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We study parametric inference for diffusion processes when observations occur nonsynchronously and are
contaminated by market microstructure noise. We construct a quasi-likelihood function and study asymp-
totic mixed normality of maximum-likelihood- and Bayes-type estimators based on it. We also prove the
local asymptotic normality of the model and asymptotic efficiency of our estimator when the diffusion
coefficients are deterministic and noise follows a normal distribution. We conjecture that our estimator is
asymptotically efficient even when the latent process is a general diffusion process. An estimator for the
quadratic covariation of the latent process is also constructed. Some numerical examples show that this
estimator performs better compared to existing estimators of the quadratic covariation.
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1. Introduction

Analysis of volatility and covariation is one of the most important subjects in the study of risk
management of financial assets. Studies of high-frequency financial data are increasingly signif-
icant as high-frequency financial data become increasingly available and computing technology
develops. While realized volatility has been studied as a consistent estimator of integrated volatil-
ity at high-frequency limits, estimators of covariation of two securities are also important. The
realized covariance, a natural extension of the realized volatility, is a consistent estimator of
integrated covariation in ideal settings.

However, there are two significant problems in empirical analysis, one of which is the exis-
tence of observation noise. When we model stock price data by a continuous stochastic process,
we should assume that the observations are contaminated by additional noise as a way to explain
empirical evidence. Consistent estimators of volatility under the presence of microstructure noise
are investigated — for example, in Zhang, Mykland, and Ait-Sahalia [31], Barndorff-Nielsen et
al. [3], and Podolskij and Vetter [26]—by using various data-averaging or resampling methods to
reduce the influence of noise. The other significant problem is that of nonsynchronous observa-
tion, namely, that we observe prices of different securities at different time points. The realized
covariance has serious bias under models of nonsynchronous observations, though we can calcu-
late the estimator by using some simple “synchronization” methods such as linear interpolation
or the “previous tick” methods. Hayashi and Yoshida [15-17] and Malliavin and Mancino [22,
23] independently constructed consistent estimators for statistical models of diffusion processes
with nonsynchronous observations. There are also studies of covariation estimation under the
simultaneous presence of microstructure noise and nonsynchronous observations. We refer inter-
ested readers to Barndorff-Nielsen et al. [4] for a kernel based method; Christensen, Kinnebrock,
and Podolskij [7], Christensen, Podolskij, and Vetter [8] for the modulated realised covariance
and a pre-averaged Hayashi—Yoshida estimator; Ait-Sahalia, Fan, and Xiu [2] for a method using
the maximum likelihood estimator of a model with constant diffusion coefficients; and Bibinger
et al. [5] for a technique employing the local method of moments.

While the above studies concern estimators under non- or semi-parametric settings, there are
also studies about parametric inference of diffusion processes with high-frequency observations.
Genon-Catalot and Jacod [11] constructed a quasi-likelihood function and studied an estimator
that maximizes it. Gloter and Jacod [13] studied an estimator based on a quasi-likelihood function
with noisy observations. Ogihara and Yoshida [25] studied a maximum-likelihood-type estima-
tor and a Bayes-type estimator on nonsynchronous observations without market microstructure
noise.

One advantage of maximum-likelihood- and Bayes-type estimators is that they are asymptot-
ically efficient in many models. If a statistical model has the local asymptotic mixed normality
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(LAMN) property, then the results in Jeganathan [20,21] ensure that asymptotic variance of es-
timators cannot be smaller than a certain lower bound. When some estimator attains this bound,
it is called asymptotically efficient. For parametric estimation of diffusion processes on fixed
intervals, Gobet [14] proved the LAMN property of the statistical model having equidistant ob-
servations, and an estimator in [11] is asymptotically efficient. Ogihara [24] proved the LAMN
property and asymptotic efficiency of estimators for the setting of [25]. Gloter and Jacod [12]
proved the local asymptotic normality (LAN) property for a statistical model with market mi-
crostructure noise when diffusion coefficients are deterministic, and the estimator by Gloter and
Jacod [13] is asymptotically efficient. There are few studies about the efficiency of estimators
that assume the presence of market microstructure noise and nonsynchronous observations. One
exception is Bibinger et al. [5], who showed a lower bound of asymptotic variance of estimators
in semi-parametric Cramér-Rao sense. We need the LAN or LAMN property of the statistical
model to obtain asymptotic efficiency of a parametric model. To the best of our knowledge, this
has not been studied for statistical models of noisy, nonsynchronous observations.

This paper examines consistency and asymptotic mixed normality of a maximum-likelihood-
type estimator and a Bayes-type estimator based on a quasi-likelihood function, under the si-
multaneous presence of market microstructure noise and nonsynchronous observations. We also
study the LAN property of this model when diffusion coefficients are deterministic, as well as
the asymptotic efficiency of our estimators. We expect that our estimators are asymptotically
efficient in the general cases. However, it is further difficult to obtain LAMN properties for mod-
els of general diffusions. This does not seem to have been obtained even for noisy, equidistant
observations, and is left as future work. We will see by simulation that sample variance of the
estimation error of our estimator is better than that of existing estimators for some examples in
Section 3. These results ensure that our estimator not only is the theoretical best for asymptotic
behavior, but also works well in practical finite samplings.

Our study has several advantages in addition to the above arguments regarding asymptotic
efficiency.

(i) Our model also allows observation noise that follows a non-Gaussian distribution. We
use a quasi-likelihood function for Gaussian noise, but our method is robust enough to allow
misspecification of the noise distribution.

(ii) Since we obtain the results regarding asymptotic behaviors of the quasi-likelihood
function as a byproduct, many applications become available from the theory of maximum-
likelihood-type estimation. For example, we can construct a theory of the likelihood ratio test
and one-step estimators as an immediate application. Further, the theory of information criteria
is expected to follow from our results of quasi-likelihood functions.

(iii) Our settings contain random sampling schemes where the maximum length of observa-
tion intervals is not bounded by any constant multiplication of the minimum length. This is the
case for some significant random sampling schemes, such as samplings based on Poisson or Cox
processes. Our model encompasses such natural sampling schemes.

To obtain asymptotic mixed normality of our estimator, we investigate asymptotic behaviors
of a quasi-likelihood function of noisy, nonsynchronous observations. To this end, we need to
specify the limit of some matrix trace related to a ratio of covariance matrices for two different
values of parameters, as appearing in (5.2). The inverse of the covariance matrix of observa-
tion noise has nontrivial off-diagonal elements, and so the inverse of the covariance matrix of
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observations is far from a diagonal matrix. This phenomenon is essentially different from the
case of synchronous observations without noise (where the covariance matrix of observations is
diagonal), and the case of nonsynchronous observations without noise (where the inverse of the
covariance matrix is not a diagonal matrix but is “close” to being one).

In a model of noisy, synchronous observations, the covariance matrix of a latent process is
asymptotically equivalent to a unit matrix of the appropriate size, and is therefore simultaneously
diagonalizable with the noise covariance. Gloter and Jacod [12,13] used these facts and closed
expressions for the eigenvalues of the noise covariance to identify the limit of the quasi-likelihood
function, but we cannot apply their idea because our sampling scheme is irregular and so not
well approximated by a unit matrix. Further, the sizes of the covariance matrices are different for
different components of the process, which follows from nonsynchronousness. In this paper, we
deduce an asymptotically equivalent transform of the trace of the ratio of covariance matrices.
This transform changes sizes of matrices and matrix elements into local averages, and arises from
specific properties of the noise covariance matrix. We will see these results in Sections 4 and 5.

The remainder of this paper is organized as follows. In Section 2, we describe our detailed
settings and main results. We propose a quasi-likelihood function for models with noisy, non-
synchronous observations, and construct a maximum-likelihood-type estimator based on it. We
introduce asymptotic mixed normality of our estimator and results about asymptotic efficiency in
Section 2.2. Section 2.3 contains results about the LAN property of our model and the asymptotic
efficiency of our estimator, and Section 2.4 is devoted to results about Bayes-type estimators and
convergence of moments of estimators. Polynomial-type large deviation inequalities, introduced
in Yoshida [29,30], are key to deducing these results. In Section 3 we will examine simulation re-
sults of our estimator for a simple example where the latent process is a Wiener process. We also
construct an estimator of the quadratic covariation and compare the performance of our estimator
with that of other estimators. The remaining sections are devoted to a proof of the main results.
Section 4 introduces an asymptotically equivalent expression of the quasi-likelihood function.
This expression is useful for deducing asymptotic properties of the quasi-likelihood function
in Section 5. We also need some results on identifiability of the model to obtain consistency
of the maximum-likelihood-type estimator. These are discussed in Section 6. Section 7 shows
asymptotic mixed normality of our estimator. The LAN property of the model for deterministic
diffusion coefficients is obtained in Section 8. Section 9 contains a proof of results regarding the
Bayes-type estimator and the convergence of moments of estimators.

2. Main results
2.1. Settings and construction of the estimator

Let (Q©, FO pO)ypeq probability space with a filtration FO = {.E(O)}Osth. We consider a
two-dimensional F(O’-adapted process ¥ = {¥;}o<,<7 satisfying the stochastic integral equation:

t t
Yz=Y0+/ Msds+/ b(s, Xy, 0 dWs,  1€[0,T), @1
0 0
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where {W;}o<;<r is a dj-dimensional standard F©_Wiener process, b = (b’ /)15,52,1515611 is
a Borel function, u = {it;}o</<r is a locally bounded FO. -adapted process with values in RZ,
and X = {X,}o</<r is a continuous F©-adapted processes with values in O, an open subset of
R% with d» € N. We consider market microstructure noise {ef’k}neN,iez +.k=1,2 as an indepen-
dent sequence of random variables on another probability space (1, FU P(D) We assume
that F() = %((sy’k)n,k,i) and that the distribution of &"* does not depend on j, where B(S)
denotes the minimal o -field such that any element of S is 28(S)-measurable for a set S of ran-
dom variables. We use the same notation *B(S) for a similarly defined o-field for a set S of
measurable sets. We consider a product probability space (€2, F, P), where Q = QO x QM
F=FOQFD and p=PO g pWD,

We assume that the observations of processes occur in a nonsynchronous manner and are
contaminated by market microstructure noise, that is, We observe the vectors {Y Yo<i<dnk=1.2

and {X* }0<J<Jk l<k<dy» Where {SI" k}Jk" nd {T" k} " are random times in (©, FO),

{;7]. }JeZ+,ISdez is a random sequence on (2, F), and
rk Y,,A—i-e , Ve X",,k—i—n] ) (2.2)

Our goal is to estimate the true value o, of the parameter from nonsynchronous, noisy observa-

. k k vk vk

tions {8} Jo<i<yink=1.2- {T; o<y 1k=dr (V] Josiziink=1.2,and {XT)o <y, 1<k<as-
By setting db =2, X; =Y, s = u(t, Yy), Si"’k = Tj"’k, and n';’k = sf”k, our model contains

the case where the latent process Y is a diffusion process satisfying a stochastic differential

equation

le‘=/~’L(t7Yt)dt+b(t7Yl50*)thﬂ IE[O,T], (23)

and Y is observed in a nonsynchronous manner with noise. This model is of particular interest,
but our results are also be applied to more general models (2.1).

Remark 2.1. Stochastic volatility models are significant models for modeling stock prices. Un-
fortunately, our settings are not applied to hidden Markov models including stochastic volatility
models because we require (possibly noisy) observations of process X. However, we hope that
our results give an essential idea to deal with noisy, nonsynchronous observations, and therefore
we can construct an estimator for stochastic volatility models by replacing our quasi-likelihood
function. We have left it for future works.

Al
For a vector x = (x1, ..., xx), we denote 3;15 = (5 " 3 )f.‘l =1 We assume the true value
xil S

i
o, of the parameter is contained in a bounded open set A C R that satisfies Sobolev’s
inequality; that is, for any p > d, there exists C > 0 such that sup,., |u(o)| <
CY o1 [y 105u(0)|P do)'/P for any u € C'(A). This is the case when A has a Lipshitz
boundary. See Adams and Fournier [1] for more details.

Let T, = ({S]"“}i.i. {T]"“}t. ) and {G/Jo<i<r be a filtration of (2, F, P) given by

G =FOvB((M,)) vBAN{S"F <t} Ae B(e), ke (1,2),i €Zy,neN),
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where H; Vv H, denotes the minimal o -field which contains o-fields H; and Hy. Let Eq[X] =
E[X|{I1,},] for a random variable X. We assume that ]-'}0) and B{I1,},) are independent.

Moreover, we assume that there exist positive constants vy, and vy . such that n;” l{T < is
G;-measurable, Eg; i k] =0, and E[(s” k)z] = vy 4 for any n, k, i, j, t, where 14 is the indicator
function for a set A 8ij is Kronecker’s delta. We also assume that the distribution of Yy does not
depend on oy, V] 4, NOT V2 .

Now we construct the quasi-likelihood function. We apply the idea of Gloter and Jacod [13]
to our construction of a quasi-likelihood function; that is, we divide the whole observation in-
terval [0, T'] into equidistant subdivisions and construct quasi-likelihood functions for each in-
terval as follows. Let {b, },en and {k, },en be sequences of positive numbers satisfying b, > 1,
k, < by, b, — 00, knb;]/%s — 00, and k,,b;2/3+5 — 0 as n — oo for some ¢ > 0. We will
assume in Assumption (A2) a relation between b, and our sampling scheme, which implies

that b, represents the order of observatlon frequency. Let ¢, = [bn 1, 50=0, s = TYC, Um,
bk, x,0) = O (1, x, 0))] . K& =—1, and KX, = #{i e N; S"" <5} for k € {1,2} and

1 <m < {,. Moreover, let k,% = K/ Kr{1 |

k _ ronk n,k vk ( 1k vk vk
Ii,m_[Si+1<§171’si+1+1<,’;71)’ Y (Ii» ) Y+1+Kkl Yz+K" ’

m—1
Xm:<#{j;r,~"'ke[m—hsm>}‘ > X) :
1<k<d,

.. ik
];T.i T Elsm—1,5m)

J
—1,k, = maxp, ,km,kn =miny,, ; ki,

and bj/(o) = bI (1, X1, 0) for 1 <m < €y, 2 <m' <&, je{l,2}and | <i <kj.
Then, roughly speaking, we have the following approximations of conditional covariance of
observations:

E[V*(iF, )Yk(Ik )G 1]
E[Y(1) )V (13 ,)1Gs, ]

for any intervals / lm, Ilk me Ill,, mo L l_zw m
Let T denotes the transpose operator for matrices (and vectors), M(l) = {28;i, —
1”,-1_,~2|:1}}§1 i=1 for l eN, Mj,, = M (kj,) for 1 < j < 2. Based on the relation (2.4), we

define a quasi-log-likelihood function H, (o, v) by

Q

| ; m| =+ 2w, *)31'1‘/ — Vs lyjizir=13,

w1 ] @9

(Ibkl
bl - b2

ul i

Q

b b
H,(o,v) = —% Z Z) S o, )2y — % Z logdet Sy, (0, v), (2.5)
m=2 m=2
where Z,, = (Y (Illm))l<l<kl,(Y2(12 ))1<,<k2 )" and
2
5,0 v)_( ol “[ilSi} i {om 'b%|1il,mm112,m|}ij> n <v1M1,m 0 > 2.6)
m k] - .
DA Vel M PR (AR 0 vabay

for v = (v, v2).
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Remark 2.2. Though such a local Gaussian quasi-log-likelihood function seems valid only when
observation noise sgl’k follows a Gaussian distribution, asymptotic properties of the maximum
likelihood estimator are robust enough to allow non-Gaussian noise. Hence, we can use the same
quasi-likelihood function for general noise.

Remark 2.3. We used subdivisions of [0, T'] for the construction of H, because of technical
issues related to deducing the limit of H,. Since the diffusion coefficient b in S, is fixed, ma-
trix properties of M ,, introduced in Section 4.2 can be used to deduce the limit of H,. On
the other hand, such a construction of H, also contributes to reducing the calculation time of
the maximum-likelihood-type estimator because the size of S,, is O(k,) while the size of the
covariance matrix of all observations is O (b;,).

Remark 2.4. In [13], k, is taken so that n!/?k; ! — 0 and k,n=3/* — 0. Our rate b2 for
the upper bound of k&, is a little bit worse because of some technical issue (for equidistance
observations, we have b, = n). When we investigate asymptotic behaviors of the maximum-
likelihood-type estimator, we deal with some supremum estimates for the o of quasi-likelihood
ratios. Unlike the one-dimensional settings of [13], our multidimensional setting requires some
properties to deal with the supremum. We use Sobolev’s inequality here for this purpose. Then
we need an additional moment estimate for quasi-likelihood ratios, which causes a worse rate of
k,,. See the proofs of Lemmas 4.3 and 4.4 for details.

To construct the maximum-likelihood-type estimator G, for the parameter o, we need estima-
tors for the unknown noise variance vy = (v1,«, V2,x). We assume the following condition.

Assumption (V). There exist estimators {0,},en of vy such that 0, > 0 almost surely and
1/2 ..
(b (D — V) Inen is tight.

For example, 9, = (0, 4)7_; with 0, x = Jx.) "' 3, (YF — YK )2 satisfies (V) if {an;;L}n
is tight for k = 1,2 and sup, ;. ; E[(e]"*)*] < oc.
Let clos(A) be the closure of a set A. A maximum-likelihood-type estimator 6, is a random
variable satisfying
H, (64, 0p) = max  Hy, (o, 0y).
oeclos(A)

We study asymptotic mixed normality and asymptotic efficiency of the estimator in the following
subsections.

Remark 2.5. We can also construct a simultaneous maximum-likelihood-type estimator (7, v;,)
satisfying H, (0,, v,) = maxs,, H, (0, v). However, it is valid only when the observation noise
8?’k follows a normal distribution. Our interest is on estimating the parameter o of the latent
process, and so the assumptions for observation noise should be reduced as much as possible.
Therefore, the nonparametric estimator ¥, is more suitable for our purpose.
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2.2. Asymptotic mixed normality of the maximum-likelihood-type
estimator

In the rest of this section, we state our main theorems. Proofs of these results are left to Sec-
tions 4-9. In this subsection, we describe the asymptotic mixed normality of the maximum-
likelihood-type estimator G,.

We first describe assumptions for the theorem. Assumption (A1) is a sequence of assumptions
on the latent processes Y and X and observation noise 8?’]( and n;f’k. We denote by & the unit
matrix of size /.

Assumption (A1). 1. For 0 <2i + j <4 and 0 < k < 4, the derivatives /37 3%b(, x, o) exist
on [0, T] x O x A and have continuous extensions on [0, 7] x O x clos(A).

2.bb7(t,x,0) is positive definite for (¢, x,0) € [0, T] x O X clos(A).

3.8up,, 1 E[(s?’k)q] < oo for any g > 0.

4. u; is optional and locally bounded (locally in time), that is, there exists an increasing se-
quence {1;}; of stopping times such that lim;_, o 7} = T a.s. and {p/A7;}o<<7 is bounded for
each [.

