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In this paper, after generalizing the pathwise Burkholder-Davis—Gundy (BDG) inequalities from discrete
time to cadlag semimartingales, we present several applications of the pathwise inequalities. In particular
we show that they allow to extend the classical BDG inequalities

1. to the Bessel process of order o > 1
2. to the case of a random exponent p
3. to martingales stopped at a time t which belongs to a well studied class of random times
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1. Introduction

In recent years, a new method of systematically proving martingale inequalities through pathwise
counterparts has emerged. This approach, which historically arose from considerations in robust
mathematical finance in the seminal paper by Hobson [14], has in particular been applied to
derive the pathwise Burkholder—Davis—Gundy (BDG) inequalities: see [5], where in Section 2
one can also find more information on the history of the subject. Notice that one can find early
instances of this approach in the proofs of [31], Chapter 4, Propositions 4.3 and 4.4.

The first goal of this paper is to generalize the pathwise BDG inequalities of [5] from discrete
to continuous time; specifically we to show that, if X is a cadlag semimartingale and ® a very
general function, one can explicitly construct integrands K, K such that for some constant Co
the following pathwise BDG inequalities hold

(VIX],) < Co®(X7) + (K - X)1, ®(X;) < Co®(vIX],) + (K - X3 €]

this turns out to be easy if ®(¢) = ¢ but hard in general, even in the case where ®(¢) =¢?/p for
some p > 1.

The second goal of this paper is to show that the pathwise inequalities are strictly more pow-
erful than the classical ones, in useful ways. Indeed, we present several applications of (1), in
which we are able to extend the classical BDG inequalities beyond their traditional domain of
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validity. Although we concentrate our attention exclusively on the BDG inequalities, it is clear
that also for other martingale inequalities the pathwise version is going to be analogously ‘bet-
ter’ than the classical one; in this regard, it is interesting to keep in mind that every martingale
inequality in finite discrete time admits a pathwise equivalent: see [3,8].

How can these additional applications arise? Trivially the pathwise martingale inequalities
imply their classical equivalent by (localizing and) taking expectations and using the fact that
E[(H - X);] =0 when X is a local martingale, 7 is a stopping time (one small enough to make
sup,, |(H - X);| integrable) and H = K, K. The whole idea is then that there are interesting
examples where X is a not a local martingale or 7 is a not stopping time and yet one can somehow
control the size of E[(H - X);] for H = K, K. Let us now review our applications of (1) one by
one.

If B is a Brownian motion in R” started at By, X := || B|jr: and ®(r) = t?/p with> p > 0, the
BDG inequalities applied to B imply that for some ¢, C

CECD(\/ [X]T) < E<I>(X;‘) < C]ECD(\/ [X]T) for all stopping times . 2)

In other words, the BDG inequalities hold for such a process X, even if X is not a local martin-
gale; X is called an n-dimensional Bessel process. More generally (but without making a con-
nection with Brownian motion) one can define the a-dimensional Bessel process X for all « € R.
This is a positive Feller process with continuous paths, and it is a semimartingale if « ¢ (0, 1), so
it is natural to ask for which values of « ¢ (0, 1) the BDG inequalities hold. This questions was
answered by [12], Theorem 4.1, where one can find a proof (only provided for the case p = 1)
of the fact that (2) holds if @ > 1. We will show how this is just a corollary of the pathwise BDG
inequalities, and that in the case p =1 this is really easy to show. Even better (and curiously
enough) we do not recover the BDG inequalities for Bessel processes for p > 1 from the corre-
sponding p > 1 pathwise BDG inequalities (which are laborious to prove), but rather applying
a strengthened version of the easy-to-prove pathwise Davis inequalities (i.e., the case p = 1),
obtained by a delicate modification of the arguments in [11], Chapter 7, Lemma 91. So, while
the ideas of [12] yield constants with the ‘correct’ scaling in « and ours do not, our approach has
the advantage of simplicity, and allows to derive these inequalities relying on a systematic way
to generalize martingale inequalities, instead of applying ad-hoc methods.

Then, we develop a variant of the BDG inequalities, connecting the expectations of the p-
th power of /[X], and X}, in the case in which the exponent p > 1 is a random variable. In
particular when p is Fp-measurable our inequalities imply that

Ey[XI <E(6pX5)".  E(X%)" <E(6pvIXlx)” 3)

for every cadlag local martingale X; this implies® that (3) holds if p > 1 is any random variable
independent of X (of course this also easily follows taking conditional expectations with respect

2We recall that, while in general the BDG inequalities only hold for p > 1, they hold for any p > 0 for continuous local
martingales. The inequalities also hold for very general functions ®: for the cadlag (resp. continuous) case one can take
@ as in Theorem 3 (resp. Theorem 5).

3Indeed in this case X is also a local martingale with respect to the filtration F; := o (p, (Xs)s<¢)-
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to p and then applying the classical BDG inequalities). In the case where the probability space
has no atoms and p is bounded above, (3) has essentially* appeared in [23], Theorem 3.1 (which
is still unpublished), which claims that the result also holds without the assumption that p is Fo-
measurable. Under additional hypotheses, Doob’s inequality has appeared in [16], Theorem 3.5,
and in [2], Corollary 1, for a Fp-measurable p. In light of Doob’s pathwise inequality [1], Propo-
sition 2.1(i) (see also [13], Eqn. (5)), our pathwise method easily allows to recover also Doob’s
inequality for an arbitrary Fp-measurable variable exponent p > 1, without requiring any of the
additional hypotheses made in [2] or in® [16].

It turns out that (2) hold not only when 7 is a stopping time, but also for many random times.
Indeed, if 7 is a finite random time such that (K - X); and (K - X); are in L' and have zero
expectation, trivially (1) implies (2). This can be useful: if

H' = {N is a martingale and N, € LI(IE”)}, ()]

given any random time t the set of M € H! for which E[M,] =0 is ‘large’ (it has co-dimension
at most 1 in H') and can be quite explicitly characterized: see [26], Section 3. Moreover, perhaps
surprisingly there are quite a number of interesting examples of random times t (called pseudo
stopping times) which are not stopping times and for which EM, = 0 holds for any M € H';
these times have been studied in [28], where one can find several equivalent characterizations
and examples.

If 7 is a finite’ stopping time and A; := 1j; «0)(?), then f(7) = f0°° f(s)dAy;itis then natural
to ask if one can generalize (2) and obtain that

cE/OOCD(\/[X]S)dAS gEf
0 0

holds for any local martingale X, increasing adapted A with As, = 1 and general ®. It turns out
that this is true and simple to prove, although (perhaps surprisingly) this follows not integrating
the pathwise BDG inequalities but rather considering the classical ones on an enlarged space; this
observation is probably not new, although we include it since were not able to locate a reference
in the literature.

