd
1 �= Xd

0 ,Rd
1 = Rd

0

)
≤ P

(∣∣Rd
0

∣∣ > ε,Rd
1 �= Rd

0

) + P
(
Xd

1 �= Xd
0 ,Rd

1 = Rd
0

) = O
(
d−k

)
. �

Lemma 4.3. Let Pd be a scale mixture of the Gaussian distribution. Then the pCN algorithm
does not have any polynomial rate of convergence if Q({1}) < 1.

Proof. Since Q̃({0}) = Q({1}) < 1, there exists an open set O which does not include the origin,
and Q̃(O) ≥ δ for some δ > 0. By Q̃d → Q̃ and by Lemma 4.2, for any p ∈ N,

lim inf
d→∞ P

(∀i, j < dp,Xd
i = Xd

j

) ≥ lim inf
d→∞ P

(
Rd

0 ∈ O,∀i, j < dp,Xd
i = Xd

j

)
≥ lim inf

d→∞ P
(
Rd

0 ∈ O
) − lim sup

d→∞
P

(
Rd

0 ∈O,∃i, j < dp,Xd
i �= Xd

j

)
≥ Q̃(O) − lim sup

d→∞
dp

P
(
Rd

0 ∈ O,Xd
1 �= Xd

0

) = Q̃(O) ≥ δ.

Thus we have the following degenerate property:

lim inf
d→∞ P

(
1

dp

dp−1∑
m=0

f ◦ π1,d

(
Xd

m

) = f ◦ π1,d

(
Xd

0

))
≥ δ

for any bounded continuous function f (x).
We show that if this degeneracy holds, we can not have a polynomial rate of consistency.

Assume by the way of contradiction that it is weakly consistent with rate Td where Td/dp → 0.
Then the following should also be satisfied:

1

dp

dp−1∑
m=0

f ◦ π1,d

(
Xd

m

) − Pd(f ◦ π1,d ) = oP(1).

Note here that since Pd is the scale mixture of the normal distribution, L(π1,d (Xd
0 )) = P1. Hence,

we have

P1
({

x; ∣∣f (x) − P1(f )
∣∣ < ε

}) = lim inf
d→∞ P

(∣∣f ◦ π1,d

(
Xd

0

) − Pd(f ◦ π1,d )
∣∣ < ε

) ≥ δ

for any ε > 0. By monotone convergence theorem, this is possible only if P1({x;f (x) = c}) ≥ δ

for some c ∈ R, and thus it is not satisfied for example, for f (x) = arctan(x) since P1 has a
probability density function. Therefore, the pCN algorithm cannot be weakly consistent with
rate Td where Td/dp → 0 for any p > 0 and hence the pCN algorithm cannot have a polynomial
rate of convergence. �
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Appendix A: Properties of Fd via the Malliavin calculus

A.1. Basic operators in the Malliavin calculus

We will study asymptotic properties of Fd defined in (4.1). The basic tool will be the Malliavin
calculus. The following is a quick review of the Malliavin calculus. For the detail, see mono-
graphs such as [20] and [19].

Abstract Wiener space Let H be a separable Hilbert space with inner product 〈·, ·〉H and the
norm ‖h‖2

H
= 〈h,h〉H. Let {W(h);h ∈ H} be an isonormal Gaussian process on (	,F,P), that

is, W(h) is centered Gaussian and E[W(g)W(h)] = 〈g,h〉H. By this definition, W(ag+bh) =
aW(g)+bW(h) a.s. for a, b ∈R and g,h ∈ H since E[|W(ag+bh)−(aW(g)+bW(h))|2] =
0. We assume that σ -algebra F is generated by W . This triplet (W,H,P) is called an abstract
Wiener space.

Wiener-Chaos decomposition Let L2(	) be the space of square integrable random variables.
Let Hn(x) = (−1)nex2/2 dn

dxn e−x2/2/n! be the nth Hermite polynomial:

H1(x) = x, H2(x) = x2 − 1

2
, H3(x) = x3 − 3x

3! , . . . .

