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We consider the simultaneous or functional inference of time-varying quantile curves for a class of non-
stationary long-memory time series. New uniform Bahadur representations and Gaussian approximation
schemes are established for a broad class of non-stationary long-memory linear processes. Furthermore, an
asymptotic distribution theory is developed for the maxima of a class of non-stationary long-memory Gaus-
sian processes. Using the latter theoretical results, simultaneous confidence bands for the aforementioned
quantile curves with asymptotically correct coverage probabilities are constructed.
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1. Introduction

There is an increasing need for non-stationary long-memory time series analyses in statistics
and various applied fields, such as hydrology, geophysics, climate change, econometrics and
quantitative finance. On the one hand, in the econometrics and quantitative finance literature,
long memory has been empirically identified as one of the stylized facts for many financial time
series data. We refer to Baillie [1] and Henry Zaffaroni [26] for comprehensive reviews of long-
memory processes in the finance and econometrics literature. In hydrology, [29] found the well-
known Hurst effect phenomenon in the geophysics record of water storage. In the geophysics
literature, [24] assessed Ireland’s wind power using a long-memory space-time model. In the
climate change literature, numerous studies, such as [15,40,50], and [38], have investigated the
long memory in surface temperature records.

On the other hand, it has long been recognized that the data-generating mechanisms do not re-
main unchanged for many financial, geophysical and engineering time series that span for at least
moderately long periods of time. See, for instance, [2,9,23,41,51] and [46] for some representa-
tive papers in the finance and economics literature and [7,47], and [31] for some representative
papers in the hydrology, geophysics and climate change literature. In the statistics literature,
[39], among others, proposed an approach for estimating and forecasting time-varying volatil-
ity. Dahlhaus and Subba Rao [13] and Fryzlewicz, Sapatinas and Subba Rao [19] analysed a
non-stationary version of the autoregressive and conditional heteroscedastic (ARCH) model to
accommodate the time-varying nature of the return processes.
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The purpose of this paper is to perform functional inference of the time-varying quantile curves
for a class of non-stationary long-memory processes of the form

Xi,n =
∞∑
j=0

aj (ti)εi−j,n +μ(ti), i = 1,2, . . . , n, (1)

where n is the time series length, ti = i/n, εi,n are centred random variables satisfying

εi,n =G(ti, ηi) (2)

with i.i.d. ηi , and μ(ti) = EXi,n is the deterministic trend function. In (1), long memory is in-
troduced by allowing the coefficient functions aj (t) to decay slowly with j . The series {Xi,n} is
non-stationary since the functions aj (t) and G(t, ·) vary with time t . In the following, we shall
omit the subscript n in Xi,n if no confusion arises. Indeed, Xi,n = Xi,n(ti) for some continuous
time process Xi,n(t). See (5) in Section 2 for the detailed definition of Xi,n(t). Let Qα,n(t) be
the αth quantile of {X0,n(t)} at time t , 0 ≤ t ≤ 1. For a fixed β ∈ (0,1), we shall construct a
100(1 − β)% asymptotic simultaneous confidence band (SCB) for Qα,n(t); that is, we shall find
random quantities Lα,n(t) and Uα,n(t) such that

lim
n→∞P

(
Lα,n(t)≤Qα,n(t)≤Uα,n(t),∀t ∈ (0,1)

) = 1 − β. (3)

Monitoring and inferring the quantile curves are very important tasks for risk measure and control
in quantitative finance and econometrics. In particular, the high or low quantiles, depending on
the context, are called value at risk (VaR) in finance. VaR has become a widely used measure
of market risk in risk management. We refer to Chapter 7 of [54] and the monographs of Jorion
[30] and Holton [28] for a comprehensive account of VaR in financial risk management. For
non-stationary financial time series, the simultaneous inference of Qα,n(t) is a very important
task because it allows the time-varying pattern of the market risk to be monitored with statistical
guidance and confidence.

However, constructing quantile SCBs for non-stationary long-memory time series is a diffi-
cult problem. To our knowledge, there are currently no corresponding results in the literature. In
general, the aforementioned problem can be solved if the following three tasks can be achieved.
(i): Construct a uniform Bahadur representation for the quantile curves that approximates the
deviation between the estimated Q̂α,n(t) and the true quantile Qα,n(t) by linear forms of {Xi,n}
uniformly on (0,1). (ii): Approximate the partial sum process of the non-stationary long-memory
process {Xi,n} by a corresponding non-stationary long-memory Gaussian process. (iii): Establish
an asymptotic distribution theory for the maxima of non-stationary long-memory Gaussian pro-
cesses.

Task (i) relies on investigating the uniform oscillation rate of the empirical process of {Xi,n}.
Note that due to long memory, the empirical process theories established for short-memory or
independent data (see, for instance, [64] and [44]) cannot be applied here. For functions of sta-
tionary long-memory data, [27] proposed a deep theoretical method for an asymptotic theory. In
this paper, we generalize this method to the empirical process of non-stationary long-memory
time series and prove a uniform Bahadur representation for the local linear quantile estimators of
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Qα,n(t). The empirical process theory established here can further facilitate the asymptotic the-
ory for a broad class of nonparametric M-estimates of non-stationary long-memory processes.

Task (ii) belongs to a class of problems called Gaussian approximations or invariance prin-
ciples. Invariance principles have very widespread applications in statistics and probability and
have received considerable attention in the literature. See, for instance, [16–18,35,36] and [60–
62] for some thorough results for independent data; Dehling and Taqqu [14] for a result on a
class of stationary, long-range dependent empirical processes; and Wu and Zhou [58] for a result
on non-stationary short-memory time series. To date, however, there are no results on Gaussian
approximations for non-stationary long-memory time series. In this paper, we utilize a repre-
sentation of the partial sums of (1) and establish an invariance principle with sufficiently sharp
approximation rates; see Theorem 2 in Section 3.2. The established invariance principle can be of
separate interest and can be useful for a large class of problems in the analysis of non-stationary
long-memory data.

In the literature, the classic result to address issue (iii) is the asymptotic extreme value theory
established in [5]. See, for instance, [22] and [59]. However, the results in [5] are for short-
memory and approximately stationary Gaussian processes. Thus, these results cannot be directly
used under the current setting. In the literature, [52] and [53] established an asymptotic extreme
value theory for Gaussian random fields. In this paper, we utilize the latter results and establish
an extreme value theory for a class of non-stationary long-memory Gaussian processes. With the
theoretical progress on issues (i)–(iii), in this paper, we construct SCBs for Qα,n(t) with asymp-
totically correct coverage probabilities. The SCBs enable one to monitor and test the pattern and
magnitude of the time-varying quantile curves, which, for instance, provides useful tools for the
risk management of non-stationary long-memory financial time series.

The remainder of this paper is organized as follows. In Section 2, we introduce some notation
and assumptions that are used throughout the paper. The main theoretical results on the Bahadur
representations, Gaussian approximations and asymptotic distribution for Gaussian process ex-
treme values are established in Section 3. Some examples illustrating the theory are presented
in Section 4. A discussion is provided in Section 5. Finally, proofs of the theoretical results are
outlined in Section 6. The detailed proofs are relegated to the supplementary material [56].

