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Large volatility matrices are involved in many finance practices, and estimating large volatility matrices
based on high-frequency financial data encounters the “curse of dimensionality”. It is a common approach
to impose a sparsity assumption on the large volatility matrices to produce consistent volatility matrix
estimators. However, due to the existence of common factors, assets are highly correlated with each other,
and it is not reasonable to assume the volatility matrices are sparse in financial applications. This paper
incorporates factor influence in the asset pricing model and investigates large volatility matrix estimation
under the factor price model together with some sparsity assumption. We propose to model asset prices by
assuming that asset prices are governed by common factors and that the assets with similar characteristics
share the same association with the factors. We then impose some reasonable sparsity condition on the part
of the volatility matrices after accounting for the factor contribution. Under the proposed factor-based model
and sparsity assumption, we develop an estimation scheme called “blocking and regularizing”. Asymptotic
properties of the proposed estimator are studied, and its finite sample performance is tested via extensive
numerical studies to support theoretical results.

Keywords: adaptive threshold; diffusion; factor model; integrated volatility; kernel realized volatility;
multiple-scale realized volatility; pre-averaging realized volatility; regularization; sparsity

1. Introduction

High-frequency finance provides academic researchers and industry practitioners with new re-
sources and tools to study financial markets. With high-frequency financial data, we can better
model the volatility dynamics and efficiently estimate volatilities. There is a large volume of
literature on volatility estimation based on high-frequency data. For a single asset, the estima-
tors for an integrated volatility include realized volatility (Anderson et al. [4] and Barndorff-
Nielsen and Shepard [7]), bi-power realized variation (Barndorff-Nielsen and Shepard [8]),
two-time scale realized volatility (Zhang, Mykland and Aït-Sahalia [47]), multiple-time scale
realized volatility (Zhang [45]), wavelet realized volatility (Fan and Wang [26]), kernel real-
ized volatility (Barndorff-Nielsen et al. [5]), Fourier realized volatility (Mancino and Sanfelici
[35]), pre-averaging realized volatility (Jacod et al. [29]), and quasi maximum likelihood esti-
mator (Xiu [44]). For multiple assets, methods for estimating an integrated co-volatility consist
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of Hayashi–Yoshida estimator (Hayashi and Yoshida [27]), a quasi maximum likelihood esti-
mator (Aït-Sahalia, Fan, and Xiu [2]), multi-scale realized co-volatility based on previous tick
data synchronization (Zhang [46]), preaveraging realized volatility (Christensen, Kinnebrock,
and Podolskij [16]), preaveraging Hayashi–Yoshida estimator (Christensen, Podolskij, and Vetter
[17]), Fourier covariance estimator (Mancino and Safelici [36]), realized kernel volatility estima-
tor based on refresh time scheme (Barndorff-Nielsen et al. [6]), and local method of moments
(Bibinger et al. [9]).

In financial markets, a large number of assets are often involved in asset pricing, portfolio
allocation, and risk management, where the estimation of their volatility matrix plays a pivotal
role in financial applications. Estimators developed for small volatility matrices often become
inconsistent when the number of assets is comparable to or even exceed the number of obser-
vations (Wang and Zou [43]). This is the so-called “curse of dimensionality”. Wang and Zou
[43] proposed the averaged realized volatility matrix (ARVM) with good convergence rates us-
ing thresholding estimation procedures. In Tao et al. [40,41], the multiple-time scale realized
volatility matrix (MSRVM) together with thresholding rules was proposed to achieve the op-
timal convergence rate. Kim et al. [32] introduced the thresholding rules for kernel realized
volatility matrix (KRVM) estimator and pre-averaging volatility matrix (PARVM) estimator and
established the asymptotic theory for these thresholded estimators. These existing large volatility
matrix estimators, such MSRVM, PARVM and KRVM, were used to derive consistent estima-
tors by regularizing them under the assumption that the true volatility matrix is sparse. Although
the sparsity assumption and regularizing technique have been widely employed to overcome the
“curse of dimensionality” (see, for example, Bickel and Levina [10,11], Cai and Liu [12], Cai
and Zhou [13], Kim et al. [30,32], Tao et al. [40,41], and Wang and Zou [43]), it may not be
reasonable to simply impose the usual sparsity assumption on financial volatility matrices, due
to the existence of common factors and high correlation among assets.

Factor models have been widely used in both theoretical and empirical finance. For example,
using arbitrage pricing theory, Ross [37,38] proposed a multi-factor model to show that the ex-
cessive return of any asset is a linear function of various macro economic factors. Since then
there are many papers contributed to the construction of factors, see, for example, Engle and
Watson [20], Chamberlain [14], Chamberlain and Rothschild [15], Diebold and Nerlove [19],
Fama and French [21,22], Aguilar and West [1], and Stock and Watson [39]. Fan et al. [23,25]
proposed to use factor models for estimating high-dimensional covariance matrices and showed
that utilization of factor models improves the performance of the covariance matrix estimator.
Despite the rich development about factor models and the recent progress on large volatility ma-
trix estimation, it is remarkable that there is little research on incorporating factors into volatility
estimation with high-frequency financial data. This motivates us to study large volatility matrix
estimation with factor models for high-frequency financial data.

Intuitively the expected return of an asset relates to economic factors such as sector and indus-
try classification, firm size, price to book ratios, etc. (see among others, Fama and French [21]),
it is thus expected that assets with similar characteristics tend to have similar expected returns.
Therefore, we propose a factor-based diffusion process to account for the grouping effect in asset
pricing dynamics, and then impose a sparsity condition on the part of the volatility matrices after
accounting for the factor contribution. Based on the structure knowledge of the volatility matri-
ces, we develop a “blocking and regularizing” strategy to construct a volatility matrix estimator.
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The proposed estimator is shown to have better performance than existing ones in presence of
common factors.

The rest of the paper is organized as following. In Section 2, a factor-based diffusion process
is proposed to model the asset pricing dynamics. Section 3 discusses in detail how blocking
and regularizing are used to construct a volatility matrix estimator. Section 4 investigates the
asymptotic properties of the proposed estimator. In Section 5, an extensive simulation study is
conducted to check the finite sample performance of the proposed estimator. Section 6 illustrates
large volatility matrix estimation for high-frequency data on 200 stocks. Section 7 features the
conclusion. Section 8 collects all technical proofs.