One can ask whether the BDG inequalities hold not only for local martingales, but also for
many semimartingales which admit an equivalent local martingale measure; the latter processes
being of particular importance in mathematical finance, due to the Fundamental Theorem of As-
set Pricing (see [10]). As proved in [33,34], one can exactly characterize the equivalent mea-
sures under which the so called ‘weighted BDG inequalities” hold. Indeed, given P~P et
Z, = E[dP/dP|F;], so that® Z, = exp(M; — [M],/2) for a unique local martingale M with

oo o0

D(X7)dAs < CEf O (VIX]1s) dAs 6))

0

4We use the modular [23], Eqn. (1.1), instead of the related Luxemburg norm [23], Eqn. (1.2),

SLe. the probability space to be without atoms, p to be bounded away from 1 and bounded above, F to be countably
generated.

6Le. F, to be countably generated for every n, p to be bounded away from 1 and bounded above and to satisfy the
inequality [16], Eqn. (1.4).

TThis is not really needed, as we will see.

8See [15], Chapter 2, Theorem 8.3, and [31], Chapter 8, Proposition 1.6; the fact that M is a local martingale follows
from dM = (Z,)*1 dZ, since Z is a martingale.
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My = 0. Then, as one can read in [19], Theorem 3.17 and 3.18, if the underlying filtration is such
that every P-martingale is continuous, M € BMO(P) iff there exist ¢, C such that

By/[X]oo <EXE < CEV[X]o (6)

holds for every local P-martingale X. While we cannot use the pathwise BDG inequalities to
obtain with a simple proof the above extremely satisfying result in complete generality, we can
easily prove a weaker statement which does not require any knowledge about BMO-martingales.

Then, we briefly discuss what happens to the pathwise and the standard BDG inequalities (and
their optimal constants) in higher dimension (finite and infinite).

The outline of the rest of the paper is then as follows. In Section 2, we introduce most of the
notations and we derive the pathwise Davis inequalities for cadlag semimartingales from their
discrete time version. In Section 3, we state the pathwise BDG inequalities for cadlag semi-
martingales; we relegate the corresponding proof to the appendix, as it is computationally de-
manding. In Section 4, we prove the BDG inequalities for the Bessel processes. In Section 5 we
consider the case of a random exponent p. In Section 6, we show that the BDG inequalities hold
for martingales stopped at many random times, and in Section 7, we discuss (5). In Section 8§,
we consider what happens after a change of measure. In Section 9, we discuss the multidimen-
sional case and the optimal constants. In Section 10, we show that Davis pathwise inequalities
for continuous semimartingales can be given an alternative proof, based only on Ito’s formula.

2. Pathwise Davis inequalities for cadlag semimartingales

In this section, we introduce most of the notations used throughout the paper, and then we easily
obtain a version of the pathwise Davis inequalities for cadlag semimartingales by passing to the
limit their discrete time version.

We will work on an underlying filtered probability space (2, F, (F;);>0, P) whose filtration
(F); satisfies the usual conditions.® Given cadlag adapted processes S, X, A, and assuming that
X is a semimartingale, A is of finite variation (on compact sets) and the following integrals
exist, we will use the following notations. The cag predictable process S_ has value S;_ :=
lim,4, S, at time ¢, the jump of S at t is AS; = §; — S;—, the running maximum S* of § is
given by S/ := sup, -, |S,|, [X] is the quadratic variation of X, A is the (possibly infinite)
limit lim,_, o A; (which always exists if A is increasing), (H - X); is the stochastic integral
f(o,r] H,dX,,and fé H,dA, (resp. fé: H, dA,) is the Lebesgue-Stieltjes integral f(o,r] H,dA,
(resp. f[o’ 9 H, dA,). Given arbitrary processes K, K we will write that K < K if K, < K ; holds
P a.s. and for all r > 0, and we define by convention Ko_ :=0 and 0/0 := 0, so that in particular
Xo— = X;_ =[X]o- =0, the integrands H in Theorem 1 and H, G, Ft(s) in Theorem 3 are well
defined and the measure d X* (resp. d+/[X].) has mass X* = | X[ (resp. +/[X]o = | Xo|) at 0. We
denote with a Vv b the maximum of @, b € R, and with R the interval [0, c0).

9Mc:aning it is right continuous and F contains all the negligible sets of Foo.
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Theorem 1. Let (X;);cr, be a cadlag semimartingale, and set

Xl‘_

H; = . @)
VIXL- 4+ (X7)?
Then H is cag, predictable, has values in [—1, 1], and satisfies
VIXI<3X*—(H-X),  X*<6J[X]+2(H-X); (8)
Proof. Applying [5], Theorem 1.2, to x; := Xf/z,, (w),0<i < N with 2"t < N gives
0"(X), = Z(X@Jrl)/z" - Xf/zn)2 <3M"(X), — (H"-X),, )
ieN
where M"(X), := max;en |X§/2,l| and
) X
" :%1(2’;"?”1'(”\/@(}()%+(Mﬂ(X)2Ln)2' o

Since Q"(X); — [X] uniformly on compacts in probability, passing to a subsequence (without
relabeling) we get that Q" (X); — [X]; a.s. for all s > 0; since X is a.s. cadlag, M"(X); —
X* as. and s0'® H" — H; as. for all s > 0. Since |H"| < 1, using the stochastic dominated
convergence theorem we get that (H" - X). — (H - X). uniformly on compacts in probability, so
we can take limits in (9) and obtain that /[ X]; <3X] — (H - X); a.s. for all # > 0. The proof of
the second inequality is identical. (|

The traditional Davis inequalities (12) are a simple corollary of their pathwise equivalent (8).
Corollary 2. Under the assumptions of Theorem 1
(H-X)* <3(X*+[X]) and [H-X]<[X]. (11)
If X is a local martingale, then so is (H - X), and
EV[Xloo <3EXE,  EXE <6EV[X]oo; (12)
if moreover E\/[X]oo < 00 then (H - X) is a martingale and (H - X)’, € L' (P).
Proof. It trivially follows from (8) that —3./[X] < (H - X) <3X*;since |[H| <1, [H - X] =

H?.[X] <[X], (11) hold. Assume now that X is a local-martingale, in which case also H - X
is a local martingales (because H is cag). Let t, be sequence of stopping times which localizes

107f [X15— + (X}_)? = 0 then H} = Hy = 0.
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H - X; applying (8) to X ™ (instead of X), taking expectations and then taking limits for f,n — oo
we get (12) by monotone convergence. If E/[X ]« is finite (11) gives that E(H - X))’ < 00, s0
the dominated convergence theorem ensures that the local martingale A - X is a martingale. [J

3. Pathwise BDG inequalities for cadlag semimartingales

In this section, we modify ideas of Garsia to obtain that the general (pathwise) BDG inequalities
are a consequence of Davis’ ones; this approach was already taken in [5] in the (technically
much simpler) discrete-time case when ®(¢) = ¢? for some p > 1. We actually relegate to the
Appendix the computationally-intense proof. For expositions of Garsia’s ideas, we refer to [25],
pages 101 to 106, or [9]; a slightly modified version'! is given in [11], Chapter 7, Lemma 91.