2. Preliminaries

2.1. Notation

For a d-dimensional (random) vector V = (v1, . . . , vd)
T , write |V| =

√∑d
i=1 v

2
i . A random vec-

tor X is said to be in Lp , p > 0, if E(|X|p) <∞. In this case, let ‖X‖p = (E(|X|p))1/p be its Lp

norm, and write ‖X‖ := ‖X‖2 for short. Furthermore, for two series of real numbers xn, yn, de-

note limn→∞ xn
yn

= 1 by xn ∼ yn for short. Write f (x)∼= g(x) as x → ∞ for limx→∞(
f (x)
g(x)

)= c,
where c is a finite non-zero constant. We say that Xn = Op(Yn) if Xn is bounded by Yn in
probability and that Xn = op(Yn) if Xn/Yn →p 0. To simplify the notation, we define that, for
(random) vectors, u = (u1, . . . , un)

T , v = (v1, . . . , vn)
T , 〈u,v〉 = ∑n

i=1 uivi , and |u|2 := 〈u,u〉.
Let �x� be the largest integer that is less than or equal to x. For any function of time a(t),
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define ȧ(t) as its partial derivative with respect to time t . Let B be the lag operator. For two
functions f (t) and g(t), t ∈ [0,1], we write f (t) ∝ g(t) if some constant C �= 0 exists such
that f (t) = Cg(t) for t ∈ [0,1]. Write ti = i/n. For an interval I ∈ R, denote by CiI, i ∈ N,
the collection of functions that have ith-order continuous derivatives on I . Let 1(·) be the usual
indicator function.

2.2. Assumptions

Suppose that we observe

Xi,n :=
∞∑
j=0

aj (ti)εi−j,n +μ(ti), 1 ≤ i ≤ n, (4)

where the innovations εi,n = G(ti, ηi), G(·, ·) is a measurable function, {ηi}∞i=−∞ are i.i.d. ran-
dom variables, and E(G(t, η0))= 0 for t ∈ [−∞,1]. Observe that Xi,n =Xi,n(ti) with

Xi,n(t)=
∞∑
j=0

aj (t)G(t − tj , ηi−j )+μ(t), 0 ≤ t ≤ 1, (5)

where μ(t)= E(Xi,n(t)) is a deterministic trend function that does not depend on n.

Remark 1. Note that in (4), the innovations εi,n =G(ti, ηi) are independent but non-identically
distributed. Allowing the innovations of the process to be non-stationary is very important for the
quantile analysis of non-stationary time series since under this setting, the marginal distributions
of Xi,n are able to arbitrarily change over time. To observe this process, simply compare the
following two simple models:

Xi,n(t) =
∞∑
j=0

a(t)

(j + 1)β
G(t − tj , ηi−j ), (6)

Yi(t) =
∞∑
j=0

a(t)

(j + 1)β
ζi−j , (7)

where ζi are i.i.d. random variables with finite variance and β > 1/2. Let QY,α(t) represent the
αth quantile curve of Y0(t). Define Z = ∑∞

j=0
1

(j+1)β
ζ−j , and let Zα be Z’s αth quantile. It is

clear that QY,α(t)= a(t)Zα . Let 0 < a < b < c < 1 be real numbers. Then, QY,a(t)−QY,b(t)∝
a(t), and QY,b(t)−QY,c(t)∝ a(t). Consequently, we have that

QY,a(t)−QY,b(t)∝QY,b(t)−QY,c(t). (8)

The above restriction on the shapes of the quantile curves makes model (7) less useful for quantile
analysis in many cases. In particular, under model (7), if the ath and bth quantile curves remain



Non-stationary long-memory 2995

unchanged across time for some a < b, then (8) implies that the d th quantile curve should also
be a constant function over time for any d ∈ (0,1). However, in many practical situations, it
is possible that some quantile curves remain constant while others exhibit interesting patterns of
changes over time. Meanwhile, note that the set up for Xi,n in (4) does not impose any restrictions
on the shapes of the quantile curves.

Remark 2. Traditionally, for the second-order stationary process Xi , it possesses long memory
if

∑∞
j=−∞ |�(j)| = ∞, where �(j) := Cov(X1,X1+j ) is the autocovariance function. For non-

stationary time series, one can extend the aforementioned classic definition of long memory and
define the following uniform long-memory property of non-stationary time series:

Definition 1. We say that a triangular array of non-stationary time series {Xi,n}ni=1, n ≥ 1, is
uniform long memory if for every positive integer i,

lim
n→∞

∞∑
j=−∞

∣∣Cov(Xi,n,X(i+j),n)
∣∣ = ∞, (9)

where we set Xi,n = 0 if i ≤ 0 or i > n for convenience.

A simple sufficient condition for the process {Xi,n} defined in (1) to be a uniform long-memory
process is that, uniformly in t and j , c ≤ aj (t)/j

d(t) ≤ C or −C ≤ aj (t)/j
d(t) ≤ −c for some

positive and finite constants c and C while 1/2 < d(t) < 1. Here, d(t) is called a (time-varying)
long-memory parameter. Note that the above condition is not necessary. For example, the quan-
tities aj (t) need not share the same sign for a fixed t ; see Example 4.

Our objective is to estimate the αth quantile Qα,n(t) of X0,n(t). We have several assumptions,
as follows:

(A0) For fixed α, Qα,n(t), Q̇α,n(t) := ∂Qα,n(t)

∂t
and Q̈α,n(t) := ∂2Qα,n(t)

∂t2
are bounded on [0,1].

We also assume that μ̇(t) := ∂
∂t
μ(t) is bounded on [0,1].

(A1) A positive constant C exists such that ‖G(t, η0)‖p ≤ C, and for t, s ∈ (−∞,1],
‖G(t, η0) − G(s,η0)‖p ≤ C|t − s| for some p ≥ 2, E[G(t, η0)] = 0, Var[G(t, η0)] =
σ 2(t), with |σ̇ 2(t)| bounded for t ∈ (−∞,1].

(A2) Let g(t, x) be the density of G(t, ηi). We require that | ∂r

∂xr
g(t, x)| and | ∂

∂t
g(t, x)| are

bounded and integrable for r = 0,1, . . . , l, l ≥ 3, t ∈ (−∞,1] and x ∈R.
(A3) Coefficients aj (t) satisfy |aj (t)| = O( 1

(j+1)γ ) ∀t ∈ [0,1], j ∈ N, 1/2 < γ < 1. In addi-

tion, aj (t) has derivative ȧj (t) := ∂aj (t)

∂t
such that ȧj (t) = O( 1

(j+1)γ ) for all t ∈ [0,1].
Without loss of generality, let a0(t) ≡ 1 for all t ∈ [0,1]. For any t ∈ [0,1], the series
{Xi,n(t)−μ(t)}ni=1 has time-invariant long-memory parameter d(t)= 1 − γ .