2. The model set-up

Consider B different groups with pb (b = 1, . . . ,B) assets in each group. In the bth group, let
Xbi

(t), i = 1, . . . , pb , bi = ∑b−1
k=0 pk + i, be the true log price at time t for the bi th asset, and

denote by Xb(t) = (Xb1(t), . . . ,Xbpb
(t))T the vector of true log prices. Let p be the total number

of assets, that is, p = ∑B
b=1 pb . Let XT (t) = (XT

1 (t), . . . ,XT
B(t)) be the true log prices of the

p assets. Common approach in finance assumes that the log stock price follows a continuous-
time diffusion model with a drift term. In order to account for grouping factors, we consider the
following model

dX(t) = μ(t) dt + ϑT (t) dW ∗
t + σ T (t) dW t , (2.1)

where μ(t) = (μ1(t), . . . ,μp(t))T is a drift vector, σ (t) is a p by p matrix, ϑ(t) is a B by p

matrix, W ∗
t and W t are B-dimensional Brownian motion and p-dimensional Brownian motion,

respectively, and they are independent. The spot volatility matrix of X(t) is

γ (t) = (
γij (t)

)
1≤i,j≤p

= σ T (t)σ (t) + ϑT (t)ϑ(t),

while the integrated volatility matrix, or quadratic variation of X(t), is

[X,X]t =
∫ t

0
γ (s) ds =

(∫ t

0
γij (s) ds

)
1≤i,j≤p

=
(∫ t

0
σij (s) ds

)
1≤i,j≤p

+
(∫ t

0
ϑij (s) ds

)
1≤i,j≤p

=
∫ t

0
σ T (s)σ (s) ds +

∫ t

0
ϑT (s)ϑ(s) ds.

The parameter of interest is the integrated volatility matrix over time [0,1],

� =
∫ 1

0
σ T (t)σ (t) dt +

∫ 1

0
ϑT (t)ϑ(t) dt = � + �. (2.2)
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� defined in (2.2) accounts for the factor influence on the volatility matrix and has the follow-
ing blocking structure. For a, b = 1, . . . ,B ,

� = (�ij )1≤i,j≤p, �ij = θab, ∀i = a1, . . . , apa , j = b1, . . . , bpb
. (2.3)

θbb’s capture the factor influence on all the assets in the bth group, while θab , a �= b, account for
the cross-sectional influence between the ath and bth groups. On the other hand, � consists of
volatilities after accounting for the factor contribution, which cannot be attributed to the factors.

Remark 1. Recently, Aït-Sahalia and Xiu [3] and Fan et al. [24] introduced some factor model
based on the high-frequency observations, which has the low-rank plus sparse structure. The
sparse structure can be represented by the block diagonal matrix. That is, the integrated volatility
matrix from their factor model consists of the general factor structure and the block diagonal
sparse structure. So both the proposed volatility structure in this paper and their volatility struc-
ture have a few common factors which account for the highly correlated large volatility matrix,
and their remaining risks are explained by the sparse matrix. On the other hand, in our proposed
factor model, the low-rank volatility matrix � has some block structure which can be considered
as the sub-class of the low-rank matrix in Aït-Sahalia and Xiu [3] and Fan et al. [24]. For ex-
ample, choosing the factor loading matrix as the membership matrix such as the factor loading
matrix in (5.1), their low-rank matrix will become the factor volatility matrix � in (2.3). That is,
the assets in the same group have the same latent factor process. With this additional structure,
we investigate how to better accommodate the sparse structure of large volatility matrices.

Remark 2. In this paper, we assume that the group membership is known. In practice, it becomes
a huge issue to identify the group membership, and the performance of the proposed estimator
depends on the choice of the group membership. In the finance market, the assets in the same
sector tend to have some common behavior. For example, the companies in the financial sector
obey the same financial regulations and face similar market risks. In light of this, we propose
to use the global industry classification standard (GICS) sector as the group membership in this
paper. According to the empirical study, the GICS sector can explain the grouping effect well. In
addition, our model has some robustness to the choice of the group membership. For example, if
we can identify the sub-groups whose members have the common factor, the proposed estimators
can enjoy the theoretical results developed in Section 4.2. Furthermore, the numerical study
supports the claim.

The real-time high-frequency trading prices have two features. First, instead of observing the
true price Xi(t), i = 1, . . . , p, we observe Yi(ti,h), its noisy version at discrete times ti,h, h =
1, . . . , ni . Second, different assets are traded at different times, that is, ti,h �= tj,h for any i �= j .
This is the so-called non-synchronization problem. In light of these, we assume that the observed
price data Yi(ti,h) obey the following model

Yi(ti,h) = Xi(ti,h) + εi(ti,h) for i = 1, . . . , p,h = 1, . . . , ni, (2.4)

where εi(·) are noises with mean zero and variance ηi .
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3. Blocked and regularized volatility matrix estimator

Under the proposed price model, we construct a volatility matrix estimator in three stages.
First, a realized volatility matrix is constructed from the noisy high-frequency data. The afore-
mentioned challenges, non-synchronicity of data and noise contamination, are handled in this
stage. There are several well-performing realized volatility matrix estimators, for example, multi-
scale realized co-volatility based on previous tick data synchronization (Zhang [46]), the quasi
maximum likelihood estimator (Aït-Sahalia, Fan, and Xiu [2]), pre-averaging realized volatility
(Christensen, Kinnebrock, and Podolskij [16]), realized kernel volatility estimator based on re-
fresh time scheme (Barndorff-Nielsen et al. [6]), and preaveraging Hayashi–Yoshida estimator
(Christensen, Kinnebrock, and Podolskij [16] and Christensen, Podolskij, and Vetter [17]). In
this paper, we take one of these estimators as the input realized volatility matrix estimator �̂.
Second, we decompose the realized volatility matrix to separate the part account for the factor
contribution and the left-over part, which are referred as the factor volatility matrix and non-
factor volatility matrix, respectively. In the third stage, we regularize the non-factor volatility
matrix. The second and third stages are discussed in detail in Section 3.1 below.

3.1. Blocking and regularizing

First, we decompose a chosen realized volatility matrix into the factor and non-factor contri-
butions. Then we impose a sparsity condition on the non-factor volatility matrix and threshold
its corresponding estimator. We call the constructed estimator blocked and regularized volatility
matrix (BRVM) estimator.

3.1.1. Decompose �̂: Blocking

Taking advantage of the block structure of the factor volatility matrix described by (2.3), we esti-
mate the cross-sectional volatility between groups a and b by averaging corresponding elements
in the realized volatility matrix estimator �̂ = (	̂ij )i,j=1,...,p as follows,

θ̂ab = 1

papb

apa∑
i=a1

bpb∑
j=b1

	̂ij , a, b = 1, . . . ,B.

Let �̂ be the estimator of �, specifically,

�̂ = (�̂ij )1≤i,j≤p and �̂ij = θ̂ab, ∀i = a1, . . . , apa , j = b1, . . . , bbpb
.

The non-factor volatility matrix � can then be estimated by

�̂ = �̂ − �̂.

Equivalently, we have decomposed the realized volatility matrix estimator as

�̂ = �̂ + �̂. (3.1)
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3.1.2. Sparsity condition and regularizing

Imposing the sparsity condition and thresholding realized volatility matrices are a common ap-
proach to obtain consistent estimators of large matrices (Bickel and Levina [10,11], Cai and
Liu [12], Cai and Zhou [13], Kim et al. [30,31], Tao et al. [40,41], and Wang and Zou [43]).
In finance practices, imposing the sparsity condition on the entire volatility matrix implies that
only a small number of assets are correlated with each other, which is not realistic. Instead of
assuming the sparsity for the entire volatility matrix, we impose the sparsity condition on the
non-factor volatility matrix, that is, the part of the volatility matrix after accounting for the factor
contribution. Specifically, we assume that � satisfies the following condition

max
a1≤i≤apa

bpb∑
j=b1

|
ij |δ|
ii
jj |(1−δ)/2 ≤ �
π(p)

B
, ∀a, b = 1, . . . ,B, (3.2)

where 0 ≤ δ < 1, � is a positive random variable with E|�|β ≤ C for some constant C and
β ≥ 2 (β will be given in Section 4), and π(p) is a deterministic function that grows very slowly
in p. Examples of π(p) include 1, log(p) and a very small power of p.