Notice that we do not derive the general pathwise BDG inequalities passing to the limit the
discrete time statement [5], Theorem 6.3, as done for Davis inequalities. The problem with this
approach is that for p > 1 it is not easy to show that the discretized integrands H”, G" corre-
sponding to (10) should converge to their continuous time equivalent, since if we try to express
H! as a stochastic integral we obtain that'> H' = [J K dY}, where also the integrator ¥"
depends on n (and similarly for G™). In principle however our approach to proving pathwise in-
equalities through discretization can be applied also to the general BDG inequalities. Indeed, the
results of [3] strongly suggest the existence of predictable integrands H;, G;, each of the form
f(X:—,[X]—, X;_) for some continuous function f (which depends on ®), for which the path-
wise BDG inequalities hold in discrete time. If that is indeed the case, they can then be obtained
in continuous time simply by passing to the limit (as done in the proof of Theorem 1).

We will henceforth consider a function ¢ : R, — R which is cadlag, increasing, unbounded
and such that ¢ (0) = 0; as usual we define ¢ (0—) := 0, so that in particular d¢ has no atom
at zero. The integral ®(¢) := fot ¢(s)ds is a convex increasing function such that ®(¢)/t — oo
as t — o0o. We will also assume that ®(¢) is ‘tame’, that is, that there exists some constant
Cg such that ®(2t) < Co®(¢) for all ¢; equivalently, there exists some constant ¢y such that
¢ (2t) < cypep () for all ¢. Such functions ® are well studied in connections to Orlicz spaces, and
are often called “Young functions’, although they are also referred to by various other names.
In particular, the interested reader should consult [20], where © would be called an ‘N-function

satisfying the A,-condition’. One can then show that the ‘exponent!?’
pi=sup P, (13)
u>0 Pu)

is in (1, 00). Moreover, if ¥ (¢) := inf{s : ¢ (s) > ¢} is the cad (so ¥_(¢) := ¥ (¢—) is the cag)
inverse of ¢, and W (¢) := f(; Y (s)ds is the convex conjugate of @, the following inequalities

UThe quantity E[® (] X])] is replaced by the seminorm || X||¢ :=inf{A > 0: E[®(|X]|/1)] < 1}.
21ndeed ¥ = (/O (X)s).
3If & (1) = 1¢/c then p in (13) equals c.
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(which we borrow from [9]) hold:
uv < d(u) + ¥ (v), ®(au) <al ®(u) ifa>1,
V(au) <a¥(u) ifa<l, (14)
V() < (p-DO(Y(s—) and Y (p() <5 andso W((s)) < (p— HD(s).

Theorem 3. Assume that (X;);cRr, is a cadlag semimartingale, ® is as above and p is given by
(13). Let C (resp. D) be the cad inverse of /[X] (resp. X*) and define c), := p(6p)?,

H, ;:/ pFd¢(s), G, :=/ pEPY dg(s),
[0,/1X];,-) [0,X72)

where (Ft(S))(S,t)eRi is defined as

<t

FO Xi— — X,

t - .
VX = X0 supy o, (X — X, )2

Then H, G are cag predictable and
O (VIX]) < cp®(X*) — (H - X), D(X*) <cp@(VIX]) +2(G - X). (15)

Moreover if ¢ is continuous, then H and G are lad and
H, = /O pEY do(VIX],),  Gi= /O pEY de(X?). (16)
[0,1) [0,1)

If ©(t) =P/ p, the inequalities (15) hold with the better'* constant cp = (6p)P.

We will derive in (45) integral expressions for H,; and G, ; these show that if X and ¢ are
continuous then also H and G are continuous. Notice that the function ®(¢) = ¢ does not satisfy
the assumptions made on ® in Theorem 3; despite of this, Theorem 1 affords the equivalent of
(15).

Of course, given a sequence of real numbers (x,),>o and the probability space {®} made
of one point, applying (15) (resp. (8)) to X;(®) := Y, xn1[n.n+1)(f) We obtain pathwise BDG
inequalities for functions of a real variable, which if ®(¢) = ¢? reduce to [5], Theorem 6.3, for
p > 1 (resp. to [5], Theorem 1.2, for p =1).

Moreover, if ¢ is continuous the integrands H and G in Theorem 3 are caglad, so (15)
are really path-by-path inequalities. Indeed, for P a.e. w one can compute (H - X).(w) and
[X].(w) = X% () — 2X_ - X)(®) only making use of H.(w) and X.(w) by taking limits of
Riemann sums computed along appropriate sequences of hitting times (see' [6], Theorem 7.14,

14This fact, which may at first appear odd, corresponds to [9], Lemma 1, Eqn. (13°).
150ne can apply the cited theorem because H1 := (H;); is adapted (since such is H, and the filtration is right contin-
uous) and H,t = H;.
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and [18]). Unfortunately, this remark does not apply to Davis inequalities (8), since H in Theo-
rem 1 is not necessarily lad, not even if X is continuously differentiable.'®
The traditional BDG inequalities are a simple corollary of the pathwise ones.

Corollary 4. Under the assumptions of Theorem 3 for all y > 1

—1
JIH - X1 < p*o(VIX]), \/[G-X]s(py)Pd>(\/[X])+pTd>(X*), (17

and if X is a local-martingale then so are (H - X) and (G - X), and

Ed(/[Xlo) < cpED(XE),  E®(XZ) < cpE0(v[XIno)- (18)

In particular, if X is a local-martingale and E® (/[ X]oo) < 00 then (H - X); and (G - X); are
martingales and (H - X)}%,, (G - X)%, € L' (P).

4. The Bessel process

As a corollary of the pathwise Davis inequalities, we will now prove BDG inequalities for the
Bessel process for general ®; notice how this turns out to be very easy in the case ®(¢) =¢ (i.e.
Davis inequalities).

Theorem 5. Let X be the Bessel process of dimension o € [1, 00) started at Xog > 0 and ®(t) =
t? for p > 0, then there exist constants c, C such that

cIECD(‘/[X],) < IECD(X;‘) < CIECD( [X]T) for all stopping times t. (19)
More generally, (19) holds if ® : Ry — Ry is cadlag, increasing, such that ®(x) =0 iff x =0
and for which sup,. o ®(Bt)/ P (t) < oo for some (and thus all) g > 1.
The only facts about X which we will need in the following proof is that X. >0 P ® L! a.e.
and X is a weak solution!” of

a—1

2X

dX = dt +dw, (20)
where W is a standard Brownian motion w.r.t some underlying filtration (F;);. In fact, X is
positive and it never hits O (after time zero) if & > 2, whereas for « € (0,2) a.s. X hits zero but
the set {s : X; = 0} has Lebesgue measure zero (for all these statements see [31], page 442).
That X solves (20) is stated in [31], Chapter 11, Exercise 1.26, and if o > 2 the proof is simple
and can be found just before [31], Chapter 11, Proposition 1.10. Notice in particular that X has
continuous paths and [X]; = X% + 1.