(A4) K(·) ∈ K, where K is the collection of kernel functions that are symmetric with sup-
port [−1,1] and are in C1[−1,1]. We write Kbn(·) = K(·/bn) for short, where bn is a
bandwidth.
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Note that (A4) implies that uniformly on any closed interval of (0,1),

�n(t) :=
n∑

i=1

(
1, (ti − t)/bn

)T (
1, (ti − t)/bn

)
Kbn(ti − t)

(10)
= nbnμK +O(1),

where μK = diag(1,μ2) and μ2 = 2
∫ 1

0 u2K(u)du.
Condition (A0) places some requirements on the smoothness of Qα,n(t) to perform the lo-

cal linear quantile regression. (A1) and (A2) make some assumptions on the tail behaviour of
the innovations {εi,n}∞i=−∞ for technical convenience. Condition (A3) characterizes the long-
memory structure in this paper. The differentiability of time-varying a(t) actually makes the
non-stationary time series locally stationary. In particular, if we consider a sub-series of {Xi,n}
observed near some t0 ∈ [0,1], for example, {Xi,n, |i/n − t0| ≤ bn} for some bn → 0, then the
sub-series is approximately stationary. (A3) also assumes that the long-memory parameter d(t)
is time invariant. Conditions (A0)–(A3) together imply that the density function of the process
Xi,n(t) is smooth in time; see Lemma 2. Such smoothness assumptions are also made when in-
vestigating the quantile curves of non-stationary and short-range dependent time series; see [66].
Condition (A4) makes mild assumptions on the kernel function K(·), which consequently results
in the convergence of �n(t) in equation (10).

3. Main results

Let Fn(t, x) = P(Xi,n(t) ≤ x), and let fn(t, x) = ∂
∂x
Fn(t, x). The existence of fn(t, x) is sup-

ported by Lemma 2. Define the quantiles Qα,n(t)= infx{Fn(t, x)≥ α}. We estimate Qα,n(t) and
Q̇α,n(t) by

(
Q̂α,n,bn(t),

ˆ̇Qα,n,bn(t)
) = arg min

β0,β1

n∑
i=1

ρα
(
Xi,n − β0 − β1(ti − t)

)
Kbn(ti − t), (11)

where ρα(x)= αx+ +(1−α)(−x)+ is the check function in [32]. Equation (11) defines the local
linear quantile estimators. In addition, the following notation is required for the main results. Let
α(x) := α− 1 (x ≤ 0) be the left derivative of ρα(x). Define θ̂α,n(t)= (θ̂α,n,1(t), θ̂α,n,2(t))

T :=
(Q̂α,n(t) − Qα,n(t), bn(

ˆ̇Qα,n(t) − Q̇α,n(t)))
T . Let zi,n(t) = (1, (ti − t)/bn)

T . Let Sα,n(t) =
Sα,n(t, (0,0)T ), where for θ = (θ1, θ2)

T , we define

Sα,n(t, θ)=
n∑

i=1

α

(
Xi,n −Qα,n(t)− (ti − t)Q̇α,n(t)− θT zi,n(t)

)
Kbn(ti − t)zi,n(t). (12)

3.1. Uniform bahadur representation

The Bahadur representation asymptotically approximates the regression estimators by certain
linear forms of the data. See, for instance, [25,32], and [57], among others. In the local polyno-
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mial quantile regression literature, [6] provided a Bahadur representation for i.i.d. d-dimensional
observations, and [66] provided a Bahadur representation for non-stationary series with short-
range dependence. For linear models with stationary long memory and heavy-tailed errors, [67]
provided a Bahadur representation for regression parameters estimated using a general convex
check function ρ (which includes OLS and quantile regression). For functionals of Gaussian
dependent sequences, [8] obtained a Bahadur representation of its sample quantiles. In the fol-
lowing, we shall provide a uniform Bahadur representation of the local linear quantile estimators
for non-stationary long-memory processes:

Theorem 1. Let Tn = [δbn,1 − δbn], where δ > 1 is a constant. Assume that bn → 0,
nbn/ log2 n → ∞, (nbn)1/2−γ (bn)

−1/p → 0, and infn inft∈[0,1] fn(t,Qα,n(t)) ≥ η > 0 for some
positive constant η. Assume (A0)–(A4). Then, we have the following uniform Bahadur represen-
tation:

sup
t∈Tn

∣∣fn(t,Qα,n(t)
)
μKθ̂α,n(t)− Sα,n(t)/(nbn)

∣∣
(13)

=Op

(
(πn)

1/2 logn/
√
nbn + (nbn)

1/2−γ πnb
−1/p
n + bnπn + (πn)

2),
where πn = (nbn)

−1/2(logn+ (nb5
n)

1/2 + (nbn)
1−γ b

−1/p
n ).

Theorem 1 asserts that the uniform probabilistic oscillations of Q̂α,n(t) can be well approx-
imated by Sα,n(t), which has a considerably simpler mathematical form. Consequently, Theo-
rem 1 enables us to construct the SCBs of Qα(t) over t ∈ Tn via a Gaussian process approx-
imating {Sα,n(t), t ∈ Tn}. The Gaussian approximation can be obtained using Theorem 2 and
Theorem 3, as follows.

3.2. Gaussian approximation

Theorem 2. Under conditions (A0)–(A4), on a possibly richer probability space, there exists
Yk,n = ∑∞

j=0 aj (tk)σ (tk−j )υk−j +μ(tk), where the random variables υi are i.i.d. N(0,1), such
that

max
1≤s≤n

∣∣∣∣∣
s∑

k=1

(Xk,n − Yk,n)

∣∣∣∣∣ =Op

(
n1+ν(1/2−γ )

)
,

where ν = 1
1/2+1/p .

This theorem is of general interest. It provides a Gaussian approximation result for the partial
sum processes of a class of non-stationary long-memory processes. The Gaussian approximation
schemes or invariance principles are powerful tools and are widely applied in statistics and proba-
bility. Among others, Komlós, Major and Tusnády [35,36] reached the optimal rate for the strong
approximation of the partial sum of independent random variables. Zaitsev [60–62] extended the
previous univariate results to the multi-dimensional case. In the context of non-stationary short-
range dependent processes, Wu and Zhou [58] acquired a Gaussian approximation result of the
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partial sums with Op bounds. For stationary long-memory processes, Wang, Lin and Gulati [55]
proposed a strong approximation result. For more details about the strong approximation, see
[11] and the references therein. The following theorem, which is proved with the help of The-
orem 2, enables us to uniformly approximate the estimated quantile curves by non-stationary
long-memory Gaussian processes.

Theorem 3. Suppose that the conditions of Theorem 1 hold. Suppose that 0 < ι1 < ι2 < 1 exist

such that n−ι2 = o(bn) and bn = o(n−ι1). Assume that γ > 1
2 + 1

p
and (nbn)

1
2 −γ b

− 2
p

n = o(1),

b3
n(nbn)

γ− 1
2 = o(1), b

− 1
p

n (nbn)
γ−1 = o(1), and n

( 1
2 − 1

p )( 1
2 −γ )

1
2 + 1

p b
γ−3/2
n = o(1). Then, on a possibly

richer probability space, a sequence of i.i.d. standard normal random variables {ϑi}∞i=−∞ exists
such that for Vi,n = ∑∞

j=0 aj (ti)ϑi−j , we have

sup
t∈Tn

∣∣∣∣∣fn(t,Qα,n(t)
)(

μKθ̂α,n(t)− σ(t)

nbn

n∑
i=1

Vi,nKbn(ti − t)zi,n(t)− b2
nQ̈α,n(t)(μ2,0)T

2

)∣∣∣∣∣
(14)=Op(ςn),

where

ςn = ζn +K
p
n /nbn, K

p
n = nb4

n + logn
√
nbn + b

−1/p
n gn + (bn)

1− 1
p (nbn)

3/2−γ ,

gn = (nbn)
2−2γ (

log(nbn)1(γ = 3/4)+ 1(γ < 3/4)
) + (nbn)

1/21(γ > 3/4),

ζn = (πn)
1/2 logn/

√
nbn + (nbn)

1/2−γ πnb
−1/p
n + bnπn + (πn)

2

+ n
1/2−γ

1/2+1/p /(bn)+ n1/2−γ b
−1/p
n ,

πn = (nbn)
−1/2(logn+ (

nb5
n

)1/2 + (nbn)
1−γ b

−1/p
n

)
.