Remark 3. The condition (3.2) is imposed on each block of �. Summing (3.2) over all the
blocks, we have

max
1≤i≤p

p∑
j=1

|
ij |δ|
ii
jj |(1−δ)/2 ≤ �π(p). (3.3)

This condition implies the �1 bound as follows:

max
1≤i≤p

p∑
j=1

|
ij | ≤ �π(p).

If � satisfies the condition (3.2), its important elements are those who exceed certain thresh-
old. Therefore, we regularize �̂ by retaining its elements whose absolute values exceed a given
threshold value and replacing the others by zero. Specifically, we define the threshold �̂ by

�̃ = T H
� [�̂] = (


̂ij 1
(|
̂ij | ≥ �ij

))
1≤i,j≤p

or
(3.4)

�̃ = T S
� [�̂] = ((


̂ij − sign(
̂ij )�ij

)
1
(|
̂ij | ≥ �ij

))
1≤i,j≤p

,

where 1(·) is an indicator function, �ij = λ

√
(
̂ii ∨ 0)(
̂jj ∨ 0) is adaptive thresholding param-

eter, and λ will be given in Section 4. The two estimators are called hard and soft thresholding
rules, respectively, and the adaptive thresholding rules are based on the correlation structure.
Both thresholding rules retain some significant values who exceed certain thresholding level. For
example, the (i, j)th element of the hard thresholding estimator is equal to 
̂ij if it is greater than
the threshold and zero otherwise. On the other hand, the soft thresholding rule utilizes a smooth
function, and so its (i, j)th element is 
̂ij − sign(
̂ij )�ij if it is greater than the threshold.
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Replacing �̂ in (3.1) with its threshold version �̃, we obtain the blocked and regularized
volatility matrix (BRVM) estimator

�̃ = �̂ + �̃. (3.5)

The asymptotic behavior of the BRVM estimator �̃ depends on the underlying realized volatility
matrix estimator �̂ and will be investigated in Section 4.

4. Asymptotic theorems

4.1. Technical conditions

For any U = (Uij )i,j=1,...,p ∈ R
p×p , denote by ‖U‖F =

√
tr(UT U) its Frobenius norm, and

define the weighted quadratic norm (Fan et al. [23,25]),

‖U‖2
� = p−1

∥∥�−1/2U�−1/2
∥∥2

F
.

Denote by C a generic constant whose value is free of n and p and may change from appearance
to appearance.

We need the following technical conditions to establish the asymptotic theory.

Assumption 1. For some β ≥ 2,

max
1≤i≤p

max
0≤t≤1

E
[∣∣ϑii(t)

∣∣β] < ∞, max
1≤i≤p

max
0≤t≤1

E
[∣∣σii(t)

∣∣β]< ∞,

(4.1)
max

1≤i≤p
max

0≤t≤1
E
[∣∣μi(t)

∣∣2β]
< ∞, max

1≤i≤p
E
[∣∣εi(ti,h)

∣∣2β]
< ∞.

Assumption 2. Assume that for some fixed constant C
 > 0,

min
1≤i≤p


ii ≥ C
.

Assumption 3. There exist positive constants C1 and C2 such that

C1 ≤ pa

pb

≤ C2, ∀a, b = 1, . . . ,B.

Remark 4. Assumption 1 imposes moment conditions on the price process and noises in order
to establish the asymptotic theory. In particular, the condition (4.1) implies

max
1≤i≤p

max
0≤t≤1

E
[∣∣γii(t)

∣∣β]< ∞,

for some β ≥ 2.

Remark 5. Assumption 3 allows the number of assets in each group to vary, as constants C1 and
C2 may be substantially different.
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4.2. Asymptotic theorems

To investigate the asymptotic behavior of the BRVM estimator, we need to establish the moment
bound for its entries. Theorem 4.1 provides the element-wise bound for estimators of � and �.

Theorem 4.1. Under the models (2.1) and (2.4), suppose that the moment bound

max
1≤i,j≤p

E
[|	̂ij − 	ij |β |n]≤ Cn−β/4 a.s., (4.2)

condition (3.2), and Assumptions 1–3 are met. Then we have the following element-wise moment
bound for �̂ and �̂

E
[|�̂ij − �ij |β |n]≤ eβ

n , E
[|
̂ij − 
ij |β |n]≤ eβ

n a.s.,

where en = C[n−1/4 + π(p)/p] for some constant C free of n and p.

Remark 6. Theorem 4.1 shows that above asymptotic results hold for any volatility matrix
estimators satisfying the moment bound condition (4.2). For example, the pre-averaging real-
ized volatility matrix (PARVM) (Christensen, Kinnebrock, and Podolskij [16]), multi-scale re-
alized volatility matrix (MSRVM) (Zhang [46]), and realized kernel volatility matrix (KRVM)
(Barndorff-Nielsen et al. [6]) estimators satisfy the moment bound condition (4.2) with some
synchronization scheme such as the generalized sampling time (Aït-Sahalia et al. [2]) under As-
sumption 1 (see Theorems 1 and 3 (Kim et al. [32])). Also the pre-averaging Hayashi–Yoshida
estimator (Christensen, Kinnebrock, and Podolskij [16] and Christensen, Podolskij, and Vetter
[17]) can meet the moment bound condition (4.2) (see Proposition 1 in Christensen, Kinnebrock,
and Podolskij [16]), without any synchronization scheme requirement.

As Fan et al. [25] discussed, it is possible to estimate the large integrated volatility matrix in
terms of the weighted quadratic norm. This paper considers the weighted quadratic norm ‖ · ‖� .
We need the following technical assumptions.

Assumption 4. There is some constant C > 0 free of n and p such that

λp(�) > C,

where λj (�) is the j th largest eigenvalue for �.

Assumption 5. There are some positive constants c1, c2 > 1 free of n and p such that

1/c1 ≤ p−2‖�‖2
F ≤ c1

and

1/c2 < λ1(�)/λB(�) < c2.
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Remark 7. Assumption 4 indicates that the integrated volatility matrix � is positive definite
which is a usual condition in analyzing volatility matrices. Assumption 5 implies that the eigen-
values of the factor volatility matrix � diverge with p/B order, which is called the pervasive
condition. The pervasive condition is usually imposed on analyzing the approximate factor mod-
els (see Fan et al. [25]). Furthermore, we consider the factor model to account for the fact that the
assets are highly correlated and so the volatility matrix is not sparse. Thus, the factor volatility
matrix � is a non-sparse matrix satisfying Assumption 5. In light of these, Assumptions 4 and 5
are not restrictive.