16 1¢ X = 12 sin(1/¢) fort > 0and X :=0, X is C! and thus has finite variation, so itis a semimartingale with [X] =0,
and H; = X;— / X} keeps oscillating between 1 and —1 as ¢ |, 0.
1TThe explosion time of (20) is 0o, i.e. the solution to (20) is defined for all t € R..
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Lemma 6. Let X be a semimartingale such that X. +C > 0P ® L a.e. and

14

=———dt+dW,, X0 >0, 21
2(X; + C) ! 0 @b

Xi

where W is a standard Brownian motion w.r.t some underlying filtration (F;);, C > 0 is a Fp-
measurable random variable and y > 0. Then

E(X}|Fo) < (6 +2y)E(VIX],1F0) (22)
and if C =0, then
E(v[X1,1F0) < 3E(X}|Fo). (23)

Proof. Taking H; := X,//[X]; + (X})2, since |H| < 1 we get that Ef(; HSst <t < 00, SO
H - W is a martingale and (21) gives

AL
E((H - X)p|0) =E</0 ds‘]—"()). (24)

N
Xl + (X2 X +C

In particular, since [X]; = X(z) +tand X./(X. +C)<1P® Ll ae., deleting the positive X*
term from (24) we can bound E((H - X)|Fo) from above with

E(/Or/\t %/ﬁd.?‘}-o) _ y(E(m‘fo) — |X0|) =< VIE(\/mU:O)

Now evaluate the second inequality (8) at time 7 A ¢, take E(- - - | Fp), apply the bound we proved
for E((H - X)¢ns|Fo) and take limits'® as + — oo to get (22). If C =0,then X. =X. +C >0
P® L' ae., so trivially from (24) we get the bound E((H - X):r/|Fo0) = 0, so (23) follows
evaluating (8) at time 7 A ¢ and taking lim;_, oo E(- - - | Fp). O

Proof of Theorem 5. The case o € N\ {0} follows from the analogous statement for Brownian
motion (for which we refer to [22], page 37, for genera]19 @ and dimension one; for higher
dimension see our Section 9): let us show this in detail. If » € N\ {0}, B is a n-dimensional
Brownian motion started at By and X := || B||g» then [X]; = ||B0||%Rn +tand [B]; = ||BO||]12§" +nt,
so [B]/n < [X] < [B]. Thus, since X; = sup,, || Bs||r:, the BDG inequalities applied to B
imply those for X. N

From now on, we can then assume « > 1. Since X solves (20), we can apply Lemma 6 to
X with C =0 and y =« — 1, and taking expectations gives the thesis for ® () = ¢. So, let
us consider the case of general ® and « > 1. If 0 < & are finife stopping times, then W, =

18se the monotone convergence theorem.
19The statement in the special case ® (1) = t? can be found in most books on stochastic calculus
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Woqt — Wy (resp. 6 — o) is a ]:'[ := Fy4; Brownian motion (resp. stopping time), and X, =
X4 trivially satisfies dX = % dt +dW. We can then apply (23) with (X, W, F,t,C,y):
()A(, W ﬁ, 0 — 0,0, — 1) and combine this with the bounds )A(t* < Xj;_H and

VIXlotr = VIXlo Lio=0) < VIXTott — [XIo Lig=0) = \/ (X1 — X21{g0p < \/ (X1

to obtain

E(vVIX1s — VX1 lo=0)| Fo) < 3E(X}_, 1 F0) < 3E(X}|F). (25)

Define the localizing sequence o, := inf{t > 0 : X} + [X]; > n} A n and, given stopping
times 7,7,0 with T <7, define 6 :==0, AO AT, 0: =0, AO AT. Since 0 <7 < oo and

/XM 1o=0) < [X9"], 11z=0; we can apply (25) to get

B/ [x09], = [X7] 1201 F) < 3B(XS17).

Since \/[X‘Tn’\e]f - \/[X"nw]rl{wo} and X} are Fy, A9 measurable and E(Y|F,) =
E(E(Y | F5,r0)|F7) for any positive r.v. ¥, we obtain that

B(y/[xon0], =[x LieaqlFr) < 3E(X17).

T

Integrating this over {T > t} € F; gives, since /[X "] 120, < /[ X001y,

E(y/[X"7] Lgs) = [X7] Tien0)) < 3E((X7) 21 e5my)-

It follows from [22], Lemma 1.1, that for some constant ¢ (depending only on ®)

B0 (y[XIo, ) = B0y [0 ) = cBo(x)!, = cBo(X;, ).

and so taking n — oo gives E® (/[ X]p) < cED(X}).
To prove the opposite inequality unfortunately, we cannot work analogously with X, because

we would need to use that 4/ [)A(], < /[ X]s+t, which is not true (indeed [)A(], =[Xlo4r — [X]o +
X(Z,). We consider instead?’ Y, := Xo41 — X5 1io>0}, SO that

a—1

dY=————
2(Y + X5 lio>0))

dt +dWw. (26)

20Analogously we cannot consider Y instead of X in the previous proof, since we could only prove the corresponding
inequality in Lemma 6 when C = 0.
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A

Applying (22) with (X, W, F,7,C,y) := (¥, W,]—", o — o, Xs1io>0p, @ — 1), and combining
this with the bounds +/[Y]; < /[X]s+: and

Xoit = Xolio=0) <Y/

gives, for m := (6 + 2(a — 1)),

E(X} — X3 lig=0)1Fo) <mE(V[Y15—o1F0) < mE(V[X151F5). 27)
which is the equivalent of (25) (with X* and /[ X] reversed). The proof now continues exactly
as above. O

5. Random exponent

We now prove some BDG like inequalities in the case in which the exponent p > 1 is a random
variable. We work on a given (arbitrary) underlying filtered probability space (2, F, (F;):>0, P).

Theorem 7. If T is a stopping time, p : Q — [1,00) is Fr-measurable and c, := (6p)”, then
any cadlag local martingale (X;):>0 satisfies

B[V X1 — X1 7| < Ele, (x2)"17],
E[(X%)" = (X72) 1] < E[epy/ X187 .

Of course, after taking expectations Theorem 7 reduces to (3) when v = 0. The idea behind
the proof of the BDG inequalities with random exponent is easily understood in this sub-case;
indeed, let g,, h, be the Borel functions of (p, xg, X1, ..., x,) provides us by the discrete time
BDG inequality [5], Theorem 6.3. If p is Fp-measurable and (X}), is a martingale, then G,, :=
gn(p, Xo, X1, ..., Xp) is predictable and so E[(G - X),] = 0 (and analogously for H,), and so
(3) follow from the pathwise BDG inequalities. The actual proof is a little more complicated,
mostly because one needs to prove that (G - X), is integrable.

