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In this paper, we present some limit theorems for power variation of Lévy semi-stationary processes in
the setting of infill asymptotics. Lévy semi-stationary processes, which are a one-dimensional analogue of
ambit fields, are moving average type processes with a multiplicative random component, which is usu-
ally referred to as volatility or intermittency. From the mathematical point of view this work extends the
asymptotic theory investigated in (Power variation for a class of stationary increments Lévy driven mov-
ing averages. Preprint), where the authors derived the limit theory for kth order increments of stationary
increments Lévy driven moving averages. The asymptotic results turn out to heavily depend on the inter-
play between the given order of the increments, the considered power p > 0, the Blumenthal–Getoor index
β ∈ (0,2) of the driving pure jump Lévy process L and the behaviour of the kernel function g at 0 deter-
mined by the power α. In this paper, we will study the first order asymptotic theory for Lévy semi-stationary
processes with a random volatility/intermittency component and present some statistical applications of the
probabilistic results.

Keywords: high frequency data; Lévy semi-stationary processes; limit theorems; power variation; stable
convergence

1. Introduction and main results

Over the last ten years there has been a growing interest in the theory of ambit fields. Ambit
fields is a class of spatio-temporal stochastic processes that has been originally introduced by
Barndorff-Nielsen and Schmiegel in a series of papers [10–12] in the context of turbulence mod-
elling, but which has found manifold applications in mathematical finance and biology among
other sciences; see, for example, [2,8].

Ambit processes describe the dynamics in a stochastically developing field, for instance, a
turbulent wind field, along curves embedded in such a field. A key characteristic of the modelling
framework is that beyond the most basic kind of random noise it also specifically incorporates
additional, often drastically changing, inputs referred to as volatility or intermittency. In terms of
mathematical formulae, an ambit field is specified via

Xt(x) = μ +
∫

At (x)

g(t, s, x, ξ)σs(ξ)L(ds, dξ) +
∫

Dt (x)

q(t, s, x, ξ)as(ξ) ds dξ, (1.1)

where t denotes time while x gives the position in space. Further, At(x) and Dt(x) are Borel
measurable subsets of R × Rd , g and q are deterministic weight functions, σ represents the
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intermittency field, a is a drift field and L denotes an independently scattered infinitely divisible
random measure on R×Rd (see, e.g., [30] for details). In the literature, the sets At(x) and Dt(x)

are usually referred to as ambit sets. In the framework of turbulence modelling, the stochastic
field (Xt (x))t≥0,x∈R3 describes the velocity of a turbulent flow at time t and position x, while
the ambit sets At(x),Dt (x) are typically bounded.

In this paper, we consider a purely temporal analogue of ambit fields (without drift) (Xt )t∈R,
defined on a filtered probability space (�,F, (Ft )t∈R,P), which is given as

Xt =
∫ t

−∞
{
g(t − s) − g0(−s)

}
σs− dLs, (1.2)

and is usually referred to as a Lévy semi-stationary (LSS) process. Here L = (Lt )t∈R is a symmet-
ric Lévy process on R with respect to (Ft )t∈R with L0 = 0 and without a Gaussian component.
That is, for all u ∈R, the process (Lt+u−Lu)t≥0 is a symmetric Lévy process on R+ with respect
to (Ft+u)t≥0. The process (σt )t∈R is assumed to be càdlàg and adapted to (Ft )t∈R, and g and g0
are deterministic continuous functions vanishing on (−∞,0). The name Lévy semi-stationary
process refers to the fact that the process (Xt )t∈R is stationary whenever g0 = 0 and (σt )t∈R is
stationary and independent of (Lt )t∈R. It is assumed throughout this paper that g,g0, σ and L

are such that the process (Xt ) is well-defined, which is in particular satisfied under the conditions
stated in Remark 3.3 below. We are interested in the asymptotic behaviour of the power variation
of the process X. More precisely, let us consider the kth order increments �n

i,kX of X, k ∈ N,
that are defined by

�n
i,kX :=

k∑
j=0

(−1)j
(

k

j

)
X(i−j)/n, where i ≥ k.

For instance, we have that �n
i,1X = X i

n
− Xi−1

n
and �n

i,2X = X i
n

− 2Xi−1
n

+ Xi−2
n

. The main

functional of interest is the power variation computed on the basis of kth order increments:

V (p; k)nt :=
[nt]∑
i=k

∣∣�n
i,kX

∣∣p, p > 0. (1.3)

At this stage, we remark that power variation of stochastic processes has been a very active
research area in the last decade. We refer for example, to [7,23,24,29] for limit theory for power
variations of Itô semimartingales, to [3,6,18,22,28] for the asymptotic results in the framework
of fractional Brownian motion and related processes, and to [17,34] for investigations of power
variation of the Rosenblatt process. The power variation of Brownian semi-stationary processes,
which is the model (1.2) driven by a Brownian motion, has been studied in [4,5,20]. Under proper
normalisation, the authors have shown convergence in probability for the statistic V (p; k)nt and
proved its asymptotic mixed normality.

However, when the driving motion in (1.2) is a pure jump Lévy process, the asymptotic theory
is very different from the Brownian case. In the recent work [13], the power variation of the model
(1.2) with constant intermittency σ has been studied. The authors showed that the asymptotic
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behavior of V (p; k)nt is greatly affected by the Blumenthal–Getoor index β of the driving Lévy
motion as well as the behavior of the kernel function g at 0. The goal of this work is to extend
the result of [13] to LSS-processes with nontrivial intermittency process σ . Such extensions are
important in applications, say in the framework of turbulence, since the intermittency is often the
main object of interest. Moreover, we show that the convergence holds functional with respect
to the Skorokhod M1-topology in the setting of Theorem 1.1(i), and with respect to the uniform
norm in the settings of Theorem 1.1(ii) and (iii).

Throughout this article, β denotes the Blumenthal–Getoor index of the driving Lévy process,
which is defined as

β := inf

{
r ≥ 0 :

∫ 1

−1
|x|rν(dx) < ∞

}
∈ [0,2],

where ν denotes the Lévy measure of L. It is well known that
∑

s∈[0,1] |�Ls |p is finite when p >

β , while it is infinite for p < β . Here �Ls = Ls − Ls− where Ls− = limu↑s,u<s Lu. We recall
that for a stable Lévy processes the Blumenthal–Getoor index matches the index of stability. The
authors of [13] impose the following set of assumptions on g, g0 and ν, which we assume to hold
throughout this paper.

Assumption (A). The function g : R → R satisfies limt↓0 g(t)t−α = c0 for some α > 0 and
c0 �= 0. There is a θ ∈ (0,2], such that lim supt→∞ ν(x : |x| ≥ t)tθ < ∞ and g − g0 is a bounded
function in Lθ(R+). Furthermore, g is k-times continuously differentiable on (0,∞) and there
exists a δ > 0 such that |g(k)(t)| ≤ Ctα−k for all t ∈ (0, δ), and such that both |g′| and |g(k)| are
in Lθ((δ,∞)) and are decreasing on (δ,∞).

Assumption (A-log). In addition to (A), suppose that
∫∞
δ

|g(k)(s)|θ log(1/|g(k)(s)|) ds < ∞.

Assumption (A) ensures, in particular, that the process X with σ = 1 is well-defined, cf. [13].
When L is a β-stable Lévy process, we can and will always choose θ = β in Assumption (A).
In addition to these assumptions, we use in our main result the following integrability condi-
tions on the stochastic process Hs := g(k)(−s)σs1(−∞,−δ](s), s ∈ R, where δ is defined as in
Assumption (A).

Assumption (B1). There exists ρ > 0 with ρ ≤ 1 ∧ θ and β ′ > β with β ′ ≥ p such that

E

[(∫
R

(|Hs |ρ ∨ |Hs |β ′)
ds

)1∨ p
2
]

< ∞. (1.4)

For θ = 1 suppose in addition that we may choose ρ < 1 in (1.4).

Assumption (B2). It holds that

E

[∫
R

|Hs |β ds

]
< ∞.

For p ≤ 2 it is not difficult to show that (B1) is at least satisfied when we can choose θ < 1
in (A), and the intermittency satisfies sups∈(−∞,−δ] E[|σs |1∨β ′ ] < ∞. Assumption (B2) will only
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be used in the case where L is a β-stable Lévy motion (see Theorem 1.1(ii) below), and is e.g.
satisfied when sups∈(−∞,−δ] E[|σs |β ] < ∞. These stronger assumptions are satisfied in many
applications, as σ is often assumed to be stationary.

Before we state our main theorem, we introduce some more notation. Let hk : R→R be given
by

hk(x) =
k∑

j=0

(−1)j
(

k

j

)
(x − j)α+, x ∈R, (1.5)

where y+ = max{y,0} for all y ∈ R. Let F = (Ft )t≥0 and (Tm)m≥1 be a sequence of F-stopping
times that exhausts the jumps of (Lt )t≥0. That is, {Tm(ω) : m ≥ 1}∩ [0,∞) = {t ≥ 0 : �Lt(ω) �=
0} and Tm(ω) �= Tn(ω) for all m �= n with Tm(ω) < ∞. Let (Um)m≥1 be independent and uniform
[0,1]-distributed random variables, defined on an extension (�′,F ′,P′) of the original probabil-
ity space, which are independent of F . By (D(R+;R),M1), we denote the Skorokhod space of
càdlàg functions from R+ into R, equipped with the Skorokhod M1-topology, making it a Polish
space. The M1-topology was originally introduced in [33]. We give a definition in Section 4,
a detailed account and many properties can be found in [35]. For stochastic processes Zn,Z

with càdlàg sample paths that are defined on (�′,F ′), we denote by Zn
LM1−s−−−−→ Z the functional

F -stable convergence in law with respect to the M1-topology. That is, Zn
LM1−s−−−−→ Z means

that E′[φ(Zn)Y ] → E′[φ(Z)Y ] for all bounded continuous functions φ : (D(R+;R),M1) → R,
and all bounded F -measurable Y , where E′ denotes the expectation on the extended space

(�′,F ′,P′). By
u.c.p.−−−→ we denote uniform convergence on compact sets in probability. That is,

(Zn
t )t≥0

u.c.p.−−−→ (Zt )t≥0 as n → ∞ means that P(supt∈[0,N] |Zn
t −Zt | > ε) → 0 for all N ∈ N and

all ε > 0.
The following extension of [13], Theorem 1.1, to include a non-trivial σ process and functional

convergence, is the main result of this paper.