The Hermite polynomial satisfies H ′
n = Hn−1. By using this fact together with the integra-

tion by parts formula, we have E[Hn(W(h))] = 0 and V[Hn(W(h))] = 1/n! for ‖h‖H = 1.
Random variables Hn(W(h)) and Hm(W(h)) are orthogonal in the sense that

E
[
Hn

(
W(h)

)
Hm

(
W(h)

)] = 0

for n �= m. Write Hn for the closed linear subspace of L2(	) generated by a subset
{Hn(W(h));h ∈ H,‖h‖H = 1}. The linear space Hn is called the nth Wiener chaos. Then
Wiener chaoses spans L2(	): any element F ∈ L2(	) can be described by F = E[F ] +∑∞

n=1 Fn for Fn ∈ Hn, that is, L2(	) = ⊕∞
n=0 Hn, where H0 is the set of constants. This

is called the Wiener-Chaos decomposition or the Wiener-Itô decomposition.
Fréchet derivative A smooth random variables is a random variable with the form F =

f (W(h1), . . . ,W(hn)) where hi ∈ H and f is a C∞ function such that all derivatives have
polynomial growth. Then the Fréchet derivative of F is defined by

DF =
n∑

i=1

∂f

∂xi

(
W(h1), . . . ,W(hn)

)
hi

and so DF is a random variable with values in H. For example, DHn(W(h)) = Hn−1(W(h))h.
We set

‖F‖D1,2 := (
E

[|F |2] +E
[‖DF‖2

H

])1/2
.

Write D
1,2 for the closure of the space of smooth random variables with respect to the norm

‖ · ‖D1,2 and extend D to D
1,2. Then for any F ∈ L2(	), E[‖DF‖2

H
] = ∑

E[‖DFn‖2
H

] < ∞
if and only if F ∈D

1,2.
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Ornstein–Uhlenbeck semigroup The Ornstein–Uhlenbeck semigroup (Pt )t≥0 is defined by

PtF = E[F ] +
∞∑

n=1

e−ntFn

for F = E[F ] + ∑∞
n=1 Fn (Fn ∈ Hn). The operator L and L−1 is defined by

LF =
∞∑

n=1

−nFn, L−1F =
∞∑

n=1

−Fn/n,

where LF can be defined if
∑

n2
E[|Fn|2] < ∞. Note that we have E[‖DL−1F‖2

H
] =∑

E[‖DFn‖2
H

]/n2 ≤ E[‖DF‖2
H

].
By the so-called hypercontractivity property of Ornstein–Uhlenbeck operator, we have the

following for Wiener chaoses. See Corollary 2.8.14 of [19] for the proof.

Proposition A.1. Let F ∈Hn for n ≥ 1. Then for p > 2,

E
[|F |p]1/p ≤ (p − 1)n/2

E
[|F |2]1/2

.

Example A.1. E[|Hn(W(h))|p]1/p ≤ (p − 1)n/2/
√

n! for n ≥ 1,p > 2 and ‖h‖H = 1.

Example A.2. If ξd follows the chi-squared distribution with d degrees of freedom, E[(ξd/d −
1)p]1/p ≤ (p − 1)

√
2/d for p > 2. To see this, let {ei}i∈N be an orthonormal basis of H. Then

Ad := ∑d
i=1(Wi(ei)

2 − 1) ∈ H2 and it has the same law as that of ξd − d . Thus we can apply
above proposition to F = Ad/d .

A.2. Useful bounds from Stein’s method

By integration-by parts formula, we have

E
[
Ff (F)

] = E
[
f ′(F )

]
(A.1)

for F ∼ N(0,1) if f is smooth enough. In fact, the above Stein’s equation characterize the
standard normal distribution: F ∼ N(0,1) if and only if the above equation is satisfied for a
class of smooth functions f . Moreover, the deviation from Stein’s equation bounds the distance
between L(F ) and N(0,1).

Theorem A.1 (Theorem 3.3.1 of [19]).∥∥L(F ) − N(0,1)
∥∥

TV ≤ sup
f ∈FT V

∣∣Ef ′(F ) −E
[
Ff (F)

]∣∣,
where FTV = {f ; ‖f ‖∞ <

√
π/2,‖f ′‖∞ ≤ 2}.
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Thus the deviation from normality is bounded by the deviation from Stein’s equation. On the
other hand, the deviation from Stein’s equation can be obtained via the Malliavin calculus. The
connection between Stein’s technique and the Malliavin calculus is a hot topic in probability and
statistics community. The following is the key result for our paper. See Theorem 2.9.1 of [19] for
the proof. See also the proof of Theorem 3.1 of [18] to replace smoothness of f by the existence
of the density of F .