The theorem below derives the convergence rate for �.

Theorem 4.2. Assume that data are observed from the models (2.1) and (2.4), conditions (3.2)
and (4.1), and Assumptions 1–5 are met, and p4/βen = o(1). Then we have the following conver-
gence rate for �̃ in (3.5)

‖�̃ − �‖� = Op

([
B1/2p1/2e2

n + B1/4en

][
1 + B3/2en

]+ π(p)λ1−δ
)
,

where en is given in Theorem 4.1, and the thresholding parameter λ is of order p2/βen.

Remark 8. Theorem 4.2 shows that the BRVM estimator has the convergence rate [B1/2p1/2e2
n+

B1/4en][1 + B3/2en] + π(p)λ1−δ in terms of the weighted quadratic norm. To obtain this rate,
we do not need any condition for the number of factors, B , but to obtain the consistency, we may
need some condition on B and p. In the stock market, we can observe that the assets are governed
by a few common factors such as sector and industry classification, firm size, and price to book
ratios. So the number, B , of factors is much less than the number of stocks, and so it is reasonable
to assume B = O(1). Then the convergence rate in Theorem 4.2 becomes p1/2e2

n + π(p)λ1−δ .
Thus, Theorem 4.2 shows that the BRVM estimator can still be consistent so long as p = o(n).
On the other hand, in Fan et al. [25], the principal orthogonal complement thresholding estima-
tor can be consistent as long as p = o(n2). The difference is due to the contamination of the
microstructure noise in the observed data. In fact, if the true log prices Xi ’s are observed, the
BRVM estimator only requires the same condition p = o(n2) to obtain the consistency.

5. A simulation study

We conducted a simulation study to check the finite sample performance of the BRVM esti-
mators constructed using multi-scale realized volatility matrix (MSRVM) (Zhang [46]), pre-
averaging realized volatility matrix (PARVM) (Christensen, Kinnebrock, and Podolskij [16]), re-
alized kernel volatility matrix (KRVM) (Barndorff-Nielsen et al. [6]), and preaveraging Hayashi–
Yoshida volatility matrix (PHYVM) (Christensen, Podolskij, and Vetter [17]). The simulation
study adopts the model set-up in Wang and Zou [43]. Section 5.1 describes the simulation model
and procedures, and Section 5.2 summarizes the simulation results.
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5.1. The simulation model

Since the drift term is of negligible order in integrated volatility estimation, so we set μ(t) = 0
in our simulation study, and assume the true log prices X(t) of p assets to follow the model,

X(t) =
∫ t

0
ϑT (t) dW ∗

s +
∫ t

0
σ T (s) dW s ,

where W t = (W1t , . . . ,Wpt )
T is a p-dimension standard Brownian motion, and W ∗

t is a B-
dimensional Brownian motion that is independent of W t . We take σ (t) as Cholesky decompo-
sition of ς(t) = (ςij (t))i,j=1,...,p as below. First, the diagonal elements of ς(t) are generated
from geometric Ornstein–Uhlenbeck processes, the volatility process in Nelson’s GARCH dif-
fusion limit model (Wang [42]), the sum of two CIR processes (Cox, Ingersoll and Ross [18]
and Barndorff-Nielsen and Shepard [7]), and two-factor log-linear stochastic volatility process
(Huang and Tauhen [28]) with leverage effect. Then we define off-diagonal elements of ς(t) by

ςij (t) = {
κ(t)

}|i−j |√
ςii(t)ςjj (t), 1 ≤ i �= j ≤ p,

where κ(t) is given by

κ(t) = e2u(t) − 1

e2u(t) + 1
, du(t) = 0.03

[
0.64 − u(t)

]
dt + 0.118u(t) dWκ,t ,

Wκ,t = √
0.96W 0

κ,t − 0.2
p∑

i=1

Wit/
√

p;

W 0
κ,t is a 1-dimensional Brownian motion independent of W t and W ∗

t . See Wang and Zou [43]
for details.

Define the factor volatility process ϑ(t) as

ϑ(t) = ϑf (t)LT ∈R
B×p,

where

L =

⎛⎜⎜⎜⎜⎜⎜⎝

Jp/B 0 · · · 0
0 J p/B 0

0 0
. . . 0

...
...

...

0 0 · · · Jp/B

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R
p×B, J p/B = (1, . . . ,1)T ∈ R

p/B, (5.1)

and ϑf (t) ∈ R
B×B is generated similar to σ (t). Specifically, ϑf (t) is Cholesky decomposition

of (ς
f
ij (t))i,j=1,...,B , and the diagonal elements of (ς

f
ij (t))i,j=1,...,B were generated from the four

processes (geometric Ornstein–Uhlenbeck processes, the sum of two CIR processes, the volatility
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process in Nelson’s GARCH diffusion limit model, and two-factor log-linear stochastic volatility
process). Then we generated the off-diagonal elements as follows:

ς
f
ij (t) = κf (t)

√
ς

f
ii (t)ς

f
jj (t), 1 ≤ i �= j ≤ B,

where κf (t) is defined

κf (t) = e2uf (t) − 1

e2uf (t) + 1
, duf (t) = 0.03

[
0.64 − uf (t)

]
dt + 0.118uf (t) dW

f
κ,t ,

W
f
κ,t = √

0.96W
f 0
κ,t − 0.2

B∑
i=1

W ∗
it /

√
p;

W
f 0
κ,t is a 1-dimensional Brownian motion independent of W 0

κ,t , W t , and W ∗
t .

Finally, the high-frequency data Yi(ti,h) are simulated from the model (2.4) with noise εi(ti,h)

drawing from independent normal distributions with mean zero and standard deviation ηi which
is given by

ηi = a

√∫ 1

0

(
ϑii(t) + ςii(t)

)
dt, i = b1, . . . , bpb

, b = 1, . . . ,B,

where a is the relative noise level ranges from 0 to 0.1 in the simulation study. We generated
non-synchronized observations as follows. First, p random proportions mi , i = 1, . . . , p, are
generated independently from a uniform distribution on (0.5,1). Second, for the ith asset, we
selected ni = �min

all observations from the synchronized sample, {Yi(tr ), r = 1, . . . , nall}, ran-
domly and denote the selected observations by {Yi(ti,r ), r = 1, . . . , ni, i = 1, . . . , p} which are
non-synchronized noisy data.

5.2. Simulation results

In the simulation study, we chose p = 256 and B = 16, fixed nall = 2000, and selected noise
levels to be 0.001,0.01,0.02,0.05, and 0.1.