Theorem 1.1. Let X = (Xt )t≥0 be a stochastic process defined by (1.2). Let (A) be satisfied and
assume that the Blumenthal–Getoor index satisfies β < 2.

(i) Suppose that (B1) holds and if θ = 1 assume additionally that (A-log) is satisfied. Let
α < k − 1/p, p > β and p ≥ 1. Then, as n → ∞, the functional F -stable convergence holds

nαpV (p; k)nt
LM1−s−−−−→ |c0|p

∑
m:Tm∈[0,t]

|�LTmσTm−|pVm where Vm =
∞∑
l=0

∣∣hk(l + Um)
∣∣p.

(ii) Suppose that L is a symmetric β-stable Lévy process with β ∈ (0,2) and scale parameter
γ > 0. Suppose that (B2) holds and that α < k − 1/β and p < β . Then as n → ∞

n−1+p(α+1/β)V (p; k)nt
u.c.p.−−−→ mp

∫ t

0
|σs |p ds,
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where mp = |c0|pγ p(
∫
R

|hk(x)|β dx)p/βE[|Z|p], where Z is a symmetric β-stable random vari-
able with scale parameter 1.

(iii) Suppose that (B1) holds, θ > 1, α > k − 1/(β ∨p) and p ≥ 1. If p = θ assume addition-
ally that (A-log) is satisfied. Then, as n → ∞,

n−1+pkV (p; k)nt
u.c.p.−−−→

∫ t

0
|Fu|p du,

where (Fu)u∈R is a version with measurable sample paths of the process defined by

Fu =
∫ u

−∞
g(k)(u − s)σs− dLs a.s. for all u ∈R,

which necessarily satisfies
∫ t

0 |Fu|p du < ∞, almost surely.

Under the integrability assumptions (B1) and (B2), Theorem 1.1 covers all possible choices of
α > 0, β ∈ [0,2) and p ≥ 1 except the critical cases where p = β , α = k − 1/p or α = k − 1/β .
The two critical cases α = k − 1/p, p > β and α = k − 1/β , p < β have been studied in [14]
in the case σ ≡ 1. We conjecture that analogous results hold for LSS processes with non-trivial
intermittency component, but will not pursue this theory in the paper.

First order asymptotic theory for Lévy semi-stationary processes can be used to draw inference
on the parameters α, β and on certain intermittency functionals in the context of high frequency
observations, see Section 2. Furthermore, this type of limit theory is an intermediate step towards
asymptotic results for general ambit fields of the form (1.1). We remark that, in contrast to the
Brownian setting, extending the first order limit theory presented in [13] to Lévy semi-stationary
processes with non-trivial σ is a more complex issue. This is due to the fact that it is harder to
estimate various norms of X and related processes when the driving process L is a Lévy process.
To this end, we rely heavily on decoupling techniques and isometries for stochastic integral
mappings presented in the monograph [26] and [31], see Section 3 for more details.

This paper is structured as follows. Section 2 is devoted to various statistical applications of
our limit theory. In Section 3, we discuss properties of Lévy integrals of predictable processes and
recall essential estimates from [26] for those integrals. All proofs are demonstrated in Section 4.

2. Some statistical applications

We start this section by giving an interpretation to the parameters α > 0 and β ∈ (0,2). Let us
consider the linear fractional stable motion defined by

Yt := c0

∫
R

{
(t − s)α+ − (−s)α+

}
dLs,

where L is symmetric β-stable, and the constant c0 has been introduced in Assumption (A). It is
well known that the process (Yt )t≥0 is well defined whenever H = α + 1/β < 1. Furthermore,
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the process (Yt )t≥0 has stationary symmetric β-stable increments, Hölder continuous paths of all
orders smaller than α and self-similarity index H , that is,

(Yat )t≥0
d= (aH Yt

)
t≥0 for any a ∈ R+.

We refer to for example, [15] for more details. As it has been discussed in [13,14] in the setting
σ = 1, the small scale behaviour of the process X is well approximated by the corresponding
behaviour of the linear fractional stable motion Y . In other words, when the intermittency process
σ is smooth, we have that

Xt+� − Xt ≈ σt (Yt+� − Yt )

for small � > 0. Thus, intuitively speaking, the properties of Y (Hölder smoothness, self-
similarity) transfer to the process X on small scales.

Having understood the role of the parameters α > 0 and H = α + 1/β ∈ (1/2,1) from the
modelling perspective, it is obviously important to investigate estimation methods for these pa-
rameters. We note that the conditions α > 0 and H ∈ (1/2,1) imply the restrictions β ∈ (1,2)

and α < 1 − 1/max{p,β}. Hence, the regime of Theorem 1.1(iii) is never applicable.
We start with a direct estimation procedure, which identifies the convergence rates in Theo-

rem 1.1(i)–(ii). We apply these convergence results only for t = 1 and k = 1. For p ∈ [p,p] with
p ∈ (0,1) and p > 2, we introduce the statistic

S(n,p) := − logV (p)n

logn
with V (p)n = V (p;1)n1 .

When the underlying Lévy motion L is symmetric β-stable and the assumptions of Theo-
rems 1.1(i)–(ii) are satisfied, we obtain that

S(n,p)
P−→ Sα,β(p) :=

{
αp : α < 1 − 1/p and p > β,

pH − 1 : α < 1 − 1/β and p < β,
(2.1)

if the parameter is (α,β). Indeed, the result of Theorem 1.1(i) shows that

αp logn + logV (p)n

logn

L−s−→ 0 ⇒ αp logn + logV (p)n

logn

P−→ 0.

This explains the first line in (2.1), and the second line follows similarly from Theorem 1.1(ii).
At this stage we remark that the limit Sα,β : [p,p] \ {β} → R is a piecewise linear function with
two different slopes. It can be continuously extended to the function Sα,β : [p,p] → R, whose
definition can be further extended to include all values

(α,β) ∈ J := {(α,β) ∈ R2 : β ∈ [1,2], α ∈ [0,1 − 1/β]}.
For estimation of (α,β), it is natural to minimise the L2-distance between the observed scale
function S(n,p) and the theoretical limit Sα,β(p):

(α̂n, β̂n) ∈ argmin
(α,β)∈J

∥∥S(n) − Sα,β

∥∥
L2([p,p]) (2.2)
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with S(n) := S(n, ·). This approach is somewhat similar to the estimation method proposed in
[21]. For finite n, the minimum of the L2([p,p])-distance at (2.2) is not necessarily obtained at

a unique point, and we take an arbitrary measurable minimiser (α̂n, β̂n). Our next result shows
consistency of the estimator (α̂n, β̂n).

Corollary 2.1. Let (α0, β0) ∈ J ◦, where J ◦ is the set of all inner points of J , denote the true
parameter of the model (1.2), and let L be a symmetric β0-stable Lévy motion. Assume that the
conditions of Theorem 1.1(i) (resp. Theorem 1.1(ii)) hold when α0 ∈ (0,1 − 1/p) and p > β0
(resp. α0 ∈ (0,1 − 1/β0) and p < β0). Then we obtain convergence in probability

(α̂n, β̂n)
P−→ (α0, β0).

Proof. Set r0 = (α0, β0) and r̂n = (α̂n, β̂n). We first show the convergence∥∥S(n) − Sr0

∥∥
L2([p,p])

P−→ 0. (2.3)

From (2.1), we deduce that S(n,p)
P−→ Sr0(p) for all p ∈ [p,p] \ {β0}. Furthermore, for any

p ∈ [p,p], it holds that (
V (p)n

)1/p ≤ (V (p)n
)1/p ≤ (V (p)n

)1/p
.

Hence, we deduce the inequality∣∣∣∣ logV (p)n

logn

∣∣∣∣≤ max

{
p

p
·
∣∣∣∣ logV (p)n

logn

∣∣∣∣, p

p
·
∣∣∣∣ logV (p)n

logn

∣∣∣∣}.

Since | logV (p)n/ logn| P−→ p(α0 + 1/β0) − 1 and | logV (p)n/ logn| P−→ α0p, because p <

1 < β0 and p > 2 > β0, we readily deduce the convergence at (2.3) by dominated convergence
theorem.

Now, we note that the mapping G : J → G(J ) ⊂ L2([p,p]), r �→ Sr , is a homeomorphism.

Thus, it suffices to prove that ‖Ŝrn − Sr0‖L2([p,p])
P−→ 0 to conclude r̂n

P−→ r0. To show the
former, we observe that

‖Ŝrn − Sr0‖L2([p,p]) ≤ ∥∥S(n) − Sr0

∥∥
L2([p,p]) + ∥∥S(n) − Ŝrn

∥∥
L2([p,p])

= ∥∥S(n) − Sr0

∥∥
L2([p,p]) + min

r∈J

∥∥S(n) − Sr

∥∥
L2([p,p])

≤ 2
∥∥S(n) − Sr0

∥∥
L2([p,p])

P−→ 0.