To prove Theorem 7, we will need the following lemma, which generalizes [5], Theorem 6.3,
from m =0 to m € N and affords the p > 1 equivalent of what [5], Lemma 6.1, is for p = 1; we
will henceforth write

n—1
(h-x)' = hj(xjy1—x))
Lemma 8. Let xq, ..., Xp+nN be real numbers, p > 1, m, N € N and define

hy = Z P ) a0 e = Z p Nt L VAl
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forn=m,...,m+ N —1,wherefori eN,i <n
() ._ Xn — Xi—1
g .
VIxln = [x]i-1 + maxi<g<p (xx — xi-1)2
Then

\/[ Xy — \/[X]Z—l < cplaman)’ — (0™ 'X)Z+N’
(x;z+N)p - (x;—l)p =Cpy/ [X]SHN + 2(g(m) 'X)Z+N'
Proof. It follows from [5], Theorem 1.2 and Lemma 6.1, that

\/[x]m+n - \/[x]m+i—l = 6x;,+n - (f(m+i) : X)Zi;l

which in terms of the tilded quantities

~ ~ i (m+i)
an =~/ [xTmns Cp = 6xm+n7 Xn = Xm+n, ( ) . m4n

reads d, —a;_1 < ¢, +( f ® ) Applying21 [5], Lemma 6.2, gives22 the first inequality in the

thesis, since trivially / ; := Z{:O p? (Elip_l — Elip:ll)f;i) equals

ZP (\/[x]mﬂ \/ ]m+t—1)fr£zritl)_h§;n+)j

and (h - %)y = (h™ . x)m+N The second inequality is proved analogously. [

Proof of Theorem 7. We will prove only the first inequality, as the proof of the second one is
completely analogous. Using the monotone convergence theorem, by localization we can assume
that X is a martingale and is constant after time k. Exactly as when p is not random, one can
easily? reduce the cadlag to the discrete time case®* by passing to the limit as done in Lowther’s
blog [24].

Apply Lemma 8 on {p > 1}, and [5], Lemma 6.1, on {p = 1}, to obtain that

JIXZ = JIX2 < ep (X2 0) = (Hp) - X)T onfr<oo) @8

21The value (p— 1)1’_1 in [5], Lemma 6.2, is incorrect, and should be replaced by p?, which is what one gets applying
Young’s inequality ab < a” /p + b4 /q with a = cnpl/q and b = a,f_l/pl/‘f at the end of the proof of Lemma 6.2.
22More precisely, one needs to slightly generalize [5], Lemma 6.2, to bound a,’f —a’ 1 in the case where a_ is not
necessarily zero. This is achieved replacing the identity at the beginning of that proof with the following one: a,l,) - a1_7 1=
p(p—=1) [ sP~2(an — ) ds.

23The key is to be able to use the dominated convergence theorem. This is achieved through a localization procedure,
using the fact that o/[X]” is locally integrable iff (X*)? is such.

241n which the term 7— is replaced by the term t — 1.
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for some process H (p) such that H (p); is Borel-measurable function of p and (X )x<;; since p
is Fr-measurable, H (p)4; is Fr4;-measurable. Fix an arbitrary A € F;, and on {t < oo} write
(H(p)- X)TN as "N 1Ty A;, where

Aji=(Xpypip1 — Xr+i)1Aﬂ{r<oo}v Iy i=H(p)ti 1Aﬂ{r<oo}-

If we show that each T; A; is in L' (P) and has zero expectation, from (28) we get

B (/X0 = VX1 ) Lanieaool | < E[ep (X2, ) ange<col] 29)

and the proof is concluded taking the limit N — oo (by monotone convergence). We will assume
that A € F; is such that cp(X;‘+N)P 1Anfr<oco} 15 in L' (P): otherwise (29) is trivially satisfied and
there is nothing to prove.

We can (and will) assume w.l.o.g. that p is bounded: indeed to obtain (29) for general p we
can apply (29) to p A j and take limits as j — oo, using Fatou’s lemma on the 1.h.s and the
dominated convergence theorem?® on the r.h.s.

Since (X}, \)?”1an(r<oo} € L' (P) and 27 is bounded, |A;|” € L' (P). Clearly, I'; Aj1{p—1y €
LY (P) since?® |T';| < 1 and |A;| =]A;|” on {p = 1}. To show that I'; A; 1p~1; € L' (P) apply on
{p > 1} Young’s inequality (where g = p/(p — 1))

ITi A < ITi|7/q + |A1P/p < ITi |7 + AP

and use that |I';|91(,~1) € L'(P): indeed H (p) corresponds, for p > 1, to A from Lemma 8,
and since | f,,(’)| <1 and p? is bounded, it is enough to show that

_ _ q
(Vi1 = Jix022) Laceesailpon €21 fori <N, (30)

which follows from (X¥, \)”1an(r<oo) € L' (P) since?” \/[XT, < rx X for all n and some ry.
Thus, I'; A; € L'(P). Since H(p)r4i is Fryi-measurable, so is [';; since (X¢4); is a (Fr4i)i-
martingale E[A;|F74;] =0, and so

E[T;Ai1=E[[E[A; | F;1i1] =0. 0

6. Random times

In this section, we discuss for which random times 7 and martingales M do the BDG inequalities
hold. We recall that H! is defined in (4) and a random time 7 is called a pseudo stopping time if
EM, =0 holds for any M € H'.

25 As domination one can use that ((p A H6XE)PN 14 < (1 + (p6X%,)P)14 € L1, which holds since p > yP is
increasing if y > 1,and y? <1if0<y <1.

26Indeed for p =1 the integrand H (p) corresponds to f(i ) given by [5], Lemma 6.1, which is bounded by 1.

2TIndeed (X i)i>0 is a process constant after time k and, since on RF*1 a1l norms are equivalent, there exists a constant

ry. such that /[x]g < rxj forall (xg, ..., x) € R+
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From Theorem 3 and Corollary 4 (resp. Theorem 1 and Corollary 2), it follows that the BDG
inequalities (2) hold for any pseudo stopping time t and local martingale X if ® is as in Theo-
rem 3 (resp. if ®(¢) =1); to see this, one first has to localize X so as to make H - X and G - X in
H', then take expectations and then limits (using the monotone convergence theorem).

Although the above extension to pseudo stopping times had already been proved in [27],
Proposition®® 2 with change of filtration techniques, it is convenient that it follows immediately
from the pathwise inequalities; moreover, as mentioned in the introduction, we are able to obtain
yet another setting in which (2) holds, and this seems to be new. Indeed, one can go the other way
around and, given an arbitrary random time 7, study the subspace S;(t) of M € H' for which
EM, = 0. The above discussion shows that if?* H - X € S;(t), where X is a local martingale
and H is as in Theorem 1, then (2) hold for ®(¢) = ¢; analogously for H, G from Theorem 3 and
a correspondingly general ®. As we already said, this can be useful since S () is ‘large’ (it has
co-dimension at most 1 in H') and can be quite explicitly characterized: see [26], Section 3. This
works out particularly well when t is an honest time; for example, one can show that if (F;); is
the filtration generated by a one dimensional Brownian motion B and t :=sup{t < o : B, =0},
where o is the first time B hits 1, then 7 is an honest tlme and if (L;); denotes the local time at
zero of B and L£"(x) is the Laguerre polynomial £ (x"e™) then M; :=E[L,,(Ls)|F:] is in
S1(t) whenever n # 1: see [26], Example 3.7.

n! dx”

7. Randomized stopping times

In this section, we prove that for ® as in3" Theorem 3 (and also for ® () = t) we have (5) for any
local martingale X and randomized stopping time A; but first, we need some more definitions. We
say that A is a randomized stopping time if it is a cadlag increasing adapted process with Ay =0
and lim;_, o, A; < 1. Breaking from our conventions, in this section we allow A to have a jump
at infinity: we will write A for lim,_, A;, and we define Ao := 1 (however X7 is defined
as usual as lim,_, o, X/, and analogously for [X].) and if f : [0, oo] — [0, oo] is Borel then
fooo f(s)dA, = f(o,oo] f(s)dA;. If T is a stopping time (not necessarily finite) A; := 1[7,00)(f)
is a randomized stopping time, and f(t) = fooo f(s)dA;.