We employed the simulated data Yi(ti,h) to compute the BRVM estimator defined in Sec-
tion 3 by using MSRVM, PARVM, and KRVM defined in Kim et al. [32] and PHYVM in Chris-
tensen, Podolskij, and Vetter [17]. To synchronize the simulated data, the refresh time scheme
(Barndorff-Nielsen et al. [6]) was employed, and we found the average number of synchronized
data points over the 256 simulated assets was equal to 308. To calculate MSRVM, PARVM, and
KRVM, we used synchronized observations. We used the weight function g(x) = x ∧ (1 − x) for
the PARVM and PHYVM estimators and the Parzen kernel,

k(x) =

⎧⎪⎨⎪⎩
1 − 6x2 + 6x3 if 0 ≤ x ≤ 1/2,

2(1 − x)3 if 1/2 ≤ x ≤ 1,

0 if x > 1,
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Figure 1. The ME plots against five relative noise levels for MSRVM, KRVM, PARVM, and PHYVM
estimators, and their corresponding thresholded estimators and BRVM estimators, with p = 256, and
nall = 2000.

for the KRVM estimator. After realized volatility matrix estimators were constructed, we took
different blocking and regularization strategies: (1) none; (2) regularizing only; (3) blocking and
regularizing with the correct number of groups (BRVM); and (4) blocking and regularizing with
twice as many groups as the true grouping structure (BRVM II). The whole simulation procedure
was repeated 500 times, and the �2-norms (spectral norms) and the weighted quadratic norms,
‖ ·‖� , of the difference between estimator and true volatility matrix were computed and averaged
over the 500 repetitions. We selected the tuning parameters for MSRVM, PARVM, KRVM, and
PHYVM and the threshold level λ by minimizing the corresponding mean errors (ME).

Figure 1 plots the average �2 (spectral norm) errors and weighted quadratic errors against noise
levels for thresholded estimators constructed using MSRVM, PARVM, KRVM and PHYVM,
and compares the performance of these estimators under different blocking and regularizing
strategies, and Table 1 reports their numerical results. We found that blocking and regularizing
scheme significantly improves volatility matrix estimation. In particular, the largest performance
improvement is obtained when the grouping structure is correctly identified. Moreover, even
when assets are divided into twice as many groups as the true grouping structure, the BRVM II
estimators still have good performances. In practice, when the true grouping structure of the as-
sets is unknown, dividing assets into smaller groups helps maintain the homogeneity of volatility
matrix within each block and improves the volatility estimation. On the other hand, regularizing
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Table 1. The MEs of MSRVM, KRVM, PRVM, and PHYVM estimators, and their corresponding thresh-
olded estimators and BRVM estimators for p = 256 and nall = 2000

None Regularizing BRVM BRVM II

Type ME Noise level None Hard Soft Hard Soft Hard Soft

MSRVM Weighted 0.001 2.612 2.612 2.604 1.366 1.285 1.778 1.684
0.01 2.680 2.680 2.671 1.401 1.310 1.819 1.714
0.02 2.890 2.890 2.880 1.457 1.368 1.926 1.815
0.05 3.867 3.867 3.845 1.907 1.770 2.528 2.374
0.1 5.244 5.244 5.180 2.825 2.644 3.602 3.414

Spectral 0.001 51.786 51.786 43.833 41.161 41.239 44.209 44.311
0.01 52.209 52.209 43.707 41.271 41.323 44.340 44.412
0.02 52.488 52.487 44.636 41.637 41.658 44.731 44.768
0.05 54.136 54.136 46.062 42.033 42.028 45.354 45.346
0.1 60.395 60.395 51.907 47.301 47.270 50.848 50.788

PARVM Weighted 0.001 1.958 1.958 1.958 1.849 1.673 2.156 1.914
0.01 1.962 1.962 1.962 1.812 1.642 2.150 1.900
0.02 2.061 2.061 2.061 1.753 1.604 2.178 1.913
0.05 3.070 3.070 3.069 1.469 1.326 2.017 1.861
0.1 6.981 6.981 6.970 2.262 1.566 2.728 2.139

Spectral 0.001 25.854 25.854 24.764 21.727 21.752 24.188 24.215
0.01 25.835 25.835 24.732 21.486 21.535 24.015 24.056
0.02 26.243 26.243 25.109 21.260 21.438 24.039 24.088
0.05 27.795 27.795 26.798 20.404 20.851 22.892 23.356
0.1 33.307 33.307 32.410 22.203 22.346 24.857 25.002

KRVM Weighted 0.001 1.822 1.822 1.822 1.770 0.897 1.734 1.162
0.01 1.874 1.874 1.873 1.780 0.912 1.757 1.184
0.02 2.061 2.061 2.060 1.811 0.964 1.838 1.260
0.05 3.587 3.587 3.585 1.459 1.287 1.941 1.819
0.1 6.692 6.692 6.641 2.822 2.669 3.833 3.641

Spectral 0.001 32.803 32.803 30.183 25.251 25.540 27.595 27.867
0.01 32.663 32.663 29.869 24.948 25.221 27.310 27.553
0.02 33.546 33.546 30.901 25.726 25.999 28.202 28.403
0.05 35.235 35.235 32.330 26.049 26.269 28.746 28.982
0.1 42.112 42.111 39.587 31.026 30.952 34.242 34.127

PHYVM Weighted 0.001 2.589 2.589 2.585 1.099 1.099 1.435 1.477
0.01 2.594 2.594 2.590 1.101 1.100 1.436 1.474
0.02 2.618 2.618 2.614 1.098 1.104 1.430 1.488
0.05 2.813 2.813 2.809 1.096 1.119 1.452 1.517
0.1 4.159 4.159 4.154 1.124 1.205 1.628 1.759

Spectral 0.001 36.748 36.748 32.629 28.474 28.598 30.904 31.027
0.01 37.520 37.520 32.913 29.151 29.239 31.617 31.701
0.02 37.565 37.565 33.439 29.416 29.546 31.875 31.996
0.05 37.509 37.509 32.832 28.965 29.031 31.446 31.491
0.1 40.296 40.296 35.674 30.780 30.905 33.361 33.560
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Figure 2. The number of companies in each GICS sector: consumer discretionary (CD), consumer sta-
ples (CS), energy (E), financials (F), health care (HC), industrials (I), information technology (IT), materi-
als (M), telecommunications services (TS), utilities (U).

only does not improve much the performance of the estimators in terms of ME. This may be
due to the fact that the volatility matrix is no longer sparse with the presence of factor influence.
These numerical results are in consistent with our theoretical findings. Regarding choosing real-
ized volatility matrix estimators, we found that the pre-averaging type estimators (PARVM and
PHYVM) have better performance, while the PHYVM has the smallest weighted quadratic norm
error.

6. An empirical study

In this section, we applied the BRVM estimators to high-frequency trading data observed on 200
assets over a period of 63 days in 2013. We selected top 200 large trading volume stocks among
S&P 500, and used the previous-tick times to compute 1-min log returns (Wang and Zou [43]).
The data was taken from the Wharton Data Service (WRDS) system. To evaluate the BRVM
estimators, we first need to determine the groups. To do this, we used the GICS sector (con-
sumer discretionary, consumer staples, energy, financials, health care, industrials, information
technology, materials, telecommunications services, and utilities). Figure 2 shows the number
of companies in each GICS sector. The smallest group (telecommunications services) and the
largest group (financials) have 3 and 36 companies, respectively.