This completes the proof of Corollary 2.1. �

In practice, the integral in (2.2) needs to be discretised. We further remark that the estimator
S(n,p) has the rate of convergence logn due to the bias V (p)/ logn, where V (p) denotes the
limit of V (p)n.
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As for the estimation of the self-similarity parameter H = α + 1/β ∈ (1/2,1), there is an
alternative estimator based on a ratio statistic. Recalling that β ∈ (1,2), we deduce for any p ∈
(0,1]

R(n,p) :=
∑n

i=2 |X i
n

− Xi−2
n

|p∑n
i=1 |X i

n
− Xi−1

n
|p

P−→ 2pH

by a direct application of Theorem 1.1(ii). Thus, we immediately conclude that

Ĥn := logR(n,p)

p log 2
P−→ H.

This type of idea is rather standard in the framework of a fractional Brownian motion with Hurst
parameter H . It has been also applied to Brownian semi-stationary processes in [4,5]. Theo-
rem 1.2(i) in [13], which has been shown in the setting σ = 1, suggests that the statistic Ĥn

has convergence rate n1−1/(1−α)β whenever p ∈ (0,1/2]. Furthermore, the rate of convergence
can be improved to

√
n via using kth order increments with k ≥ 2 (cf. [13], Theorem 1.2(ii)).

However, we dispense with the precise proof of these statements for non-constant intermittency
process σ . In a recent work [19], it was shown that for linear fractional stable motions the con-

vergence Ĥn
P−→ H continues to hold for powers p ∈ (−1,0). This is particularly useful, since

choosing p negative ensures that the condition p < β of Theorem 1.1(ii) is always satisfied.
However, proving this result for a general Lévy semi-stationary process is a much more delicate
issue.

Another important object for applications in turbulence modelling is the intermittency pro-
cess σ . First of all, we remark that the process σ in the general model (1.2) is statistically not
identifiable. This is easily seen, because multiplication of σ by a constant can not be distin-
guished from the multiplication of, say, Lévy process L by the same constant. However, it is
very well possible to estimate the relative intermittency, which is defined as

RI(p) :=
∫ t

0 |σs |p ds∫ 1
0 |σs |p ds

, t ∈ (0,1),

for p ∈ (0,1]. The relative intermittency, which has been introduced in [9] for p = 2 in the
context of Brownian semi-stationary processes, describes the relative amplitude of the velocity
process on an interval [0,1]. Applying the convergence result of Theorem 1.1(ii) for p ∈ (0,1],
the relative intermittency can be consistently estimated via

RI(n,p) := V (p)nt

V (p)n1

P−→ RI(p).

Again we suspect that the associated convergence rate is n1−1/(1−α)β whenever p ∈ (0,1/2] as
suggested by [13], Theorem 1.2(i).
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3. Preliminaries: Estimates on Lévy integrals

To prove the various limit theorems, we need very sharp estimates of the pth moments of the
increments of process X defined in (1.2). In fact, we need such estimates for several different
processes related to X obtained by different truncations. When F : R+ → R is a deterministic
function, the estimates for integrals

∫ t

0 Fs dLs go back to Rajput and Rosiński [30], Theorem 3.3.
Their results imply the existence of a constant C > 0 such that

E

[∣∣∣∣∫ t

0
Fs dLs

∣∣∣∣q]≤ C‖F‖q
L,q,

where ‖ · ‖L,q is a certain functional to be defined below (when L is symmetric and without
Gaussian component). The decoupling approach used in Kwapién and Woyczyński [26] provides
an extension of the results to general predictable F , see Lemmas 3.1 and 3.2 below. Before stating
the results precisely, we need the following notation.

Let L = (Lt )t∈R be a symmetric Lévy process on the real line with L0 = 0, Lévy measure ν

and without a Gaussian component. For a predictable process (Ft )t∈R and for q = 0 or q ≥ 1 we
define

�q,L(F ) :=
∫
R2

φq(Fsu)dsν(du), where φq(x) := |x|q1{|x|>1} + x21{|x|≤1}.

A predictable process F = (Ft )t∈R is integrable with respect to (Lt )t∈R in the sense of [26] if
and only if �0,L(F ) < ∞ almost surely (cf. [26], Theorem 9.1.1). The linear space of predictable
processes satisfying �q,L(F ) < ∞ will be denoted by Lq(dL). In order to estimate the qth
moments of stochastic integrals we introduce for all q ≥ 1

‖F‖q,L := inf
{
λ > 0 : �q,L(F/λ) ≤ 1

}
, F ∈ Lq(dL). (3.1)

The following two results from [26] and [31] will play a key role for our proofs.

Lemma 3.1 ([26], equation (9.5.3)). For all q ≥ 1 there is a constant C, depending only on q ,
such that we obtain for all F ∈ Lq(dL)

E

[∣∣∣∣∫
R

Fs dLs

∣∣∣∣q]≤ CE
[‖F‖q

q,L

]
. (3.2)

The above lemma follows by [26], equation (9.5.3), and the comments following it. Actually,
[26], equation (9.5.3), only treats the case where the stochastic integral in (3.2) is over a finite
time interval, say

∫ t

0 Fs dLs . However, the definition of the stochastic integral and the estimates
of the integral in [26], Chapters 8–9, extend to the case of

∫
R

Fs dLs in a natural way.
For the next result, which is an immediate consequence of [31], Theorem 2.1, we use the

notation ‖Z‖β
β,∞ = supλ>0 λβP[|Z| > λ] for an arbitrary random variable Z. For q < β it holds

that E[|Z|q ]1/q ≤ ‖Z‖β,∞ ≤ (
β

β−q
)1/qE[|Z|β ]1/β . In the literature, ‖ · ‖β,∞ is often referred to

as the weak Lβ -norm. However, ‖ · ‖β,∞ satisfies the triangle inequality only up to a constant.
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Lemma 3.2 ([31], Theorem 2.1). Let (Lt )t∈R be a symmetric β-stable Lévy process. Then there
is a positive constant C > 0 such that for all (Ft )t∈R in L0(dL) it holds that∥∥∥∥∫

R

Fs dLs

∥∥∥∥β

β,∞
≤ CE

[∫
R

|Fs |β ds

]
.

The next remark gives sufficient conditions for the process X introduced at (1.2) to be well-
defined.

Remark 3.3. Suppose that (A) is satisfied and define the two processes F (1) and F (2) by F
(1)
s =

(g(−s) − g0(−s))σs and F
(2)
s = g′(−s)σs for s < 0. Then the process X given by (1.2) is well-

defined if there exists a β ′ > β such that∫ −δ

−∞
(∣∣F (i)

s

∣∣θ1{|F (i)
s |≤1} + ∣∣F (i)

s

∣∣β ′
1{|F (i)

s |>1}
)
ds < ∞ (3.3)

almost surely for i = 1,2. To show the above we argue as follows: For any β ′ ∈ (β,2] we deduce
from (A) and simple calculations the estimate∫

R

(|ux|2 ∧ 1
)
ν(dx) ≤ C

(|u|θ1{|u|≤1} + |u|β ′
1{|u|>1}

)
, u ∈R. (3.4)

Then, an application of the mean value theorem combined with assumption (3.3) yields that
�0,L(H (t)) < ∞ almost surely for all t > 0, where H

(t)
s = (g(t − s) − g0(−s))σs . This guaran-

tees the existence of the process X due to [26], Theorem 9.1.1.

In our proofs, we will need the following properties of the functional ‖ · ‖L,q defined in (3.1).

(i) Homogeneity: For all λ ∈ R, F ∈ Lq(dL), ‖λF‖q,L = |λ|‖F‖q,L.
(ii) Triangle inequality (up to a constant): There exists a constant C > 0 such that for all

F 1, . . . ,Fm ∈ Lq(dL) we have∥∥F 1 + · · · + Fm
∥∥

q,L
≤ C

(∥∥F 1
∥∥

q,L
+ · · · + ∥∥Fm

∥∥
q,L

)
, (3.5)

and the constant C does not depend on m or L.
(iii) Upper bound: For all F ∈ Lq(dL), we have

‖F‖q,L ≤ �
1/2
q,L(F ) ∨ �

1/q
q,L(F ). (3.6)

Property (i) follows directly from the definition of ‖ · ‖L,q in (3.1). To show property (ii) it
is sufficient to derive (3.5) for F 1, . . . ,Fm ∈ Lq

nr(dL), where Lq
nr(dL) denotes the subspace of

nonrandom processes in Lq(dL). We will show that there is a norm ‖ ·‖′
q,L on Lq

nr(dL) and c > 0

and C > 0 such that c‖F‖′
q,L ≤ ‖F‖q,L ≤ C‖F‖′

q,L, for all F ∈ Lq
nr(dL), which then implies

(3.5). To this end, let

φ̃q(x) := (2/q|x|q + 1 − 2/q
)
1{|x|>1} + x21{|x|≤1}.
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Clearly, there exist c,C > 0 such that cφ̃q(x) ≤ φq(x) ≤ Cφ̃q(x) for all x ∈ R. Since the function
φ̃q is convex, the functional

‖F‖′
q,L = inf

{
λ ≥ 0 :

∫
R2

φ̃q(Fsu/λ)ds ν(du) ≤ 1

}
is a norm on Lq

nr(dL), called the Luxemburg norm (cf. [27], Chapter 1). Using convexity of φ̃q it
follows by straightforward calculations that c‖F‖′

q,L ≤ ‖F‖q,L ≤ C‖F‖′
q,L for all F ∈ Lq

nr(dL).

This implies (3.5). Finally, property (iii) follows by the fact that φq(λx) ≤ (λ2 ∨λq)φq(x) for all
λ ≥ 0.