5.b,° maxm,k(En[w,l,/sz,kW V €nE[Tp x|Gs,,_ 119]) =P 0 as n — oo for any g > 0 and

_ ..k -1 n,k
e > 0, where T, = #{J; T;"" € lsm—1, sm)} Zj;Tj"'ke[s,,,_l,sm) U

6. There exist progressively measurable processes {b,(j)}0<,<r 0<j<1 and {l;,(j)}ostsr,ogjgl

SIS =

such that sup, E[|619 v |5919] < 0o, sup,_, E[|bY) — b14 v |59 — b7 14114 (¢ — 5)=1/2 <
oofor0<j<1landg >0,and

t t t t
x,=x0+f b§®ds+f b® aw,, b§1>=b(§1)+/ b§‘”ds+/ 6D aw,
0 0 0 0
fortr €0, T].

Assumption (A1) captures somewhat standard assumptions and whether it holds can easily ver-
ified in practical settings. Roughly speaking, point 5 of (A1) is satisfied if the summation of n;f’k

is of an order equivalent to the square root of the number of n?’k. This is satisfied under certain

independency, martingale conditions or mixing conditions of n’?’k. It {n?’k}j is a sequence of cen-
tered, independent and identically distributed random variables and the sequence has finite mo-
ments, then En[| Ty «19]1= O, #J; T/’.“’k € [Sm—1,5m)}~9/%). Then, point 5 of (A1) is satisfied if
’/?’k l{Tj"’k>sm
of X in point 6 of (A1) is used to deduce asymptotically equivalent representation of H, where
the diffusion coefficient b(, X;, o) is replaced by b(s,,—1, X;,,_,, 0+). Detailed semimartingale
decomposition is required to estimate the difference b(t, X;, 0x) — b(s;—1, X5, _;, 0x).

In the following, we assume some conditions about our sampling scheme. For n € (0, 1/2), let
S, be the set of all sequences {[s;l,l, s;l”l)}neNJSlSLn of intervals on [0, T'] satisfying {L,}, C N,

. 1—n 1—n
[51/1,11 , s{l/’lz) N [s};’lz, s;l/’lz) =@ forn,l| # Iy, inf, ; (b, (sr/l’,l — sr/l,l)) >0, and sup,, ; (b, (s,/l’,l —

sampling frequency of {TJ."’k} is of order b, and E[n _1}|g5m71] = 0. Decomposition

& & . & k
s;.1)) < 00. Let ry = max; ¢ |S;°" — S/ | and 1, = min; ¢ |S;"" — S77 .
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Assumption (A2). There exist n € (0,1/2), k > 0, 7 € (0, 1] and positive-valued stochastic

processes {a, }rer0,71,j=1,2 such that supt¢s(|a, al |/|t — 5|M) < 0o almost surely, b, /24 o
kn (b, k) — 0 and
—1/2+ (. ) o i | P
knby "  max |67 (s = s.0) ™ #is [S724. 557) € [snps0) b _“SJ,;J -0 @7

asn — oofor j=1,2and {[s], ;, s )} 1<i<L, neN € S;. Moreover, (rnb,lfs)\/ (bn_l_gg;l) —P0
for any ¢ > 0.

In particular, Assumption (A2) implies b, ly jm =P fOT atj dt and max,, |T_1kn_ lkﬁ; —
axjm_] | =7 0 as n — oo. Roughly speaking, (A2) shows the law of large numbers for sampling
schemes in any local time intervals. In the proof of Lemma 5.2, we will see that some properties

of M; , enable us to replace |1k/ | in Sy, (o, v) by the local average in asymptotics. Then (A2)
leads to the limit of H,,.

Example 2.1. Let {N,k} />0 be an exponential «-mixing point process with stationary increments
for k = 1,2. Assume that E[|Nf|7] < co forany ¢ > Oand k = 1,2. Set §/"" = inf{r > 0; Nf , >
i}. Then Rosenthal-type inequalities (Theorem 3 and Lemma 7 in Doukhan and Louhichi [10],
or Theorem 4 in [25]) and a similar argument to the proof of Proposition 6 in [25] ensure (A2)

with at = E[N; J ] (constants). Also, (B2) (defined later) is satisfied if further k,b,, 4T 0 for
some y > 0.

Under the above conditions, we can show convergence of the quasi-likelihood ratio H, (o,
On) — Hy (04, Oy). Let by = b(t, X4, 0), by = b(t, X, 04), a4} =aj Jvj s for j=1,2 and

T2 (6] 12— 6] 26 @ a? ] \debib]))
o= [
0 L4,/det(b;b )@/ |bj 1> + a7 |b7 2 +2,/a/ af det(b;b/))!/2
(b} b} — b}, b2 )b} b2 Jala?
2,/det(b,bT)(a, b} |2 4 a?|b? 2 + 2\/ala? det(b, b, ))1/?
(al b} >+ a2|b?|? + 2,/ a? det(b,b," )/

2

@b} +a\b? 1> +2,/ala? det(by b, *»1/2}
+ - . dr.

2.8)

2

Proposition 2.1. Assume (A1), (A2) and (V). Then sup, 5 |by /9%

8§y1(0)|—>1’0asn—>oof0r05k§3

8 (Hy (0, 0y) — Hy (0%, Uy)) —
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To show consistency and asymptotic normality of &,, the limit function V(o) of the quasi-
likelihood ratio should have the unique maximum point at ¢ = o,. More precisely, we use the
following as a kind of identifiability condition: infs 4, (=)1(0))/lo — cr*l2 > 0 almost surely.
Though it is difficult to directly check this condition in general, we can check it under a more
tractable sufficient condition. Let

17 -1 det(b, b,
o)== [ {(@0]) " 0r.l) - £2) +10e W}

Then ) is the probability limit n—VY 2(H,? (o)— H,? (o)), where H,? represents a quasi-likelihood
function for a statistical model of equidistant observations without noise. See Uchida and Yoshida
[28].

Assumption (A3). infy s, ((=)o(0))/lo — 0% %) > 0 almost surely.

We will show in Proposition 6.1 that (A3) is sufficient for the identifiability condition of our
model. Moreover, the following condition is a simple sufficient condition for (A3) (see Remark 4
in Ogihara and Yoshida [25] for the details).

Assumption (A3). infy, 25, (Ibb T (¢, x,01) — bb ' (t,x,02)| /|01 — 02]) > O for any ¢ € [0, T]
and x € O.

We denote by —5L the stable convergence of random variables. Let
A -1/2 SN
Piw=—by P07 Hy (G0, 0),  Ti=—0D1(00). (2.9)

Let AV be a d-dimensional random variable on some extension (fz, F , 15) of (2, F, P) satisfying
the condition that N is independent of F and A follows the d-dimensional standard normal
distribution. We denote the expectation with respect to P by the same notation E.

The following theorem is one of our main results.

Theorem 2.1. Assume (A1)—(A3) and (V). Then T'y is positive definite almost surely and

b,ll/4(&n — 0,) >5£ Fl_l/zN as n — 00. Moreover, 1:‘1,,1 —P Ty, and therefore b,y4 X

~1/2 ~ _
Flfn 1{1:“! is pdy On — o) =L N asn — oo.

Corollary 2.1. Assume (A1), (A2), (A3") and (V). Then the results in Theorem 2.1 hold true.

k ~ ~ ~1~ k j k
Let Y, = 0% (@} b} > + @216 2 + 2/ a} a? det(b,b ) (o=, BY) = 0¥ |b] Plo—o,. By, =
3%b) - b lg—,. and By = 0k, /det(bib] )|s—s, for k=0,1 and j = 1, 2. Then we can rewrite
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I'1 as

Fl :/‘T{Tt(l)(’r[(l))'r ‘/gltlatz <B(1)(B(1))T
o L 2r® g0y O\ -
BB+ BB =
- 2 +B3,t (B3,z) )}dt'

The derivation of (2.10) is left to the appendix.

2.3. On the LAMN property and asymptotic efficiency of the estimator

In this subsection, we state some results on the so-called LAMN (LAN) property for our model
and asymptotic efficiency of our estimator. We also comment on some further studies.
Throughout this subsection, we assume that X, = Y;, T;l’k = Sf’k, n;f’k = 8?’]‘, e = u(t, %)
and Yy = y for some Borel function 4 and some known y € R?. Then the latent process Y is
a diffusion process satisfying the stochastic differential equation (2.3) with u = u(¢, oy). Let
Py v 0 be the distribution of ((S?’k)k,,', (Yik)k,i) with true values (o, v,) of the parameters. We

denote
. A 0
diag(A, B) = (O B)

for square matrices A and B. Let )»>(v) = —fOT Z%:l atj{(vj,*/vj) —1+1log(vj/v;)}dt/2,
Ih= —afyz(u*) and TI' =diag(l'y, I'2). (2.11)
We adopt the following definition of the LAMN property from Jeganathan [21].

Definition 2.1. Let Py, be a probability measure on some measurable space (X}, A,) for each
6 € ® and n € N, where ® is a bounded open subset of R?. Then the family { Py »}o., satisfies the
local asymptotic mixed normality (LAMN) property at 0 = 6, if there exist a sequence {5, },eN
of d x d positive definite matrices, d x d symmetric random matrices [, I" and d-dimensional
random vectors NV, N such that T is positive definite a.s., Py, [T, is positive definite] =1 (n €
N), 18,1l = 0, and

dP, 1
log 2 Otbuun _ u JTuN, — =t ' Tpu ) — 0
dPg*’n 2

in Py, ,,-probability as n — oo for any u € R?. Moreover, N follows the d-dimensional standard
normal distribution, A is independent of I and L(N,, Ty | Py, ) — LN, T) as n — 0.

If further the limit matrix I' is non-random, we say { Pg_, }¢ » has the local asymptotic normality
(LAN) property.
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To prove the LAMN property of our model, we assume the following additional condition.

Assumption (A1"). (Al) is satisfied, p, = uu(t, 0%), sup, , u(t,0) < 00, b(t,x,0) does not
depend on x and 8;1’k follows a normal distribution for any n, k, i.

Theorem 2.2. Assume (A1"), (A2) and (A3). Then the family of distributions { Py, v, n}o,.v..n

has the LAN property with T in (2.11) and 8, = diag(b, "/*&4, by V/2&5).

Remark 2.6. Jeganathan [20] studied lower bounds of estimation errors for any estimator of
parameters. They showed a version of Héjek’s convolution theorem (Corollary 1) and that the
optimal asymptotic variance of errors for regular estimators is I'"!, where T" is in Definition 2.1.
Therefore, Theorems 2.1 and 2.2 ensures that our estimator 6;, of the parameter ¢ is asymptoti-
cally efficient in this sense under the assumptions of both theorems.

Remark 2.7. The assumptions of Theorem 2.2 are rather strong conditions. We are also inter-
ested in the LAMN property in more general settings. In particular, we are interested in the case
that u;, = u(t, X;,04) and p and b are general functions with suitable conditions. However,
we need further analysis using Malliavin calculus to deal with the LAMN property of general
diffusion processes, as seen in Gobet [14] and Ogihara [24]. Moreover, when we deal with non-
synchronousness or noise, the true likelihood function is obtained by integrating a likelihood
function of ideal observations with respect to unobservable variables. Such integral is not easy to
handle, and consequently, it makes the proof of LAMN much more complicated as seen in [24].
To the best of author’s knowledge, the LAMN property for a general diffusion model has not
been shown even for models with noisy, synchronous observations. We have left this for future
works. On the other hand, asymptotic results of the quasi-likelihood function shown in this pa-
per (e.g., Propositions 2.1 and 7.2) are expected to be useful when we try to show LAMN for
general cases. Indeed, LAMN for a model with nonsynchronous observations is proved in [24]
by showing asymptotic equivalence of the true likelihood ratio and a quasi-likelihood ratio, and
using asymptotic results of the quasi-likelihood ratio in Ogihara and Yoshida [25].

2.4. A Bayes-type estimator and convergence of moments of estimation
errors

Polynomial-type large deviation theory by Yoshida [29,30] enables us to address the asymptotic
properties of a Bayes-type estimator and the convergence of moments of estimation errors, which
is a stronger result than asymptotic mixed normality. Convergence of moments is useful when we
investigate the theory of information criteria, minimax inequality and asymptotic expansion of
estimators. See Uchida [27] for a theory of contrast-based information criteria for ergodic diffu-
sion processes with equidistant observations. We also see asymptotic efficiency of our estimator
in the sense of minimax inequality.
We first assume following stronger conditions than (A1)—-(A3) and (V).
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Assumption (B1). 1. (A1) holds true with O = R®.

2. There exists a positive constant C such that sup,¢(9 7.5 EX 8){8§b(t, x,0) < C(1+|x)€
for0<2i+j<4,0<k<4andx e R%.

3.inf; , , detbb ' (¢, x,0) > 0.

4. E[|Yy|?] < oo for any g > 0.

5. sup, Ellu|?] < 00, sups_,(Ellps — ps|919(t — 5)71/%) < o0 and sup,_, E[(E[pu, —
ps|Gsl/ (& — 5))9] < oo for any g > 0.

6. For any ¢ > 0, max; sup, E[|bt(j)|‘1 \Y |5t(j)|q] < 0o and max; sups<t(E[|bt(j) — sy
16y — b 1114 (1 — 5)712) < 0.

Assumpti_on (B2). There existn € (0, 1/2), i € (0, 1], § > 0 and positive-valued stochastic pro-

1/2

cesses {aj }e(0,7],j=1,2 such that b, "k, (b 'kn)" — 0 as n — oo, E[supj’,>s(|a,j - asj|q|t -

s|79M)] < 0o, Elsup; , |a] |1 v E[sup; ,(|a/|~9)] < oo, and
by (s, —s, )_1#{1'; [Sin;jl, Sl-n’j)

n, n,l

sup sup E [(knb”_ V2 ax

" {ls) 50 DIES, 1=I=kn

. q
C[spsn )} — as’,;,,)) ]

is finite for any ¢ > 0. Moreover, there exists a positive constant y such that k,,b,, YT 0 and

E[((rnb,ll_a) \Y (g;lb;l_g))q] — 0asn — oo forany g > 0 and ¢ > 0.

Assumption (B3). For any ¢ > 0, there exists a positive constant ¢, such that
Plinfy 2o, (=)0 (0)) /|0 — 0x|?) <r 11 <¢,/rd for any r > 0.

Assumption (B4). There exist estimators {0,},eny Of vy such that 0, > 0 almost surely,
limsuan[ﬁn_q] < 00, suan[|b,1/2(f)n — vy)]9] < oo, and sup, E[b,* maxm,k(El—I[w,l/2 X

T k|9 V 1€, E[T k|G, 119]D)] < oo for any g > 0 and ¢ > 0.

Though Assumption (B3) is rather difficult to check in a practical setting, Uchida and
Yoshida [28] investigated sufficient conditions for (B3). The simplest condition is that (B3)
is satisfied if there exists ¢ > 0 such that |bbT(t,x, o1) — bb' (1, x, 02)| = e|lo] — o2] for any
te[0,T], x € O and 01,07 € A. See Remark 4 in [25] for details.

Let U, = {u € R% 0, + by, *u € A}, V,(r) = {lu| = r} N Uy, and Z, (u) = exp(Hy (s +

by 4, 0,) — Hy (o, D)) for u € U,.

Proposition 2.2 (Polynomial-type large deviation inequalities). Assume (B1)—(B4). Then for
any L > 0, there exists a positive constant ¢y such that P[sup,cv, ) Z,(u) > e " < cL/rL
foranyn e Nandr > 0.
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Since Z,,(0) = 1, Proposition 2.2 immediately yields

o
E[[BY4 6 — 0)|"] = /0 P P[4 6y — o) = 1] di

(2.12)

o0
< / ptl’*lP[ sup Z,(u) > e*’/z] dt < oo
0 ueVy(t)

for any p > 0. Moreover, we obtain the following convergence of moments of the estimation
error.

Theorem 2.3. Assume (B1)~(B4). Then E[Y f(by/* (6, — 0:))] — E[Y f(T'; >\ as n —
oo for any bounded random variable Y on (2, F) and any continuous function f of at most
polynomial growth.

In particular, we obtain convergence of moments where E [|b,]l/ 4 (6, —0w)|7] — E[IT ;1/ N |7]
for any g > 0. This property is used when we study the theory of information criteria and asymp-
totic expansion of estimators.

We also obtain results for a Bayes type estimator. Let a prior density 7 : A — (0, 00) be a
continuous function satisfying 0 < inf, 7 (o) < sup, 7w (o) < oo. Then a Bayes-type estimator
oy, for the quadratic loss function is defined by

-1
Gy = (/ exp(Hy (o, ﬁ,,))n(o)da) / o exp(Hy (0, )7 (o) do.
A A

Since the Bayes-type estimator ¢, contains integrals with respect to o, we need to deal with
tail behaviors of likelihood ratio H, (o, v,) — H, (o, U,). Hence, Proposition 2.2 is essential to
deduce asymptotic properties of a Bayes-type estimator. Since the Bayes-type estimator can be
calculated using Markov-Chain Monte Carlo methods, it is often easier to calculate than the
maximum-likelihood-type estimator. For the Bayes-type estimator &,, we obtain similar results
to the ones for the maximum-likelihood-type estimator.

Theorem 2.4. Assume (B1)~(B4). Then E[Y f(by'* (G, — 0:0)] — EIYf(T] '*AN] as n —
oo for any bounded random variable Y on (2, F) and any continuous function f of at most
polynomial growth.

Remark 2.8. If the assumptions of Theorem 2.2 are satisfied, the asymptotic minimax theorem
(Theorem 4 in [21]) holds for our model, so

lim liminf sup E_ s [1(|ba’* (Vo — 0% — by /*u)|)] = E[I(IT1N1)]

@00 N>00 |12y Ox+by

for any estimators {V},}, of the parameter and any function / : [0, c0) — [0, oo) which is nonde-
creasing and /(0) = 0, where E, denotes expectation with respect to Py ,, . Using Theorems 2.3
and 2.4 and a similar argument in Theorem 2.2 of Ogihara [24], we can see that 6,, and 6, attain
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the lower bound of the above inequality for continuous / of at most polynomial growth, if further
(B2) and uniform versions of (B3) and (B4) with respect to the true value (o, v,) are satisfied.
Hence our estimators are asymptotically efficient in this sense as well.

3. Simulation results

In this section, we examine some simulation results of our estimator.
First, we consider the case where the latent process Y is a Brownian motion, that is, Y satisfies
the following stochastic differential equation:

dy! = oy . dw/,
dY} =03, dW, + 02, dW7,

where oy = (01,4, 02.4,03 %) € (6, R) X (—R, R) x (¢, R) for some 0 < ¢ < R. Moreover, let
{ Nt1 Jo<t<r and { Nt2}0§t§T be two independent Poisson processes with parameters A1 and A;, re-
spectively. We give sampling times by S;"/ =inf{N,;, > j}AT for j =1,2. Let{e. "/ }icz, j=12
be independent normal random variables with E[¢}/]= 0 and E[(¢;"/)*] = v} .