Let us now prove (5); as we just said, the integrals are over (0, oo]. If the underlying space is
(€2, (F1)1, ), consider the enlargement Q:=Q ® [0, 1] endowed with the product probability
P:=P® £!, and the usual augmentation (F;), of the filtration (F; ® B), (where £! denotes the
Lebesgue measure and B the Borel subsets of [0, 1]). If 7, is a localizing sequence for X and Y
a process on 2, we extend them to by setting for all ¢

Th(w, s) == 1, (w), Y (,s) =Y, (w) forallw € 2,s €0, 1].

Let C(w, s) := inf{r : A;(w) > s} be the cad inverse of A; then trivially 7, are (Fi)i stopping
times localizing the (fz)z local martingale X, and C is a (fz)z stopping time since {C <t} =

28This has a typo: p should be > 1. Only if M is continuous one can take any p > 0.

29Because of Corollary 2 it is clear that H - X is in H! if one (and thus both) of the quantities in (12) are finite; what it
not clear is whether E(H - X); =0.

301f X is continuous then one can even take ® as in Theorem 5
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{(,5):5 < A—(w)} is in F; ® B. In particular, we can apply the BDG inequalities (12) and
(18) to the local martingale X stopped at C, and then use the change of time formula

_ _ _ 1 00
EYciZ/ch]P’ZE/ YCSdSZE/ YodA;
0 0

with Y = ®(4/[X]) and Y = ®(X*) to obtain (5).

8. Change of measure

As we mentioned, the proof of the equivalence M € BMO(P) < (6) is not simple; in this section
we show how to easily get the following weaker>! statement.

Theorem 9. For every s, T > 0 there exist ¢, C such that

cEVIX]: < EX7 < CEV[X]. €29

holds for all stopping times T and X satisfying’> dX = o X(dW + pudt) on [0, t] for some
predictable o, | such that |jt| and |o 11| are bounded by s and (@ =0 on (T, 00).

INT

Proof. Since X satisfiesdX = o X (dW 4+ udt), X is continuous and fo 02X%ds < oo a.s. for
all t < oo (otherwise féonW is not defined on [0, 7]). Thus, if H; := X,//[X]; + (X])? €

[—1,1], M, := (;M Ho X dW is well defined and a local martingale, and so there exist a local-
izing sequence (t,), for it and we get

TWA\T T AT
|E(H - X)gne| = ‘E/ HoXpdt §SE/ |X|dt <sTEX?,
0 0

and thus applying (8), localizing, taking expectations and passing to the limit we conclude
EVIX], <3+ sT)EX?. Analogously since by Holder inequality

TWAT
‘]E/ HoXudt
0

o T
fS]E/ I[O’T](l[oyr]|O'X|)dl fsEﬁ / o2X?dt
0 0

and [ 02X?dt = [X]., we can conclude that EX* < (6 + 2s/T)EV/[X],. O

The reader may be interested in knowing that there are several conditions equivalent to (6)
which one can impose on Z: the reverse Holder inequality, the Muckenhoupt (A,) condition

311 this statement the role of P and P is reversed, and 1 is chosen so that dW := dW + udtisa P-Brownian motion.
Given M := nw W, the local I@’—martingale exp(M - [M]/Z) is in BMO(I@’) since it has bounded quadratic variation, so
this theorem is a special case of the result above.

32We are not assuming that this SDE has solution with explosion time strictly bigger than t: this will depend on o. We
are saying that, if (X;);cgr, is a such a solution, then (31) holds.
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and yet another unnamed (B),) condition (see Theorem 3.4, Corollary 3.4 and Theorem® 2.4 in
[19]). Moreover, in [7] one can find (under additional conditions) an extension of the implication
M € BMO(P) = (6) in the case where not every martingale is continuous.

9. Higher dimension

The pathwise BDG inequalities (8) and (15), so far stated and proved in dimension 1, automat-
ically hold in any finite dimension (with worse constants). Indeed, since on R" all norms are
equivalent, if || - ||gr» denotes the Euclidian norm there exist 0 < «,, < B, such that for every
n-dimensional semimartingale X = (X Nieloon

n n

n
@ ) (X)) = ) sup| Xi| = X[ i= sup [ Xz < B ) (X7),
K s<

i=1 i=1"- i=1

Thus, the fact that Davis inequalities (8) hold for X follows summing over i the corresponding
inequalities for X' (since [X] = Y[X'Nand (H - X):=); (H' - X')). Similarly one obtains
(15), using also the fact that for all ; > 0

%Xn:cb(n) < cb([njt,») <n?”! icbm;
i=l i=l i=l

these inequalities hold since @ is increasing, convex and satisfies ® (nr) < n?d(z).

We should say that although throughout the paper we make no effort to get good constants, the
results of [3] imply that the optimal constants for the pathwise BDG inequalities for R”-valued
semimartingales are equal to (or smaller than3*) the optimal constants for the classical BDG
inequalities R”-valued martingales; the problem of finding these is important and still mostly>>
open.

Unfortunately, all this falls short of what one can do with the classic BDG inequalities, for
which one can not only apply the above reasoning, but also prove that automatically they hold
for every martingale M with values in a Hilbert space IH, and with the same constant as for R2. In
fact, one can easily construct (possibly on an enlarged probability space) a R?-valued martingale
N such that |M;|lm = || V;|lgz and [M]; = [N]; for all # > 0. For the simple proof of this nice
yet not so well-known result of [17] in the discrete time case, see [21], Proposition 5.8.3. For the
general (much harder) cadlag case, one can consult [17]; notice however that one does not need
this to prove the BDG inequalities for cadlag martingales, as these follow from their discrete time
version!

33This theorem has a typo, it should be p > 1 not p > 1.

34we expect of course the optimal constants to be equal; this would easily follow if one could show that the stochastic
integral term is P-integrable.