Straightforward calculations show that the sequence ςn satisfies the property that ςn
(nbn)1/2−γ → 0

as n→ ∞.

This theorem follows from Theorem 2, Lemma 1, and Lemma 9 in the supplementary material
[56]. Since the density fn(t,Qα,n(t)) is uniformly bounded from below by a strictly positive
number (see Lemma 3 for a detailed discussion on the uniform lower bound of fn(t,Qα,n(t))),
then after cancelling this quantity on both sides of equation (14), we have an approximation
of θ̂α,n(t) that is independent of the nuisance function fn(t,Qα,n(t)). This differs from the
short-memory case, where it is shown that the SCB depends on fn(t,Qα,n(t)). For stationary
long-memory data, similar results were obtained by [10], among others. Once we establish The-
orem 3, we find that the bias of Q̂α,n(t) is on the order of b2

n, while the standard deviation of
1
nbn

∑n
i=1 Vi,nKbn(ti − t)zi,n(t) is on the order of (nbn)1/2−γ . Straightforward calculations show

that the optimal bn to minimize the MSE of the estimates should be on the order of n
1/2−γ
3/2+γ , which
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is feasible when additionally assuming 3
p
< γ <

4+ 1
p

4+ 2
p

and further leads to the convergence rate

ςn = b
3−1/p
n + b

1
γ−1/2 −1/p
n + b

3/2+γ
1/2+1/p−1
n + b

3/2+γ−1/p
n . (15)

Let p → ∞ at the rate of logn. We find that if γ becomes close to either 0.5 or 1, ςn will ap-
proach b2

n, which is on the order of the square root of the MSE except for a factor of multiplicative
logarithms (due to the extra factor of p1/2 in the approximating order of Lemmas 6, 7, 8 and 9
in the supplementary material [56]; proof of Theorem 3). In practice, if {aj (t), t ∈ [0,1]}∞j=1 can
be estimated consistently, then Theorem 3 can be used to construct the SCB of Qα,n(t) by gen-
erating a large sample of i.i.d. copies of { 1

nbn

∑n
i=1 Vi,nKbn(ti − t)} and calculating the empirical

maximum deviations of the simulated samples. Theoretically, Theorem 3 can be used to explore
the limiting distribution of the SCB, which we will discuss in the next section.

3.3. Maximum deviation

Many researchers have conducted excellent investigations on the maximum deviations of Gaus-
sian processes. For instance, the extreme Gumbel distribution for stationary Gaussian processes
was obtained by [4] in i.i.d. settings. Bickel and Rosenblatt [5] is a good reference for this con-
text, and it also concludes with a limiting distribution for maximum deviations of a type of
non-stationary Gaussian processes. Sun and Loader [53] acquired a first-order approximation of
the maximum deviations for a general type of Gaussian processes. In the next theorem, we find
a limiting confidence band by referring to Sun and Loader’s results and techniques.

Theorem 4. Suppose that K(x) is non-decreasing when x ≤ 0, non-increasing when x > 0,
and has a bounded non-increasing first-order derivative on [0,1]. Let Tn = [δbn,1 − δbn]
for some δ > 1, {ϑi}i∈Z be a series of i.i.d. N(0,1), Vi,n = ∑∞

j=0 aj (ti)ϑi−j , and S̆n(t) =∑n
i=1 Vi,nKbn(ti − t). Then, assuming that (a): the conditions of Theorem 3 hold, we have

lim
n→∞P

(
sup
t∈Tn

nbn|Q̂α,n(t)−Qα,n(t)− b2
nQ̈α,n(t)μ2/2|

σ(t)‖∑n
i=1 Vi,nKbn(ti − t)‖ >

√
2 log

κn

πτ

)
= τ, (16)

where κn = ∫
t∈Tn‖ ∂

∂t
(

S̆n(t)

‖S̆n(t)‖ )‖dt , and 1 − τ is the nominal coverage probability. If we further

assume that (b): ∃0 < L ≤ U < ∞ such that L
(j+1)γ ≤ aj (t) ≤ U

(j+1)γ ∀j ≥ 0, t ∈ Tn, then κn
satisfies

C1/bn ≤ κn ≤ C2/bn (17)

for some constants 0 <C1 <C2 <∞.
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When n is sufficiently large, we can find explicit bounds for C1 and C2 in (17). Let a∗ =
maxa∈[0,1] |K ′(a)|(1 − a)3/2−γ and define

G
(
K(·)) = L1−γ

(1 − γ )2

∫ 1

−1

∫ 1

−1
K(x)K(y)|x − y|1−2γ dx dy, (18)

where

L1−γ = 1

3 − 2γ
+

∫ ∞

0

(
(x + 1)1−γ − x1−γ

)2
dx. (19)

Then, we have

C1 = La∗

UG(K(·))1/2(1 − γ )(3 − 2γ )1/2
,

C2 = a1MU
LG(K(·))1/2

,

where

a1 =
(

4w1−2γ

2γ − 1
+ w(2 +w)2−2γ

(1 − γ )2
+ 23−2γ

(3 − 2γ )(1 − γ )2

)1/2

,

w = (δ − 1)/2, M = sup
x∈[−1,1]

∣∣K ′(x)
∣∣.

In Theorem 4, we impose assumption (b) to ensure that the norm of the partial sum of Vi,n goes
to infinity at a fairly stable rate as the sample size increases. In general, due to the non-stationarity,
the exact value of κn is difficult to evaluate. However, the theorem obtains a bound for κnbn,
consequently ensuring the order of the width of the SCB. The term σ(t) can be estimated, say,
by the local linear estimators. The term ‖∑n

i=1 Vi,nKbn(ti − t)‖ determines the width of the
SCB. Under our setting, we have the next corollary on the order of ‖∑n

i=1 Vi,nKbn(ti − t)‖.

Corollary 1. Assume that the conditions of Theorem 4, including (a) and (b), hold. Then,
‖∑n

i=1 Vi,nKbn(ti − t)‖ is on the order of (nbn)3/2−γ .

The proof of Corollary 1 is relegated to Section 1 of the supplementary material [56]. A nicer
form of κn and ‖∑n

i=1 Vi,nKbn(ti − t)‖ can be obtained under slightly stronger assumptions.