Then we can see that this example satisfies (A1”), (A2) and (A3’). So the maximum-
likelihood-type estimator &, is asymptotically mixed normal and asymptotically efficient
with the asymptotic variance Ffl. For the estimator 0, of v, we first use a simple estima-
tor 0, = 2Jx.n) 7! Zi(fik - Yik_ 1)2, which means that our estimator is calculated by 6, =
argmax, H, (o, 0,). We also consider a plug-in estimator ﬁ,’()n = (D — [D*(60) 2T/ (2Jk.n)) VO
of v «, and 6, = argmax, H, (o, 0),). Let 6,/ = argmax, H, (o, v). Then &, cannot be calcu-
lated by observed data, but we can use it for comparison. Though these estimators have the same
asymptotic variance, their performances for finite samples are different. In particular, we cannot
ignore the bias of ¥, since v is relatively small compared with ¢ in practical data.

Table 1 shows results of 1000 independent estimations. Each cell represents the average of
estimators, with sample standard deviations given in parentheses. We set the values of parameters
as k, = [n°/%], T =1, (A1, 42) = (1, 1), (01.4,02.4,03.5) = (1, /1 —0.52,0.5), and consider
two cases of the noise variances : v, = (0.001, 0.001) and v, = (0.005, 0.005). In both cases, we
can see that v, has an upper bias for n = 1000, and causes a lower bias of ,, because v, contains
variance of the latent process, which is always positive. These biases can be moderated by using
the plug-in estimator. For n = 5000, the plug-in estimator 6, performs as well as 4, . In the case
of v, = (0.005, 0.005), the biases of 0, and v}, are relatively small, so the performance of 6, and
&, are better.

We can also construct an estimator 8{’ n&é’ .1 of the quadratic covariation (¥ Ly2)yr =
01,x03,+«1 . We see that

a4 &0 T — (Y, y?
Cathar ) .
= N(0, T2(032,*(F1_1)11 +201,*03,*(F]_1)13 +012,*(F1_1)33))
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Table 1. Simulation results for estimators of parameters

Results with vy = (0.001, 0.001)

n (e5] o) 03 4] 1%)
1000 (6, ) 0.897 0.776 0.451 0.001504 0.001500
(0.040) (0.042) (0.062) (0.000079) (0.000080)
(6,, 0y, 0.971 0.840 0.487 0.001100 0.001094
(0.046) (0.047) (0.067) (0.000075) (0.000078)
6,/ 0.999 0.863 0.501 - -
(0.045) (0.046) (0.068) - -
5000 (Gn, On) 0.964 0.833 0.481 0.001099 0.001099
(0.028) (0.029) (0.040) (0.000026) (0.000026)
(65, 0y, 0.997 0.862 0.498 0.001006 0.001006
(0.031) (0.031) (0.041) (0.000027) (0.000027)
6,/ 0.999 0.864 0.499 - -
(0.029) (0.030) (0.041) - -
True values 1 0.866 0.5 0.001 0.001

Results with vy, = (0.005, 0.005)

n o] o9 03 V] vy
1000 (On, Un) 0.957 0.818 0.481 0.005515 0.005501
(0.086) (0.143) (0.094) (0.000293) (0.000296)
6,, 0, 0.991 0.850 0.498 0.005053 0.005035
(0.092) (0.139) (0.098) (0.000298) (0.000306)
6y 0.997 0.861 0.499 - -
(0.069) (0.070) (0.096) - -
5000 (6n, On) 0.990 0.854 0.495 0.005095 0.005096
(0.044) (0.044) (0.061) (0.000121) (0.000123)
6,00 0.999 0.862 0.499 0.004996 0.004998
(0.045) (0.045) (0.062) (0.000123) (0.000125)
&,’,/ 0.998 0.862 0.499 - -
(0.043) (0.044) (0.062) - -
True values 1 0.866 0.5 0.005 0.005

as n — oo by the delta method, and the estimator is asymptotically efficient since we can
reparameterize the model using o1 .03 . We therefore compared the performance of the esti-
mator (MLE) with existing estimators of the quadratic covariation. We used the pre-averaged
Hayashi—Yoshida estimator (PHY) and modulated realised covariance (MRC) by Christensen,
Kinnebrock, and Podolskij [7], the local method of moments (LMM) by Bibinger et al. [5], and
an estimator based on maximum likelihood estimator of a model of constant diffusion coeffi-
cients (QMLE) by Ait-Sahalia, Fan, and Xiu [2] for comparison. Except LMM these estimators
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Table 2. Comparison of estimators of (Y Ly2y,

Resuls with vy = (0.001, 0.001)

n MLE PHY MRC; MRC, QMLE LMM minimum
1000 0.474 0.499 0.508 0.501 0.501 0.463

(0.073) (0.121) (0.182) (0.110) (0.095) (0.082) (0.066)
5000 0.496 0.497 0.504 0.499 0.498 0.497

(0.046) (0.081) (0.124) (0.073) (0.056) (0.069) (0.044)

Results with vy = (0.005, 0.005)

n MLE PHY MRCy MRC, QMLE LMM minimum
1000 0.496 0.497 0.508 0.5000 0.5000 0.518

(0.109) (0.148) (0.185) (0.124) (0.120) (0.112) (0.099)
5000 0.499 0.497 0.505 0.499 0.499 0.514

(0.069) (0.098) (0.126) (0.083) (0.079) (0.083) (0.066)

can be calculated using the “cce” function in the “yuima” R package (http://r-forge.r-project.org/
projects/yuima). We used the default values of the “cce” function or values used in correspond-
ing papers for parameters of estimators (6 = 0.15 for PHY, # = 1 for MRCy, J =30, = ! =10
for LMM). Here we use the oracle estimator defined in [S] for LMM to avoid a complicated
calculation. For the modulated realised covariance, we also examine an estimator MRC, with
6 = 1/3 which is used in Jacod et al. [19]. Table 2 shows the results of 1000 estimations. We
used the same parameter values as above. Then the true value of the quadratic covariation be-
comes (Y!, Y2)7 = 0.5. For both cases of observation noise variance, we can see that sample
standard deviations of our estimator are the best in large samples. The theoretical (asymptotic)
minimum Tn’1/4(a§*(rf1)11 + 261,*03,*(F1_1)13 +Gﬁ*(Ff1)33)]/2 of standard deviations for
all estimators is calculated in the last column of Table 2. We can see that the sample standard
deviations of MLE are close to the minima in large samples.

The asymptotic variance in (3.1) is always the best in this parametric setting. On the
other hand, Bibinger et al. [S] gave a Cramér—Rao lower bound for one-dimensional per-
turbation and the asymptotic variance of LMM becomes optimal in that sense. The deriva-
tion of their bound is quite different from that of (3.1), and therefore, it is difficult to
judge when these variances are the same even in this simple Brownian model. However,
there is an interesting numerical result on this point. Let Vg be the asymptotic variance
of MLE for (Y 1 Y2)T and let Vpmm be that of LMM, and we set parameters as 7 = 1,
(A, 42) = (1, 1), (01,4, 02,4, 03.5) = (1, /1 —0.52,0.5) and v, = (0.001,0.001). Then we ob-
tain VpLg = Tz(ai*(rfl)ll +201 403, (T D13 + aﬁ*(r;1)33) =0.1385502--- and Vivm =
0.1385502 - - -, that is, we see an exact numerical match between these variances. We have this
agreement even if we set other values of parameters, and hence we expect that Vii g = VLmMm
always holds for this model.


http://r-forge.r-project.org/projects/yuima
http://r-forge.r-project.org/projects/yuima
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However, the performances of MLE and LMM are different in above simulation because it is
not easy to set parameters of LMM suitably. If we set J > 30 for LMM, then the sample standard
deviation is reduced, while the bias increase; for example, the average value of LMM is 0.51678
and the sample standard deviation is 0.05017 with J = 100, n = 5000 and v, = (0.001, 0.001)
in Table 2.

On the other hand, the asymptotic variances of LMM and MLE are different each other in a
model with a time-dependent diffusion coefficient. Let the diffusion coefficient b be defined by

v =ro (7))

02

for some smooth, positive function f on [0, 1] with T = 1, and let {Si"’j},,,j,,‘ and {8?’j};1,j,i be

the same as the above example. Then we can calculate asymptotic variances VMLE and VLMM of
MLE and LMM, respectively, as

1 2 1 1
VMLE=VMLEX</O f(t)zdf> //0 f®)de, VLMM=VLMMX/O ()3 d.

The Cauchy—Schwarz inequality yields fo f@®)3dt > (fo f®)?dr) /fo f(t)dt, and the equal-
ity is attained if and only if f is a constant function. These results imply VMLE < VLMM for any
non-constant function f if VyiLg < VLmwMm. For example, let us set f(#) =2 — sin(;rt) to capture
the U-shape of intra-day activities of a stock market. Then we obtain

1 2 7\2
- ~ t)-dt
VMLE/ViMM = — Uo /€ )1 ) 3 =0.9533...
fo f(t)dtfo f@)3de
if VMLE = Vomm. Thus, we can see the improvement of efficiency in a model with a time-

dependent b.

In the next, we consider the model with random diffusion coefficients and non-Gaussian noise.
As mentioned in Remark 2.1, we cannot directly apply our results to stochastic volatility models.
Here we consider the Cox-Ingersoll-Ross (CIR) process derived in [9] as a latent process with
random diffusion coefficients. Let the latent process Y satisfy

_ 1 01 %4/ Y! 0
dy, = ("‘1 A §t2> de+ |7V aw,,
a2 —p2 t 03,51/ Yt2 02,5/ Yt2

where oy = (0] 4,02.4,03.%) € (¢/, R)) x (—R’, R") x (¢/, R"). We assume Conditions 2c| >

012 . and 2ap > 022 . T 0’32 . Which ensure Yl‘l > 0 and Yt2 > (0 for ¢ € [0, T'] almost surely.

Let {sf’j }iez be i.i.d. random variables following a centered Gamma distribution with a

shape parameter k; and a scale parameter 6; for j = 1,2. We define {N,j Y, Ons 05, On,

and ¢, similarly to the first example. We set the values of parameters as k, = (38, T =

17 ()\’19)\'2) = (1» 1)’ (Gl,*962,*703,*) = (11 \4 l - 0'5210'5), (0517(127 ﬁl»,BZ) = (19 17 17 1)7 and
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Table 3. Estimation errors of estimators of (¥ ly 2>T for the CIR process

n MLE PHY MRC; MRC, QMLE LMM
1000 —0.0267 —0.0063 —0.0058 —0.0036 —0.0008 —0.0348
(0.0733) (0.1286) (0.1867) (0.1162) (0.1013) (0.0844)
5000 —0.0023 —0.0036 —0.0022 —0.0016 —0.0005 —0.0033
(0.0456) (0.0858) (0.1305) (0.0768) (0.0580) (0.0719)

(k1, kp,01,62) = (2,2,+/0.0005, +/0.0005) which implies v, = (0.001, 0.001). Table 3 shows
averages and sample standard deviations of T, — (Y!, Y?)7 for each estimator 7, of the quadratic

covariation (Y, ¥2)7 in 1000 simulations. (Y!, Y2)7 is random in this model since the diffu-

: : : : ! 100000
sion coefficients are random. So we use extra-high-frequency observations {Y, /100000} ko Of

Y to calculate the approximated true value of (Yl, YZ)T. In this model, we have not obtained
the LAMN property nor asymptotic efficiency of our estimator though we expect to obtain them.
However, we still see that our estimator achieves the best error variance in large samples.

4. Asymptotically equivalent representation of the
quasi-likelihood function
We will prove our main results in the rest of this paper. In this section, we introduce an asymp-

totically equivalent representation Hy, (0, v) of the quasi-likelihood function H,, (o, v), and prove
the equivalence. H,, is a useful function for deducing the limit of H,,.

4.1. Some notations

We denote E,, as the G, -conditional expectation and En[X] =X — E,,[X] for a random

variable X. We use the symbol C for a generic positive constant that can vary from line to line.
For a sequence ¢, of positive-valued ‘B (I1,)-measurable random variables, let us denote by

{Rn (cn)Inen, {R, (cn)}nen and {Rn (cn)}nen sequences of random variables (which may depend
on 1 <m </, and o) satisfying

E[(c,;l(rn/bn)"" (b /1) P2 (k) ) ™73 (ki /K,) P4 b7 sup En[|1§n(cn)|q]l/q)ql] -0,

E[ (e /) (B 1) (k) G/, 2405 sup Enn[[R,,(e)]]17)" ] > 0,

and

(i /bn) T (b [1,) %2 (kin ] )P (ki /K, )% sUp| Ry (cn)| =7 O,

respectively, as n — oo for any 8, ¢,q’, q1, ..., g4 > 0 with some constants §', p1, ..., p4 > 0.
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Let My, (v) = diag(vi My . v2Ma ) for v = (vi,v2), bf, = b¥(s-1. Xy, 0), DE, =
bk(sm—ls Xsm,17 G*)s

) y 1
Zm = (((br]n* ) (Wslf’vl - WSIT’;II) + 8;1’1 - 8;1;11),-1211(’1”71+2)T’

5 K2 T\T

(G (Wen2 = Wnz ) + et - 5;'—21)./2&171”) )

diag (1B | 1)) (B0 0 17 ]}

ael o T+ Maw). @D
{by B2 11, 12|}, diag((|B2]12,,)),)

Sp(o,v) =

and

4 4
~ 1 N e - 1 <& -
H,(o,v) = -3 § Z SN0, v) Zy — 3 § logdet S, (o, v).

m=2 m=2

The diffusion coefficient b in Zm and S’m are either b(s,,—1, X, ,,0) or b(sm—1, X5, ,, 0x)-
Hence, we do not need to consider the time-dependent structure of b when we study
asymptotics of the summands in I:In. In particular, we obtain Em[Z,I 0o S’m (0%, v*)’1 Zm +
ds logdet S'm (04, v5)] =0 by 0, logdet S‘m (o,v) =tr(dy S’m S’,;l)(a, v). We will prove the asymp-
totic equivalence of H, and H, and then investigate asymptotic properties of H, instead of H,,.

Similarly to the approach of Gloter and Jacod [13], we can use the following stronger condition
(A1’) instead of (A1) in several part of the proof. Then localization techniques and Girsanov’s
theorem enable us to replace (A1’) with (A1).

Assumption (A1). Assumption (Al) is satisfied, O = R%, sup, , . [(bbT)7!|(t,x,0) < o0,

u; =0 and Yy, supt(|b,(l)| \ Il;,(l)l), and 8{8){ ijb are all bounded for/ =0,1,0 <2i + j <4 and
0<k<d4.

We can also see that (A1”) implies (B1).

4.2. Fundamental properties of the noise covariance matrix
In the following subsection, we will show the asymptotic equivalence of H, and H,,, namely that

by 7% sup| (Hu (0, 90) — Hu (04, 90)) — 32 (Hu (0. v3) — Hi (0, v:0)| 5 0

gel

as n — oo for 0 < j < 3. To that end, we first show fundamental properties of S,, and S’m.
These matrices inherit some properties of M ,, that are necessary to deduce the limit of H),
and H,. The first property (4.2) concerns the trace of a matrix related to M; , investigated
by [13]. In the one-dimensional model with noisy, equidistance observations, this property can
be directly applied to the quasi-likelihood function because the covariance matrix of the latent
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process is the unit matrix. However, this is insufficient for our purpose because our covariance
matrix Sy, (o, v) — My, (v) of the latent process is rather complicated. Therefore, we investigate
further matrix properties related to M ,,.

First, we consider the results in [13]. For any positive constants p, ¢, a and b, eigenvalues of

(a& + Mj,m)’1 are {(a +2(1 — cos(ijt(k,{1 + 1)’1))};(]11 and we obtain

n—l(kg; +1)I,(a) —a P <tw(@€+ Mju,) 7)< n—l(k,{, +1)I,(a), (42)

7 (ki + 1)1 g (a,b) —a™Pb™9 < (@€ + M) P (BE + M; ) ~)
_ (4.3)
<7 ky + 1)1, 4(a,b),

where 1,(a) = [y (a+2(1 —cosx))"Pdx and I, 4(a,b) = [ (a+2(1 —cosx)) P (b+2(1 —
cosx)) "9 dx. Simple calculations show that I1(a) = 7//a(@ + a), L(a) =72 +a)a >?(4 +
a)~3/? and fon{log(a +2(1 — cosx)) — log(b + 2(1 — cosx))}dx = 2w (log(s/a + V/4+a) —

lo g(«/E +4/4 4+ b)). See Section 4.1 in [13] for the details. Moreover, differentiation with respect
to a yields

Ip(a) (—I)P“(d>”]( 7 )
a)=—"| — —_ .

P (p— D! \da Jald+a)

In particular, if a = X, b, ! for some tight random variables {X, },, then we have

_1@2p-)

Tp(Xaby ) = 2°(p — D!

(X0, )" 40, (0877

n

Fore > 0,let {p;(e)}en and {p;. (&)} jen be sequences of positive numbers satisfying pi(e) =
2+¢e,pie)=14¢,pjy1(e)=2+e—1/pj(e), and p;.H(s) =2+¢&— l/p;.(s) for j € N. Let
E; j(a)bea k,{l X k,],., matrix satisfying (E; j(a))x,; = 8w + adixdj; for a € R. Then we have that

Ey (P 7)) Exi(p1(®) )€€ + Mjm)Er2(p1(©) ") - Epy i (P @)

is equal to diag((p; (e))];’]”zl), and hence

(E+M;,) ' = { ]_[ pi—1(e)”! 1{ksl}}
k+1<i<l kit
4.4)

Xdiag((pj(é‘)_l).’;'jnzl){ I pi—l(s)_11{1<k}}

I+1<i<k k.l

Moreover, we have the following lemma.

Lemmad4.1. Letre €[0,1) and pi(e) =1+¢/2+ /& +&2/4. Then
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1. 1< p}(a) <ps+) <pje) <1+ 1/j+ je for j €N, {p;(e)}; is monotone decreasing,
and { p;. (&)} is monotone nondecreasing.

2. {((eE+Mj )~ 1)kk}[k'”/]ls monotone increasing.
3. pj— pe < (14 o) U2 and py — p; < JE(1+ /&)U for j = 2.
4. TT521 Pi@) = (pr(e) = DTTEZ] pice) for any k > 2.