We conclude this subsection with a remark on the situation when the integrator is a non-
symmetric Lévy process (L̃t )t∈R with L̃0 = 0, Lévy measure ν̃, shift parameter η, without a
Gaussian part, and the truncation function τ : x �→ 1{|x|<1} + sign(x)1{|x|≥1}. That is, for all
θ ∈R,

E
[
eiθL̃1

]= exp

(
iθη +

∫
R

(
eiθx − 1 − iθτ (x)

)̃
ν(dx)

)
.

In this situation the modulars and norms defined above become much more involved and harder
to control, which is the main reason why we consider only symmetric Lévy motions as driving
processes. Moreover, assumptions (A), (B1) and (B2) are not sufficient to guarantee the existence
of the integral (1.2) if we consider non-symmetric Lévy processes, e.g. if Lt = ηt with η �= 0. For
more details, we refer to [26], Chapter 9.1. For our purposes, the following integrability criterion
with respect to non-symmetric Lévy processes will suffice. For a predictable process (Ft )t∈R
define

�0,L̃(F ) =
∫
R

∣∣∣∣∫
R

τ(uFs) − τ(u)Fsν̃(du) + ηFs

∣∣∣∣ds.

Then, the condition

�0,L̃(F ) + �0,L̃(F ) < ∞ almost surely (3.7)

is sufficient for the integral
∫
R

Fs dL̃s to exist, and we write F ∈ L0(dL̃). Indeed, this is a conse-
quence of [26], Theorem 9.1.1 and pp. 217–218, combined with the estimate [30], Lemma 2.8.

4. Proofs

In this section, we present the proofs of our main results. The proof of (i) is divided into two
parts and is similar to the proof of the corresponding result in [13]. First, we show the theorem
under the assumption that L is a compound Poisson process with jumps bounded away from
zero in absolute value by some a > 0. Thereafter, we argue that the contribution of the jumps
of L with absolute value ≤ a to the power variation becomes negligible as a → 0. The proof of
Theorem 1.1(ii) relies on freezing the intermittency σ over small blocks and then deducing the
result from [13], Theorem 1.1. A key step in the proof of Theorem 1.1(iii) is an application of a
suitable stochastic Fubini result that we introduce in Section 4.3.
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Throughout the proofs, we denote all positive constants that do not depend on n or ω by C,
even though they may change from line to line. Similarly, we will denote by K any positive
random variable that does not depend on n, but may change from line to line. For a random
variable Y and q > 0, we denote ‖Y‖q = E[|Y |q ]1/q . We frequently use the notation

gi,n(s) =
k∑

j=0

(−1)j
(

k

j

)
g
(
(i − j)/n − s

)
,

which allows us to express the kth order increments of X as

�n
i,kX =

∫ i/n

−∞
gi,n(s)σs− dLs.

Recalling that |g(k)(s)| ≤ Ctα−k for all s ∈ (0, δ) and |g(k)| is decreasing on (δ,∞) by assump-
tion (A), Taylor expansion leads to the following important estimates.

Lemma 4.1. Suppose that Assumption (A) is satisfied. It holds that∣∣gi,n(s)
∣∣≤ C(i/n − s)α for s ∈ [(i − k)/n, i/n

]
,∣∣gi,n(s)

∣∣≤ Cn−k
(
(i − k)/n − s

)α−k
for s ∈ (i/n − δ, (i − k)/n

)
,

and ∣∣gi,n(s)
∣∣≤ Cn−k

(
1[(i−k)/n−δ,i/n−δ](s) + g(k)

(
(i − k)/n − s

)
1(−∞,(i−k)/n−δ)(s)

)
,

for s ∈ (−∞, i/n − δ].

Applying a standard localisation argument (cf. [7], Section 3) we can and will assume through-
out the proofs that the process σ is uniformly bounded by a constant on [−δ,∞).

We conclude this subsection with a definition and some brief remarks on the Skorokhod
M1-topology. It was originally introduced by Skorokhod [33] by defining a metric on the com-
pleted graphs of càdlàg functions, where the completed graph of f is defined as

�f = {(x, t) ∈R×R+ : x = αf (t−) + (1 − α)f (t), for some α ∈ [0,1]}.
The M1-topology is weaker as the more commonly used J1-topology but still strong enough
to make many important functionals, such as sup and inf, continuous. It can be shown that the
stable convergence in Theorem 1.1 does not hold with respect to the J1-topology. As M1 is
metrisable, it is entirely defined by characterising convergence of sequences, as we do in the
following. A sequence fn of functions in D(R+,R) converges to f ∈ D(R+,R) with respect to
the Skorokhod M1-topology if and only if fn(t) → f (t) for all t in a dense subset of [0,∞), and
for all t∞ ∈ [0,∞) it holds that

lim
δ↓0

lim sup
n→∞

sup
0≤t≤t∞

w(fn, t, δ) = 0.
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Here, the oscillation function w is defined as

w(f, t, δ) = sup
0∨(t−δ)≤t1<t2<t3≤(t+δ)∧t∞

{∣∣f (t2) − [f (t1), f (t3)
]∣∣}, (4.1)

where for b < a the interval [a, b] is defined to be [b, a], and |a − [b, c]| := infd∈[b,c] |a − d|.

4.1. Proof of Theorem 1.1(i)

For the proof of Theorem 1.1(i), we follow the strategy from [13], Theorem 1.1(i). We assume
first that L is a compound Poisson process with jumps bounded in absolute value away from
zero by some a > 0. Later on, we argue that the small jumps of L are asymptotically negligible.
In order to show functional F -stable convergence on D(R+;R) it is sufficient to show F -stable
convergence on D([0, t∞];R), for arbitrary but fixed t∞ > 0 (cf. [35], Chapter 3.3). Throughout
this subsection, we therefore fix a t∞ > 0, and denote by D the space D([0, t∞];R) equipped with

the Skorokhod M1-topology, and by
LM1−s−−−−→ the F -stable convergence of D-valued processes.

4.1.1. Compound Poisson case

Suppose that (Lt )t∈R is a symmetric compound Poisson process with Lévy measure ν, satisfying
ν([−a, a]) = 0 for some a > 0. Let 0 ≤ T1 < T2 < · · · denote the jump times of (Lt )t≥0 in
increasing order. For ε > 0, we define

�ε = {ω ∈ � : for all m with Tm(ω) ∈ [0, t∞] we have
∣∣Tm(ω) − Tm−1(ω)

∣∣> ε

and �Ls(ω) = 0 for all s ∈ [−ε,0]}.
We note that �ε ↑ �, as ε ↓ 0. Letting

Mi,n,ε :=
∫ i/n

i/n−ε

gi,n(s)σs− dLs, and Ri,n,ε :=
∫ i/n−ε

−∞
gi,n(s)σs− dLs,

we have the decomposition �n
i,kX = Mi,n,ε +Ri,n,ε . It turns out that Mi,n,ε is the asymptotically

dominating term, whereas Ri,n,ε is negligible as n → ∞. We show that, on �ε ,

nαp

[nt]∑
i=k

|Mi,n,ε|p
LM1−s−−−−→ Zt , where Zt = |c0|p

∑
m:Tm∈(0,t]

|�LTmσTm−|pVm, (4.2)

where (Vm)m≥1 are defined in Theorem 1.1(i). Denote by im the random index such that Tm ∈
((im − 1)/n, im/n]. Then, we have on �ε

nαp

[nt]∑
i=k

|Mi,n,ε|p = nαp
∑

m:Tm∈(0,[nt]/n]
|�LTmσTm−|p

( vm
t∑

l=0

∣∣gim+l,n(Tm)
∣∣p) := V

n,ε
t ,
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where the random index vm
t is defined as

vm
t = vm

t (ε, n) =
{

[εn] ∧ ([nt] − im
)

if Tm − ([εn] + im
)
/n > −ε,([εn] − 1

)∧ ([nt] − im
)

if Tm − ([εn] + im
)
/n ≤ −ε.

For the proof of (4.2) we first show stable convergence of the finite dimensional distributions
of V n,ε . Thereafter, we show that the sequence (V n,ε)n≥1 is tight and deduce the functional

convergence V n,ε
LM1−s−−−−→ Z.

Lemma 4.2. For r ≥ 1 and 0 ≤ t1 < · · · < tr ≤ t∞ we obtain on �ε the F -stable convergence(
V

n,ε
t1

, . . . , V
n,ε
tr

) L−s−→ (Zt1 , . . . ,Ztr ), as n → ∞.

Proof. Let (Ui)i≥1 be i.i.d. U([0,1])-distributed random variables, defined on an extension
(�′,F ′,P′) of the original probability space, independent of F . By arguing as in [13], Sec-
tion 5.1, we deduce for any d ≥ 1 the F -stable convergence{

nαgim+l,n(Tm)
}
l,m≤d

L−s−→ {
c0hk(l + Um)

}
l,m≤d

as n → ∞, where hk is defined in (1.5). Defining

V
n,ε,d
t := nαp

∑
m≤d:Tm∈(0,[nt]/n]

|�LTmσTm−|p
(

d∑
l=0

∣∣gim+l,n(Tm)
∣∣p),

Zd
t := |c0|p

∑
m≤d:Tm∈(0,t]

|�LTmσTm−|p
(

d∑
l=0

∣∣hk(l + Um)
∣∣p),

the continuous mapping theorem for stable convergence yields(
V

n,ε,d
t1

, . . . , V
n,ε,d
tr

) L−s−→ (
Zd

t1
, . . . ,Zd

tr

)
, for n → ∞, (4.3)

for all d ≥ 1. It follows by Lemma 4.1 for all l with k ≤ l < [nδ] that

nαp
∣∣gim+l,n(Tm)

∣∣p ≤ C|l − k|(α−k)p,

where we recall that (α − k)p < −1. Consequently, we find a random variable K > 0 such that
for all t ∈ [0, t∞]

∣∣V n,ε,d
t − V

n,ε
t

∣∣≤ K

( ∑
m>d:Tm∈[0,t∞]

|�LTmσTm−|p +
∑

m:Tm∈[0,t∞]

∞∑
l=vm

t ∧d

|l − k|(α−k)p

)
.