Lemma 1. Let �n(i, j)= Cov(Vi,n,Vj,n). Assume the following:

(a) The conditions of Theorem 3 hold.
(b) �n(i, j)∼ ă(ti , tj )(|i − j | + 1)1−2γ , where ă(x, y) is Lipschitz continuous in both x and

y for x, y ∈ [0,1]2.
(c) ă(t, t) has a strictly positive lower bound and a finite upper bound. Meanwhile, ∂2

∂x2 ă(x, y),
∂2

∂y2 ă(x, y), and ∂2

∂x ∂y
ă(x, y) are bounded.
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Then, we have

∥∥∥∥∥
n∑

i=1

Vi,nKbn(ti − t)

∥∥∥∥∥ ∼ ă1/2(t, t)(nbn)
3/2−γ

(∫ 1

−1

∫ 1

−1
|x − y|1−2γK(x)K(y)dx dy

)1/2

,

and

κn ∼ 1

bn

(∫ 1
−1

∫ 1
−1 |x − y|1−2γK ′(x)K ′(y) dx dy∫ 1

−1

∫ 1
−1 |x − y|1−2γK(x)K(y)dx dy

)1/2

:= D

bn
.

By combining the above with (16), we obtain

lim
n→∞P

(
sup
t∈Tn

|Q̂α,n(t)−Qα,n(t)− b2
nQ̈α,n(t)μ2/2|

ă1/2(t, t)σ (t)(
∫ 1
−1

∫ 1
−1 |x − y|1−2γK(x)K(y)dx dy)1/2(nbn)1/2−γ

(20)

>

√
2 log

D

bnπτ

)
= τ.

The proof of Lemma 1 is relegated to Section 1 of the supplementary material [56].

Remark 3. Note that condition (b) of Theorem 4 ensures that κn is on the order of 1/bn. In
Lemma 1, we make an assumption on the covariance structure, which helps us evaluate the limit
of κn. Thus, we only need (a) and not (b) of Theorem 4 to support Lemma 1. Note that there
is no need to estimate {aj (t), t ∈ [0,1]}∞j=0 to apply Lemma 1. Rather, we need to estimate

ă1/2(t, t)σ (t) to apply this lemma.

The following corollary shows that if the functions aj (t) can be factorized as aj (t)= a(t)g(j)

and the innovations {εj }∞j=−∞ are i.i.d. with a finite pth moment, then a Gumbel limiting distri-
bution can be achieved under certain conditions.

Corollary 2. Assume that the conditions of Theorem 1 hold and that nγ−1 logn/b3/2−γ
n =

o((logn)−1/2). Suppose that aj (t) = a(t)g(j), gj = (1−γ )
(j+1)γ (1 + O(1/j)), and the innovations

εi are i.i.d. with mean 0 and variance 1 s.t. Xi,n(t) = Xi(t) = ∑∞
j=0 aj (t)εi−j + μ(t). In addi-

tion, define

κ2
K =

∫
R

∫
R

K(x)K(y)|x − y|1−2γ dx dy, (21)

DK =
∫
R

∫
R

K ′(x)K ′(y)|x − y|1−2γ dx dy. (22)
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For m ≥ 3, define BK(m) = √
2 logm + 1

2
√

2 logm
(logCK − 2 log 2 − 2 logπ), CK = DK/κ

2
K .

Then, we have

lim
n→∞P

(
sup

t∈[bn,1−bn]

∣∣∣∣(1 − γ )

(
Q̂α,n(t)−Qα,n(t)− b2

nQ̈α,n(t)μ2/2

L
1/2
1−γ κK(nbn)

1/2−γ a(t)

)∣∣∣∣ −BK(1/bn)

(23)

≤ {
2 log(1/bn)

}−1/2
u

)
= exp

{−2 exp(−u)
}
,

where L1−γ is defined in (19).

The proof of Corollary 2 is relegated to Section 1 of the supplementary material [56].

4. Examples

In this section, we assume that conditions (A0), (A1), (A2) and (A4) hold. To apply our theory
to the general examples, we shall evaluate condition (A3).

Example 1. Consider the following fractionally integrated model: Xi,n(t) =
(1 − B)−da(t)G(ti , ηi). Assume that a(t) is a smooth function of t , which has a bounded first-
order derivative. Let γ = 1 − d , where p and γ satisfy the bandwidth conditions in Theorem 3.
Then, the theory established in this paper can be used to obtain the SCBs of the quantile curves
of Xi,n. Note that if G(t, ηi)≡ ηi , where innovations {ηi}∞i=1 are i.i.d. with mean 0 and variance
1, then the model is reduced to a locally stationary fractional ARIMA(0, d,0) model.

Example 2. Consider the locally stationary fractional ARIMA(p, d, q) model, as follows:
�p(B, t)Xi(t)=�q(B, t)(1 −B)−dεi , where the random variables εi are i.i.d. with mean 0 and
variance 1; �p(z, t)= 1 + φ1(t)z+ · · · + φp(t)z

p and �q(z, t)= 1 + θ1(t)z+ · · · + θq(t)z
q are

polynomials with degrees p and q , respectively; and 0 < d < 1/2. Suppose that {φi(t),1 ≤ i ≤
p} and {θj (t),1 ≤ j ≤ q} are twice differentiable in t . Define a polynomial with p + q degrees
of freedom:

�p+q(z, t)= �̇q(B, t)�p(B, t)−�q(B, t)�̇p(B, t).

Suppose that for all t ∈ [0,1], �p(z, t) and �q(z, t), �p(z, t) and �p+q(z, t) do not have the
same roots, and �p(z, t) does not have roots in the unit disk {|z| ≤ 1}. Let G(z, t) = �q(z,t)

�p(z,t)
:=∑∞

j=0 cj (t)z
j ; then, G(z, t) is analytic in the circle {|z| ≤R(t)} for some R(t) > 1. Now suppose

that a number Q1 exists such that 1 < Q1 < R(t) for all t ∈ [0,1]. Consequently, Ġ(z, t) :=
∂
∂t
G(z, t) is also analytic with convergence radius r(t) for some r(t) > 1. We also assume that a

number Q2 exists such that 1 <Q2 < r(t) for all t ∈ [0,1]. Then, condition (A3) is satisfied with
γ = 1 − d . In addition, if the innovation has a finite pth moment such that p and γ satisfy the
bandwidth conditions in Theorem 3, then our theory for the quantile curves applies to this case.
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To demonstrate that condition (A3) holds for Example 2, we first carefully check [33] and con-
clude that |cj (t)| ≤ C1Q−j

1 for all t and some sufficiently large constant C1. Then, by applying
Lemma 3.2 in [34], we conclude that |aj (t)| ≤ C2j

d−1 for all t ∈ [0,1] and some sufficiently
large constant C2. By applying similar arguments to the following locally stationary fractional
ARIMA(2p,d,p+ q) model,

(
�p(B, t)

)2
Xi(t)= {

�̇q(B, t)�p(B, t)−�q(B, t)�̇p(B, t)
}
(1 −B)−dεi,

we have that |ȧj (t)| ≤ C3j
d−1 for all t ∈ [0,1] and some sufficiently large constant C3.