Proposition A.2 (Theorem 2.9.1 of [19]). Suppose that F ∈ D
1,2 has a density with respect to

the Lebesgue measure. Then for any absolutely continuous function f ,∣∣E[(
F −E[F ])f (F )

] −E
[
f ′(F )

]∣∣ ≤ ∥∥f ′∥∥∞E
[∣∣1 − 〈

DF,−DL−1F
〉
H

∣∣].
A.3. Properties of Fd as a random variable in Wiener chaos

We introduce an abstract Wiener space to the MpCN algorithm. Let {ei; i ∈ Z} be the orthonormal
basis of H and set

Wd
1 =

d∑
i=1

W(ei)ei, W̃ d
1 =

d∑
i=1

W(e−i )ei . (A.2)

Then

Ad := (∥∥√
ρW̃d

1 + √
1 − ρWd

1

∥∥2
H

− d
)
/2, Bd := (∥∥W̃ d

1

∥∥2
H

− d
)
/2 (A.3)

are in the second Wiener chaos H2 since

Ad =
d∑

i=1

H2
(
W(

√
ρe−i + √

1 − ρe−i )
)
, Bd =

d∑
i=1

H2
(
W(e−i )

)
.

We also define

Cd =
d∑

i=1

W(
√

ρe−i + √
1 − ρei)W(e−i ) − d

√
ρ, (A.4)

which is in H2 since

W(g)W(h) − 〈g,h〉H = ‖g + h‖2
H

2
H2

(
W

(
g + h

‖g + h‖H
))

− ‖g − h‖2
H

2
H2

(
W

(
g − h

‖g − h‖H
))

.

Since H ′
n = Hn−1, and H1(x) = x, we have

DAd =
d∑

i=1

W(
√

ρe−i + √
1 − ρei)(

√
ρe−i + √

1 − ρei), DBd =
d∑

i=1

W(e−i )e−i .
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By this expression, the joint distribution of (Ad,DAd) is same as that of (Bd,DBd). In addition,
〈DAd,DBd〉H = √

ρCd + dρ. We can interpret Fd defined in (4.1) as a random element in this
abstract Wiener space via

Fd = d1/2

2η

(
log(d + 2Ad) − log(d + 2Bd)

)
(A.5)

= d1/2

2η

(
log

(
1 + 2Ad

d

)
− log

(
1 + 2Bd

d

))
.

Note that since d + 2Ad (and hence d + 2Bd ) follows chi-squared distribution with d degrees
of freedom,

E

[(
1 + 2Ad

d

)k]
= 1 + O

(
d−1)

(A.6)

for any k ∈ Z by Lemma 4.1. In addition, E[|Ad |k]1/k = O(d1/2) and E[|Cd |k]1/k = O(d1/2)

for k ∈ N by Proposition A.1.

Lemma A.1.

sup
d∈N

E
[|Fd |4]

< ∞.

Proof. Since the law of Fd is symmetric about the origin, we have

E
[
F 4

d

] = 2E
[(

F+
d

)4]
,

where x+ = max{0, x}. By logx ≤ x − 1,

E
[
F 4

d

] = d2

8η4
E

[{(
log(d + 2Ad) − log(d + 2Bd)

)+}4]

≤ d2

8η4
E

[(
d + 2Ad

d + 2Bd

− 1

)4]
.

By using Ad and Bd defined in (A.3), the right-hand side is

d−2 2

η4
E

[(
d

d + 2Bd

)4

(Ad − Bd)4
]

≤ d−2 2

η4
E

[(
d

d + 2Bd

)8]1/2

E
[
(Ad − Bd)8]1/2

by Schwarz inequality. The first expectation in the right-hand side is O(1) by Lemma 4.1. For
the second expectation, by Proposition A.1 and Minkowski inequality,

E
[
(Ad − Bd)8]1/2 ≤ (

E
[
A8

d

]1/8 +E
[
B8

d

]1/8)4 = O
(
d2)

.

Thus we have E[F 4
d ] = O(1). �
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We are now going to prove the main result in this section.

Proposition A.3. There exists C > 0 so that for any absolutely continuous function f :R→ R,∣∣E[
Fdf (Fd)

] −E
[
f ′(Fd)

]∣∣ ≤ Cd−1/2
∥∥f ′∥∥∞.

In particular, ‖L(Fd) − N(0,1)‖TV ≤ 2Cd−1/2.

Proof. Let f be an absolutely continuous function, and let C > 0 be a generic constant which
does not depend on the choice of f . Let

ξ(F ) = Ff (F) − f ′(F ).