Proof. 1. We simply denote p; = p;(¢) and py = p (). We will prove py < p; <141/j+ je
for j € N by induction. The results obviously hold for j = 1. Assume the results hold for all
values in N up to j. Then since py =2+¢ —1/p, weobtain pj1 —py=1/py —1/p; >0,
and

o ; . -1 o ; ;
pi+1 <2+ —(j/G+D)(1+j%/G+ D) <2+~ (j/G+D)(1—j%/(+1D)
<I1+1/G+D+{+ De.
Hence, we have p < p; <1+1/j+ je for j € N. Moreover, we can inductively deduce p;11 —

pj=1/pj—1—1/p; <0. The results for {p; (&)} are obtained similarly.
2. By considering the cofactor matrix and (4.4), we have

(( & M )7 ) det(85k 1 +M(k — 1)) det(sé‘ _|_ M(krjn _k))
& Jom

det(e€ + M],m)
4 4.5)
kin—k
Hz 1 Pl Hl:1 pi
1_[1 1 Pl
Therefore, we obtain the result by monotonicity of p;.
. . i—1 —j+2
3. This is easy since p; — p1 = (pj—1 — p+)/p+Pj—1 < (p1 — p)/pY <pi "
4.
k
1_[ p}(e) = det(sé’ + M (k) — (Ell(l) - 5)) = det(eé' + M (k) — (Ekk(l) — 5))
j=1
k—1
= (p@ = 1) ][ pice).
j=1 -

Let /5 = sup, , (|b! -b2||b1|—1|b2|—1)(t,xf,a) Dy = (D1m, Dom), Djm = diag((u? ? x

11,00 + vjeMj . D}y = (D}, Dy ), Dy, = diag((11],,1), and D = bin?raé +
vj,*Mj,m.

1,m’

1/2)

Lemma 4.2. Assume (B1). Then tr( 1((7 V) = Ry (by “ky).



3340 T. Ogihara

Proof. Let D), = diag(|b},1> D1 ,,.|b%1*D5 ) and D} = (D},)~"/>D,,(D};)~"/, then we have

lm’
50— (D)D) (6 + (D)2 (05) ™S~ o 0
nmy—1/2 i\ /2 ( i\ 1/2
x (D)) (D) (D)

Moreover, Lemma A.4, (B1), and Lemma 2 in [25] yield
(03" ()™ S = B (23 (0) ™)

[(D5) ™" G = D (D7)~

P W M
v , ,
|11 1/2|12 |1/2 |Iil,m|1/2|112,m|1/2 ji

Therefore, we obtain
w($;) <w((D2)*(p2) (D))

<[+ (D7) (D)™ G = D (D7)~ (D))

IA

I /\

}5,5<l.

<w(D,, )/(1—p)<Ztr )k (1= )7

j=1
by Lemma A.1, the equation D m= DI/Z(E D (DJ m— DJ m)D l/Z)Dl/2 and that
—-1/2 172 117/ 12
[2n /(D,m—D,m)D P < (B Pra) " B P rn =1 =1 =1,/ 1. (4.6)
We thus obtain the desired results by (4.2). O

4.3. Asymptotic equivalence of H,, and H,

In this section, we prove the asymptotic equivalence of H, and H,. We provide the following
lemma about estimates of moments of the quantities related to H, and H,. The proof is given in
the appendix; it is obtained based on the properties of M ,, in Section 4.2, standard It6 calculus,
and some results from linear algebra.

Let S‘m’* = S'm (04, Vy).

Lemma 4.3. Assume (B1). Let S =S, ;, be a symmetric, G;, _,-measurable random matrix of
size k,ln +k,%l satisfying ||.§'m,*SS’m,* | < b;lforn eNandl1 <m <¥,.Then tflere exists a positive
random sequence {Q, 4}4>2 which does not depend on S such that Q, 4 = R, (1) for g > 2 and

1 |Enl(Z,)8Zn)?] — 2t0((SSn.)?) — tt(SSp.)?| < On2s Enl(Z)SZw)*] < ((b;%k]) v
(b, 2k4>)Qn4 and Ep[|1Z]SZ,n|9] < by 1k’ Qp 4 for q > 4.
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2. Enll X0 (Zm = Zn) "S(Zin + Z)|] < (b, ki) ?/* Qg for g = 4.
3. Enll X0 (Zn = Zn) "S(Zin + Zw)P1 < by 'k Qn 2.

Proof. See the appendix. (I
Now we obtain the asymptotic equivalence of H, and H,.

Lemma 4.4. Assume (B1), (A2) and (V). Then

by sup |04 (H (0, D) — Hy (0, 8)) — 82 (F (0, vi) — Hy (0%, v:))| =70,
oec

and by (35 Hy (04, D) — 85 Hn(0x, v4)) =P 0 as n — 00 for 0 < j < 3. If (B4) holds as well,
then

En [ (b0 "2 sup [0 (Ha(@: 60) — H(o, ) = 84 (a0, v0) = iy v2)] )]
= Ru((67°K]) ")
forany 0 < j <3andq > 0.
Proof. We first obtain
Hy (0, vs) — Hy (04, v:) — (Hy (0, v:) — Hy (0%, v2))
= _% Z{(Zm —Zw) (S (0, v1) = Sy (04, ) (Zin + Zin)
P

+ Z (S50, v:) = 831 (04 v) = 85 (0. v0) + 55, (04, 1)) Zin

( det Sy, (0, vy) det Sy, (0%, Vs) ) }
+ | log = —log =
det S, (0, vy) det S, (04, vy)

=W, (0) + U2, (0) + W3,(0).

We will give estimates for these quantities. Point 2 of Lemma 4.3 yields sup, Eni[|b, 12
3l \ill,n |91 = Rn((bn’sk,Z)q/“) for 0 < j <4 and ¢ > 0, and consequently by Sobolev’s inequality
Enlsup, by 2001 ,191= R, ((b;5k1)7/*) asn — oo for 0 < j <3 and g > d.

Let

C(x,o0,v)
=<“b1<sml,x,w!zllimww},-,»/+v1M1,m {o! b2 Gmor,x. 0|11, 017, |}, )

{bl b (sm—1, X, U)|Ii{m N Ij%m|}ji {|b2(sm_1,x, U)|2|I]2,m|5jj’}jj' + My m
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for v = (v, v2), é(x,v) = C(x,0,v)" 1 — C(x,o*,v)_l, ch = fol Bxé(tf(m_l + (1 —
H X, Vs dt, Cc® = BXC(XSWZ, v,) and C® = C(Xs,,_,, 0%, vx). Then we obtain
]

]

Ztr(CmEm [Zmz;nr])()?m—l - Xsmfl)

m
S t(CVEN[ZnZ]) Rt — Xy, )
m

En[|¥2,1] = 2‘1En[

Z Z;nrc(l)zm (va—l - Xsm_l)
m

ECEH[

q/Z}

a 1/2
]+0,,((£nbn Pl e, 52)

+CE1'1|:

SCEH[

Z tr(C(z)CG))()A(m—l - Xsmf] )

+ 0, (6, K 6,77 b2)
= 0,(B50 b, 1P 0, 1%) + 0, (bby PkE) + 0, (bEby K2)
= 0, (b, " i)
for any ¢ > 0 and ¢ > 0, by Lemma 4.3, the Burkholder-Davis-Gundy inequality,
supy, EnllEn—1[Xm-1 — X, JIP1'"7 = 0,(¢;'b}) and sup,, Enl|Xpu—1 — X, 171" =
0,,(8,71/2172). Similar estimates for 7 \ilz,,, and Sobolev’s inequality yield Er[sup, |b,,_1/2 X
W17 = 0, b2 for 0 < j < 3,9 > 0 and any & > 0. If (B4) is satisfied, we obtain
2,78 5 . —3q/2;2
V2080 191 = Ru(by k3.
Similarly, we have Ep[sup, |b;l/28é\113,n|q] = OP(b;q+8kZ), and therefore we obtain
by 2 sup, 18] (Hy (0, v2) — Hy (04, v4)) — 33 (Hn(0,02) — Hy(0y,0,))| —P 0 for 0 < j < 3.
If further (B4) is satisfied, we have

Enl (b SUp|0] (H (0. v2) = Hy (0, 12)) = 8] (Ay (0 v2) = iy (0. v2) )]
= Ra((6;°K])"")

forO0<j <3.
Taylor’s formula yields
Hy (0, Uy) — Hy (0%, Up) — (Hn (0, vy) — Hy (o, v*))
1

= _E Z{Z,—;(é(imla {)n) - C()?mfl’ v*))zm + log

El_[ [Supa |b;

det Sy, (o, U,) lo det Sy, (0%, Uy)
det Sy (0. v0) L det Sy (0n. v2)

4.7)

3 ~ j
1 NN . det S, (o, vy) | (U, — vs)/
:__E:E Z1 I C(Xpm—1, V) Zm + 31 z

2 m j:l{ " X1, v) 2 vio8 det Sy, (0%, U*)} J!

1 VA= 1am o 4, detSy (o, vy) . 4
- Z 35 C(Xm—1,v5) Zm + 9y log —————" 1 ds (D, — v,)",
2;‘/(; 6 { e (KXom 1, 0) 2+ Y OgdetSm(U*svs)} $On = ve)

where vy =50, + (1 — 5)vy.
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Then we obtain by, /*|Hy (0, 0n) — Hyp(0w, 0p) — (Hy(0,vs) — Hy(0x, v4))] =P 0, by
Lemma 4.3, (V), and the equation 9, logdet S, = tr(9,S,S,, . Similarly, we obtain b, 4
IBJH (o, 0,) — BéH (o, vy)| —>1’ 0 for 1 < j <4. Sobolev’s inequality yields sup, (b71/4
|01 (H,, (0, 0y) — Hy (0%, vn)) Y (H (0, V) — Hy (0, v))]) > 0 for 0 < j <3 and conse-
quently we obtain supa(b |8U(H (o, Uy) — Hy (0, Up)) — BU(H (0, vy) — H (0%, v:))]) =>P 0
forO0<j<3.

Moreover, points 1 and 3 of Lemma 4.3 yield Eqi[|by /* 95 $1.,(0:) |21 = Ry (b, >/ *k2) P 0,
En[lb_1/48 \ilz a(o) 2] = 0p(b;3/4k b?) — 7P 0 for sufficiently small ¢ > 0, and consequently

b4 (8, Hy (04, D) — 8o Hy (0, v4)) =P 0.

If further (B4) is satisfied, then for any ¢ > 0, (4.7) yields

sup En[by 42| Hu(0, 0) — Hy (0, 00) — (Hn(0, v4) — Hu (03, v2)) 7]
(el
= Ry (b by kb 7Y + Ry (b 1 bk €)1 b7 7) = Ry (b k).

by Lemma 4.3, (V), and the equation 9,logdetS,, = tr(d,Sx5S, l) Similarly, we obtain
sup, Eni[b, q/2|8/H (o, 0p) — 8/H (0, v:)]9] = R (by 1k for 1 < j < 4. Sobolev’s inequal-
ity yields Er[sup, (by /*[04 (Hy (0, 0n) — Hu(0s, B0)) — 34 (Hy(0, v:) — Ha(0w, v))?] =
R, (b, k) for 0 < J <3, which completes the proof. U

5. The limit of the quasi-likelihood function

We complete the proof of Proposition 2.1 in this section. To do so, it is essential to specify the
asymptotic behavior of some functions of approximate covariance matrix S, as seen in (5.2).
Unlike previous studies by Gloter and Jacod [12,13], the eigenvalues of the diagonal blocks D L.m
and D2 m of Sm are not identified because of the irregular sampling, and even the sizes of D1 m
and D2 m are different. These problems make it difficult to deduce asymptotic behaviors of the
right-hand side of (5.2). To solve these problems in Lemma 5.1, we approximate D ; j.m by D; o
which is a kind of local averaged versions of D; ;.m and has similar properties to the covariance
matrix of equidistant sampling scheme. Moreover, we can also change the sizes of D; j,m using
some specific properties of D; j,m- We deal with this in Lemma 5.2, and show convergence of

some trace functions that appear in a decomposition of H,,. The decomposition (4.4) and the nice
properties of p; in Lemma 4.1 are essential in the proofs.

Lemma 4.4 yields

by 28] (Hy (0, D) — Hn (0%, D))

= by 20 (A0, v2) — Hy (03 v,)) + 0, (1)
. o - . det S,
:—Eb 22( m[ZTaj(S 1—Sm,1*)Zm]+8élog ~m>

det Sy, «

5.1

——b 2ZE [Z,,92(Sy" = $p8) Zm ] +0p(D)
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for 0 < j < 3. Together with the relation E,,[Z,) 33 (S;;' — 55,80 Zn] = te(@3.(S;;" — 55" ) S ),
we obtain

o

(5.2)

1 _1 . - i det S,
:_Eb,,2 § ag<tr(sn;‘sm,*—5)+log S’” >+op(1),
m

et Om, «

since the residual terms are 0, (1) by Lemma 4.3.
We first investigate asymptotics of tr(S,, 'S, « — ). Let L = {b}, - br2n|]l_l)m n I]Z,m”i,j and
G= {|1,~1’m N Ij%ml},-,j. Then since

s . 0 DTVPEDTIA\T
S_lzD 1/2 el . o 1,m 2,m D 1/2
' = Du I;)< ) BT B 0 )
=i( (Dr, LDy, L) Dy, —ﬁ;:ni(ﬁz;ﬁzﬁ)%z;)
p=o \=D3, L (Dy, LDy, LT) Dy, (Dy, LDy, L) Dy,
we have
~ ~ > ~ 2 ~ 2 ~ ~ o~ ~ ~
(S, S s =€) =Y _{(1n.s|” = |50 (D1, L D5, LT)" D), D} )
p=0
+ (1B2,.|* = |64 ") (Do), LT D, L) D3, D5 ) (5.3)

2Bl By BB (B LD L (LT D ED ) GT)),

m,x

Note that [{|Z},, N 17,111}, |7"2117,17'/2}ij1 < 1 by Lemma 2 in [25]. . |
We will see the limit of each term on the right-hand side of (5.3). Let al, = asjmf , and D om =

|15,j,l |2bn_ a1+ v M. It s difﬁc_ult to calculate the eigenvalues of D j,m- However, we
can easily calculate the eigenvalues of D; ,, as seen in Section 4.2, and it has nice properties
which are useful when we deduce the limit. Moreover, we can replace b]_rln by DJ_IL using the
following lemma.

Lemma 5.1. Let j € {1,2} and A, ;m be a k,/,; X k% matrix for 1 <m < {£,. Assume (B1), (A2)
and that all elements of A, ,, are nonnegative and ||Ap |l <1 for any m. Then
~ . . 3/2
tr(9% Dj”lnAn,m) =tr(a} Dj’LAn’m) + R, (bn/ )
for 0 <k < 3. If further (B2) is satisfied, then

sup|tr(35 D, Anm) = (95 D} 5, Anan) | = Ry (b2, ")
o

for0 <k <3.
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Proof. We first consider the case where k = 0. (4.4), (4.6), and the equation above it yield

-1
tr(Dj’mA,, m)
o0
_ 172 1/2 —1/2\p %—1/2
=Y w(D;, (Dj (Djm—Djm)D; 1) D\ Anm)
p=0
o (5.4)
Y 2 1
B p+l . ) 7j2, -1
p=0 vj,* [T ipt Ptl"'Pz,,+1(|bm| rnt’*)
X Z Anmra 1y Pim = Dy iy
lg=ignig+1 Py iperin g=1 Plyly.iguig
I'<ip,l <iy

where P, i, 11,1, = Hm1 ky<my<lj—1Pmy l_[mz ky<ma<ly— 1pm2(|l;] Prav ]_i)

Then the nice properties of p; in Lemma 4.1 will lead us to the desired results. Roughly
speaking, we have 1 < p,(|bm|2rn ;l) ~1+Cbh, 12 for sufficiently large i. This means that
Py, ky 11,1, and Pk/p K 1,1, Are asymptotically equivalent if |k; — k’ll and |k — ké| are of order less
than bl/ 2 Then we can replace D j,m in the right-hand side of (5.4) by D j,m since the diagonal
elements of both matrices have the same local average. We will verify these rough sketches by
the following.

We first see that terms containing small /, can be ignored. Let n be the one in (A2),
0 € 0 1/2). 17, = Smet + T B [y + Tk — b ) [k — b by "1/ ky for 0 <1 <
[(k, — bz/)bn_"], () = {I; Il{ Cf_y s I )} and & = {5 Then

N2

i1 {mfﬂ <z0}}15i,,i25k,{,'

the absolute value of summation involving terms with /; satisfying inf Il{; m < fo for some
1 < g < p on the right-hand side of (5.4) is less than

Vv 3 BB By B3PI | B P (5 002 571

(5.5)

by (4.6), Lemma A.1, and the assumptions. Let J; = [T¢; 17k ~ly1and J, = [TE;le/ X
kn_lgl] + 1, then we obtain J; < #{i; inflijm <t} < Jo. Therefore, point 2 of Lemma 4.1
ensures that tr(bj_rlncf’ ) is less than

J
(ki /2] — T2

(D7)
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if [kj,/2] = 22, and hence the right-hand side of (5.5) is R, (V) by tr(D} ) = Ru(r k),
1/2+47 172
where Vi = by *" 1, j2122) + ba*kn Ltk j21<2) -
On the other hand, for /, iy, i,+1 and [, satisfying I, € Z,,(I) and maxZ,,(I) < iz A ig+1,
Lemma 4.1 yields that Pmame Oomax Ty (D.igigs1 /qu,lq,,-q,,- o~ is less than 1 and greater than

~i2 ] \—Chy T B N
(1+1/11+|b,jn| rnt,ijl) = El—Rn(bZ n +bnl+n+77)
for sufficiently large n. Moreover, max; | ZZGI,,I(Z)([)JW — Dj,m)1,1| is R, (bn_H") by (A2). We

also have sup,, ,, max;| >, 7 (;)(15 im — Dim)iil =R, by ) if (B2) is satisfied.
Therefore, we obtain

n—1
tr(Dj’mAn m)
> % :
- p+l ) . P2, =1
p=0"Vj x i1yt Piy - Pipy Iz rnvj’*)
o -
~ Z (An,m)l’,l” (D/sm - D./"m)lqvlq

Py . P, .o
L<i A . f[j - Ul sip+1,11 g=1 [qelq»lqquﬁ»l
q=igNig+1.intlj ,, >lo

I'<ipe1,l"<iy

(5.6)

=iT}’f£ 3 1 Y e
Js¥

e D ~j 2 -1 P/ " P
R p,p+l(|bm| rnvj,*) V<ipar " <iy U0 i g1,

. . p
Zlqum(fq)(D/»m —Djm+ 7:nn,3 g)lqvlq

+ Ra(Vy)

PmaXIm([q)ymaXIm(iq)siqvizﬁ»l
o0
_ n,p (—n,p\—1 51720 05—1/2075 . S n,p ~—1/2\p X—1/2
- Z m,1 ( m,2) tr(Dj,m (Dj,m (DJ>m - Dj,m +7:n,3 g)Dj,m ) Dj,m A”)m)
where 7:;1}7 is a random variable which does not depend on /,, l~q, iq,ig+1 and satisfies
(1= Ra (b ™" 0T < Tl <1

fori =1,2and sup, |7;::)’f| = R, (b, ).
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—1/2,%—1/2

I (D]m —-1/2 —-1/2

Let Fj(1) = tr(D (Djm—Djm +fﬁ,’ff)bj,m )l’bj’m Anm). Then

1
|Fp(1) — Fp(0)] Sfo |F1’,(t)|dt
< b TR (1= b7 @) B | T D) T R 26,
3/2

and hence Y00 o |7 L (T D)~ I Fp(1) = Fp(O)] < sup, 1 To | - Ru(Bi*kn) = Ra(620;1).
Therefore, we obtain the desired conclusion by

o0
STl (Td) ™ = 1]F,(0)
p=0
<CY pRu(BI + by ) (1 Ry (017 + by )P

R )

For the case k = 1, we have tr(8g[~)j_’,lnA,,,m) =— tr(Dj_JlnB(,ﬁj,ij_’;An,m) + Rn(bi/zﬂn_l)
by using the result for k = 0, 4 D;; = —Djj,;a(,Dj,mD;}n, ||Djj}na(, Djmll = Ry(1) and all

! are nonnegative by a similar argument to (4.4). Then a similar argument

elements of D;m

to (5.6) enables us to replace 9, [)Lm by 9, D'j,m. Similarly, we obtain tr(8§ 5]_,1,1 Apm) =
(@ D7) Anm) + Ra By fork =2, 3.