Remark 4. Consider the time-varying fractional ARIMA(p,d, q) model with 0 < d < 1/2,

(
p∑

j=0

αj (ti)Bj

)
Zi,n =

(
q∑

k=0

βk(ti)Bk

)
(1 −B)−dσ (ti)η̄i , (24)

where innovations {η̄i}∞i=−∞ are i.i.d. random variables with mean 0 and variance 1 and α0(·)=
β0(·)≡ 1. It can be shown that model (24) has an MA representation:

Zi,n =
∞∑
j=0

ai,n(j)η̄i−j . (25)

It can also be shown that, similar to [12], we cannot find functions aj (t)′s that satisfy condition
(A3) such that aj (ti) = ai,n(j). However, consider the following locally stationary fractional
ARIMA model with 0 < d < 1/2:

(
p∑

j=0

αj (t)Bj

)
Xi(t)=

(
q∑

k=0

βk(t)Bk

)
(1 −B)−dσ (t)η̄i . (26)

Note that B only affects i and not t . Under some regularity conditions, (26) has an MA repre-
sentation Xi,n(t)= ∑∞

j=0 ãj (t)η̄i−j for some MA coefficients ãj (t)′s satisfying (A3). We have
discussed such conditions in Example 2. It has been shown that under short-range dependence,
time-varying AR models can be well approximated using a locally stationary AR model. See,
for instance, [63] and [65]. Proposition 1 shows that with long-range dependence, the time-
varying fractional ARIMA model can still be well approximated by a locally stationary fractional
ARIMA model.

Proposition 1. Consider model (24) and model (26). Suppose the following:

(a) The start point (Zp,n, . . . ,Z1,n)
T ∈ L2.

(b) The coefficients {αj (·), βk(·), j = 1, . . . , p, k = 1, . . . , q} and σ(·) are Lipschitz continu-
ous on [0,1].



3004 W. Wu and Z. Zhou

(c)
∑p

j=1 αj (t)z
j �= −1 for all |z| ≤ 1 + c with some c > 0 uniformly for t ∈ [0,1]. Then, we

have for some constant C > 0

max
1≤i≤n

∥∥Zi,n −Xi(ti)
∥∥ ≤Cnd−1/2. (27)

In addition, if σ(·) is constant, then we have max1≤i≤n ‖Zi,n −Xi(ti)‖ ≤Cn−1.

The proof of Proposition 1 is relegated to Section 1 of the supplementary material [56].

Example 3. Consider the locally stationary fractional ARIMA(0, d,1) model (26). Palma [42]
showed that

Cov
(
Xs(ts),Xm(tm)

) ∼ g(ts, tm)|s −m|2d−1 (28)

for some C1 function g(·, ·) on [0,1] × [0,1] and d ∈ (0,1/2). In addition, g(t, t) > 0 for
t ∈ [0,1]. Assume that g(x, y) is smooth such that ∂2

∂x2 g(x, y),
∂2

∂y2 g(x, y), and ∂2

∂x ∂y
g(x, y)

exist and are all bounded. Then, as we discussed in Example 2, our Theorems 1–4 hold for this
model provided that the bandwidth conditions in Theorem 3 hold. In addition, the conditions
of Lemma 1 are also satisfied due to the covariance structure (28). Thus, we can compute the
asymptotic SCB via Lemma 1 if consistent estimates of g(t, t) are provided. Note that g1/2(t, t)

now plays the same role as σ(t)ă1/2(t, t) in Lemma 1.

Example 4. Consider the locally stationary Gegenbauer ARMA process:

(
p∑

j=0

αj (t)Bj

)(
1 − 2ξB +B2)λXi(t)=

(
q∑

k=0

βk(t)Bk

)
σ(t)η̄i , (29)

where α0(·) = β0(·) ≡ 1, 0 < λ < 0.25, |ξ | < 1 and innovations η̄i are i.i.d. with mean 0 and
variance 1. Write �p(z, t)= ∑p

j=0 αj (t)z
j and �q(z, t)= ∑q

k=0 βk(t)z
k . Suppose that �p(z, t)

and �q(z, t) satisfy the same conditions as those listed in Example 2. The Gegenbauer ARMA
process was considered by [20] and [21].

Under our settings, model (29) can be rewritten as (1 − 2ξB + B2)λXi(t)= ∑∞
j=0 cj (t)η̄i−j ,

where cj (t) is a C1 function such that
∑∞

j=0(|cj (t)| + |ċj (t)|) < ∞. Let z1 = cos θ + i sin θ ,

z2 = z̄1 such that z1 and z2 are the solutions of 1 − 2ξz+ z2 = 0. Hence, we obtain

Xi(t) =
∞∑
j=0

ψ(j)z
j

1B
j

∞∑
k=0

ψ(k)zk2Bk

∞∑
l=0

cl(t)η̄i−l

(30)

=
∞∑
j=0

j∑
k=0

ck(t)

j−k∑
s=0

ψ(s)zs1ψ(j − k − s)z
j−k−s

2 η̄i−j ,
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where ψ(j)= �(λ+j)
�(λ)�(j+1)

∼= jλ−1. (30) implies that

aj (t) :=
j∑

k=0

ck(t)

j−k∑
s=0

ψ(s)zs1ψ(j − k − s)z
j−k−s

2 :=
j∑

k=0

ck(t)νj−k. (31)

Then, we have that for k ≤ j ,

j−k∑
s=0

∣∣ψ(s)zs1ψ(j − k − s)z
j−k−s

2

∣∣ ≤ C

∣∣∣∣∣(j − k)λ−1 +
j−k−1∑
s=1

sλ−1(j − k − s)λ−1

∣∣∣∣∣, (32)

which leads to νj−k = O((j − k)2λ−1). By
∑∞

j=0(|cj (t)| + |ċj (t)|) < ∞ and the summation

by parts formula, we have that |aj (t)| = O(j2λ−1). Similar arguments yield that |ȧj (t)| =
O(j2λ−1). Then, condition (A3) is satisfied with γ = 1 − 2λ. In addition, if the bandwidth con-
ditions for Theorem 3 are satisfied, then our theory for the quantile curves applies to model (29).
Note that for fixed t , the quantities aj (t) do not necessarily have the same sign. To illustrate this

fact, simply note that if j − k is odd, then νj−k = ∑j−k

s=0 cos((j − k − 2s)θ)ψ(s)ψ(j − k − s);

if j − k is even, then νj−k = 1 + 2
∑(j−k)/2−1

s=0 cos((j − k − 2s)θ)ψ(s)ψ(j − k − s), and cos(·)
is a periodic function.

Example 5. Consider the locally stationary seasonal fractional ARIMA(p, d, s, q) model:
�p(B, t)Xi(t) = �q(B, t)(1 − Bs)−dεi , where the random variables εi are i.i.d. with mean 0
and variance 1, and �p(z, t) and �q(z, t) satisfy the same conditions as those listed in Ex-
ample 2. According to [1], the seasonal fractional ARIMA(0, d, s,0) model has an MA rep-
resentation Xi = ∑∞

j=0 ψjεi−j such that ψj = O(jd−1). Then, through similar arguments to
those in Example 4, the locally stationary seasonal fractional ARIMA(p, d, s, q) model has a
locally stationary MA representation Xi(t) = ∑∞

j=0 aj (t)εi−j such that |aj (t)| = O(jd−1) and

|ȧj (t)| =O(jd−1). The seasonal fractional ARIMA model is considered by [45] to model mon-
etary aggregates.