Without loss of generality, we may assume f (0) = 0 since E[Fd ] = 0 by Proposition 4.1. Then∣∣ξ(F )
∣∣ = ∣∣F (

f (F ) − f (0)
) − f ′(F )

∣∣ ≤ ∥∥f ′∥∥∞
(
F 2 + 1

)
. (A.7)

The first step is to prove ∣∣E[
ξ(Fd) − ξ(Fd,0)

]∣∣ ≤ Cd−1/2
∥∥f ′∥∥∞ (A.8)

for a good approximation Fd,0 ∈ D
1,2, which will be defined below. Recall that Fd can be ex-

pressed by (A.5). We replace logx by a strictly increasing twice continuously differentiable
function ψ :R+ → R such that ψ(0) > −∞ and ψ(x) = logx for x ≥ 1/2. Set

Fd,0 = d1/2

2η

(
ψ

(
1 + 2Ad

d

)
− ψ

(
1 + 2Bd

d

))
.

Then Fd,0 ∈D
1,2 by Proposition 1.2.3 of [20]. Since Ad and Bd have the same law, E[Fd,0] = 0.

Moreover, supd E[F 4
d,0] < ∞ since

E
[
F 4

d,0

]1/4 ≤ d1/2

2η

∥∥ψ ′∥∥∞E

[∣∣∣∣2Ad

d
− 2Bd

d

∣∣∣∣
4]1/4

≤ d−1/2

η

∥∥ψ ′∥∥∞
(
E

[|Ad |4]1/4 +E
[|Bd |4]1/4) ≤ C,

since E[Ak
d ]1/k = E[Bk

d ]1/k = O(d1/2). Set an event

Ed = {Fd �= Fd,0} ⊂ {Ad < −d/4} ∪ {Bd < −d/4},
which is a rare event since by Markov’s inequality,

P(Ed) ≤ 2P(Ad < −d/4) ≤ 2E

[{
Ad

d/4

}2]
= O

(
d−1)

.
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Then by (A.7),

∣∣E[
ξ(Fd) − ξ(Fd,0)

]∣∣ = ∣∣E[
ξ(Fd) − ξ(Fd,0),Ed

]∣∣
≤ E

[∣∣ξ(Fd)
∣∣,Ed

] +E
[∣∣ξ(Fd,0)

∣∣,Ed

]
≤ ∥∥f ′∥∥∞

{
E

[
F 2

d + 1,Ed

] +E
[
F 2

d,0 + 1,Ed

]}
≤ ∥∥f ′∥∥∞

{
E

[(
F 2

d + 1
)2]1/2 +E

[(
F 2

d,0 + 1
)2]1/2}

P(Ed)1/2,

where we used the Schwarz inequality in the last inequality. Since the forth moments of Fd and
Fd,0 are bounded, we obtain (A.8), and the first claim follows.

The second step is to show that Fd,0 has a density with respect to the Lebesgue measure. With
the fact, we will apply Proposition A.2 to Fd,0 and obtain

∣∣E[
ξ(Fd,0)

]∣∣ ≤ ∥∥f ′∥∥∞E
[∣∣1 − 〈

DFd,0,−DL−1Fd,0
〉
H

∣∣].
In general, a random variable in a finite sum of Wiener chaoses has a density by Theorems 5.1
and 5.2 of [27]. Hence the joint distribution of (Ad,Bd) has a density since the pair is in H2.
Since the Jacobian of a map

(a, b) �→ ((
d1/2/2η

)(
ψ(1 + 2a/d) − ψ(1 + 2b/d)

)
, b

)
is non-degenerate, Fd,0 has a density.

The third step is to prove

∣∣E[〈
DFd,0,−DL−1Fd,0

〉
H

− 〈
DFd,1,−DL−1Fd,1

〉
H

]∣∣ ≤ Cd−1/2 (A.9)

for

Fd,1 = d−1/2

η
(Ad − Bd) ∈H2.