If further (B2) is satisfied, then similarly we have sup,,; | tr(alg D;,lnAn,m) — tr(ag D]_:” Apm)l =
R, (5,0, O

Remark 5.1. The proof shows that there are upperbounds of the absolute values of residual
terms in the statement of Lemma 5.1 which do not depend on Ay, ;.

Let cj = by 2by, ' @)~ /)0 and ¢, = ¢ i/t 7)? for j=1,2.

Lemma 5.2. Assume (B1) and (A2). Then

e Talk, @2)P9k1,11 ,(c1,ch)
su 3ktr D—l GD—I GT PD—I D/ _ m’n m o'ptl,p 2
22p| P (PamGDom G ) i Pin) == A L,
12 ,-1 '
=0p(b,, £, ),
e Ta) k, @2)P10k1, pii(cr, ch)
akt D—l GTD_I G PD—I D/ _ m"™n m o p,p v
iurg o (Do, 1mG) D2 D2 o 2P G y3p2yP P!
n m 1,%72,% (5 8)

=0p (bi/%;l)’
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Al ARl Ta)ky @2)PTok1 c1, ¢,
sup BZ; tr((D;rInGD;:nGT)P‘H) _ min ( m)2 A103p+1’p+1( 11 2)
o,m ’ ’ T (bn(am) v])*vz)*)p-‘r

(5.9)
oy t%5)

for 0 <k <3 and p € Z. If further (B2) is satisfied, then op (b,l,/zﬂ,jl) in (5.7—(5.9) can be
replaced by R, (bl/zﬁ b,

Proof. For any p € N, Lemma 5.1 yields
by 2ok u((DrL,GD5 L GT)Y) = by Pk (DL GDy LGN ) + Ru(6))). (5,10

Moreover, we have

—1/2

b, '“u((D7,,GD;,,GT)")

(5.11)

A2g ,BZq

—1/2 1 i 012q1/32q1
=b "5 Z > 13

1,%Y2,% in,. @og—1<ig.Brg-1<jg g=1" %2a-1: Bag—1,ig+1,jg+1 Pazq Bogrig+1:Jq
Jlseens Jpazqftq+1 Brg<jq(1=q=<p)

G

by (4.4), where iy 1 =iy and Py g j = [TjL, P (1) TTh_p Pra(c2).

We will apply (4.3) to obtaln the limit of the traces. To do so, we need to change the
size of matrices G and D . This is again achieved by the nice properties of p;. The essen-
tial idea is that point 3 of Lemma 4.1 ensures p; ~ p. for sufficiently large i, and therefore

Pagij~ pi(c)'™ “P+(62)’ P~ GXP(\/_(I —a)+./a(j - )~ Pkoz kB.kikj>» Where k € N
and P 1L = Hkl—a’ Pk (cl/kz) ]_[k2 ﬁ’ Dk, (cz/k ). The size of D demdes the ranges of
summation of ji, ..., jp in (5.11). By changing these ranges using the above relation on Pa’ Bai,j
and ﬁka,kﬁ,ki,k j» we can change the size of matrices G and D; ;1

Now we verify the above idea. First, we see that the terms involving small oc% or B, in (5.11)
can be ignored. Let € (0, 1/2) be the one in (A2), § € (1/2, 1) such that b "’8kn_1 — 0 for
some & > 0, 5y = su—1 + T Thnby "1™ (" + 162 "D A Thnby ") for 0 <1 < (knby "] —

§— .

[bn ")V 0, D3m = (c1 A )1 s A 02081 iz + Wik A v )Mk, vV k2), G ={II}, N
I},m|1{infll.{mAian,%m<s~0}}15i,j5k}nvk,2n’ G= {II,%,,, n I.imll{ifkrgz and j<k2}}1<i,j<kl vz - and &=
{dij1 finf 1) /\ianZ. <ol 1<i,j<k} vi2 - Similarly to the proof of Lemma 5.1, the absolute value A}
of a summation involving the terms with (a4, 84) satlsfymg inf7, ,, A inf 12 Bym < 5o is less
than pb, 12 tr(D3’m(G D3JnG—r + GD (G )T)(D3 m 3’mGT)l’ ). Lemma 3 in [25] im-
plies |G’ + (G') " || <2r, and hence all the eigenvalues of G’ 4 (G’) " are greater than or equal
to —2r,. Therefore, G’ + (G’ YT +2r,E" s nonnegative definite, and hence Lemma A.1 yields

A1 <2pa/r)? " by P (D3} (G + (G) T +2raE"))

<4p(rafr,)?? " by 2 (D5 ), G) + 1 tr(D3 ), E7)).
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Let (G)ij = (X< G ; + Y n<i G ,)8j and k = max{i; G;; > 0}. Then Lemma 4.1 yields

w(D3,6) = 502 Y

V1, - ﬁ<z P:Pﬁ *Pi—1
G‘C{D{
< ,
_Ul*/\v2*2i:§ cPiPa Pi—1
N . B Cb_H"S—{—r .
= tr(D3J1”G) < (DB,rln)/é,ic(sO — Sm_1+rn) < I - tr(D3Jln).

[k} v k2)/2] —k

Therefore, we obtain A| = R, (E;l), and A; =R, (6;1) if (B2) is satisfied.

Let Dy = v2402(82/a4)%E + v2uMip, i(@) = min{i; S > 5,1}, and j(@) =
min{; S?’z > Sq/—1}. We will show that b;l/ztr((Dl_’:”Gl')z_erGT)P) is approximated by
b;lﬂ_zﬁ (&,Zn)p(&,h)%p tr((l.)l_’rlnl'jg,m)p). First, a similar argument to the proof of Lemma 5.1
yields [Py i/ Pitar), it — 1l = Ra(1) for i(@) < <i(@ +1), j@) <p <
Jj +1),i(") <i<i@ +1),and j(j) <j < j(j + 1). Therefore, repeated use of (A2)
yields

by u((D7L6D5 ) GT))

-1/2 7;,1,’4
p
vy

_b vp
k2%

P (Thy g 1L, C i1 S Wi 12, C 121, 8)

il ooty =] Pitat, i@ty i, Gp Pitet,). g @it 0,0
./{ ’’’’ ./[/)
+Ra(1, ) (5.12)
n,p ey =1+0\2p (22
1 Tys (Thy )P ()"
—b, .

Ul *U2 *(a )P

P #{a5 am [~a2 71—17501& )}#{a7 an1 [3:/ —173:(1// )}
x > 11
ifseensily @] o), 4= 1 l(azq 1)](0524 siGg )](]q)P(azq)](azq)l(qurl)](]q)
Jiseesdp
5 (1—1
+ Ra(1,'),
: / / /
where the summations ofozl,...,oz2p are over 1 §oz2q 1 <i’ /\]q and 1 <a2q <z 4 /\]q for

l<g=<pi, = =i} and 7' is a random variable sat1sfy1ng SUpy |’7;n lp — 1| = R, (1) for
i=4,5.
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Since Lemma 4.1 and (A2) yield
Pj@) - Pj)—1(c2)
= (P+(Cz))j DO 4 Ry (1)
exp((bnd2, (5 — 5a) + Ra(ba'*)) log p1-(c2)) (1 + Ra (1)

=exp(aZ (aL) "' (i(B) — i(@))) 1og p1(eD)(1+ Ry (1)) = pitey -+~ Picgy-1(ch) (1 + Ru (1)),

we may replace

5.12) by P

) and P ) in the right-hand side of

(azq 1) ](0‘2‘1 ]) i(i] )](]q
y and P,

(D(2q) ](azq) l(lq+1) ](]

respectively, where Pa, Bij =

(an 1) l(azq 1) l(lq) l(Jq ((XZq) l(azq) l(lq_H) l(/ )

l_[kl —o Pl (cl)]_[k2 —p Pky (). Therefore, we obtain
—1/2 5—1 A /-1 AT\P —1/2=2p (A2\P (~1\—3P 5—1 73—1\P -1
suplby (D1, G D, G)") = bn (@) (@) " (D, D5,)" ) = 0p (€7
by a similar argument to (5.12). Since 8!, D'j,m = 8([, cjv;j«€ for 1 <[ <3, we similarly obtain

supl b, 23k (D7, G D3, G 7)) — b2 @) (@) ok (D7, Dy)")
' (5.13)

Then (4.3), (5.10) and (5.13) yield (5.9).

We also have (5.7) and (5.8) by a similar argument

Similar arguments enable us to replace op(b K 1 by R (blﬂﬁ Y in (5.7)-(5.9) if (B2) is

satisfied. O

Remark 5.2. We can also show that the summations of the left-hand side of (5.7)-(5.9)
in 1 < p < oo are bounded by R, (blﬂﬁ 1)2;":1 p(b) - b21bL | 71b2 7> P+ for some
I e N if (B2) is satisfied. To show this, it is sufficient to replace D;}nGDZ :nGT in the traces
with b la aZ - (a ! ) 3D D2_ }n one by one, and estimate residual terms separately on the event

(b, 1=’ < I, <rp, < bn H“E’} and on its complement for some small &’ > 0. This fact is used in
the proof of Proposition 2.2.

Proof of Proposition 2.1. We first prove the results under the additional condition (A1").
since | Dy,/*GD; LG Dy /Il < 16172162172 by Lemma 3 in [25], for any &, 8 > 0, there
exists Py € N such that

o0
supP[supb;% Z Z |0k ((B}, ~l;,2n)2p_1 tr((f)l_rlnG[)Z_}nGT)p)ﬂ > 8] <eg, (5.14)
n o

m p=P+]
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sup P |:sup by, ? Z Z

m p=P-+1

8k< I~Ei)2p‘&;kn<&;)P1pJar1,cg)>

(b%(&yln)?’vl,*vl*)p

> 8:| <e (5.15)

for P > Pj. Together with Lemma 5.2, we obtain that

S Y S ) (57 G By GT))

m p=I

sup

Ta kn kzz(bl ~)%1)2p_1(&31)p117»17(c1’C/Z) _p)

by/? % (b7 (@)% 01,502, P

m p= 1
] o
Let iy =aj, . Cn = 1B}, 1210212 — (), - B2)?,

A = (@ b} + @2 || +2\/ata? detbyb)) 2,

and
Po=(c1+cy+ N (&,;1)‘3v;iv2ji¢m)l/2
= b @)~ (b By P+ 3 B+ 2yfabazen)
Then Lemma A.9 yields

Ta) ky ZZ(b1 2P NGR)P L, (e, Ch)
1/2 0 m p=1 (b%(am)3v],*v2,*)p

Tb}l/zc’\ll E—l a blln l;m

(a )3[721)1 *V2,%

2 2@ 20a) 1B 12 4 a2 182 12 + 2/at a2 €V 2 Jal a2 S Enby L a) )2

=% 2
+0p(1)

Tﬁ V am arzn m

k
22«/ Culal |bL |2 +a2 |b2|2+2 ala2e,)1/2

m-m

ala’b) - n?

_ak/ e dt +0,(1).
0 2 det(b,bT)Qlt

+o0p(1)
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Therefore, we have

b ok Y B B2 (BTGB GT))

sup
m 1
" (5.16)
" / a,atb1 b2 Vadib b pO
— — 0.
0 2 det(bth)Qlt
Similarly, we obtain
1/2 k DYDY EIT\Y P!
Sllp a Zztr 1,m D2 L ) Dl,mD/l,m)
m p= =0
(5.17)
ak/T |b2|2\/a,a,+ \/det(b,bj) Py
— pu ﬁ ,
0 2,/det(b;b] ),
~1/2k ST = P A—1
sup|b 29k ZZtr VLTD L) Dy D)
m p= =0
(5.18)
1,2 ~2 T
—a{:/T b} 2\ fala? + a2, det(bib; .
0

2,/det(b;b] ),

Lemmas A.3 and 5.2 and a similar argument yield

125 1/2
= 0 D LD
9y logdet(S,, D,,") = 9 log det (5 + (Dl/z Ly 0 ))
,m

2 ZTDl,m
o0
==~ u((Dy,LD;,L")")
p=1

_ TCAlrlnkn i (&rzn)P([;’In . E,Zn)zplp,p(cl’ Clz) 1o (bl/zﬂ_l)
~ 2 p\"n "n J*

i p=1 p(arln)3pb"pvf,*vg,*

Then Lemma A.9 yields

3% log det(S,, D,,")

. by 2 Al
=—Ta) k,d mm 5.19
@ "(\/b at vy . * ba(al)%va 19
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b;1/2 L1112 27212 ) TorT 1/2
- P (AR + 3153 P 2o o)) )
+0P(b1/2en )
~ <~ 1/2 - ~
— 1l 0k ((ah B P+ a2 52 + 2y/ahaz den(Bub))  —ah B4 - Va5 )

+op(ba’?e").

Moreover, Lemmas A.3 and 5.1 yield

Bglogdet(D D7 )

Jam .k

=k logdet(€ + D] ,ln/i(Dj,m —Djm *)D;:n/i)
> 1)P 1 _ ~ P
= > k(D By~ D)) 5.20)
p=1
o8] (_ )p 1 . . 1/2
3 (B By — Dym))) + 0 (26)
p=1

1/2
= 3k logdet(D;, D];H) +o,(ba"e )
when |l§;§1’*| > |B,{1|, where [N)j,m,* and Dj’m,* are obtained by substituting o = cr* in D] m
and l')j,m, respectively. Similarly, we have 8§ log det(ﬁj m )= 8k log det(Dj mD im, *) +
0,(by/* 61y when |B), | < |Bi.

On the other hand, results in Section 4.2 yield

jm*

dx +o0,(bye,")

# log detDj, k{n+18§/” . cj +2(1 —cosx)
0

det D oo Cjx+2(1 —cosx)
; ci+./4+c
=2(kj, + 1)9% log ] L 4o, (ba"e ")
4/Cj,* +‘/4+Cj’*
= knds (V&5 — /G0 +0p (b *6;")

= 702 i (B ~ o)) + 0p (515",
172

The residuals are bounded uniformly with respect to o and m. Then we obtain sup,, |b,, '~ x
8§(Hn(a, Up) — Hy (04, Uy)) — 8{,‘)}1 (0)]>P0asn—>ooforany o € A and 0 <k <3 by (5.2),
(5.3) and (5.16)—(5.21).

Finally, we obtain the desired results without (A1”) by using the arguments in Proposition 3.1
of Gloter and Jacod [13]. (]

(5.21)
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6. Identifiability of the model

In this section, we check the identifiability condition, infs s, ((=V1(0))/|0 — 0% %) > 0 almost
surely. This condition is necessary to deduce consistency of the maximum-likelihood-type esti-
mator, as seen in Proposition 7.1. In general, it is not easy to check this condition directly because
Vi(o) is a complicated function of b, and a,] . On the other hand, Ogihara and Yoshida [25]
proved that the identifiability condition (A3) of a model for equidistant observations without
noise is sufficient for the identifiability of a model for nonsynchronous observations. This is also
the case for our model. Recall that p has been defined just before Lemma 4.2.

Proposition 6.1. Assume (A1), (A2) and (V). Then there exists a positive constant ¢ such that

T
—M(o)zxfo (B! = B! )7 + (671 = [62.7) "+ (b1 - 07 = b}, - b7,) "} dr - (6.1)

for any o, where

. .
x = (1 — )i i V) (sup (67t X1, 00| v bt X1, 00| 7)) ’

sup;. (@’ Jvj )V N
In particular, infs 46, (=V1(0)) /|0 — 0% 12) > 0 almost surely under (A1)—(A3) and (V).

Proof. It is sufficient to show the results under the additional condition (A1’) by localization
techniques similar to the proof of Proposition 2.1.

Let fn = b} |7V b2|71B) - b2, Dy = Dy, mx and B =sup;, (1b/(1,X;,0)| v
|bI (¢, X;,0)|~ 1), then since

Tb;mS‘mﬁ,ﬁl/zu
. —1/2 —1/2
ZMT<~ 1 2 15 =1/2y,2 |—-1/2 Prn{ilil,mmlfz’m||lil’m| /|1]2’m| /}i’j>”
'Om{|1i,mmlj,m||1i,m| |]j»m| }j,i €

for any u € Rkn*ki | we have ||(lA),1,,/2‘S~’n_11 DYA172| < CB(1 — 5*)~1/2 by Lemma A .4, and hence
we obtain

H( 1/2S A1/2)1/2( —12g D1/2)( 1/2S A1/2)1/2”
||E+(D1/2S A1/2)1/2( —1/2(5,%*_ 50D 1/2)( 1/2S A1/2)1/2H
<1+CB(1-5%)".
Then Lemma A.6 yields
tr(S,, S — £) + logdet S, — logdet S, «

L. L . (6.2)
> CB™O(1 = 2°) (S, Snx = Si) S, Sins = S)).-
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Therefore, repeated use of Lemma A.5 yields
tr(Sn:lS‘m,* — 5) + log det Sy — log det S'm,*
> CB (1= %) te(D,, S — S) S (Sonie — Sm))
> CB™ (1 — %) te(D,," (Si,x — Sw) Dy Simvc — Sw))
2

= CBO(1 = 7)1 (Bl — (B ) (B )7 D))

+ z(brln,* : 551* - Elil : Ei)ztr(bflnébgizéT)

Hence, it is sufficient to show that limsup of (D7 D" DJ._JInD}’m) for j = 1,2 and

Jm ™ jom
tr(D1 " GD2 m G ") are estimated from below by positive random variables.