5. Discussion

A small number of recent papers discuss non-stationary time series with long memory; see, for
instance, [42,43], and [37]. The majority of the aforementioned papers consider mean or spectral
analysis of the series. We observed that the time-varying long-memory parameter d(t) is allowed
in some of the papers. Among them, [3] proposed a nonparametric method for estimating the
time-varying long-memory parameters. Roueff and von Sachs [48] advanced a semi-parametric
method for estimating time-varying long-memory parameters d(t) and investigated its asymp-
totic behaviour. Leipus and Surgailis [37] studied the limiting behaviour of the partial sums of a
linear process with time-varying d(t). Palma [42] proposed a method for estimating the sample
mean for locally stationary processes with time-varying d(t). In this paper, we only considered
the case in which the memory parameter is a constant over time. However, our results can read-
ily be extended to a broad class of non-stationary long-memory processes with time-varying
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memory parameters. Note that in the context of simultaneous inference of quantile curves of
non-stationary long-memory processes, the stochastic variability of the estimated quantiles on Tn
asymptotically dominates those on (0,1)/Tn, where Tn = {t : d(t)= d , and d = maxs∈[0,1] d(s)}.
In many cases in practice, Tn can be assumed to be a collection of finitely many non-overlapping
subintervals of (0,1). Hence, for many scenarios in which time-varying memory parameters are
allowed, the construction of SCB for the quantile curves is essentially the same as those consid-
ered in this paper since one only needs to focus on Tn, the time intervals where d(t) attains its
maximum. Note that the memory parameter does not change on Tn. The major difficulties in the
time-varying d(t) case are estimating maxs∈[0,1] d(s) and determining Tn, which we shall leave
as a rewarding future work.

6. Proofs

In the following proofs, we shall only show the case where α = 1/2 because the proofs of the
other quantiles follow by the same arguments. We shall also omit the subscript α if no confusion
arises. We also omit the subscript n from Qα,n(·), Q̇α,n(·) and Q̈α,n(·). In the proofs, the constant
C represents a generic finite constant that may vary from place to place. We also write Xi for
Xi,n(ti) if no confusion arises. Define Yi(t) = Xi − δni(t), where δni(t) = Q(t)+ (ti − t)Q̇(t).
Let Fj be the σ -field generated by (. . . , ηj−1, ηj ).

Lemma 2. Suppose that conditions (A0), (A1), (A2) and (A3) hold. Then, we have that
fn(t, x) ∈ C([0,1] × R), where fn(t, ·) (defined in Section 3) is the density of Xi,n(t). Fur-
thermore, ∂

∂t
fn(t, x) and ∂

∂x
fn(t, x) are bounded.

As in our comment on the assumptions, conditions (A0)–(A3) ensure the smoothness of the
density function of the time series Xi,n(t). Lemma 2 formally states this result and is important
for the proof of Theorem 3. The proof of Lemma 2 is relegated to Section 1 of the supplementary
material [56].

Lemma 3. Assume (A0)–(A3). Assume that for a sufficiently large number M with M ≥
supt∈[0,1](|μ(t)| + maxn |Qα,n(t)|), η > 0 exists such that inft∈(−∞,1],|x|≤M g(t, x) ≥ η. Then,
we have that a positive η0 exists such that infn fn(t,Qα,n(t))≥ η0 > 0 for t ∈ [0,1].

When the density function of the time series evaluated at the considered quantile is bounded
away from 0, the deviation between the estimated quantile and true quantile can be approx-
imated by a certain Gaussian process independent of the density function. We show this ef-
fect in Theorem 3. In addition, Theorem 4, Lemma 1, and Corollaries 1 and 2 all assume that
infn inft∈[0,1] fn(t,Qα,n(t)) ≥ η0 > 0. Meanwhile, Lemma 3 provides a sufficient condition for
infn inft∈[0,1] fn(t,Qα,n(t)) ≥ η0 > 0. The proof of Lemma 3 is relegated to Section 1 of the
supplementary material [56].

Lemma 4. Let ϒn(t) be a sequence of random variables and be once differentiable in t , t ∈
[0,1]. Let p be a positive constant such that p ≥ 1. Assume that for any t ∈ [0,1],‖ϒn(t)‖p =
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O(mn),‖ϒ̇n(t)‖p = O(ln), and mn, ln are sequences of real numbers such that mn ≤ Mln for

some large constant M . Then, we have supt∈[0,1] |ϒn(t)| = Op(mn(
mn

ln
)
− 1

p ). In particular, if

p = 2, then we have supt∈[0,1] |ϒn(t)| =Op(
√
mnln).

Lemma 4 is of general interest. This lemma provides a convenient way to evaluate the prob-
abilistic bound of the maximum of a series of random processes that are smooth in t , and it is
important for the proofs of Theorems 1, 3 and 4. The proof of Lemma 4 is relegated to Section 1
of the supplementary material [56].

Proof of Theorem 1. The theorem follows from equation (26) in the supplementary material
[56], Technical Lemma 5, Lemma 6, Lemma 7 in the supplementary material [56], Lemma 8 in
[66] and Taylor expansion. See Section 2 of the supplementary material [56] for more details. �

Proof of Theorem 2. Note that

n∑
k=1

(
Xk −μ(tk)

) =
n∑

k=1

∞∑
j=0

aj (tk)εk−j,n =
n∑

j=1

εj,n

n∑
k=j

ak−j (tk)+
∞∑
j=0

ε−j,n

n∑
k=1

ak+j (tk).

Define Zj = ∑j

i=0 ε−i,n with Zj = 0 for j ≤ −1 and Wj = ∑j

i=1 εi,n with Wj = 0for j ≤ 0.
Although {Wj, j ∈ Z} and {Zj , j ∈ Z} depend on n, we omit the subscript n to shorten the
notation. Then, similar arguments as in [55] lead to

n∑
k=1

(
Xk −μ(tk)

) =
n−1∑
j=1

(
n∑

k=j

ak−j (tk)−
n∑

k=j+1

ak−j−1(tk)

)
Wj +Wna0(1)

+
N−1∑
j=0

n∑
k=1

(
ak+j (tk)− ak+j+1(tk)

)
Zj +ZN

n∑
k=1

ak+N(tk)

+
∞∑

j=N+1

ε−j

n∑
k=1

ak+j (tk)

for some integer N . Redefine {εj,n, j ∈ Z} on a richer probability space. By taking x = n1/pε1/p ,
∀ε > 0 in Theorem B of [49], and condition (A3), we have that independent centred normal
random variables { j , j ∈ Z} with var( j )= σ 2(tj ) exist such that for any n,

ζn := max
1≤m≤n

∣∣∣∣∣
m∑
j=1

εj,n −
m∑
j=1

 j

∣∣∣∣∣ =Op

(
n1/p)

,

ζ ∗
n := max

1≤m≤n

∣∣∣∣∣
m∑
j=0

ε−j,n −
m∑
j=0

 −j

∣∣∣∣∣ =Op

(
n1/p)