By the triangular inequality and Hölder’s inequality, the left-hand side of (A.9) is bounded above
by

E
[∣∣〈D(Fd,0 − Fd,1),−DL−1Fd,0

〉
H

∣∣] +E
[∣∣〈DFd,1,−DL−1(Fd,0 − Fd,1)

〉
H

∣∣]
≤ E

[‖DFd,0 − DFd,1‖2
H

]1/2(
E

[‖DFd,0‖2
H

]1/2 +E
[‖DFd,1‖2

H

]1/2)
≤ E

[‖DFd,0 − DFd,1‖2
H

]1/2(
E

[‖DFd,0 − DFd,1‖2
H

]1/2 + 2E
[‖DFd,1‖2

H

]1/2)
,

where in the second inequality, we used E[‖DL−1F‖2
H

] ≤ E[‖DF‖2
H

]. Thus, the third step will
be completed if

E
[‖DFd,1‖2

H

] = O(1), E
[‖DFd,0 − DFd,1‖2

H

] = O
(
d−1/2)

. (A.10)
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For the first part of (A.10), since DFd,1 = (d−1/2/2η)(DAd − DBd), we have

‖DFd,1‖2
H = d−1

4η2

(‖DAd‖2
H − 2〈DAd,DBd〉H + ‖DBd‖2

H

)

= d−1

4η2

(
(d + 2Ad) − 2(

√
ρCd + dρ) + (d + 2Bd)

)
,

where Cd ∈H2 is as in (A.4). Therefore

E
[‖DFd,1‖2

H

] = d−1

4η2
(2d − 2dρ) = O(1).

Since (Ad,DAd) and (Bd,DBd) have the same law, the left-hand side of the second part of
(A.10) is

d−1/2

η
E

[∥∥∥∥DAd

(
ψ ′

(
1 + 2Ad

d

)
− 1

)
− DBd

(
ψ ′

(
1 + 2Bd

d

)
− 1

)∥∥∥∥
2

H

]1/2

≤ 2d−1/2

η
E

[
‖DAd‖2

H

(
ψ ′

(
1 + 2Ad

d

)
− 1

)2]1/2

≤ 2d−1/2

η
E

[‖DAd‖4
H

]1/4
E

[(
ψ ′

(
1 + 2Ad

d

)
− 1

)4]1/4

.

We have E[‖DAd‖4
H

] = E[(d + 2Ad)2] = O(d2), and

E

[(
ψ ′

(
1 + 2Ad

d

)
− 1

)4]
≤ ∥∥ψ ′′∥∥∞E

[(
2Ad

d

)4]
= O

(
d−2)

.

Hence, (A.10) follows.
The forth step is to show

E
[∣∣1 − 〈

DFd,1,−DL−1Fd,1
〉
H

∣∣] = O
(
d−1/2)

.

Since Fd,1 ∈ H2, we have −L−1Fd,1 = Fd,1/2, and hence −DL−1Fd,1 = DFd,1/2. Therefore,

〈
DFd,1,−DL−1Fd,1

〉
H

= 1

2
‖DFd,1‖2

H

and hence together with the fact that η2 = (1 − ρ)/4,

E
[∣∣1 − 〈

DFd,1,−DL−1Fd,1
〉
H

∣∣] = E

[∣∣∣∣1 − d−1

8η2

(
(d + 2Ad) − 2(

√
ρCd + dρ) + (d + 2Bd)

)∣∣∣∣
]

= d−1

8η2
E

[|2Ad − 2
√

ρCd + 2Bd |] = O
(
d−1/2)

,
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since the second moments of Ad,Bd and Cd are O(d).
By the above four steps, the proof is completed since∣∣E[

ξ(Fd)
]∣∣ ≤ ∣∣E[

ξ(Fd,0)
]∣∣ + Cd−1/2

∥∥f ′∥∥∞
≤ ∥∥f ′∥∥∞

∣∣E[
1 − 〈

DFd,0,−DL−1Fd,0
〉
H

]∣∣ + Cd−1/2
∥∥f ′∥∥∞

≤ ∥∥f ′∥∥∞
∣∣E[

1 − 〈
DFd,1,−DL−1Fd,1

〉
H

]∣∣ + Cd−1/2
∥∥f ′∥∥∞

≤ Cd−1/2
∥∥f ′∥∥∞. �

Appendix B: Other technical results

B.1. Remark on the time change

Let {Zd
m}m be a Markov chain, and let Nd be a Poisson process with intensity dt . Let

Yd
t = Zd[dt], Ỹ d

t = Zd

Nd
t
.

Lemma B.1. If Ỹ d converges in law to a process Y , then Yd converges to the same limit.

Proof. Write Nd(t) for Nd
t . Let

τd(t) = inf
{
s ≥ 0;Nd(s) ≥ [dt]}.