By definition, the random index vm
t = vm

t (n,ω) satisfies lim infn→∞ vm
t (n,ω) = ∞ for all ω

with Tm(ω) �= t . Consequently, we obtain that lim supn→∞ |V n,ε,d
t − V

n,ε
t | → 0 almost surely as
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d → ∞. It follows that on �ε

lim sup
n→∞

{
max

t∈{t1,...,tr }
∣∣V n,ε

t − V
n,ε,d
t

∣∣}→ 0, almost surely, as d → ∞. (4.4)

By monotone convergence theorem we obtain that supt∈[0,t∞] |Zd
t − Zt | → 0 as d → ∞. To-

gether with (4.3) and (4.4), this implies the statement of the lemma by a standard approximation
argument, see, for example, [16], Theorem 3.2. �

Recall that the stable convergence V n,ε
LM1−s−−−−→ Z is equivalent to the joint convergence in law

(V n,ε, Y )
L−→ (Z,Y ) for all F -measurable random variables Y , cf. [25], Proposition 5.33. Con-

sequently, Lemma 4.2 and the following result together with Prokhorov’s theorem imply (4.2),
where we recall that (D([0, t∞]),M1) is a Polish space.

Lemma 4.3. The sequence (V n,ε)n≥1 of (D([0, t∞]),M1)-valued random variables is tight.

Proof. The claim follows from [35], Theorem 12.12.3, if we verify that (V n,ε)n≥1 satisfies the
conditions of the theorem. Condition (i) follows since the processes V n,ε are increasing in t and
from tightness of {V n,ε

t∞ }n∈N, which follows from Lemma 4.2. For condition (ii) we need to verify
that for all ζ, ξ > 0 there is an η > 0 such that

P

(
sup

t∈[0,t∞]
w
(
V n,ε, t, η

)
> ξ
)

≤ ζ, for all n,

where the oscillation function w was defined in (4.1). This follows since the processes V n,ε are
increasing, and consequently w(V n,ε, t, η) = 0 for all n, all t and all η. �

This concludes the proof of (4.2). Next, we show that

nαp

[nt∞]∑
i=k

|Ri,n,ε|p P−→ 0. (4.5)

Recalling that α < k − 1/p, it is sufficient to show that

sup
n∈N

sup
i∈{k,...,[nt∞]}

nk|Ri,n,ε| < ∞, almost surely.

It follows from Lemma 4.1 that

nk
∣∣gi,n(s)σs−

∣∣≤ C
(
1[−δ,t∞](s) + ∣∣g(k)(−s)σs−

∣∣1(−∞,−δ)(s)
) := ψs.

Let L̃ = (L̃t )t∈R denote the process defined by L̃0 = 0 and L̃t − L̃u is the total variation of v �→
Lv on (u, t] for all u < t . Since L is a compound Poisson process, the process L̃ is well-defined,
finite and it follows from [32], Theorem 21.9, that L̃ is a Lévy process with Lévy measure
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ν̃ = 2ν|R+ and shift parameter η with respect to the truncation function τ : x �→ x1{|x|<1} +
sign(x)1{|x|≥1} given by η = ∫

R
τ(x)̃ν(dx). Next, we use the following estimate:

nk|Ri,n,ε| ≤
∫

(−∞, i
n
−ε]

nk
∣∣gi,n(s)σs−

∣∣dL̃s ≤
∫
R

ψs dL̃s.

The right-hand side is finite almost surely due to the following Lemma 4.4, and the proof of (4.5)
is complete.

Lemma 4.4. Let L be a symmetric compound Poisson process with Lévy measure ν satisfying
ν([−a, a]) = 0 for some a ∈ (0,1] and let L̃ and ψ be given as above. Suppose, in addition, that
(B1) is satisfied. Then the stochastic integral

∫
R

ψs dL̃s exists and is finite almost surely.

Proof. To show that the stochastic integral
∫
R

ψs dL̃s is well-defined it is enough to prove that
�0,L̃(ψ) + �0,L̃(ψ) < ∞ almost surely (see (3.7) of Section 3). For some β ′ > β , we have
from (B1) that ∫

R

|ψs |θ1{|ψs |≤1} + |ψs |β ′
1{|ψs |>1} ds < ∞, a.s.

This implies that �0,L̃(ψ) < ∞ almost surely (cf. Remark 3.3). Next, we note that

�0,L(ψ) =
∫
R

∣∣∣∣∫
R

τ(xψs) − τ(x)ψsν̃(dx) + ηψs

∣∣∣∣ds

=
∫
R

∣∣∣∣∫
R

τ(xψs )̃ν(dx)

∣∣∣∣ds,

where the second equality follows by definition of η above. Hence, to show that �0,L(ψ) <

∞ almost surely, it suffices according to (B1) to derive the following estimate. There exists a
constant C > 0 such that for all u ∈R∫

R

∣∣τ(ux)
∣∣̃ν(dx) ≤ C

(|u|ρ1{|u|≤1} + 1{|u|>1}
)
, (4.6)

where ρ is as in assumption (B1). By the definitions of τ and ν̃ we have that∫
R

∣∣τ(ux)
∣∣̃ν(dx) = |u|

∫
{|x|≤|u|−1}

|x|ν(dx) + ν
(
x ∈ R : |xu| > 1

)
. (4.7)

We recall that lim supt→∞ ν([t,∞))tθ < ∞. Since ν is finite, there exists C0 > 0 such that
ν([t,∞)) ≤ C0/tθ for all t ≥ a. Consequently, we obtain for all t ≥ a and f (u) = 1[t,∞)(u)∫ ∞

a

f (x)ν(dx) ≤ C0

θ

∫ ∞

a

f (x)x−θ−1 dx.



On limit theory for Lévy semi-stationary processes 3133

By monotone approximation, the inequality remains valid for all nondecreasing f : [a,∞) →
R+. Therefore, the first term on the right-hand side of (4.7) is bounded by

|u|
∫

{|x|≤|u|−1}
|x|ν(dx) ≤ (C0/θ)1{|u|≤a−1}|u|

∫ |u|−1

a

|x|−θ dx

≤ C1{|u|≤a−1}

⎧⎪⎨⎪⎩
|u|θ , θ < 1,

|u|(log
(
1/|u|)+ log(1/a)

)
, θ = 1,

|u|, θ > 1.

For the second term on the right-hand side of (4.7), we use the following estimate

ν
(
x ∈ R : |xu| > 1

)≤ C
(
1{|u|>1} + (|u|−1)−θ1{|u|≤1}

)= C
(
1{|u|>1} + |u|θ1{|u|≤1}

)
for all u ∈ R, which completes the proof of (4.6) and hence of the lemma. �

Recalling the decomposition �n
i,kX = Mi,n,ε + Ri,n,ε we obtain by Minkowski’s inequality

sup
t∈[0,t∞]

∣∣∣∣∣(nαpV (p; k)nt
) 1

p −
(

nαp

[nt]∑
i=k

|Mi,n,ε|p
) 1

p
∣∣∣∣∣≤
(

nαp

[nt∞]∑
i=k

|Ri,n,ε|p
) 1

p

.

Therefore, by virtue of (4.2) and (4.5), we conclude that

nαpV (p; k)nt
LM1−s−−−−→ Zt on �ε .

By letting ε → 0, we conclude that Theorem 1.1(i) holds, when L is a compound Poisson process
with jumps bounded away from 0.

4.1.2. Decomposition into big and small jumps

In this section, we extend the proof of Theorem 1.1(i) to general symmetric Lévy processes
(Lt )t∈R. We need the following preliminary result.

Lemma 4.5. Let q ≥ 1 and a ∈ (0,1]. The function

ξ(y) =
∫ a

−a

|yx|21{|yx|≤1} + |yx|q1{|yx|>1}ν(dx)

satisfies |ξ(y)| ≤ C(|y|21{|y≤1|} +|y|β ′∨q1{|y>1|}) for any β ′ > β , where C does not depend on a.

Proof. Use the decomposition ξ = ξ1 + ξ2 with

ξ1(y) =
∫ a

−a

|yx|21{|yx|≤1}ν(dx), and ξ2(y) =
∫ a

−a

|yx|q1{|yx|>1}ν(dx).
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We obtain

ξ1(y)1{|y|≤1} ≤ |y|2
∫ 1

−1
x2ν(dx)1{|y|≤1},

and ξ1(y)1{|y|>1} ≤ C|y|β ′∨q1{|y|>1} follows from (3.4), showing that ξ1 satisfies the estimate
given in the lemma. For q > β , we obtain

ξ2(y) = 2|y|q1{|y|>1/a}
∫ a

1/|y|
|x|qν(dx) ≤ C|y|q1{|y|≥1}.

If q ≤ β , we have similarly for any β ′ > β

ξ2(y) ≤ 2|y|β ′
1{|y|>1/a}

∫ a

1/|y|
|x|β ′

ν(dx) ≤ C|y|β ′
1{|y|≥1},

which completes the proof. �

Now, given a general symmetric Lévy process (Lt )t∈R, consider for a > 0 the compound
Poisson process (L>a

t )t∈R defined by

L>a

0 = 0, L>a

t − L>a

s =
∑

s<u≤t

�Lu1{|�Lu|>a}.