By Lemma 5.1, (4.2) and (5.13) with a sampling scheme {Sf’l}i = {S;"z}j, we obtain
by (D5}, D} D7 D))
=0, (D7 LD, D70 DY)+ Ra () = 0,7 @) (D7) + Ra(e5)

_ 5/2(k] ) 2<b;1|brln|2

(@)% .

oo T@'2et o
+ R (6,") = —5—="2 + Ra (£, ).
) " 421 P "

Moreover, Lemma 5.1, (4.2) and (5.13) yield

AjnVj 5

by P u(Dy ) GDy ) GT)

~2
_1-5/2_%m 5 (p—1
= b, @y (D, D5) + Ra(£, ")
=5/242 72 127,—122 71123—1 -2
e <<<<””"' ) ) ) !
Z o —ir - VR E+ M, + R, (£
(0%1)31)1 % U2 % UZ,*(Q,L)Z ,%11)1 * " n( " )
Te, a)a 1

m m +Rn(£n )-

T A@L1B)12) v (@252 [2))3

Therefore, we obtain (6.1).

In particular, by Lemma 6 and Remark 4 in [25], there exists a positive-valued random variable
‘R such that

~Y1(0) = xR(=Vo(0))

for any o . Therefore, we have inf; 5, ((—=)1(0)) /|0 — 0% 12) > 0 almost surely under (A1)—(A3)
and (V). ([l
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7. Asymptotic mixed normality of the estimator

In this section, we prove the consistency and asymptotic mixed normality of &,,. To obtain asymp-

totic mixed normality, we prove stable convergence of the score function b, /4 0y Hy (0%, v4) by

means of the martingale limit theorem for a mixed normal limit in Jacod [18]. We also use the

idea by Jacod et al. [19] to adapt the limit theorem to models containing observation noise.
Consistency is an immediate consequence of Proposition 2.1 and the identifiability condition.

Proposition 7.1. Assume (A1)—(A3) and (V). Then 6,, —" o4 as n — oo.

Proof. Let ¢, be arbitrary positive constants. By Proposition 2.1, we have sup, |b,, 2

(Hy (0, V) — Hy(ok, 0p)) — Vi(0)] =P 0 as n — oo. Moreover, Proposition 6.1 ensures that
there exists n > 0 such that Plinf; ., ((=V1(0))/|o — o.|%) <l < €. Since H, (6, 0n) —
H, (04, Uy) > 0 by the definition of 6;,, we obtain

P[16, — 04 = 8] < P[W1(6,) < —18°] +
< P[sup|b;l/2(Hn(a, 0p) — Hy (0%, On)) — Vi(0)| = 7752] +e
o
<2¢

for sufficiently large . ]
Proposition 7.2. Assume (A1), (A2) and (V). Then by "/*8, Hy (04, 0,) =2 T)*N asn — oc.

Proof. It is sufficient to prove the results assuming the additional condition (A1").

Since b;lMBGI:I,,(a*, Vy) = —Z_Ib;1/4 >om Em[Z,,TlaUS;}*Zm], we only need to check as-

sumptions of Theorem 3.2 in Jacod [18] for &)} = —2—1b;1/4Em[Z,Iag S,Z,l* Zm]. For any ¢ > 0,

Lemma 4.3 yields

[601/T) X cpt T
> EnllGl luxgsal = =5 30 Enl(Z10:5,120)"] 50, (7.1
m=2 m=2

It is easy to see that Z%”Zté”

Lemma 4.3 yields

Ep[ Xy (W, — Wy, _)]1=0.

b—1/2 ~ _ . . _
En[(X1)7] = 2 AEn[(Zn06 5, 7)) = Em[Zmdo Sy 2]}
—1,2

= n2 tr(gm’*agS’;»I*S’"ﬁ*aagrﬁ,l*)+Rn(b;1/2)_

On the other hand, since 9, logdet S‘m (x,0) =tr(dy S’m S'n;l), we have

En[Z,,028,,' Zn + 87 logdet Sy [lo=o,

=tr(328,, L Sm) — (828, L Smx) +t1(S,, 100 Sn xSy 0 S )

oMm,x o Mm,xPm,x
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Therefore, we have

[€nt/T]

> Eal(A)]
m=2 (7.2)
—1/2 [€nt/T]

b, o 3
:17 > En[Zy 285" Zi + 82 logdet $)lo=o, = —02V1 (0. 1),

m=2
where
Yi(o.1)
“ Y21 (bd 12 — 16l (6] T P ala? + al /det(b b)) — 200} - b2 — B!, - b2, )b} - b2 /ala?
o 4/det(bsb] ) (@l |b} |2 + a2|b2 |2 +2/ala? det(byb] ))!/2
@b} + a2 +2/ala? det(bsb))) 2
2

@bl 1> +az|b2 1> +2,/ala det(by,b] ,))'/? }
ds.

2

+

Then by Theorem 3.2 in Jacod [18], it is sufficient to show that fo":t 2/ Tl Enl&X) (Ns, —
Ns,, )] =" 0 for any bounded G;-martingale N = (N;)o<;<7 orthogonal to W.
Orthogonality of N and W yields

Em [Xl’:ll (Nsm - Nsmfl)] = Em [XrZ(NSm - Nsmfl)]s

where X} = ~27'0, " ElZ] 06 Sy Zom + 22,06 Sy, Za,m], and Zy sy and Z,, are de-
fined in (A.4).
Let N’ = (N,)o<:<r be another bounded G,-martingale. Then we obtain
[£nt/T] [€nt/T]
S B[R~ Ny )] = O Ea[ARN], ~ N, )]
m=2 m=2
[€nt/T]

+ Z X" Ném - Ns/m - Nsmfl +N/ )]

Sm—1

and
[€nt/T]
C[PACEETRSTARESTS) (IS
m=2

|:Z Em Xn 1/2 [( Sm — Ns/m — NSm—l + Ns/mil)2]1/21{zm Em[(X,Z)Z]EK}]

m=2
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12 g, 1/2
2
[ZE Ny, Em[(X’;)z]SK}:| E[Z(Ns —N;, = Ns, +N;, ) }

< VKE[(Nr —Np)']"?

for any positive constant K .

Since we have the tightness of Zﬁ:’zz Em[(an)Z] similarly to (7.2), we obtain the desired
result if for any & > 0, we can find a bounded G;-martingale N’ which satisfies E[(N — N/T)2] <
¢ and Em[X,Z(N;m - NS’”H)] = 0 for any m. We obtain such N’ by setting N, = E[N|G,] for

suitable N € N, where N is the set of finite sums of random variables X I—[l —18j (e"" ki ) with

bounded Borel functions (g ]) _panF (0 _measurable bounded random variable X, ny, ..., n e
N, 1 = ki,...,ki <2,and iy,...,i; € Z4+. Then N is dense in Lz(Q,gr, P) and we obtain
EnlX,(Ng — Ny )]=0forany mif n > max;n;. O

Proof of Theorem 2.1. Since the parameter space A is open, there exists ¢ > 0 such that
O(e,04) ={0; |0 — 04| <&} C A. Then we have

1
=00 Hu0 ) = [ 2 Hy 00, 8,) (0 + 16, = 0) Gy — )
0

for 6, € O(¢, 04), by 3y Hy (07, 0y) = 0.

Hence, we obtain b,i“(&n — 0y) = f;;b;”“aa H, (o4, V,) on {detf‘l,n #0 and 6, €
O (g, 04)}, where f‘l,n = —b;lﬂ fol 8§Hn(a* + ¢ (6, — o)) dt. Then since Propositions 2.1, 6.1
and 7.1 yield P[detT';,, = 0] — 0, P[8, ¢ O(e,00] = 0 and T, 1y, 20) =7 T s we
have by/* (6, — 04) =5 Fl_l/zj\/' as n — oo by Proposition 7.2.

Moreover, Propositions 2.1 and 7.1 ensure that f‘l,n —P I, which completes the proof. [

8. Proof of the LAN property

To obtain the LAN property of our model, the arguments in the proof of Theorem 2.1 are
essential. Indeed, by using Propositions 2.1 and 7.2, we obtain a LAMN-type property of
the quasi-log-likelihood function H, with respect to o: H, (04 + b, 1/ 4141, Vy) — Hy (04, vy) —

up - b_1/48 H, (04, Vy) — uTb_l/282H (0%, V)u1/2 =P 0 as n — oo for any u; € R?, and
by 48, Hy (04, v4), — _1/282H (04, v2)) =L (TN, Ty), where A is a d-dimensional
standard normal random vanable independent of F. On the other hand, under the assumptions of
Theorem 2.2, the true log-likelihood ratio log(d P oatb s oty /d P, . ) foru, e R4

and uy € R? is obtained as —(ZIrS1 121 + logdet S1)/2 if we set kn = bn. We cannot apply the
argument of Section 5 to this quantity because the estimate £,, — oo is essential there. Therefore,
we follow the approaches by Gloter and Jacod [12] to show the LAN property. We set a “subex-
periment” and a “superexperiment”, which are obtained by respectively removing and adding

%5 Uses
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observations from the original experiment. The likelihood functions of these experiments have
similar properties to H,, and therefore we can prove the LAN properties for these experiments
with the same limit distribution. We can prove that these results lead us to the LAN property of
the original one.

Let Z = RY%+, 7i(2) = (xk J tk k)j k=12 fori € Z, and z = (xl.k,’j, tl.k,, ellf,)i/ez+,j,k=1,2 €
Z. Let H= %({ni_] (A);i € Z+, A€ B(Rg)}), P(;;’v; be the induced probability measure on

(Z,H) by ((st;,k <din)s SP i<y €7 i<y )iz jk=1,2) With a true value (o, v)). We
can ignore the évent min; k <0.
LetH = %(l i €Z+,k_1 2), ]0 =—1, ]m—max{l t <smtVvO(l<m=<{,),100)=1,
1(m) = min{k; ti = max,/,k/{tl., < sp,} forsome i} for 1 <m <¢,,
MO = B((x ) + by —xFN =Ygy i € Zak=1,2) VI,
H = B(gE K ekiez k=1,2) v,

1 1(m), j 1,2
HY =H" v B(x on l<m<e,—1,j=1, 2)\/%()%1”+1 x}"H).

Then we can see H"? ¢ H™! ¢ H"? and

d( |Hn1)
10g(dPg vu/dPU* U* —1 gﬁ (81)
LU |H™
Moreover, we obtain
d( Us Uz¢|Hnl)
TN : » 5 (g it S Viznn 6 Vision )iz, jicr )
O’* vy [H?
(8.2)

= HVEZ)(O—Mv Vy) — Hél (0%, V)

forl =0, where 1u(t,0) = (' (t.0). (1.0 . 2y (@) = (PH(If, ) = [ 4 (t.0)d1)ig, and

diag((/ |b}|2dt>> (/ b,l-b,zdt)
n i 1, ij Jr(lel,m 0 )

(0) — m nm
S, (o, v) = 0 vsMa

(/1 . b}.bfdt> dlag<</2 |bt2|2dt))
Ii,mmlj,m jai I ]

J.m

for 1 <m <y, H\”(0,0) = = X" {((ZW (@) T (W) (0, v) 23 (0) +logdet S\ (0, v)} /2,
0, = 0w+ by Yy and v, = vy + by, Puy for u = (ug, up) € R x R2. H™0 and H"2 are o-
fields for “subexperiment” and “superexperiment”, respectively, while ™! is the one for the
original one.
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To obtain similar formula to (8.2) forl =2, 1letR,,, = SK1 \Y SKz ) Qk = S;’{f, Q

it
S =T v = [ e,

m—1
Q
Y&; — Y,’;fﬂ —/Qk ukt, o) dt, ifQf =R
ok ( 1k k
Y]r(n,+(a)= Y (Ik;vm)_[kk w (I,O')dt
"”;” . ifQf <R,
YI]im o ?Ik()]fl B /k Mk(l’ G)dt

Yo o—e'Il(,lflfQ3 k<Rm,Ymo—(£Kl, Kz)Tlle =Q2, and

m

T. Ogihara

e k
Kkl:tl’

T 2 T
20 = (oo (P - [, weoar) @) Vi)
k=1

im =i <klcn

for2 <m <, — 1. Then (8.2) holds for / = 2, where I{ , =R} |, Qf _

+)’ i,m
2<i<kk+1,

E(v) = v3_y, k(2)k kk +2, k(2)3 —k k3 k11, and
I_]f(Z),k m - [Q]:"’ Rm)’ if Qm < Rm,

— Jk

for

i—1,m

E(v) =diag(vi,v2) and (K&, k22) = (k) +1,k2 +1) if Q) =Q2,

>Tm

@
(M} )i = 287 = Ljimiri=1y — Limir=ty = Ly

2 (o, v)

. 112 1 2
ol ([ 109) ) g 0] e
—t="m m J.m

im

1<j<k??

= bl b2dr di / b2 dt
{/]1 AP2 ! }lsjskr(nz)’z 1ag(( i2m| t| 1< j<k®?

jom 1<i<k,(nz)’] s
0 o 0
uM? 0 0
+1 0 wuMP 0
0 0  E@)
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_ 2 2 2 g —
for2<m<¢,—1,Z7Z,", M, ,and S, are similarly defined for m =1, ¢,,, and

b4
1 & T _
H® (0,v) = -3 Z{ (z2(0)) P (0, 1) 2P (o) + logdet S (o, v)}.

m=1

The log-likelihood functions H,go) and Hn(z) of “subexperiment” and “superexperiment”, re-
spectively, have similar properties to that of H,,, and hence we can prove convergence of like-
lihood ratios. Gloter and Jacod [12] showed that convergence of likelihood ratios of “subex-
periment” and “superexperiment” imply convergence of that of the original experiment (The-
orem 4.1). Here, we use a slight extension of their result. The proof is straightforward. Let
ULl = d(P} |ypn)/d(P_, |3n). K €N, and {of}pen1<k<k C A and vf}peni<k<k C
(0, 00) x (0, 00) be arbitrary sequences.

n,l

Theorem 8.1. Suppose that (UZ’II ot Uk k) converges in law under P!, toalimitY =
n>Yn n tn ’

(Yl,..., YK) with 0 < Y* < 00 almost surely and E[Yk] =1forl=0,2and 1 <k <K. Then
the same convergence holds forl = 1.

We will show the LAN properties of “subexperiment” and ‘superexperiment’. Then Theo-
rem 8.1 leads to the LAN property of the original one.
First, Taylor’s formula yields

HY (04, vy) — H (04, v2)

1/2

= by 9 HO (0, v - uy +27 105 Pu] 02 HO (0, vius + by 20, HO (0, v0) - un

-|-2_1bn_1 (l)(a*,v*)u2+/ / Zb 481),3ng (Gm,vm)uz,u”dsdt

(1—r)2 3
D b 00,00, 00 H (01, vy jun jus g di
i,j,k

1 2
(=12,
+ /0 S by B o v e,
i,j,k

We examine the limit of each term on the right-hand side. First, we prepare an auxil-

iary lemma. Let P, = {o = (o1,...,01); L e N, 1 < < q,Zleaz =gq}, M,(no,)* = M x,

1512)* = diag(vy, *Ml( ,31, v2,+ M, 52,31, E(vy)),

k
Y2m+

k : k 3—k
{—s’;kl, if Q= Q) *,

m
n,k n,k n,k . k 3—k
Ekl ~fkE-1 T K‘) if Q, < Qy
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0) nk n,k
70— (g —& <1k p—1 9, and
2m = KE_ titl K&71+i)1515km’k—1v2’

, T T T
Zf; = ((8,[;/’;714_1’ (821]:71_;_,'_;_1 - 82”§71+i)1§i<k,]§l’ (Yg,m,-‘r) )k:l,Z’ Yl—;,()) (8.3)

m

for 2 <m < ¢, — 1. Though we can similarly define Z;?Bn and Zézr)n for m =1, ¢, so that they

satisfy the following lemma, we omit it to avoid redundancy. We also omit discussions for m =
1, £, throughout the rest of this section.

Lemma 8.1. Assume (A1”). Let p e N,1€{0,2}, 1 <m < ¥, and let S,, be a Gs,,_, -measurable
random matrix of suitable size. Then there exists a positive constant C), depending only on p
such that

@ 1Enl(Z3)) T 8nZ P11 = Cp Y anye, Lt 1S M)

.....

(i) EnlEnl(Z )78, Z0 141 = 12e(MY,S,) D)2 + 48 tr((M,),S,)%).

2.m 2.m

Proof. (i) Let U,ff) be an orthogonal matrix and A,(fl) be a diagonal matrix satisfying

U,ﬁf)M,gf?*(U,g))T = A,(,?. Then since Z;lzn ~ N(, M,Ef?*), a similar estimate to (A.5) yields

p p
O \T& -0 \P7_ (O O\ T 0
Ef(Z) 80200 )= X TTO0$a@) ), e, X TTOD,
ilyening g=1 (zzq_l,zzq,);’,:l q'=1
where the second summation on the right-hand side is over all disjoint pairs (/>4 1, lzq/)g r_y of
variables iy, ..., i2p.

(ii)
En[(tr(M32.80) = (23),) 80 Z3),)"]
4

(—=Dr4! s . »
> A w80 Eal(28)) 802"
r=0

—w(MP.$,)" —4u(MD,S,)* +6tr(MP,S,) (r(MD,S,)* + 2t (

m3).8)))

M3.8n)")

—_~

—4u(MP,S$,) (e(MD,8,)° + 6u(MP,S,) tr(MP,$)7) + 81

—~

+{e(MD,8,) + 120(MD,8,)  w(MP,8,)7) + 12u(MD,8,)7)

m,x
+32u(MP,8,) u(MP,S$,)°) +48u((MD,8,)Y))
= 12t((MP,8,)7) +48t(MD,S,)"). D

Lemma 8.2. Assume (A1) and (A2). Then

1/2

1. sup,, |by 2ok (H" (0, v:) — H" (04, v.)) — 8k V1 ()| = 0,
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2. sup, b ok (H" (04, v) — HY (04, 12)) — 0k Vo (0)| =7 0,
3. sup,, by 4950, H (0, v)| =7 0

asn— oo for0<k<3andl=0,2.

Proof. 1. For any ¢ > 0, (¢€ + Mj(il)—l has a similar decomposition to (4.4) by replacing
PloeosPyi s Py Y Plseees p]/(j o pl’(j — 1. Then, We obtain the desired results by a sim-
ilar argument to the proof of Pro;gnositionmzl together with Lemmas 4.1 and 8.1, the results in

Section 8 of [12], and similar estimates to Lemmas 5.1, 4.2 and 4.3. Estimate for the quantity

j
corresponding to A in Lemma 5.2 is obtained since {((¢€ + M]('zriz)_l)kk}}f;nl/ s nonincreasing

similarly to Lemma 4.2, and

k-1 -1
=1 P(cjv; )

—1 ki —1 -1
(P;’,"l (ijj,*) -1 H;il Pl/(CjUj,*)

_ -1
((¢ vj,ﬂls‘g + MJ(ZYL) )= = OP(bll/z)-

2. Similarly to (5.1), we obtain

1 _
b '8  HO (0, v) = —Eb,jl S (@ (s9)'SD,) + 0] logdet S} + 0, (1).

m

0),j i , ~ (1 i
Let k,(n) I =k) for j=1,2, Dﬁ)m = ((S&))i’i’)lgi,i’gk,ﬁ?"’