Then Nd(τd(t)) = [dt] and hence Yd
t = Ỹ d

τd . We apply Proposition VI.6.37 of [9] for Ỹ d as Xn

and Yd as Yn in the proposition. It is sufficient to show

lim
d→∞P

(
sup
s≤S

∣∣τd
s − s

∣∣ > ε
)

= 0 (B.1)

for ε > 0, S > 0. Observe that if τd
s − s > ε, then

Nd(s + ε) ≤ Nd
(
τd
s

) = [ds] ≤ ds.

Similarly, if τd
s − s < −ε and if d−1 ≤ ε/2, then

Nd(s − ε) ≥ Nd
(
τd
s

) = [ds] ≥ ds − 1 ≥ d(s − ε/2).

Therefore, for s ≤ S, we have

{∣∣τd
s − s

∣∣ > ε
} ⊂

{
Nd(s + ε)

d
− (s + ε) ≤ −ε

}
∪

{
Nd((s − ε)+)

d
− (s − ε)+ ≥ ε/2

}

⊂
{

sup
s≤S′

∣∣∣∣Nd
s

d
− s

∣∣∣∣ ≥ ε

2

}
,
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where S′ = S + ε. The probability in the left-hand side of (B.1) is bounded by

P

(
sup
s≤S′

∣∣∣∣Nd
s

d
− s

∣∣∣∣ ≥ ε

2

)
≤ 4

ε2
E

[
sup
s≤S′

∣∣∣∣Nd
s

d
− s

∣∣∣∣
2]

≤ 16

ε2
E

[∣∣∣∣N
d
S′ − S′

d

∣∣∣∣
2]

= 16

ε2

dS′

d2

which converges to 0, where we used Doob’s inequality. Thus, the claim follows. �

B.2. Sufficient conditions for consistency

The following lemma is a fundamental result for consistency of MCMC.

Lemma B.2 (Lemma 2 of [11]). Let Xd = {Xd
m}m be a sequence of stationary processes on R

k .
If Xd converges in law to X = {Xm}m, and if X is a stationary ergodic process, then

1

M

M−1∑
m=0

f
(
Xd

m

) −E
[
f

(
Xd

0

)] = oP(1) (M,d → ∞)

for any bounded continuous function f : Rk → R.

Proof. Since L(Xd
0 ) → L(X0), we can substitute E[f (Xd

0 )] by E[f (X0)] in the above equation,
and hence it is sufficient to show

E

[∣∣∣∣∣ 1

M

M−1∑
m=0

f
(
Xd

m

)∣∣∣∣∣
]

= o(1) (M,d → ∞)

for f such that E[f (X0)] = 0. For such f and any ε > 0, choose M0 ∈N so that

E

[∣∣∣∣∣ 1

M0

M0−1∑
m=0

f (Xm)

∣∣∣∣∣
]

≤ ε.

Then, by stationarity,

E

[∣∣∣∣∣ 1

M

M−1∑
m=0

f
(
Xd

m

)∣∣∣∣∣
]

≤ E

[∣∣∣∣∣ 1

M

[M/M0]−1∑
k=0

M0−1∑
m=0

f
(
Xd

M0k+m

)∣∣∣∣∣
]

+E

[∣∣∣∣∣ 1

M

M−1∑
m=[M/M0]M0

f
(
Xd

m

)∣∣∣∣∣
]

≤ M0

M

[
M

M0

]
E

[∣∣∣∣∣ 1

M0

M0−1∑
m=0

f
(
Xd

m

)∣∣∣∣∣
]

+ ‖f ‖∞
M − [M/M0]M0

M

→ E

[∣∣∣∣∣ 1

M0

M0−1∑
m=0

f (Xm)

∣∣∣∣∣
]

≤ ε (M,d → ∞).
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Thus, the claim follows. �

We need a generalization of this lemma. Let k1, k2 ∈ N. Suppose that Rk1+k2 -valued random
variable Xd

m has two parts, Xd
m = (X

d,1
m ,X

d,2
m ) where X

d,i
m is Rki valued for each i = 1,2. Cor-

responding to Xd,1 and Xd,2, the invariant probability measure has the following decomposition

Pd(dx1 dx2) = P 1
d (dx1)P

2
d (dx2|x1).

Furthermore, we assume the following. Let Td → ∞.