351¢ ®(r) = tP / p for some values of p the optimal value of ¢ or C is known, see [29].
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10. Davis inequality for continuous local martingales

We give here an alternative statement and derivation of pathwise Davis inequalities for contin-
uous semimartingales; the following treatment builds on [5], Theorem 5.1, where the easier of
the two inequalities was proved for continuous local martingales starting at zero. Unlike the
discrete time proof, the proof in this section has the advantage of being a relatively straightfor-
ward application of Ito’s formula; this has an early precedent in the proofs of some subcases of
BDG inequalities found in [31], Chapter 4, Proposition 4.3 and 4.4. One could probably anal-
ogously prove pathwise BDG inequalities for continuous semimartingales and ®(¢) =¢#/p for
any p > 1; we leave this pursuit to other researchers. We remind the reader that the classical
BDG inequalities also admit a very simple proof in the case of continuous martingale: see [32],
Chapter 6, Theorem 42.1.

Theorem 10. If X is a continuous semimartingale, then P a.s. for all t > 0

g 1) o

Notice that the functional form of the integrand in Theorem 10 is slightly different3 from the
one obtained in Theorem 1. The next lemma is just a slight modification of the arguments after
equation (4.3) in [5].

Lemma 11. Let f, g : RT — R be continuous increasing and such that f(0) v g(0) > 0. Then
on R™

2 . 2 .
_ 8 8 I R Y _
2¢ 3f§fvg+/0 Ayl Ve /Ofvgdf <3g—2f. (32)

Proof. Since d! = —xlz dx, by a change of variables | fzg—jgﬂ d(fveg = fgzdﬁ and inte-
grating the latter by parts we obtain that the middle term in (32) equals

. 2 2
/d(g f). (33)
o fVveg

As easily shown with the arguments®’ after equation (4.3) in [5], (33) is always smaller than
3g — 2 f. Applying this inequality with the role of f and g reversed and then multiplying by —1
we see that (33) is bigger than —(3 f — 2g). O

36we conjecture that [5], Theorem 1, from which Theorem 1 follows, also holds with the integrand i, = x,, /(/[x]n V
x;+) and potentially different constants, although proving this would require much longer computations.

37Unlike [5], our [V g is strictly positive; however this has only the effect of slightly simplifying the calculations (one
can consider directly f(; instead of lims_, |, 5’ ).
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Proof of Theorem 10. For & > 0 define H® := ﬁ and I/ := (H® - X);. When ¢ > 0

applying Ito’s formula to X2 and 1/(J/[X] + ¢ v X*) we find

J X2 _ —X2d(/IXT+eVX*) N 2XdX +d[X]
VIXT+evXs  (VIXI+eVvX*? VIXT+ev X

In other words for & > 0 the integral I¢ = (H® - X), equals’®

X2 S=’+/’ X2d(V[XT+¢eVv X _/f d([X]+¢) 34)
VIXT+evXil—o Jo VIXT+evX*)? o VIXT+evX*

Since X % =X 6‘2, the quantity in (34) trivially gets bigger if we replace each occurrence of X by
X*, so applying Lemma 11 to f(¢) = +/[X]; + ¢, g(t) = X} gives

1° <3X* = 2(J[X]+e¢).

To pass to the limit as ¢ — O notice that if «/[X]; vV X =0 then X, =0, so H’ =0 and Ht0 =0
(since by our definition 0/0 = 0); if instead +/[X]; vV X} > O then H — HtO is trivially true.
In summary, the stochastic dominated convergence theorem gives that /° — I uniformly on
compacts in probability as & — 0, so there exists some &, — 0 for which I/" — 1,0 a.s. for all 7,
proving that 10 < 3X* — 2/[X].

To prove the opposite inequality, replace X with X* in (34) in both occurrences, and call J¢
the resulting quantity; then Lemma 11 applied to f = /[X]+ ¢, g = X* yields J® > 2X* —
3(V[XT+¢). The thesis I° > X* — 4,/[X] then follows taking &, — 0 as above if we can show
that 18 — J® > —X* — (/[X] + ¢. To prove the latter, let us bound separately the two terms
C¢, Df whose sum gives 1¢ — J¢. First,

D (e e
- VXL +evXF T VXl FevX) T
For the second term D¢, notice that if f, g are continuous increasing then

d(f Vg =lirzgdf + l{r<g dg; 35)
applying this to f = /[X]+ ¢ and g = X*, and using that X?> = (X})? holds* for dX} ae. 1,

we get that D? equals

t X2 _ X*Z t X2 _ X*2
/0 d(v [X]+8VX*):[) Lxmezxn dvIX] +e,

WVIXT+e Vv X*)? [X]+e¢

— X,

which is bounded below by —+/[X]+ ¢ since the integrand on the right hand side is bounded
below by —1. (]

38We also use the trivial fact that d[X] = d([X] +¢).
3Nndeed O := {t >0:X; > |X,|} is open in R, so it can be written as a countable union of open intervals; on each of
these X* is constant, so d X is supported by Ry \ O ={r > 0: X = |X;|}.
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Appendix

The appendix is devoted to proving Theorem 3 and Corollary 4. The perspicacious reader will
wonder why in the proof of Theorem 3 we start from the time-changed pathwise Davis inequali-
ties (and get (38)); the reason is that a crucial point in the proof is (42), where we make use of the
stochastic Fubini theorem. It seems at first that one could get around this problem by introducing
a more general stochastic Fubini theorem of the form

T/ pT T/ pt—
/ (/ K(s,t)dXt>st=/ <f K(s,t)st> dX;, (36)
0 K 0 0

where X is a semimartingale and V' a cadlag adapted process of finite variation. However, it is
hard to determine for which class of integrands K the above equality holds,** and even for which
K the family of random variables {fST K(s,t)dX; :s €0, T]} can be well-defined as a process.

Proof of Theorem 3. Step 1: H, G are cag predictable.
Since {Cs <t} ={s < V[X];_}, F,(C‘) is defined on [0, /[ X];_) and setting F,(S) := 0 for
s >1 we get41

C©y) Dy
Hl::fo PE) dp(s), Gt:=/0 pFPY dg (s).

Denote with F; ® B the product sigma algebra of F; with the Borel sets B of R ; we will
now prove that (F,(C“))ER . is J; ® B measurable, so that H; is F; measurable, that is, H is
adapted. Since +/[X] is adapted, Cy is a stopping time and so Cs A ¢ is F; measurable, and so
since C. is cad the map Z(w, s) := (w, Cs(w) A1) is F; @ B/F; ® B measurable. Analogously
(but using left continuity** of (F,(S))Se[o,,) and the fact that F*) =0 for s > t) the map F.’
is F; ® B measurable, and thus so is the composition F,(C‘) = F,(') o Z. Since FI(CS) e[—1,1],
the dominated convergence theorem implies that H is cag (so predictable): indeed if 7, 1 ¢t and
MtCS = Supc, <y<¢ | Xu — X¢,—| > 0 then trivially MISS — MtCS and F,ic“) — F,(C“), whereas if
MIC" = 0 then trivially Mtf" =0andso 0= thle) — F,(C") = 0. The proof that G is adapted and
cag is analogous.

Step 2: X satisfies ®(J/[X]) < cp®(X*) - (H - X).