In practice, we need to choose appropriate thresholding levels to regularize the realized volatil-
ity matrix estimators. We used the following scheme (Wang and Zou [43]). It is reasonable to
assume that financial time series at daily level are stationary during a reasonable time period, and
so we employed one-day-ahead prediction error as a performance measure for the predication
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Table 2. The MSPEs of MSRVM, KRVM, PARVM, KRVPM and PARVPM estimators, and their cor-
responding thresholded estimators. The relative efficiencies with respect to realized volatility estimators
without thresholding are given in the parentheses

MSPE ×102

None BRVM Regularizing

None Hard Soft Hard Soft

MSRVM 0.6552 (1.000) 0.5998 (1.0923) 0.5987 (1.0943) 0.6384 (1.0263) 0.6137 (1.0676)
PARVM 0.5214 (1.000) 0.4810 (1.0839) 0.4803 (1.0856) 0.5183 (1.0060) 0.4977 (1.0476)
KRVM 0.6878 (1.000) 0.6262 (1.0984) 0.6270 (1.0971) 0.6661 (1.0327) 0.6397 (1.0752)

evaluation. Denote by �̂d , d = 1, . . . ,63, the realized volatility matrix estimators being one of
MSRVM, PARVM, and KRVM. The mean squared prediction error (MSPE) is defined as

MSPER

(
Tλ[�̂]) = 1

62

62∑
d=1

∥∥Tλ[�̂d ] − �̂d+1
∥∥2

2 and

MSPEBR

(
Tλ[�̂]) = 1

62

62∑
d=1

∥∥�̂d + Tλ[�̂d ] − �̂d+1
∥∥2

2,

where λ is the tuning parameter, �̂d , d = 1, . . . ,63, are factor volatility matrix estimators, �̂d =
�̂d − �̂d, d = 1, . . . ,63, are sparse non-factor volatility matrix estimators, and the thresholding
function Tλ can be the adaptive thresholding functions, T H

� and T S
� in (3.4). We minimized

MSPE to select the thresholding levels, and the tuning parameters M = N = �n1/2, K = �n1/2,
J = �n1/4 and H = �n1/2 for MSRVM, PARVM, and KRVM, respectively.

Table 2 reports the MSPE results for BRVM estimators and regularizing estimators based on
MSRVM, PARVM, and KRVM. We found that the BRVM estimators have the best performance.
Specifically, the BRVM estimators have 8%–10% less MSPE than their corresponding realized
volatility matrix estimators without regularizing nor blocking. On the other hand, comparing
the realized volatility matrix estimators, and the corresponding adaptive thresholding estimators,
we found that regularizing only can make some reduction on MSPE. Regarding the realized
volatility matrix estimation methods (MSRVM, PARVM, and KRVM), the PARVM estimators
have the smallest MSPE. These findings may indicate some heterogeneity and block structures
in the volatility matrices of the 200 chosen stocks.

7. Concluding remarks

This paper investigates large volatility matrix estimation for high-frequency financial data. We
consider factors in high-frequency asset pricing model and incorporate the factor influences into
the proposed large volatility matrix estimation by the blocking and regularizing approach. The
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main idea is that assets’ prices are governed by some common factors, and that assets with
similar characteristics share the same association with the factors. Under the proposed factor-
based model, we develop an estimation scheme called “blocking and regularizing”. The proposed
BRVM estimator shows advantage over thresholded MSRVM, PARVM and KRVM estimators
in the presence of factor influence, both theoretically and numerically. One issue in this study is
that correctly identifying the blocking structure of the volatility matrix plays an important role
in large volatility matrix estimation, and more research is needed in future to revolve this issue.
A future research direction is to build some links between models and data at high-frequency
and low-frequency levels and develop the joint inference for the combined data (see Kim and
Wang [31]).

8. Proofs

Let x = (x1, . . . , xp)T be a p-dimensional vector and U = (Uij ) be a p by p matrix. �d -norms
for x and U are defined as follows, respectively,

‖x‖d =
(

p∑
i=1

|xi |d
) 1

d

, ‖U‖d = sup
{‖Ux‖d,‖x‖d = 1

}
.

Under the definitions, matrix spectral norm ‖U‖2 is equivalent to the square root of largest eigen-
value of UUT , and

‖U‖1 = max
1≤j≤p

p∑
i=1

|Uij |, ‖U‖∞ = max
1≤i≤p

p∑
j=1

|Uij |.

For a symmetric matrix U , its matrix norm is equal to the largest absolute eigenvalue, and
‖U‖2 ≤ ‖U‖1 = ‖U‖∞. In this paper, we consider �d norms for d = 1,2,∞.

To ease the notations, we assume that n is given.

8.1. Proof of Theorem 4.1

Proof of Theorem 4.1. First, we derive the element-wise bound for � estimator and � estimator
constructed from a realized volatility matrix �̂. By the construction of � in (2.3), we have

E
[|θ̂ab − θab|β

]
= E

[∣∣∣∣∣ 1

papb

apa∑
i=a1

bpb∑
j=b1

(	̂ij − θab)

∣∣∣∣∣
β]

= E

[∣∣∣∣∣ 1

papb

apa∑
i=a1

bpb∑
j=b1

(	̂ij − 	ij ) + 1

papb

apa∑
i=a1

bpb∑
j=b1

(	ij − θab)

∣∣∣∣∣
β]

(8.1)
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≤ C

{
E

[∣∣∣∣∣ 1

papb

apa∑
i=a1

bpb∑
j=b1

(	̂ij − 	ij )

∣∣∣∣∣
β]

+E

[∣∣∣∣∣ 1

papb

apa∑
i=a1

bpb∑
j=b1

(	ij − θab)

∣∣∣∣∣
β]}

≤ C

{
1

papb

apa∑
i=a1

bpb∑
j=b1

E
[|	̂ij − 	ij |β

]+E

[∣∣∣∣∣ 1

papb

apa∑
i=a1

bpb∑
j=b1


ij

∣∣∣∣∣
β]}

.

For the second term in (8.1), we have

E

[∣∣∣∣∣ 1

papb

apa∑
i=a1

bpb∑
j=b1


ij

∣∣∣∣∣
β]

≤ E

[∣∣∣∣∣ 1

papb

apa∑
i=a1

bpb∑
j=b1

|
ij |δ|
ij |1−δ

∣∣∣∣∣
β]

≤ E

[∣∣∣∣∣ 1

papb

apa∑
i=a1

bpb∑
j=b1

|
ij |δ|
ii
jj |(1−δ)/2
∣∣∣∣β
]

(8.2)

≤ E

[∣∣∣∣∣ 1

papb

apa∑
i=a1

�
π(p)

B

∣∣∣∣∣
β]

≤ E

[∣∣∣∣� π(p)

Bpb

∣∣∣∣β]≤ CE
[
�β

(
π(p)/p

)β]≤ C
(
π(p)/p

)β
,

where the third inequality is due to (3.2).
Collecting (4.2), (8.1), and (8.2), we have

E
[|θ̂ab − θab|β

]≤ C
(
n−β/4 + (

π(p)/p
)β)

. (8.3)

For the elements in �̂, we have

E
[|
̂ij − 
ij |β

] ≤ E
[|	̂ij − 	ij |β

]+E
[|�̂ij − �ij |β

]
≤ C

(
n−β/4 + (

π(p)/p
)β)

,

where the last inequality is due to (4.2) and (8.3).