Moreover, let (L
≤a

t )t∈R denote the Lévy process (Lt − L>a
t )t∈R. The key result of this section is

showing that

lim sup
n→∞

∥∥∥∥∥nαp

[nt∞]∑
i=k

∣∣∣∣∫ i/n

−∞
gi,n(s)σs− dL≤a

s

∣∣∣∣p
∥∥∥∥∥

1

→ 0, as a → 0. (4.8)

We make the decomposition ∫ i/n

−∞
gi,n(s)σs− dL≤a

s = Ai,n + Bi,n,

where

Ai,n =
∫ i/n

−δ

gi,n(s)σs− dL≤a

s and Bi,n =
∫ −δ

−∞
gi,n(s)σs− dL≤a

s .

Lemma 3.1 shows that∥∥∥∥∥nαp

[nt∞]∑
i=k

|Ai,n|p
∥∥∥∥∥

1

= n−1
[nt∞]∑
i=k

∥∥∥∥∫ i/n

−δ

nα+1/pgi,n(s)σs− dL≤a

s

∥∥∥∥p

p

≤ Cn−1
[nt∞]∑
i=k

E
[∥∥F i,n

∥∥p

p,L≤a

]
,
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where the process (F
i,n
t )t∈R is defined as F

i,n
t = nα+1/pgi,n(t)1(−δ,i/n](t)σt−. Since the random

variable supt∈[−δ,∞) |σt | is uniformly bounded, we obtain by (3.6) and [13], equation (4.23),

E
[∥∥F i,n

∥∥p

p,L≤a

]≤ C
∥∥nα+1/pgi,n1[−δ,i/n]

∥∥p

p,L≤a

≤ C
∣∣�p,L≤a

(
nα+1/pgk,n

)∣∣p/2 ∨ ∣∣�p,L≤a

(
nα+1/pgk,n

)∣∣
≤ C

(∫
|x|≤a

|x|p + x2ν(dx)

)p/2

∨
(∫

|x|≤a

|x|p + x2ν(dx)

)
,

for all n ∈N and i ∈ {k, . . . , [nt∞]}. Since p > β by assumption, we conclude that

lim sup
n→∞

∥∥∥∥∥nαp

[nt∞]∑
i=k

|Ai,n|p
∥∥∥∥∥

1

→ 0, as a → 0. (4.9)

Next, we show that for all a > 0

lim sup
n→∞

∥∥∥∥∥nαp

[nt∞]∑
i=k

|Bi,n|p
∥∥∥∥∥

1

= 0. (4.10)

Introducing the processes (Y
i,n
t )t∈R and (Yt )t∈R defined as

Y
i,n
t = nα+1/pgi,n(t)σt−1(−∞,−δ](t), and Yt = ∣∣g(k)(−t)σt−1(−∞,−δ](t)

∣∣,
we obtain by Lemma 3.1 that∥∥∥∥∥nαp

[nt∞]∑
i=k

|Bi,n|p
∥∥∥∥∥

1

≤ Cn−1
[nt∞]∑
i=k

E
[∥∥Y i,n

∥∥p

p,L≤a

]
.

Moreover, recalling that |g(k)| is decreasing on (δ,∞), an application of Lemma 4.1 shows that

E
[∥∥Y i,n

∥∥p

p,L≤a

]≤ np(α+1/p−k)E
[‖Y‖p

p,L≤a

]
,

for all i ∈ {k, . . . , n}. Since α + 1/p − k < 0, equation (4.10) follows if E[‖Y‖p

p,L≤a ] < ∞.

Applying the estimate (3.6) shows that this is satisfied if E[�1∨ p
2

p,L≤a (Y )] < ∞, which is a con-

sequence of (B1) and Lemma 4.5, where we used that p > β . Now, (4.8) follows from (4.9)
and (4.10).

We can complete the proof of Theorem 1.1(i) by combining (4.8) with the results of Sec-
tion 4.1.1. To this end, let

X>a

t :=
∫ t

−∞
(
g(t − s) − g0(−s)

)
σs− dL>a

s , X
≤a

t :=
∫ t

−∞
(
g(t − s) − g0(−s)

)
σs− dL≤a

s ,
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and let T >a
m = Tm if |�LTm | > a, and T >a

m = ∞ else. The results of Section 4.1.1 show that

nαpV
(
X>a,p; k)n

t

LM1−s−−−−→ Z>a

t :=
∑

m:T >a
m ∈(0,t]

|�LT >a
m

σT >a
m −|pVm

for all a > 0, where V (X>a,p; k)nt denotes the power variation of the process X>a . Making the
decomposition(

nαpV (p; k)nt
)1/p

= (nαpV
(
X>a,p; k)n

t

)1/p + ((nαpV (p; k)nt
)1/p − (nαpV

(
X>a,p; k)n

t

)1/p)
:= U

n,>a

t + U
n,≤a

t ,

we have by Minkowski’s inequality

lim
a→0

lim sup
n→∞

P

(
sup

t∈[0,t∞]

∣∣Un,≤a

t

∣∣> ε
)

≤ lim
a→0

lim sup
n→∞

P
(
nαpV

(
X≤a,p; k)n

t∞ > εp
)= 0,

for all ε > 0, which follows easily from (4.8). Since U
n,>a

t

LM1−s−−−−→ Z>a
t as n → ∞, and

supt∈[0,t∞] |Z>a
t − Zt | → 0 almost surely, as a → 0, Theorem 1.1(i) follows from [16], Theo-

rem 3.2.

Remark 4.6. A popular technique for proving limit theorems for volatility modulated processes
is to freeze the volatility over blocks of length 1/n and derive a limit theorem for the resulting
simpler process. However, in the framework of Theorem 1.1(i) this approach is not applicable,
since the power variations of the two processes are not asymptotically equivalent if σ and L jump
at the same times.

4.2. Proof of Theorem 1.1(ii)

Since t �→ V (p; k)nt is increasing and the limiting function is continuous, uniform convergence
on compact sets in probability follows if we show

n−1+p(α+1/β)V (p; k)nt
P−→ mp

∫ t

0
|σs |p ds

for a fixed t > 0, which we will do in the following. A crucial step in the proof is to show that
the asymptotic behavior of the power variation does not change if we replace �n

i,kX in (1.3) by
σ(i−k)/n�

n
i,kG, where the process (Gt )t≥0 is defined as the integral in (1.2) with σ ≡ 1. Note

that Assumption (A) ensures that G is well-defined. Thereafter, we divide the interval [0, t] into
subblocks of size 1/l and freeze σ at the beginning of each block. The limiting power variation
for the resulting process can then be derived by applying part (ii) of [13], Theorem 1.1, on every
block. The proof of Theorem 1.1(ii) is then completed by letting l → ∞. The following lemma
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plays an important role for replacing �n
i,kX in (1.3) by σ(i−k)/n�

n
i,kG. Here and in the following

we denote by vσ the modulus of continuity of σ defined as

vσ (s, η) = sup
{|σs − σr | : r ∈ [s − η, s + η]}.

Lemma 4.7. Let (σt )t∈R be a process with càdlàg or càglàd sample paths that is uniformly
bounded on [−δ,∞). For any α,q ∈ (0,∞) we have

lim
ε→0

[
lim sup
n→∞

(
1

n

[nt]∑
i=k

∥∥vσ (i/n, ε)
∥∥α

q

)]
= 0.

Proof. Since vσ is bounded and x �→ xα is locally Lipschitz for α > 1, we may assume w.l.o.g.
that α ≤ 1 and q ≥ 1. For κ > 0 we use the decomposition σ = σ<κ + σ≥κ , where

σ≥κ

s =
∑

−δ<u≤s

�σu1{|�σu|≥κ},

and σ<κ
s = σs − σ≥κ

s . Even though σ is uniformly bounded on [−δ,∞), σ≥κ and σ<κ might not
be. For this reason, we introduce the sets

�m := {ω : ∣∣σ<κ

s (ω)
∣∣+ ∣∣σ≥κ

s (ω)
∣∣≤ m for all s ∈ [−δ, t + δ],

and σ≥κ(ω) has less than m jumps in [−δ, t + δ]}.
Note that �m ↑ �, as m → ∞. By triangular inequality, we have vσ (s, η) ≤ vσ<κ (s, η)1�m +
vσ≥κ (s, η)1�m +C1�c

m
for all s ∈ [0, t], η < δ and m ≥ 1. Since P(�c

m) → 0 as m → ∞, we can
choose m sufficiently large such that

1

n

[nt]∑
i=k

∥∥vσ (i/n, ε)
∥∥α

q
≤ 1

n

[nt]∑
i=k

(∥∥vσ<κ (i/n, ε)1�m

∥∥α

q
+ ∥∥vσ≥κ (i/n, ε)1�m

∥∥α

q

)+ κ, (4.11)

for all n ∈N and ε > 0. We show that

lim sup
ε→0

lim sup
n→∞

(
1

n

[nt]∑
i=k

∥∥vσ<κ (i/n, ε)1�m

∥∥α

q

)
≤ 2κα. (4.12)

In order to do so, we assume the existence of sequences (εl), (nl), (il) with εl → 0, nl → ∞ and
il ∈ {1, . . . , [tnl]} such that ∥∥vσ<κ (il/nl, εl)1�m

∥∥α

q
> 2κα (4.13)

for all l, and derive a contradiction. Since (il/nl)l≥1 is a bounded sequence we may assume that
il/nl converges to some s0 ∈ [0, t] by considering a suitable subsequence (lk)k≥1. For all ω ∈
�m it holds that limγ→0 vσ<κ (s0, γ ) = |�σ<κ

s0
| ≤ κ . Therefore, by the dominated convergence

theorem, we can find a γ > 0 such that ‖vσ<κ (s0, γ )1�m‖α
q ≤ 2κα . This is a contradiction to
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(4.13), since for sufficiently large l we have [il/nl − εl, il/nl + εl] ⊂ [s0 − γ, s0 + γ ]. This
completes the proof of (4.12). Next, we show that

lim
ε→0

lim sup
n→∞

(
1

n

[nt]∑
i=k

∥∥vσ≥κ (i/n, ε)1�m

∥∥α

q

)
= 0. (4.14)