RO _ (0)
Dy = ((S0) . )01 < jr a1 14002

Eézr)n = diag(((sr(rlz>)j,j’)k,(,f)’l <j' <k E(v),

A0) _ (70 \~1/2 ) O =172
GEn) = (Dl,m) {/ s bt 'bt dt} ol o 2(D2,m) ’
1,002, L<i <kt 1< j <kl
GO = (D )~'? / bl prdrl,_ o, bY )2,
w = (Di) iz, k") 15isk,§12)’1,15j51€53)’2( 2m)

and E,(,? = diag(bi{lﬂ, Dé{)m) forl =0, 2, where 12,512 )-2 is the size of Dézr)n Then we obtain
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= (D1,) (GG ) 6 (D5),) " (Dy),) P (6.) T (B, ))

+((BY),) 7 ((ED) T 60 (
(BY,)"(G9) T (GG (B, (B, ) 60 (BY, ).

O, (1), terms involving é,(,l,) on the right-hand side

0 (D5,
by, "D,

l 1 0 \—
Since (D) )12DY) (DY) )72 =

Jam,x
are O)p (bl/ 25 1. Therefore, we have

by r((S50) 7 Si)
2
_bnlztr DY) D) +op(er)

D(Z)) (1551,) — vV ,iDﬁlin *))"‘OP(Z;])

2U
>¢<
— b, S Yy
vV

j:lj

Similarly, we have b;"! tr(aﬁ(s,ﬁi))—ls(’)*) =T Y2

1).

io1a %85 U}j* +o,(L; 1. Moreover, we ob-

tain
det S
det S,(,p*

b, 9% 1og

n

[\S]

Z 1al‘logdet D(l) ) 155{),")+bn_18{flogdet(5—G,(,ll)(G(l)) )

— b, 95 logdet(€ — G (GY),) )
2

=1 ok 1ogdet(vjv;,{5k_';n +(D), )" ‘([)j?m JuiaDP ) +op(6)
j=1

_TE_IZ ok log(vjvrl) +0,(,").

3. Since 3, log det S = tr(3, S5 (S)~1), we have
1 34

by *0,9,HD (0, v) = —~5bn S {tr(303u (S9) 7' SD,) + 859, log det ST} +0, (1) = 0, (1)

m
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Sobolev’s inequality and similar estimates for 9, 33 and 83 dy yield the results. (]

The following lemma completes the proof of the LAN properties of “subexperiment” and
“superexperiment”.

Lemma 83. Assume (A1”) and (A2). Then (b, %0, H (04, v0) 7, b, % x

avHél)(a*, v) T =5~ dlag(l"l/2 5/2)/\7 for 1 =0,2, where N is a (d + 2)-dimensional
normal random variable independent of F.

Proof. Let Zyy), = Z4y (0.), X' = —by " En[(Zig) T80 (S0 ™ Zinh 12, > = —by 1% x
Enl(ZW0T8,(S907' 20,172, and X2 = ((XwH)T, (X T)T, then we have
[€,t/T]
> Em[’*‘?ﬂz (agsal = HIZE [z a0 (50.) ' 20, [1]
m=1

Cc _ _ _
+ 502 Y Eal|Eal(Z0.) Tou(550) 7 2.
m

We can see that the first term on the right-hand side converges to 0 by Lemma 8.1 and a similar
estimate to Point 1 of Lemma 4.3. We show the second term on the right-hand side converges to
0 in probability.

Let Z, (© ) be similarly defined to Zz m in (A.4). Let z{0 = Z(l)( ) — (lzn and S

: ! 1,m,* 1,m,*
E, [Zfin*(z()

1,m,*

)T]. Then Lemmas 8.1 and a similar estimate to (A.5) yield

Enll(Z))

1,m,*

) au(si) " 2z, | ] = CLER[((25,) " au(s50) ST, Lau(sin) ™ 24,7

= Ru (b 'k3).

and E[|(z"

1,m,*
over, Lemma 8.1 yields

b2 Y En[En[(25),) 00(50,) 7 28 11 = Ra (b 204k2) 2 0,
m

)Tau(Si) 2 141 = Ru(by ) X4 [ ((Si) ™| = Ru(b; 2k)). More-

1,m,*x

2.m

and therefore, we obtain
[€nt/T]
) p
Z Em[|Xr’:l| 1{|A~f',’}l\>g}] —0.
m=1

Similarly to the proof of Proposition 7.2, we have

[€n1/T] ~ [€nt/T] ~
Z Em [an’ll(NSm - Nsm—l)] _)17 0 and Z Em [an’ll(Wém - Wsm—l)] =
m=1 m=1

for any bounded G;-martingale N orthogonal to (W;);.
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Therefore, by Theorem 3.2 in Jacod [18], it is sufficient to show that
[€nt/T] o
S En[En(An) TS diag(~02Vi(0x, 1), —92V2(vi 1)),
m=1
where )h (v, 1) = fo j 1aA {(vj«/vj) — 1+1log(vj/vj)}ds/2.
Then we obtain the desired results by
[€nt/T] _ _ - b—3/4 [€nt/T] . i
3 Bl (A ] = - D (8,50, (SW,) T 8uSPL(S9,) ) > 0.
m=1 m=1
[€nt/T] _ _ T
> Ea[An (A" ]
m=1
b—1/2 [€nt/T]
n
=Y (s (5007
m=1
p1/2 Wt/ T B
- ”2 > Em[ag{(zf,?*) (S ZP, +logdet SV ]
m=1 (0,0)=(0%,v4)
—0; V1(0w, 1),
and similarly
[€nt/T] ~ _
> En[T3(%07)]
m=1
b_] [Z,,I/T] T 1
= > Enz{(Z0.) (SV)7 Z, +logdet ST}
m=1 (0,0)=(0, %)
—02)5 vy, 7). O

Proof of Theorem 2.2. Let U(u) = exp(u ' T'V/2N — uTu/2) for u € R4*2, Let

S;l‘k Jk.n
7W(0) = <eg*", (Yﬁ—Y!‘_l - / . uk(t,o)dr> ) ,
s i=1/k=1,2

i—1

and S(l)(o, v) be a symmetric matrix of size Ji , 4+ J2,, + 2 defined by (S(l)(o, V)11 = V1,
SV (0, v))y, 2.0 442 = V2,

(s (o, v)),; = diag(viM (1 + 1), v2M Jo + D),
ifi # jand {i, j}N{L,J1,+2} #9,
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n,1

Sl
(S<‘>(a,v>),.j=/l (b P droy + oMU, + i if2<ij <Jia+1,
S}’l.

i-2
Sn,2
s — [ B2 ars:, Ly 'y
( (o, v))ij_ ) }bl‘ dt811+U2M(J2,n+l)z’]/ if2<i’,j <Jan+1,
S’l-
/2

bl -b?dr  if2<i<Ji,+land2<j <Jo,+1,

(S(l)(O', v))ij :/

8758 DNIS2 5857 )

where i’ =i —J;, — 1 and j'= j — J; , — 1. Then we have (8.2) for / = 1 with
1 _ 1
H"(@,0) = =2 (20(©0) " (P (0.) " 2" (0) - S logdet SV (01 v).
Moreover, Theorem 8.1 and Lemmas 8.2 and 8.3 yield

(HP (0,00, v,00) = H (04, 00), o HD (0,00, vu00) — HP (04, v4)

y 8.4)
—>(logU(u(l)),...,10gU(u(k)))
asn — oo foru®, ... u® e RIT2,
Furthermore, similar estimates to the proof of Lemma 8.2 yield sup, , |b, 3/ 480 dy H,il)(a,

v)| =70, sup, |b, 3/482H,51)(a, vy)| =7 0, and sup,, |b;3/283H,§1)(0*, v)| =7 0. Therefore we

obtain

HD (04, vi) = HO (03, v) = (- Vi —uTVa,u/2) 50 (8.5)

as n — oo for any u € R4*2, where Vin= (b;1/48(,H,§1)(a*, Vs), bn_l/28UH,fl)(o*, vy)) and

Vo, = —diag(by 202 H" (0 v,). b 192 H" (04, v,)). (8.4) and (8.5) yield V;,, —9 T2/
and V,, —? T, and therefore we obtain the LAN property of the original experiment with
I, =V, and N, =T ~1/2V |, by (8.1). O

9. Proof of the results in Section 2.4

In this final section, we complete the proof of remaining results in Section 2. Proposition 2.2 is
proven by the scheme of Yoshida [29,30]. Proposition 6.1 and moment estimates in Lemmas 4.4
and 5.2 enable us to check the assumptions of Theorem 2 in [30]. Then the results on convergence
of moments and the Bayes-type estimator are obtained by Proposition 2.2.

Outline of the proof of Proposition 2.2. We apply Theorem 2 in Yoshida [30]. It is sufficient
to prove the following five conditions for any L > 0 with some positive constant §; and §>:

1. There exists Cf, > 0 such that P[infyz,, (=V1(0)/|o — 0x|*) <r~!'1 < Cp/rl and
Pl{r~Yu*> <u'Tu/4 for any u € R*}] < Cr/r’ for any r > 0.
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2. sup,, E[(by /185 Hy (0, D)D*] < 00.

3. sup, E[(B)' sup, by (Hy(0, D) — Hy (0, B0)) — Vi (@))] < o0.
4. sup, EL[(b, "/* sup, 133 H, (o, 5,))L] < o0.

5. sup, E[(b2|by /%92 Hy (0, D) + T1])E] < o0.

By Taylor’s formula for Y;(c) and relations )Yj(ox) = 9,)V1(0x) = 0, we obtain
infs 45, (=V1(0) /|0 — o*|2) < inquRd\{o} uTFlu/(2|u|2). Then (B3) and the proof of Propo-
sition 6.1 yield point 1. By Lemmas 4.4 and 5.2, Remark 5.2, and a similar argument to the proof
of Proposition 2.1, we obtain 3-5 and sup,, E[(bn_l/4|80 H, (s, On) — 0o Hy(0s, v)E] < 0.
Moreover, by the Burkholder—Davis—Gundy inequality, we obtain

E[|by " "*0, By (04, v:0)|"]

|: bl
=F

3 Bl 20808 7]

o Y
b S Enl(238:5,, ), Zn) T }L o)

= (b b))+ B[Ry (7K ) )] + 001
=0

for L > 4, which implies point 2. (]

Proof of Theorem 2.3. We extend Z,(#) to a continuous function on R? satisfying
lim; | 00 Z, (1) = O with the supremum norm of the extended function the same as for the
original one. Then by Theorem 5 and Remark 5 in Yoshida [30], it is sufficient to show
limsup,,_, o E[|b,11/4(&n — 04)|P] < oo for any p > 0 and Z, —5LZ in C(B(R)) as n — o0
for any R > 0, where Z(u) = exp(N - u — u'Tu/2) and B(R) = {u; |u| < R}.

By Lemma 4.4 and a similar argument to the proof of Proposition 2.1, we have

lim sup E[ sup |8u10an(M)‘] < o0o.
N—=oou>N  LueB(R)

Then Propositions 2.1 and 7.2 and tightness criterion in C space in Billingsley [6] yield
logZ, —sL logZ in C(B(R)). Then (2.12) completes the proof. (|
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Proof of Theorem 2.4. By Theorem 10 in Yoshida [30], it is sufficient to show

-1
supE[(/ Z, )7 (0 + by )du) i|<oo. 9.1)
n U,

Similarly to the proof of Proposition 2.2, there exists § > 0 such that sup, E[|H,(0sx +
by, 6,) — Hy (0, 9171 < Cplul? for any u € U(8), where U(8) = {u € RY; |u;] < 8(i =
.,d)}. Then we have (9.1) by Lemma 2 in [30]. O

Appendix
A.1. Results from linear algebra

Lemma A.1. Let A and B be matrices, with A nonnegative definite and symmetric. Then

|tr(AB)| < tr(A)| B

Lemma A.2. Let] € N, A/ and B/ be real-valued matrices and {k,{}k be eigenvalues of A’ for

1 < j <I.Assume that A’ is symmetric and all the elements of B are nonnegative for 1 < j <I.
Then

where iy 1 =1ij.

Proof. Let U/ be an orthogonal matrix such that A/ = (U/)T d1ag((k )k)U J. Then

J

Z 1_[ 12] 1,02 12/ 121+1 Z Z l_[ |)‘ 12/ l’|Ukj»i2j|Bi]2jsi2j+l)
l

Sl j=1 k., kpiy,...,.io j=1
<X [t w71 e, )
,,,,, kp j=1

~T1(1#7141)

Lemma A.J3. Let A be a symmetric matrix with ||A|| < 1. Then logdet(é + A) =
Yo (=P pTlu(AP).
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Proof. Let {)xj}l;zl be eigenvalues of A. Then sup; A=Al <1, and hence

logdet(é’—l—A)—Zlog(l—i—A )_ZZ( Hrp 7:2(—1)P*‘p*‘tr(AP).

Jj r=l1 p=1 O

Lemma A.4. Let A and B be symmetric, positive definite matrices. Assume that v’ Av > v' Bv
for any vector v. Then | A='|| < [|B~!| and ||A=1/2)| < ||B=1/2].

Proof. Let (k?‘)j and (Af ); be eigenvalues of A and B, respectively. Then for any unit vector
v, there exists an orthogonal matrix U such that

A2 B 2 i1 B

ij v; EZAJ- (Uv)j zu}f)»j.
J J

Therefore, we obtain || A~!||~! = inf; )»j\ > inf; )»lf =B~ and |A=1/2)7! :inff()‘?)]/z ==

1nf ()\B)l/Z ||B 1/2” l 0O

Lemma A.5. Let B be a symmetric, positive definite matrix and A be a symmetric, nonnegative
definite matrix. Then tr(AB) > tr(A)||B~"|~'.

Proof. Let {A?} j and {A?}j be eigenvalues of A and B, respectively, and U be an orthogo-
nal matrix satisfying UAUT = diag((kf)j). Then since (UBUT)jj > inf; )Lf = ||B_1 ||_1, we
obtain

w(AB) =Y 24 (UBUT), >ZM||B N =way B
0
J

Lemma A.6. Let n > 0 and A be a symmetric matrix. Assume that € + A is positive definite and
€ + Al < n. Then tr(A) —logdet(€ + A) > tr(A%)/(2(n V 1)).

Proof. We easily obtain the desired results by using the fact that logdet(€+ A) = >, log(1+1x)
and that x —xz/(Z(n V1)) >log(1+x) for —1 < x <n—1, where (4;); are eigenvalues of A. ]

Lemma A.7. Let A be a symmetric matrix, B a matrix of suitable size and (X.;) ; eigenvalues of
BTAB. Then

L. [((BTAB)ii| < |Al(B" B)i; for any .

2. 3 1Al < Al (BT B).

Proof. 1. Let U be an orthogonal matrix and let {)Jj }; be eigenvalues of A such that U TAU =
diag((k’j) ;). Then we obtain

Z,\ (UTB)

J

(BT AB),,| = <nAn§: (UTB) ;)" =11AI(B"B),;-
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2. There exists an orthogonal matrix V such that »; = (VBT ABV);; for any j. Then

ZW = Z}(VTBTABV)].].| <Al Z(VTBTBv)jj =||A| (BT B)

by 1. (]

A.2. Proof of (2.10)

Proof of (2.10). Let &’ = ./ala?, B, = \/det(b,b]), X, = (@b} |> + a?|b?| + 2a}B,)'/?, and

Y(x,y)=(xy' + yx")/2 for vectors x, y. Then (2.8) yields

. o )
i) /T { S (b 2= 1b] 2@} b, P+l By — 233 (b} b — b}, b2 )b} - b
1 =

4B Y,
0
. LT“} .
2
Hence we obtain
2 (U)_ Y31 8216] @10} 1P+l By) —2a}02b) - bb) - b}
o V1O 4B,7, p—
2 PRI St AP Y 1,72
b; B b, b
Z B |bj Uw — | 0b) - b2, @}y 1
— ZBZ‘T[ O0=0x% tTt O =0x%
82T2| Tt(])(Tt(l))T 4
47, o=ox + 7@
Terms involving 83 in the integrand of right-hand side are rewritten as
3—
T PP~ 2036] 0l 2,
! 4B, L4, )lo=o.,
~ (1) (D\T
_ @ {a§|b}|2|b%|2+|b,‘|2a§|b?|2—2b} biogh) b} 03B 2By, (By)) }
4T,(0) B, B; Biot) =0

~ 1 1 1 ] 1 1
TarO | ©0) (o)
47, B4,[ B4’t
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Other terms are rewritten as

~3113=J12  ~J 132
o a’lb; Y|1*+a; By . b b
8 bj ,8 t t t _ a bl b2, 38 ! !
X;w("‘f 2B, omo, Y\ Pl b0 g ),
j=
1 1
N Tt( )(Tt( ))T
0)
27,

2 ~3 n(l) ~3 n(0) (1) ~3 n(0) ~j p0)y~r(1)
_Z¢<B(l) a;By_;,  a;By_; By, (atBs—j,z"‘atht,z)Tt )
- j.1 0)~~(0) 0 0 0 0

PerRRNY: ) PR T0: Fo Co e 2B (1)
(D ) p(H) (0) A~ (D) 1 1

_; W(B(l) By,  By/By, By ) T

' 3,67 (0)~n(0 0 0 0) (0 0
34(1,;)Tz( ) (Bz(l,t))th( ) Bz(l,t)(’rt( ))2 ZTt( )
(D 1))

B T

~3 1) ) (1) pO) 0) (1) 4,1 t
:_azw<B1,th,t +B2,tB1,t _2B3,IB3,Z’ 0 0 0 0 )

2By 2B (0

(M) pM)y _ p(D p(yT I 1) el
V(B By;)— By (B3 ) S 4 z2p0) " rVerT
T4 0~ V@B T ar By G ©
B, 207 27,
M) pM)y _ p p(NT =350 (T 1) el
_3 V(B By,)— B3 (By,)  a;By (By,) P or)T
' ©0)~-©) 0)~~(©) ©
By, By, 27,

0) (1) pO) ) p(1) 0) (1) ~1 p(1)
1+ T By B — 2By, B3, =2B,,B,, and a,;B; | +

a?By') +2a} By!) = 270”1 ". Therefore, we obtain (2.10). O

Here we have used equations Bl(lt) Bé

A.3. Proof of Lemma 4.3

Let A, be a (ky, + ky,) X (ky, + ky,) matrix with elements (Ap)ij = Lizj 1<l o j=x1 > let 1 be
a matrix with all elements equal to 1 and M, « = M, (vs).

Lemma A8. Letn e N, 1 <m <¥,, q,q' € N such that g’ <2q, A, : {1,. ..,k,il —|—kn21}q/ —
{0, 1} be a random map, ¢ : {1,...,q’} = {1, ...,2q} be an injection, and S be a symmetric,
Gs,,_,-measurable random matrix of size k), + k2 satisfying ||My «SMy, .|| < b, '. Let K =

kb k2 ; . ; .
» jﬁf.,}lq,:l Am(j1, ..., jg). Then there exists a positive constant C that depends only on v, and

q such that

q
Tyl —1 . . = 2q1.—q979+9' —2lq’ /2]
3 TTOATY 'SA, i Ay )| < CKCn 20 LT 2021,

i1,eeing j=1
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Proof. Let S = (AJ”—)”SA,;1 and Am = m,*A;nr. Then a simple calculation shows that

; —1,, _ . . .