8.2. Proof of Theorem 4.2

Proposition 1. Under the assumptions in Theorem 4.2, we have for �̃

E
[‖�̃ − �‖2|n

]≤ E
[‖�̃ − �‖∞|n]≤ Cπ(p)

(
p2/βen

)1−δ
a.s.
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Proof of Proposition 1. Because of similarity, we provide arguments only for the hard threshold
rule. Since |
̂ii ∨ 0 − 
ii | ≤ |
̂ii − 
ii |, without loss of generality we assume that 
̂ii ≥ 0. Let

D = (Dij )i,j=1,...,p, Dij = (
̃ij − 
ij )1
(
Ac

ij

)
and

Aij = {|
̃ij − 
ij | ≤ 2 min
{|
ij |,�ij

}}
.

By triangle inequality, we have

E
[‖�̃ − �‖∞

]≤ E
[‖�̃ − � − D‖∞

]+E
[‖D‖∞

]
.

First, consider E[‖�̃ − � − D‖∞]. We have

E
[‖�̃ − � − D‖∞

]
= E

[
max

1≤i≤p

p∑
j=1

|
̃ij − 
ij |1(Aij )

]

≤ E

[
max

1≤i≤p

p∑
j=1

2�ij 1
(|
ij | ≥ �ij

)]

+E

[
max

1≤i≤p

p∑
j=1

2|
ij |1
(|
ij | < �ij

)]
(8.4)

≤ 4E

[
max

1≤i≤p

p∑
j=1

|
ij |δ� 1−δ
ij

]

≤ CE

[
max

1≤i≤p

p∑
j=1

|
ij |δ(
ii
jj )
(1−δ)/2(p2/βen

)1−δ[
√


̂ii
̂jj /
√


ii
jj ]1−δ

]

≤ CE
[
�2]1/2

π(p)
(
p2/βen

)1−δ
E

[
max
i,j

(

̂ii
̂jj


ii
jj

)1−δ]1/2

≤ Cπ(p)
(
p2/βen

)1−δ
,

where the last inequality is due to (8.5) below. We have

E

[
max
i,j

(

̂ii
̂jj


ii
jj

)1−δ]
= E

[
max
i,j

(

̂ii
̂jj − 
ii
jj


ii
jj

+ 1

)1−δ]
≤ CE

[
max
i,j

|
̂ii
̂jj − 
ii
jj |1−δ
]
+ C (8.5)

≤ C,
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where the last inequality is due to the fact that we have

E

[
max
i,j

|
̂ii
̂jj − 
ii
jj |
]

≤
p∑

i,j=1

E
[|
̂ii
̂jj − 
ii
jj |1

(|
̂ii
̂jj − 
ii
jj | ≥ p4/βen

)]
+E

[
max
i,j

|
̂ii
̂jj − 
ii
jj |1
(|
̂ii
̂jj − 
ii
jj | < p4/βen

)]
(8.6)

≤
p∑

i,j=1

E
[|
̂ii
̂jj − 
ii
jj |1

(|
̂ii
̂jj − 
ii
jj | ≥ p4/βen

)]+ p4/βen

≤
p∑

i,j=1

E
[|
̂ii
̂jj − 
ii
jj |β/2]2/β

P
(|
̂ii
̂jj − 
ii
jj | ≥ p4/βen

)1−2/β + p4/βen

≤ Cp4/βen,

where the third inequality is due to Hölder’s inequality, and the last inequality is due to (8.7) and
(8.8) below. We have for x = p4/βen,

P
(|
̂ii
̂jj − 
ii
jj | ≥ x

)
≤ E

[|
̂ii
̂jj − 
ii
jj |β/2]/xβ/2 (8.7)

≤ Ce
β/2
n /xβ/2 ≤ Cp−2,

where the first inequality is due to Chebyshev inequality, and the second inequality holds by the
fact that

E
[|
̂ii
̂jj − 
ii
jj |β/2]
≤ E

[∣∣(
̂ii − 
ii)
̂jj + (
̂jj − 
jj )
ii

∣∣β/2]
≤ CE

[∣∣(
̂ii − 
ii)
̂jj

∣∣β/2]+ CE
[∣∣(
̂jj − 
jj )
ii

∣∣β/2]
(8.8)

≤ C

√
E
[|
̂ii − 
ii |β

]
E
[|
̂jj |β

]
+ C

√
E
[|
̂jj − 
jj |β

]
E
[|
ii |β

]
≤ Ce

β/2
n ,

where the third and fourth inequalities are due to Hölder’s inequality and Theorem 4.1, respec-
tively.
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Consider E[‖D‖∞]. Simple algebra shows

E
[‖D‖∞

] ≤ E

[
max

1≤i≤p

p∑
j=1

|
ij |1
(
Ac

ij

)
1
(|
̂ij | < �ij

)]

+E

[
max

1≤i≤p

p∑
j=1

|
̂ij − 
ij |1
(
Ac

ij

)
1
(|
̂ij | ≥ �ij

)]
= (I ) + (II).

For (I ), we have

(I ) ≤ E

[
max

1≤i≤p

p∑
j=1

|
ij − 
̂ij |1
(
Ac

ij

)
1
(|
̂ij | < �ij

)]

+E

[
max

1≤i≤p

p∑
j=1

�ij 1
(
Ac

ij

)
1
(|
̂ij | < �ij

)]

≤
p∑

i,j=1

E
[|
ij − 
̂ij |1

(
Ac

ij

)
1
(|
̂ij | < �ij

)]

+E

[
max

1≤i≤p

p∑
j=1

�ij 1
(
Ac

ij

)
1
(|
̂ij | < �ij

)]
(8.9)

≤
p∑

i,j=1

E
[|
ij − 
̂ij |β

]1/β
P
(|
̂ij − 
ij | > �ij

)1−1/β

+E

[
max

1≤i≤p

p∑
j=1

�ij 1
(|	ij | > 2�ij

)]

≤ Cenp
2/β +E

[
max

1≤i≤p

p∑
j=1

�ij 1
(|	ij | > 2�ij

)]

≤ Cenp
2/β + Cπ(p)

(
p2/βen

)1−δ
,

where the fourth inequality is due to Theorem 4.1 and (8.10) below, and the last inequality is
derived similar to the proof of (8.4). We have for large n,

P
(|
̂ij − 
ij | > �ij

)
≤ P

(|
̂ij − 
ij | > �ij , |
̂ii
̂jj − 
ii
jj | ≤ p4/βen

)
+ P

(|
̂ii
̂jj − 
ii
jj | ≥ p4/βen

)
(8.10)
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≤ P

(
|
̂ij − 
ij | > 1

2
C
λ

)
+ Cp−2

≤ Cp−2,

where the second inequality is due to (8.7), and the last inequality can be derived similar to the
proof of (8.7).