Recalling that q/α ≥ 1, an application of Jensen’s inequality yields

1

n

[nt]∑
i=k

∥∥vσ≥κ (i/n, ε)1�m

∥∥α

q
≤
∥∥∥∥∥tq/α−1 1

n

[nt]∑
i=k

(
vσ≥κ (i/n, ε)1�m

)q∥∥∥∥∥
α/q

1

,

for all n ∈ N, ε > 0. Now, (4.14) follows from the estimate

1

n

[nt]∑
i=k

(
vσ≥κ (i/n, ε)1�m

)q ≤ sup
s∈[−δ,t+δ]

∣∣�σ≥κ

s

∣∣qN1�m2(ε) ≤ Cmq+1(ε),

for all n ∈ N. Here N = N(ω) denotes the number of jumps of σ≥κ in [−δ, t + δ]. Using (4.12)
and (4.14), the lemma now follows from (4.11) by letting κ → 0. �

The proof of Theorem 1.1(ii) heavily relies on the estimate given in Lemma 3.2. This lemma
assumes the role that Itô’s isometry typically plays in proofs of limit theorems for stochastic
integral processes driven by a Brownian motion. In order to apply Lemma 3.2, the following
estimates will be crucial.

Lemma 4.8. Suppose that Assumptions (A) and (B2) hold, and assume that α + 1/β < k. For
ε > 0 with ε ≤ δ there is a constant C > 0 such that

E

[∫ i
n

i
n
−ε

∣∣gi,n(s)σs−
∣∣β ds

]
+
∫ i

n

i
n
−ε

∣∣gi,n(s)
∣∣β ds ≤ Cn−αβ−1, and

E

[∫ i
n
−ε

−∞
∣∣gi,n(s)σs−

∣∣β ds

]
+
∫ i

n
−ε

−∞
∣∣gi,n(s)

∣∣β ds ≤ Cn−kβ,

for all i ∈ {k, . . . , n}.

Proof. By Lemma 4.1, we have that∣∣gi,n(s)
∣∣β1[i/n−ε,i/n](s)

≤ C
(
(i/n − s)αβ1[(i−k)/n,i/n](s) + n−kβ

(
(i − k)/n − s

)(α−k)β1[i/n−ε,(i−k)/n](s)
)
.

Recalling that σ is bounded on [−δ,∞), the first inequality follows by calculating the integral of
the right-hand side. The second inequality is a direct consequence of Lemma 4.1 and Assump-
tions (A) and (B2). �
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A crucial step in the proof of Theorem 1.1(ii) is showing that

n−1+p(α+1/β)

[nt]∑
i=k

∥∥�n
i,kX − σ(i−k)/n�

n
i,kG

∥∥p

p
→ 0, (4.15)

as n → ∞, where the process (Gt )t≥0 is defined as the integral in (1.2) with σ ≡ 1. We fix some
ε > 0 and make the decomposition

�n
i,kX − σ(i−k)/n�

n
i,kG = A

n,ε
i + B

n,ε
i + C

n,ε
i ,

where

A
n,ε
i =

∫ i/n

i/n−ε

gi,n(s)(σs− − σi/n−ε) dLs,

B
n,ε
i = (σi/n−ε − σ(i−k)/n)

∫ i/n

i/n−ε

gi,n(s) dLs,

C
n,ε
i =

∫ i/n−ε

−∞
gi,n(s)σs− dLs − σ(i−k)/n

∫ i/n−ε

−∞
gi,n(s) dLs.

We deduce (4.15) by showing that

lim
ε→0

lim sup
n→∞

(
n−1+p(α+1/β)

[nt]∑
i=k

∥∥An,ε
i

∥∥p

p

)
= 0,

and the same for B
n,ε
i and C

n,ε
i , respectively. For A

n,ε
i we obtain by Lemma 3.2

n−1+p(α+1/β)

[nt]∑
i=k

∥∥An,ε
i

∥∥p

p

≤ Cn−1+p(α+1/β)

[nt]∑
i=k

{
E

[∫ i/n

i/n−ε

∣∣gi,n(s)(σs− − σi/n−ε)
∣∣β ds

]}p/β

≤ Cn−1+p(α+1/β)

[nt]∑
i=k

∥∥vσ (i/n, ε + 1/n)
∥∥p

β

(∫ i/n

i/n−ε

∣∣gi,n(s)
∣∣β ds

)p/β

.

By Lemma 4.7 and Lemma 4.8, we conclude that

lim
ε→0

lim sup
n→∞

(
n−1+p(α+1/β)

[nt]∑
i=k

∥∥An,ε
i

∥∥p

p

)
= 0. (4.16)
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For B
n,ε
i we apply Hölder’s inequality with p′ and q ′ satisfying 1/p′ + 1/q ′ = 1 and pq ′ < β ,

which is possible due to our assumption p < β . This yields

n−1+p(α+1/β)

[nt]∑
i=k

∥∥Bn,ε
i

∥∥p

p

≤ n−1+p(α+1/β)

[nt]∑
i=k

∥∥(σi/n−ε − σ(i−k)/n)
∥∥p

pp′

∥∥∥∥∫ i/n

i/n−ε

gi,n(s) dLs

∥∥∥∥p

pq ′

≤ Cn−1
[nt]∑
i=k

∥∥vσ (i/n, ε + k/n)
∥∥p

pp′ .

Here we have used that, as a consequence of Lemma 3.2 and Lemma 4.8, whenever pq ′ < β

there exists a C > 0 such that ‖nα+1/β
∫ i/n

i/n−ε
gi,n(s) dLs‖pq ′ < C for all n ∈N, i ∈ {k, . . . , [nt]}.

Thus, by Lemma 4.7

lim
ε→0

lim sup
n→∞

(
n−1+p(α+1/β)

[nt]∑
i=k

∥∥Bn,ε
i

∥∥p

p

)
= 0. (4.17)

Moreover, by Lemma 3.2 and Lemma 4.8 it follows that for all ε > 0

lim sup
n→∞

(
n−1+p(α+1/β)

[nt]∑
i=k

∥∥Cn,ε
i

∥∥p

p

)
≤ C lim sup

n→∞
(
np(α+1/β−k)

)= 0,

which together with (4.16) and (4.17) completes the proof of (4.15).
By Minkowski’s inequality for p ≥ 1 and subadditivity for p < 1, it is now sufficient to show

that

n−1+p(α+1/β)

[nt]∑
i=k

∣∣σ(i−1/n)�
n
i,kG

∣∣p P−→ mp

∫ t

0
|σs |p ds, (4.18)

in order to prove Theorem 1.1(ii).
Intuitively, replacing |�n

i,kX| by |σ(i−k)/n�
n
i,kG| corresponds to freezing the process (σt )t∈R

over blocks of length 1/n. For the proof of (4.18), we freeze σ now over small blocks with block
size 1/l that does not depend on n. This will allow us to apply [13], Theorem 1.1(ii), on every
block. Thereafter, (4.18) follows by letting l → ∞. For l > 0 we decompose

n−1+p(α+1/β)

[nt]∑
i=k

∣∣σ(i−k)/n�
n
i,kG

∣∣p − mp

∫ t

0
|σs |p ds

= n−1+p(α+1/β)

( [nt]∑
i=k

∣∣�n
i,kG

∣∣p(|σ(i−k)/n|p − |σ(jl,i−1)/ l |p
))
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+
([t l]+1∑

j=1

|σ(j−1)/ l |p
(

n−1+p(α+1/β)
∑

i∈Il(j)

∣∣�n
i,kG

∣∣p − mpl−1
))

+
(

mpl−1
[t l]∑
j=1

|σ(j−1)/ l |p − mp

∫ t

0
|σs |p ds

)

:= Dn,l + En,l + Fl.

Here, jl,i denotes the index j ∈ {1, . . . , [t l] + 1} such that (i − k)/n ∈ ((j − 1)/ l, j/ l] and Il(j)

is the set of indices i such that (i − k)/n ∈ ((j − 1)/ l, j/ l]. We show that

lim
l→∞ lim sup

n→∞
P
(|Dn,l + En,l + Fl | > ε

)= 0

for any ε > 0. Note that Fl
a.s.−→ 0 as l → ∞, since the Riemann integral of any càdlàg func-

tion exists. For every l ∈ N, we have lim supn→∞ P(|En,l | > ε) = 0 by [13], Theorem 1.1(ii).
For liml→∞ lim supn→∞ P(|Dn,l | > ε) = 0, we argue as follows. Choose some p′ > 1 such that
pp′ < β and let q ′ be such that 1/p′ + 1/q ′ = 1. We find

‖Dn,l‖1 =
∥∥∥∥∥n−1+p(α+1/β)

( [nt]∑
i=k

∣∣�n
i,kG

∣∣p(|σ(i−k)/n|p − |σ(jl,n,i−1)/ l |p
))∥∥∥∥∥

1

≤ n−1
[nt]∑
i=k

∥∥∣∣nα+1/β�n
i,kG

∣∣p∥∥
p′
∥∥|σ(i−k)/n|p − |σ(jl,n,i−1)/ l |p

∥∥
q ′

≤
(

n−1
[nt]∑
i=k

∥∥nα+1/β�n
i,kG

∥∥2/p

pp′

)1/2(
n−1

[nt]∑
i=k

∥∥|σ(i−k)/n|p − |σ(jl,n,i−1)/ l |p
∥∥2

q ′

)1/2

.