Assumption B.1. 1. For Yd
t = X

d,1
[Td t], Yd ⇒ Y (in Skorohod’s sense) where Y is stationary and

ergodic process with the invariant probability measure P 1.
2. Random variables Xd = {Xd

m}m converges to X = {Xm}m = {(ξ,X2
m)}m where ξ ∼ P 1 and

conditioned on ξ , the process X2 = {X2
m}m is stationary and ergodic with the invariant probability

measure P 2|1(·|ξ).
3. For any bounded continuous function f , P 2|1f (x1) = ∫

f (x1, x2)P
2|1(dx2|x1) is continu-

ous in x1.

Lemma B.3. Let Xd = {Xd
m = (X

d,1
m ,X

d,2
m )}m be a sequence of stationary processes on R

k1+k2 .
Under the above assumption, for any continuous and bounded function f

1

Md

Md−1∑
m=0

f
(
Xd

m

) − Pd(f ) = oP(1)

for Md → ∞ such that Md/Td → ∞.

Proof. As in the previous lemma, it is sufficient to show

E

[∣∣∣∣∣ 1

TdM

TdM−1∑
m=0

f
(
Xd

m

)∣∣∣∣∣
]

→ 0 (M,d → ∞)

for f such that
∫

f (x)P 2|1(dx2|x1)P (dx1) = 0. For such f and for ε > 0, choose M0 so that

E

[∣∣∣∣ 1

M0

∫ M0

0
g(Yt )dt

∣∣∣∣
]

< ε/2,

where g(x2) = P 2|1f (x2). Then as in the previous lemma,

E

[∣∣∣∣∣ 1

TdM

TdM−1∑
m=0

g
(
Xd,1

m

)∣∣∣∣∣
]

= E

[∣∣∣∣ 1

M

∫ M

0
g

(
Yd

t

)
dt

∣∣∣∣
]
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≤ E

[∣∣∣∣∣ 1

M

[M/M0]−1∑
k=0

∫ (k+1)M0

kM0

g
(
Yd

t

)
dt

∣∣∣∣∣
]

+E

[∣∣∣∣ 1

M

∫ M

[M/M0]M0

g
(
Yd

t

)
dt

∣∣∣∣
]

≤ M0

M

[
M

M0

]
E

[∣∣∣∣ 1

M0

∫ M0

0
g

(
Yd

t

)
dt

∣∣∣∣
]

+E

[∣∣∣∣ 1

M

∫ M

[M/M0]M0

g
(
Yd

t

)
dt

∣∣∣∣
]

→ E

[∣∣∣∣ 1

M0

∫ M0

0
g(Yt )dt

∣∣∣∣
]

≤ ε/2.

We still need to show

lim sup
d,M→∞

E

[∣∣∣∣∣ 1

TdM

TdM−1∑
m=0

f
(
Xd

m

) − 1

TdM

TdM−1∑
m=0

g
(
Xd,1

m

)∣∣∣∣∣
]

≤ ε/2.

Set Sd = TdM . By replacing f (x) by f (x1, x2) − g(x1), we can assume g ≡ 0. Choose S0 ∈ N

so that

E

[∣∣∣∣∣ 1

S0

S0−1∑
m=0

f (Xm)

∣∣∣∣∣
]

= E

[∣∣∣∣∣ 1

S0

S0−1∑
m=0

f
(
ξ,X2

m

)∣∣∣∣∣
]

≤ ε/2.

Then, as in the previous lemma, we can show that

E

[∣∣∣∣∣ 1

Sd

Sd−1∑
m=0

f
(
Xd

m

)∣∣∣∣∣
]

≤ S0

Sd

[
Sd

S0

]
E

[∣∣∣∣∣ 1

S0

S0−1∑
m=0

f
(
Xd

m

)∣∣∣∣∣
]

+ ‖f ‖∞
Sd − [Sd/S0]S0

Sd

→ E

[∣∣∣∣∣ 1

S0

S0−1∑
m=0

f (Xm)

∣∣∣∣∣
]

≤ ε/2.

Thus, we can conclude that

lim sup
d,M→∞

E

[∣∣∣∣∣ 1

TdM

TdM−1∑
m=0

f
(
Xd

m

)∣∣∣∣∣
]

≤ lim sup
d,M→∞

{
E

[∣∣∣∣∣ 1

TdM

TdM−1∑
m=0

g
(
Xd,1

m

)∣∣∣∣∣
]

+E

[∣∣∣∣∣ 1

TdM

TdM−1∑
m=0

(
f

(
Xd

m

) − g
(
Xd,1

m

))∣∣∣∣∣
]}

≤ ε.

Hence, the proof is completed. �
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