For (II),

(II) ≤
p∑

i,j=1

E
[|
̂ij − 
ij |1

(
Ac

ij

)
1
(|
̂ij | ≥ �ij

)]

≤
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≤
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enP
(|
̂ij | ≥ �ij ,A
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≤ Cenp
2/β,

where the third inequality is due to Theorem 4.1, and the last inequality holds by the fact that

P
(|
̂ij | ≥ �ij ,A

c
ij

)
= P

(|
̂ij | ≥ �ij ,A
c
ij , |
ij | ≥ �ij

)+ P
(|
̂ij | ≥ �ij ,A

c
ij ,�ij /2 ≤ |
ij | < �ij

)
+ P

(|
̂ij | ≥ �ij ,A
c
ij , |
ij | < �ij/2

)
≤ P

(|
̂ij − 
ij | > 2�ij

)+ P
(|
̂ij − 
ij | > �ij

)+ P
(|
̂ij − 
ij | > �ij/2

)
≤ Cp−2,

where the last inequality can be derived similar to the proof of (8.10).
The statement follows from (8.4), (8.9), and (8.11). �

Proof of Theorem 4.2. We have

‖�̃ − �‖� ≤ ‖�̂ − �‖� + ‖�̃ − �‖�

= I + II.

First, consider I . We have the following eigen-decompositions,

� = U�UT and �̂ = Û�̂Û
T
,
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where � = diag(λ1(�), . . . , λB(�)), �̂ = diag(λ1(�̂), . . . , λB(�̂)), and U , Û ∈ R
p×B are

formed by eignevectors of � and �̂, respectively. Define

H = U	1/2 and Ĥ = Û	̂
1/2

.

Then we have

Ĥ = U	1/2	−1/2	̂
1/2 + (Û − U)	̂

1/2 = H	−1/2	̂
1/2 + (Û − U)	̂

1/2
.

Simple algrebraic manipulations show

‖�̂ − �‖� ≤ ∥∥H (
	−1/2	̂	−1/2 − IB

)
H T

∥∥
�

+ ∥∥(Û − U)	̂(Û − U)T
∥∥

�

+ 2
∥∥H	−1/2	̂(Û − U)T

∥∥
�

= G1 + G2 + 2G3.

For G1, we have

G2
1 = p−1

∥∥�−1/2H
(
	−1/2	̂	−1/2 − IB

)
H T �−1/2

∥∥2
F

≤ p−1
∥∥	−1/2	̂	−1/2 − IB

∥∥2
F

∥∥H T �−1H
∥∥2

2

= p−1
B∑

j=1

(
λj (�̂) − λj (�)

λj (�)

)2∥∥H T �−1H
∥∥2

2

≤ p−1λB(�)−2‖�̂ − �‖2
F

∥∥H T �−1H
∥∥2

2 (8.12)

≤ 4p−1λB(�)−2‖�̂ − �‖2
F

≤ 4p−1 Bc2
2

‖�‖2
F

‖�̂ − �‖2
F

≤ CB

p3
‖�̂ − �‖2

F a.s.,

where the second and third inequalities are due to Weyl’s theorem (Li [33]) and (8.13), respec-
tively, and the fourth and last inequalities are due to Assumption 5. By the Sherman–Morrison–
Woodbury formula, we obtain

�−1 = �−1 − �−1H
[
IB + H T �−1H

]−1
H T �−1.

Then we have

H T �−1H = H T �−1H − H T �−1H
[
IB + H T �−1H

]−1
H T �−1H

= H T �−1H
[
IB + H T �−1H

]−1

= IB − [
IB + H T �−1H

]−1
.



Large volatility matrix estimation with factor-based diffusion model 3679

Since H T �−1H is positive semi-definite, we have∥∥H T �−1H
∥∥

2 ≤ 1 + ∥∥[IB + H T �−1H
]−1∥∥

2 ≤ 2. (8.13)

For G2, since we have

inf
O∈GB×B

‖Û − UO‖2
F ≤ 2

∥∥sin(�̂,�)
∥∥2

F
,

where GB×B = {O ∈ VB×B,UO�OT UT = �}, VB×B = {O ∈ R
B×B, OOT = IB}, and

‖ sin(�̂,�)‖2
F = ‖�̂�̂

T
(Ip − ��T )‖2

F , without loss of generality we assume

‖Û − U‖2
F = inf

O∈GB×B

‖Û − UO‖2
F .

Then, by Davis–Kahan’s sin θ theorem (Li [34]), we have

‖Û − U‖2
F ≤ 2

‖(�̂ − �)U‖2
F

λB(�)2
. (8.14)

Thus, we have

G2 ≤ p−1/2‖Û − U‖2
F ‖	̂‖2

∥∥�−1
∥∥

2

≤ Cp−1/2λB(�)−2‖�̂ − �‖2
F ‖	̂‖2 (8.15)

≤ C
B

p5/2
‖�̂ − �‖2

F ‖	̂‖2.

For G3, we have

G2
3 = ∥∥H	−1/2	̂(Û − U)T

∥∥2
�

≤ p−1‖Û − U‖2
F

∥∥	−1/2	̂
∥∥2

2

∥∥H T �−1H
∥∥

2

∥∥�−1
∥∥

2
(8.16)

≤ Cp−1λB(�)−3‖�̂ − �‖2
F ‖	̂‖2

2

≤ C
B3/2

p4
‖�̂ − �‖2

F ‖	̂‖2
2,

where the second inequality is due to (8.14).
We have

E
[‖	̂‖2

] ≤ E
[‖	‖2

]+E
[‖	̂ − 	‖2

]
≤ E

[‖�̂ − �‖2
]+ Cp/B1/2

≤ E

[
max

1≤i≤p

p∑
j=1

|�̂ij − �ij |
]

+ Cp/B1/2 (8.17)
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≤ B max
1≤i≤p

p∑
j=1

E
[|�̂ij − �ij |

]+ Cp/B1/2

≤ Bpen + Cp/B1/2,

where the last inequality is due to Theorem 4.1. Collecting (8.12), (8.15), (8.16), and (8.17), we
obtain

‖�̂ − �‖� ≤ C

(
B1/2

p3/2
‖�̂ − �‖F + B

p5/2
‖�̂ − �‖2

F ‖	̂‖2 + B3/4

p2
‖�̂ − �‖F ‖	̂‖2

)
(8.18)

≤ Op

([
B1/2p1/2e2

n + B1/4en

][
1 + B3/2en

])
.

Consider II. By Proposition 1, we have

‖�̃ − �‖2
� = p−1

∥∥(�̃ − �)�−1
∥∥2

F

≤ p−1‖�̃ − �‖2
2

∥∥�−1
∥∥2

F
(8.19)

≤ Op

(
π(p)2(p2/βen

)2−2δ)
.

The statement is proved by (8.18) and (8.19). �
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