(ke + 1) 7 (7 = K Lit)=2) Uiy k(i) =k(j) andi = j,

~_ . 1 . . _ . . . .

(Aml)i,j =1 —(kEO + 1) (kEO — j 11 +knl11{k(i):2})vk(}),*7 k(@) =k(j)andi < j,
0, otherwise,

1 2
where {k(i)}" ™ is defined by k(i) =1 for 1 <i <k, and k(i) =2 for k), <i <k, + k2.
Therefore, we have

|(Ar;le,*SMm,*(A;ln—)_l)ij’

(Z((Arzl)i,k)2>1/2||Mm,*SMm,*|| (Z((A,,:l)j,k)z)l/2 (A1)

k k

1Si; 1

IA

< (vis+v5,)b; k.

1,%

Similarly, we have

|(818);;] < (m?xZ(Aml)l?J | Mo SMi 12 (A1) T1AY| < €202, (A2)
k

Moreover, since Y ; (A My A L)1) ij = vl;(lj) */(k,j,; + 1), we obtain

[trS1)| < 1M Sl D (A M A7) ™) (AmAY) o (A M AT) ),
i,j,k,l

< Ck,’b, ' > (AnA)),, < CK,7b, 'K,
k.l

(A.3)

If both i1 and i; are outside the image of ¢, we have
Z Sizj1,iaj Am (), -+ -y Ei(g)) = S AR (1, - Eig))-
i2j—1,02;

Moreover, if both i»;_1 and io¢_; are in the image of ¢ and neither i»; nor iy is in it, then we

have

Z Siy; i Sio i Am (1) - - -5 Lu(gh))

2,02k

= (Sls)izjfl,izkfl Am (il(l)» ceey it(q’))'
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Therefore there exist o € {0, 1} for 1 <k <[¢'/2], 0 <s <[(2q — ¢q’)/2] and a bijection ¢’ :
(I....g"} > {1,....q'} such that Y\9" X oy +[q'/2]+ 5 =q — (¢’ — 2[q'/2]) and

Z l—[Szzj Lizj Am (), -+ ligh)

01yeeey ing j=1
ol /2] lq'/2]
172 q q D(k S S . . ,
< (Cb,'k2) > k]‘[1 ((S1) )]/(Zkil)’jm|tr(31) Aty -y Jg)
Jtseesdyr k=

< C(bn_llzg)q,_z[q//ﬂ (]En/lin)zq (b;llzn)q—(q/_Z[q//z])K < CK(]En/kn)g‘qbn_q]zz-i_q/_z[q//z],
by (A.1)-(A.3). 0

Proof of Lemma 4.3. Let {&; n}1<; <1 142 and {&; m}1<;<1 142 be sequences of random vari-
I 1<i <kl +kZ I <i<kl,+k2, q

1 "1 i 1,2
= — < _
ablesdeﬁr;edbyszm 8+K| 4 and &; = EKr'n . fori <k, and &; , = 5 k2 1 and
.. n . 1
Eim =€y for i > k,,. Moreover, let
7 ~1 777 T T T
Zim = (((bys - Wgn1 =W nl))l w12 (e W = ”))/ o))
(A4)

5 Kl T K T\T
Zam = (" = e20) 2 1) (€7 =020 2 L))

andglm*—gm* My .

Let Ulm* be an orthogonal matrix and let At s be a dlagonal matrix satisfying
U1m *Sl m. *Ul max = Dlms Then since Zl,m|gsm,1 ~ N(O, 51 m.x), Wwe have
UL,,M(ZL,,,|g3,m_1 ~ N(O, Ay ). Therefore, for any ¢ € N and 1 < ji, ..., jo, <k} + k2,
we obtain

2q q
Em[]‘[<U1,m,*zl,m>jk}= DR [ (S E (A5)

k=1 (=1, F _; k=1

where the summation on the right-hand side is over all g-pairs (lox— 1’12/<)Z=1 of variables
J] LRI qu .

I. Let ¢(A9 B)i1,...,i4 = (Ail,izBi3,i4 + Ail,i3 Biz,i4 + Ai1,i4Bi2,i3 + Aiz,i3 Bi1,i4 + Aiz,i4Bi1,i3 +
Aj,.iyBiy i,)/2 for square matrices A and B of the same size, and §;, be a {0, 1}-valued
function that is equal to 1 if and only if i1 = --- = i;. Then we have

,,,,,,,
Ep [(Z{nzszz»m)z]

4
= Em[((AmZZ,m)TS(AmZZ,m))z] = Z S1'1,1'2§i3,i4Em |:1_[(§ij,m - éij,m):|
4 Jj=1
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i F O M2, M)y i+ (E[Giy)*] = 3E[Giym) )01 iminia b

where M = diag(vy «1, v2,+1) and My = diag(vy +&, v2,E).
Hence, we obtain

En[(Z]57,)']
= Em[(zz mSZ2 m Z Sz| 12 i3, 14(¢(S1 m, %> Sl m, %) +2¢(S1 mx> M, *))

2
= 2005, 85m.48) + (5 9% + Y (E] K, +l)“] — 302, ) (8E(1,SE))
-1

Jj=1
+ ch,ilsiilz,
i

by (A.5), where Cp; = E[(8i,m)*] — 3E[(Eim)?1* and &y is a (kL + k2) x (k}, + k2,) matrix
with elements (8(1))“ = l{kfk}n}l{lfk,ln} and (5(2))k[ = 1{k>k7£7}1{l>k,1n}‘
Lemma A.7 and (A.1) yield

m,x""m

- M 0 =
§Rn(bn2kn)tr<< (1)’m Py )Sm?*> (A7)
\m

< Ra(by k) (S, ) = Ra(br?k2) = Ra (D).

> CuilSiil? < Csup Co iy Kl 185l r((A)) 7' 52451
1

i

Here, we used the fact that diagonal elements (S *)11 and (S *) kL +1,kl,+1 are positive since

S 2 . 1 positive definite.
Moreover the assumptions and Lemmas A.1, A.4 and A.7 yield

tI‘(SS(DSg(l)) < tr( <1 _|(; & O) Sg(l))

< Cu(S, A 0 (A]) T 50 (A.8)

5,28 (M(l)”” 8) s3L/?

< Cby 7y (S k) 1y < Cby 2y * (ML) | = Ru(D),

since (M *)11 <y, *by 4.5).
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(A.6)—(A.8) and similar estimates for tr(SE2)SE)) yield Ep[(Z]SZm)?] = 2tr((SSy.+)?) +
tr(SSy.)> + Ry (1).

We next prove the estimate for Em[|ZTSZm |9]. Let p € N satisfy g < 2p. Then it is sufficient
to show that E,,[(Z,SZ,)2P1 = R, (by, T k7).

Note that

Em[(Z{mSZZ,m)2p] — Z Silyiz . l4p L l4p [1—[(81/ m— ‘éij,m):|’

and there exist {0, 1}-valued maps {A; ,,};, constants C;, positive integers {g,} not greater than
S 4p o~ . . .
4p and injections {¢;} such that Em[]_[]pl(si m = &i ) =D CrALm iy, ...,z”(q[/)) and

Zjl,...,jq/ Arm Gty eens ]‘11) =R, (k[q’ ) for any /. Then Lemma A.8 yields
1

En[(Z3,48Z0.m)"] = Ru (b3 7 K37). (A9)
Moreover, (A.5) yields
En[(Z],,8Z1m)"] <C)p > [T1r(S81m0)7) = Ru (b "ka”).  (A.10)
=1, VL) k

LeN, =13 k=2p

Furthermore, by calculating the expectation of Z 1.m and using (A.5) and Lemma A.7, we have

FlZ 572 = (X )l 7))

(ak—1.10)}_,
= (217 - 1)””Mm,*sgl,m,*SMm,*||pEm[(ZImMn;?*22,m)p]

= Ru(br k7).

Then we obtain E,,[(Z]SZ)*P1= R, (b T k\").
For the estimate of Em[(Z,ISZm)“], we have Em[(ZI'—mSZLm)‘*] = R, (b;zkﬁ) and
E, [(ZleSZZ,m)“] =R, (b;2kﬁ) by the above results. Moreover, we have

4
En[(2],8%2m)' 1= Y TT(AD)'SALY, o []‘[(slkm &y m)] (A.11)

i1yenig k=1
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and there exist {0, 1}-valued maps {A}};, constants C}, positive integers {g,'} not greater than 8

L , /2173
and injections {1} such that Zj|,...,jq~ ALt esdgp) = R, (kL7273 nd
!

8
Em[]"[(éi,,m—éij,n,)}— > ]"[am.m ZCIA(zt,a),...,i”(q;)), (A.12)

Jj=1 (ak—1,b0)}_; k=

where the summation in the first term of the right-hand side is over all 4-pairs (l2x—1, lzk)2:1 of
variables iy, ..., 3.
Then (A.11), (A.12) and Lemma A.8 yield

4

4
EnlZ,5%m) 1= 2 TINS5 TTouui + Ralt )

ity ig k=1 (k-1 l)i_, k=1
= Ru((b k) v (b, %K3))-
2. Let {I, m}f Tk'" be defined by I, m= I.1 forl <i< k1 and Il m= I for k1 <i<
kL, + k2. Since (Zy — Zom & Zim)i =[5 (bf% £ by dW, + s 11 m| + [, 0 =

18D ydt, we have (Zy — Zn) "S(Zn + Zim) = W1 + W2 + Wy, 3, where

m 1=2(Zn — m)TSZZ m =+ ZZSI jl‘l/sm llll ml/ k(j) + (= 1)kbk(/))
k=1 i,j

+ZZSIJ/ (oKD 4 (- l)kbk(z))‘/: (59 4+~ VKD aw, aw,,

k=1 ij Ij,mm[owt)

Enl¥Ym21=0,¥,2= R, (bn_lk,z’/z) and W, 3 = R, (b;3/2k,2,). Here we used the facts that
lxTAy| < lIAl1x11y| (A.13)
for vectors x, y and a matrix A,

|En[tr(SD)]| = [e(SEnlDY)| < | EmlD1[118Smll tr(S;, ) = Ra (b1 ?k2),

n

and
En[En[t(SD)]?] < CEn[En[IDI]11Sm.S1 (S;, )]
< CEn[Ru(57* 6, ") R (b " €,77%)]
B 4 BEOYGED Ry gy

for any g > 1, where D = (D;;);; and D;; _fllmﬂl,m
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Then the Burkholder—Davis—Gundy inequality yields
> (Zn = Zm) " S(Zm + Zm)

q
<CEq [(Z(wm,1 + wm,z)z) 2} + Ry (bn *kit) (A.14)

gCEnKZE [w? >}+CEH[<ZE (v )]+Rn(bn%k2).

Let Z,,.; = fl (bk(l) — bk(l))dW, and Z,, = (Zp.;)i» then we obtain

Wt =2(Zin — Zn) ' SZom + 2y SZw + 22 ,SZ, S
) _ o ~ (A.15)
+ 22 +2Z1,m) " S(ED 1 iml); + Ru(by ')
Moreover, for any p € N, Lemma A.7, (A.13), (A.9) and the Cauchy—Schwarz inequality yield

Em[(z(zm - Zm)TSZ2,m + (zzm + 221,n1)TS(//Lk(l) |I |))2p]

o
< CEn[|5048Zm = Zu)(Zm = Zu) "SSmi| 12 En[(Z3 82 Z2m) 7]
+ R ((bukabi b, "))
= Ra((6; 6 ) PREP) + R (b "K27) = Ry (b VK3,
We can rewrite Zy; = L! + L} + L} + Ry(by 26,°%), where L! = ¥, ¢! [; (1 —

sm-1)dW/, L} = kb Ji, (Wf — sm,l)thJ and L} =3, 0,8, i ]st,,,_l(Ws[ -

me, Dd wka W,j for some Gy, ,-measurable random variables 5}, EJZ’ v and é;’ 11 With bounded
moments. ) ‘
LetL/ = (LJ )i. Then, Lemma A.7 and (A.10) yield

En[(ZhSZn +22],8Zn)""]
< C||SESS2 P (Eal((L7) T S50 7]+ Ru((Bukaby 7))

—i—CZE L WSL/)] (A.17)

|

< Ru(WEL[((1?)"5,L12)%]

12
} En[(Z] 5220 "

3 T 3 2
Sm,*s<z'm - ZLj) (zm - ZL-/’)SS,M

[(Z],,SL)"] + Ra(bn *KS7).

”M"’
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Here we also used that (a + b) " A(a + b) <2a' Aa + 2bT Ab for a positive definite matrix A
and vectors a, b.
Moreover, we can see that there exists a positive constant C), such that

|: Z H(Wplk(llk m)/ szk Wbl:kl)dwtp3,k):|

iz k=1 Ljg.m
Jl JZp

2p—a
=G 2 X (H lle_l,mmzzq,m|>r,%“<sm—sm-o”—“

2p— =
;' llzl’ (lag 1qu)qp:1a,a g=1
1

for any {p;r}1<i<3,1<k<2p C {1,2}, where the second summation on the right-hand side
is taken over 0 < @ < p and (2p — «) disjoint pairs (lo4— 1,lzq)2p ~% in the variables
i1y i2ps J1,---» Jop. Here we used the fact that all 6p factors (WP (I, ), f] AW,

(Wp 2k _ Wsp 2'3)[ elj, )k | should be separated into 3p pairs in the non-zero terms. 2
represents the number of pairs with the form (WP”(Ilk m)s (WPZ" — Wf, 1”1/) > ) or

IEIjkhm
5 D3k Poi Pax'y .
( fljk,m AW (W, = Wil e Ijk,.m)' Therefore we obtain

B8] = Rl X (6 ) e ) = R )

0<a<p

(A.17) and similar arguments for E,,[(Z], SL")?"], E,[(Z], SL*)?"] and E,,[((L*)TSL?)*7]
yield

En[(Z1SZm +27],871)*"] = Ru(bn " K2"). (A.18)
(A.15), (A.16) and (A.18) yield

i, L
En[¥)"\] = Ra(bn ’ks"), andhence En [(Z v 1) ] = R, ((b;°K])""). (A.19)
m

(A.13), (A.15) and (A.18) yield

1/2

En[02,] = CIS28My S5 Bl Z — 2 S50 — 2] + . (b—2k3>

+[S{En[@Zn +2Z1,m)i @Zn +2Z1,m);]}; ;S| Z 1D T ]

Sm—1

< By(b ) + R (7)) + Ru(bakaby?) = Ra(b;,63).

and therefore, we have En[(}.,, En[¥? 49 /2] = R, (b, "*kY), which completes the proof of
point 2.
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Point 3 is easily obtained by the proof of point 2 since we only need the estimate for
En[(zm[\yivl])] ifg=2. O

A.4. An additional lemma

Lemma A.9. Let e, be a sequence of positive numbers, S be an open set in a Euclidean
space, A,(\) and B, ()) be sequences of positive-valued random variables, and Cp(\)
be a sequence of non-negative-valued random variables for . € S. Assume that A,(L),
By(1), and C,(x) are C3 with respect to A, e, — 00, SUPy—x<31es5(10XAn] vV [0XB,|) =
0,(eh), and SUP<k<3.1eS |8§C,,| = 0p(e;?) as n — oo, Cy < AyBy as. for any n € N,
and lim,_, oo (€2 (A, By — Cy)) > 0 a.s. Then

sup
reS

i " o} B wChy P
a'\(;/;) Fo om0 Fo By 2Pm/—Aan—cn>‘_0”(e" ) (420

ad T C,I; (An,) Cn(An+ Aan_Cn)
(L - T

ilelg (A, x) fp(By, x) T 2Py, JA,B, —C,
(A21)
Oplen?).
00 . Cp
gl (D2 [ S w4 /B 4
g (A.22)

Opler')

for 0 <k <3,where f,(a,x)=(a+2(1—cosx))’ and P, = \/An + B, + 2/ A, B, — C,.

Proof. An elementary calculation yields

CP
PX:;/O (A, +2(1 —cosx))?(B, +2(1 —cos x))P

% C -1 C 1

:/ (1 k ) k " 5 dt
—o0 (An+ 225 (Ba+ 255) ) (A + {255)(By + 255) 1 +1
00 C 1

_ / - i (A23)
—00 (An+1+—t2)(Bn+l+—t2)_Cn +1

B /°° Cu(1+12) st
—00 ((An +4)t2 + An)((Bn +4)12 + Bn) - Cn(l + t2)2

N /oo C,(1+ tz) dt
oo (AuBp+4A, + 4B, — Cp + 16)1* +2(AuBp + 2An + 2B, — C)t2 + ApBy — Cp
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We only consider the case (A, — B,,)2 +16C, > 0 a.s. We can easily obtain the desired results
for the other case with a slight modification.

Let
—2A, — 2B, —/4(A, — By)? + 16C,
o] = and
16
—2A, — 2B, +4(A, — B,)? + 16C,
Q) = ,
16

then we have o < ap < 0 by the assumptions. Moreover, we can calculate the right-hand side of
(A.23) as

iy [ Cu(1412)
(1 + Op(en ))K 16(t2 _ al)(ﬂ _ 052) dt
27 Ch(14+ap) Cn(1+a2)
1+0
=(1+0pes )) |:2«/—Ol1i(0t1 —a3) * 2/ —ai(as —011)}

_ 1y T GV — Va4 Jare)
=(1+0p(e)) 16 Ve (ar — o)

T Cn -3/2
= — —+ 0 e .
16 \/ozlaz(\/—oq + /—a2) p( " )

Therefore, we obtain (A.20) with k£ = 0 by noting that 16c10p = A, B, — C,, and

\/x+y+\/(x—y)2+4z+\/x+y—\/(x—y)2+4z:\/2x+2y+4\/xy—z

for non-negative numbers x, y, z satisfying xy > z.

We similarly have (A.20) with 1 <k <3 and (A.21) with 0 <k <3.

Furthermore, we obtain f 1+ t2) 1 log(t2 +a?)dt =27 log(a + 1) for any o > 0 by the
residue theorem.

Therefore, we obtain

k
Z / fp(An,x)fp(Bnax)

=% /_oo 1412 log<1 T (A + 42/ +12) (B, +42/1 +t2))>dt
o [T (t? — ) (2 — o) > 1
@ f_oo 1412 1Og<(t2+A,,/(An+4))(t2+Bn/(Bn+4)) di + 0p(e,)

=—2md, (log(l + v/ —ap) +log(l + /—a2) —log<1 +./ AA+4>
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B, _
—log(l 5 +4>> +0p(e; ")
= 2108 (VA /2 + v/ Bu/2 — =1 — =a2) + Oy (e, ).

which completes the proof. ]
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