Since Cj is a stopping time Yt(s) := X¢,++ — X, - 1s a semimartingale (w.r.t. the time changed
filtration F*) := Fc,+1) and satisfies

VIXIeo+ = VIXIe- < VIXIey+ — [XIe,- =/ [Y©],. (37

40By integration by parts it holds at least when K is a finite sum of terms of the form 6 Lia,b)$)1(c,a)(t), where a < b <
¢ <d and 0 is a F,-measurable random variable.
H'We write fooo for .f(O o0)» Which is the same as f(O o] Since by definition ®(00) = limy— o0 (1)

42We warn the reader that for s 4 t the limit of Ft(s) may not exist (so we specified s € [0, 1)).
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Define f(x,q,s) :=x/v/q + s? and apply (8) to Y® (instead of X) to get
[YO] <3y®* —(HO.Y®)  for HY := (¥, [y©]_, v¥¥). (38)

Writing the integrals as limits (in probability, uniformly on compacts) of Riemann sums we get

Cs+
(H® . y®) =/ F{*dx,,

s

So since Y,(S)* < 2Xa+[, using (37), (38) we get

Cs

+.
Ve - Ve <6x;,,. - [ RO, (39)

K

Since [X]c,— < s, {V/IX] = s} ={Cs— <1} 2 {Cs; <t} and [X] is constant on [C;_, Cy)
(when this interval is non-empty) we get

(VIXT = )" = (VXY = VIXIe, ) e = (VIXT = VIXIe, ) lic, <0

which, combined with (39) and with X} 1{c, </} < X,*l{st}, gives

t
(VX1 —s)" < L ixT=16%F — Lic, <) / FS)ax,. (40)

N

Integrating (40) over s € Ry with respect to d¢(s) and using the identities ®(¢) = fooo (t —
)T (s) and 1ic, <) [i- F\ d Xy = [§ Fi ¢, <y d X, gives

o t
o (VIXT,) < 6X7p(v/IXT,) - fo ( /0 chﬂl{cﬁu}dxu)dqs(s) @1)

Since {Cs; < u} = {s < +/[X],_}, the stochastic Fubini theorem [30], Chapter 4, Theorem*3 65,
gives

oo t t
/ f FiN (¢ <uy dX, d(s) = / / F(%) dg(s)dX,. (42)
0 0 0 [ [X]Ofs\/Wu—)

Now apply the inequalities (14) to write

6X;o(VIX1) < @(6pX]) + W (o (VIX1)/p) < (6p)P @(X7) + ¥ (p(v/[X1:))/p (43)

43 As observed after the statement of the theorem, by passing from du to f dp for some f € L'(w) one can prove the
theorem for sigma-finite p. Saying it differently, one can consider the finite measure duu(s) = exp(—¢(s)) d¢(s) and
apply Theorem 65 to H' := exp(gb(s))F,EC“') 10,4,_)(5)-
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and bound the last term using that W (¢ (s)) < (p — 1)@ (s); combine the resulting inequality with
(41) and (42) to get

— t
<1>(\/[X]z)(l - pTl) < (6p)? (X7) —/0 %dxu,

that is, the first inequality (15). If ®(¢) = ¢t?/p, to get the better constant (6p)?, instead of
(43) use the following inequality, obtained applying Young’s inequality ab < a?/p + b /q with
a=6X;p!/%and b=¢(VIX1,)/p'/7 :

6XVIXT ™ < (6p)P (X2)!/p+IXI 19)/p.

Step 3: X satisfies ®(X*) < cp, ®(/[X]) +2(G - X).
Proceeding analogously using X* and D (instead of /[X] and C) yields a Y*) which satisfies

X*Ds"r[ - X*D_y— = sup |XM - XDS_| = YI(S)*
u€[Dy, Dg+t]

and since /[Y®]. < /[X]p,+. we obtain
e
bt~ Xp,_ <6,/[XIp, 1. +2 [ FP X,

D
Dy
the proof continues exactly as before, yielding the second inequality (15).
Step 4: Alternative expression for H, G.
If ¢ is continuous and A = [X], the cad inverse g of ¢ o A equals C o ¢ and (¢p o A)(u—) =

¢(Au——),so

(poA)(u—) ) ¢(Au——)
[ FED ds = / F\ ds. (44)
($oA)(0-) ¢(Ao——)

By change of variable the first integral in (44) equals f[O, ) Fu(s) d¢(Ay), and the second one
f[Ao,,Au_) FL) dg (s); thus /[o,z) th(S) d¢ (J[X]y) equals H,. Proceed analogously for A = X*,
D and G.

Step 5: H and G are lad.

We will use the expression (16), writing however the integrals over Ry and extending F,(S)
to be zero for s > ¢. Define the quantities M? := sup, _, ., |X,, — Xs_| for s <1 (so that M} =
|X; — X;_| for s =) and o

Xt - Xs—

PO . fors <t, It’t(‘v) =0 for s > t.

t - A
JIX] = [X]- + (1))
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Ift, | t and s > ¢, then by definition thf) =0= 1:"1(5) for n big enough (such that #,, < 5).If s <t,
then trivially an — I\Alf, so if Mf > 0 we get thls) — ﬁt(s); however if A;If = 0 it can happen**
that M, i >0 for all n and that F, [Ef) does not converge to ﬁ,(s) = 0. We shall now show that this

can only happen for s in a set of du := d(¢ (V[ X].) + ¢ (X)) measure zero, so F,fls) — I:*,(S) for
dp a.e. s and the dominated convergence theorem implies that H and G lad and

Hi= [ P4, Gi= [ pEC (). 45)
,t N

If the set Z :={s: ]l;I;Y = 0} contains some element s then necessarily it contains the whole
interval [s, t]; it follows that, for some sg € [0, ¢], Z equals either [sg, ¢] or (s, ¢]. Since X is
cad, if Z > s, | s then s € Z, so Z = [sg, t]. Since X, takes the constant value Xg,_ for all
u € [so, t], [ X1, (resp. X}) takes the constant value [X]y,— (resp. X;ﬁo?) for all u € [sg, t],sodu
gives measure 0 to [so, ¢]. O

Proof of Corollary 4. Since for increasing positive A, B, with cad B, we have f(; AdB < A;By,
and since |F*| < 1 implies that H2 < p2¢(/TX1)%, using (13) we get

[H-X]=H>-[X] < p’¢(VIX])* - [X] < p?¢(/[X1)'[X] < p* (p@(VIX])) .

Analogously for G we can write, for any y > 0

X*
VIG X1 </ p2o(X*)’ - [X1 < pp(X*)y/IX1 = (py [X])(¢(y >>;

when y > 1 (and so py > 1) we can apply the inequalities (14) and get

* * \Il "
(PW[XJ)(@) < ®(pyy/IX]) + w("“j )) < (py)?0(y/[X]) + —("5;)‘ ).

now bound the last term above using that W (¢ (s)) < (p — 1)P(s); putting the inequalities to-
gether concludes the proof of (17).

If X is a local-martingale, working as in Corollary 2 gives the thesis: the only difference here
is that E(H - X)%, < oo follows from E® (4/[X]s) < 00 since (17) gives that Ev/[H - X]oo < 00
and we can then apply (12) to H - X (instead of X). (I
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