The first factor is bounded by Lemmas 3.2 and 4.8. For the second factor, we can apply
Lemma 4.7, since the process (|σt |p)t∈R is càdlàg and bounded on [−δ,∞), and conclude
that liml→∞ lim supn→∞ ‖Dn,l‖1 = 0. This completes the proof of (4.18), and hence of The-
orem 1.1(ii).

4.3. Proof of Theorem 1.1(iii)

For the proof of Theorem 1.1(iii), we show that under the conditions of the theorem the process X

admits a modification with k-times differentiable sample paths with kth derivative F , as defined
in the theorem. Then the result follows by an application of the following stochastic Fubini
theorem. For a proof, we refer to [1], Theorem 3.1, where a similar Fubini theorem was shown for
deterministic integrands. The generalisation towards predictable integrands is straightforward.

Lemma 4.9. Let f : R × R × � → R be a random field that is measurable with respect to the
product σ -algebra B(R) ⊗ �, where � denotes the (Ft )t∈R-predictable σ -algebra on R × �.
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That is, � is the σ -algebra generated by all sets A× (s, t], where s < t and A ∈ Fs . Let (Lt )t∈R
be a symmetric Lévy process that has finite first moment. Assume that we have

E

[∫
R

∥∥f (u, ·)∥∥1,L
du

]
< ∞.

Then, we obtain∫
R

(∫
R

f (u, s) du

)
dLs =

∫
R

(∫
R

f (u, s) dLs

)
du almost surely,

and all the integrals are well-defined.

The following auxiliary result ensures that the conditions of this lemma are satisfied in our
framework.

Lemma 4.10. Suppose that assumption (B1) holds. Let q ∈ {1,p} which in particular im-
plies α > k − 1/(β ∨ q). If q > 1 assume additionally that the jumps of the Lévy process
L are bounded in absolute value by 1. For any t > 0, the random field ft (u, s) := g(k)(u −
s)σs−1[0,t](u)1(−∞,u)(s) satisfies∫ t

0
E
[∥∥ft (u, ·)∥∥q

q,L

]
du < ∞.

Proof. We decompose∫ t

0
E
[∥∥ft (u, ·)∥∥q

q,L

]
du

≤ C

∫ t

0
E
[∥∥ft (u, ·)1(−δ,t]

∥∥q

q,L

]
du + C

∫ t

0
E
[∥∥ft (u, ·)1(−∞,−δ]

∥∥q

q,L

]
du

:= I1 + I2,

and show that both summands are finite. For I1 we use that σ is bounded on [−δ,∞). Thus,
denoting et (u, s) = g(k)(u − s)1[0,t](u)1(−δ,u)(s), we obtain using (3.6)

I1 ≤ C

∫ t

0
�q,L

(
et (u, ·))+ �

q
2
q,L

(
et (u, ·))du ≤ Ct

(
�q,L

(
et (t, ·)

)+ �
q
2
q,L

(
et (t, ·)

))
,

where in the second inequality we used |et (u, s)| ≤ |et (t, s+ t −u)|, and that �q,L(f ) is invariant
under shifting the argument of the function f . For I1 to be finite it is therefore sufficient to show
that the following term is finite∫ t

−δ

∫
R

∣∣g(k)(t − s)x
∣∣21{|g(k)(t−s)x|≤1} + ∣∣g(k)(t − s)x

∣∣q1{|g(k)(t−s)x|>1}ν(dx)ds := J1 + J2.
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We fix β ′ ∈ (β ∨ 1,1/(k − α)) and q ′ ∈ [q,1/(k − α)) such that the Lévy process satisfies
E[|L1|q ′ ] < ∞. Indeed, the former is possible by the conditions α > k − 1/(β ∨ p) and p ≥ 1 in
Theorem 1.1(iii). The latter is possible for q = 1 by the assumption θ > 1 in Theorem 1.1(iii),
and for q = p > 1 by the assumption of bounded jumps in the lemma. Recalling that |g(k)(t)| ≤
C|t |α−k for all t ∈ (0, δ), in order to show J1 + J2 < ∞, it is then sufficient to show

J1 + J2 ≤ C

(
1 +

∫ t

−δ

∣∣g(k)(t − s)
∣∣β ′

ds +
∫ t

−δ

∣∣g(k)(t − s)
∣∣q ′

ds

)
. (4.19)

For q = p > 1, this estimate follows easily from Lemma 4.5, where we use the assumption that
L has jumps bounded by 1. For q = 1 the estimate follows for J1 by (3.4). For J2 we obtain

J2 ≤
∫ t

−δ

∫ 1

−1

∣∣g(k)(t − s)x
∣∣β ′

1{|g(k)(t−s)x|>1}ν(dx)ds + 2
∫ t

−δ

∣∣g(k)(t − s)
∣∣q ′

ds

∫ ∞

1
|x|q ′

ν(dx)

≤ C

∫ t

−δ

∣∣g(k)(t − s)
∣∣β ′

1{|g(k)(t−s)|>1} + ∣∣g(k)(t − s)
∣∣q ′

ds,

which concludes the proof of (4.19) and of I1 < ∞. For I2 we use that |g(k)| is decreasing
on (δ,∞), which implies that I2 ≤ CtE[‖ft (0, ·)1(−∞,−δ]‖q

q,L]. By (3.6), the latter is finite if

�
1∨ q

2
q,L (ft (0, ·)1(−∞,−δ]) ∈ L1(�). This follows easily from Assumption (B2) (recall that q ≤ p)

and (3.4). �

With these preliminaries at hand, we can finally prove Theorem 1.1(iii). As remarked at the
beginning of Section 4.2, it is sufficient to show convergence in probability for a fixed t > 0 in
order to obtain uniform convergence on compacts in probability. Therefore, the theorem is an
immediate consequence of the following result and Lemma 4.3 in [13].

Lemma 4.11. Under the conditions of Theorem 1.1(iii), there is a process (Zt )t≥0 that satisfies
almost surely V (Z,p; k)nt = V (X,p; k)nt for all n ∈ N and t ≥ 0, has almost surely k-times
absolutely continuous sample paths and satisfies for Lebesgue almost all t ≥ 0 that

∂kZt

(∂t)k
=
∫ t

−∞
g(k)(t − s)σs− dLs := Ft ,

and F ∈ Lp([0, t0]) for any t0 > 0.

Proof. For ease of notation we only consider k = 1. The general case follows by similar argu-
ments. We let a ∈ (0,1] and define the processes (F ≤a

u )u∈R and (F >a
u )u∈R by

F ≤a

u =
∫ u

−∞
g′(u − s)σs− dL≤a

s , and F >a

u =
∑

s∈(−∞,u)

g′(u − s)σs−�Ls1{|�Ls |>a},

where the process (L
≤a

t )t∈R is the truncated Lévy process introduced in Section 4.1.2. We show
that both processes F ≤a

u and F >a
u are well-defined and that they both admit a modification with
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sample paths in Lp([0, t]). Then, we define the process

Zt :=
∫ t

0

(
F ≤a

u + F >a

u

)
du,

and show that it satisfies the properties given in the lemma.
We begin by analysing F ≤a

u . It is well-defined, since, as a consequence of Lemma 4.10,
ft0(u, s) = g′(u − s)σs−1[0,t0](u)1(−∞,u)(s) is integrable in s with respect to L≤a for Lebesgue
almost all u. Applying Lemmas 3.1 and 4.10, we obtain F ≤a ∈ Lp([0, t]), almost surely, since

E

[∫ t

0

∣∣F ≤a

u

∣∣p du

]
≤ C

∫ t

0
E
[∥∥ft (u, ·)∥∥p

p,L≤a

]
du < ∞.

For the process F >a
u we make the decomposition

F >a

u = F >a,≤−δ

u + F >a,>−δ

u

=
∑

s∈(−∞,−δ]
g′(u − s)σs−�Ls1{|�Ls |>a} +

∑
s∈(−δ,u)

g′(u − s)σs−�Ls1{|�Ls |>a}.

We argue first that F >a,≤−δ is well-defined and in Lp([0, t]) almost surely. Applying Lemma 4.4,
we obtain that ∑

s∈(−∞,−δ]

∣∣g′(−s)σs−�Ls

∣∣1{|�Ls |>a} < ∞

almost surely. Since |g′| is decreasing on [δ,∞), this implies that F >a,≤−δ is well-defined and
uniformly bounded in u. For F >a,>−δ

u , we use that L has only finitely many jumps of size > a on
[−δ, t]. Therefore, F >a,>−δ is well-defined and we find a positive random variable K < ∞ such
that ∫ t

0

∣∣F >a,>−δ

u

∣∣p du ≤ K

∫ t

0

∑
s∈(−δ,u)

∣∣g′(u − s)σs−�Ls1{|�Ls |>a}
∣∣p du

≤ K
∑

s∈(−δ,t)

|σs−�Ls1{|�Ls |>a}|p
∫ t

0

∣∣g′(u − s)
∣∣p du,

which is finite since |g′(s)| ≤ Csα−1 for s ∈ (0, δ) and (α − 1)p > −1. All that remains to show
is that V (X,p;1)nt = V (Z,p;1)nt for all n ∈ N and all t > 0 with probability 1. For any t > 0, it
holds with probability 1 that

Xt − X0 =
∫
R

(∫
R

ft (u, s) du

)
dLs =

∫
R

(∫
R

ft (u, s) dLs

)
du = Zt ,

where we have applied Lemmas 4.9 and 4.10. Consequently, it holds that P[Xt = Zt + X0 for
all t ∈ Q+] = 1 which implies V (X,p;1)nt = V (Z,p;1)nt for all n ∈ N and all t > 0 almost
surely. �
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