.
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Consequently, we obtain

n∑
k=1

(Xk − Yk) =
n−1∑
j=1

(
n∑

k=j

ak−j (tk)−
n∑

k=j+1

ak−j−1(tk)

)(
Wj −W ∗

j

) + (
Wn −W ∗

n

)
a0(1)

+
N−1∑
j=0

n∑
k=1

(
ak+j (tk)− ak+j+1(tk)

)(
Zj −Z∗

j

)

+ (
ZN −Z∗

N

) n∑
k=1

ak+N(tk) (33)

+
∞∑

j=N+1

ε−j

n∑
k=1

ak+j (tk)−
∞∑

j=N+1

 −j

n∑
k=1

ak+j (tk)

:= A+B +C +D +E + F,

where Yk = ∑∞
j=0 aj (tk) k−j + μ(tk), W ∗

j = ∑j

i=1  i , Z
∗
j = ∑j

j=0  −j . Let N = �nα� + 1 for
some α > 1. Direct calculations and condition (A3) lead to

|A| ≤ Cζn

n−1∑
j=1

(
1

n

n−j−1∑
j=0

|j + 1|−γ + (n− j + 1)−γ

)
=Op

(
n1/p+1−γ

)
, (34)

|B| ≤ ζn =Op

(
n1/p)

, |C| =Op

(
nα(1+1/p−γ )

)
, (35)

|D| ≤ Mζ ∗
N

n∑
k=1

(k +N)−γ =Op

(
N1/p(n+N)1−γ

) =Op

(
nα(1+1/p−γ )

)
, (36)

|E| = Op

(
n1+α(1/2−γ )

)
, |F | =Op

(
n1+α(1/2−γ )

)
. (37)

Note that α = 1
1/2+1/p is the solution of 1 + α(1/2 − γ ) = α(1 + 1/p − γ ). Then, Theorem 2

follows from allowing υi =  i/σ (ti). �

Proof of Theorem 3. Theorem 1, Theorem 2, and Lemmas 8 and 9 in the supplementary material
[56] lead to

sup
t∈Tn

∣∣∣∣∣fn(t,Q(t)
)(

μKθ̂α,n(t)− 1

nbn

n∑
i=1

σ(ti)ViKbn(ti − t)zi,n(t)− b2
nQ̈(t)(μ2,0)T

2

)∣∣∣∣∣
(38)

=Op

(
p1/2ςn

)
.

Lemma 4 and direct calculations lead to

sup
t∈(0,1)

∣∣∣∣∣
n∑

i=1

(
σ(t)− σ(ti)

)
ViKbn(ti − t)

∣∣∣∣∣ =Op

(
p1/2(nbn)

3/2−γ b
1−1/p
n

)
. (39)
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Then, Theorem 3 follows from equation (38) and equation (39). �

Key Idea of Proof of Theorem 4. Let Sn(t)= ∑n
i=1 Kbn(ti − t)Vi . By changing the order of the

summation, it can be shown that Sn can be approximated by
∑n

j=1−N Tj (t)εj = 〈T (t), ε〉, where

N is a sufficiently large constant, T (t) = (T1−N(t), . . . , Tn(t))
T is a non-random coefficient

vector, and {εj , j ∈ Z} are i.i.d. standard normal random variables. Write ε = (ε1−N, . . . , εn).
Proposition 1 in [53] shows that

P

(
sup
t∈Tn

∣∣〈T (t)∣∣T (t)∣∣−1
, ε

〉∣∣> c
)

= τ, (40)

where τ = κ0
π

exp(− c2

2 )+ 2(1 −�(c))+ o(exp(− c2

2 )) as c → ∞, �(·) is the CDF of N(0,1),
and κ0 = ∫ | ∂

∂x
(T (x)|T (x)|−1)|dx. Then, the theorem follows from mathematically manipu-

lating T (t). The detailed proof of Theorem 4 is relegated to Section 4 of the supplementary
material [56]. �

Acknowlegement

We thank the Editor, an Associate Editor and two referees for their insightful and construc-
tive comments which greatly improve the quality and presentation of the paper. The research of
Z. Zhou is supported in part by NSERC of Canada.

Supplementary Material

Supplement to “Simultaneous quantile inference for non-stationary long-memory time se-
ries” (DOI: 10.3150/17-BEJ951SUPP; .pdf). In the supplementary material, we provide com-
plete proofs for lemmas, corollaries, propositions and theorems.

References

[1] Baillie, R.T. (1996). Long memory processes and fractional integration in econometrics. J. Economet-
rics 73 5–59. MR1410000

[2] Bekaert, G. and Harvey, C.R. (1995). Time-varying world market integration. J. Finance 50 403–444.
[3] Beran, J. (2009). On parameter estimation for locally stationary long-memory processes. J. Statist.

Plann. Inference 139 900–915. MR2479836
[4] Berman, S.M. (1972). Maximum and high level excursion of a Gaussian process with stationary in-

crements. Ann. Math. Stat. 43 1247–1266. MR0314103
[5] Bickel, P.J. and Rosenblatt, M. (1973). On some global measures of the deviations of density function

estimates. Ann. Statist. 1 1071–1095. MR0348906
[6] Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their local Bahadur repre-

sentation. Ann. Statist. 19 760–777. MR1105843
[7] Clarke, R.T. (2007). Hydrological prediction in a non-stationary world. Hydrol. Earth Syst. Sci. 11

408–414.

https://doi.org/10.3150/17-BEJ951SUPP
http://www.ams.org/mathscinet-getitem?mr=1410000
http://www.ams.org/mathscinet-getitem?mr=2479836
http://www.ams.org/mathscinet-getitem?mr=0314103
http://www.ams.org/mathscinet-getitem?mr=0348906
http://www.ams.org/mathscinet-getitem?mr=1105843


3010 W. Wu and Z. Zhou

[8] Coeurjolly, J.-F. (2008). Bahadur representation of sample quantiles for functional of Gaussian depen-
dent sequences under a minimal assumption. Statist. Probab. Lett. 78 2485–2489. MR2462683

[9] Cooley, T.F. and Prescott, E.C. (1976). Estimation in the presence of stochastic parameter variation.
Econometrica 44 167–184. MR0451604
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[11] Csörgő, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Probability
and Mathematical Statistics. Academic Press: New York. MR0666546

[12] Dahlhaus, R. and Polonik, W. (2009). Empirical spectral processes for locally stationary time series.
Bernoulli 15 1–39. MR2546797

[13] Dahlhaus, R. and Subba Rao, S. (2006). Statistical inference for time-varying ARCH processes. Ann.
Statist. 34 1075–1114. MR2278352

[14] Dehling, H. and Taqqu, M.S. (1989). The empirical process of some long-range dependent sequences
with an application to U -statistics. Ann. Statist. 17 1767–1783. MR1026312

[15] Eichner, J.F., Koscielny-Bunde, E., Bunde, A., Havlin, S. and Schellnhuber, H.-J. (2003). Power-law
persistence and trends in the atmosphere: A detailed study of long temperature records. Physical
Review. E, Statistical, Nonlinear, and Soft Matter Physics 68 046133.

[16] Einmahl, U. (1987). A useful estimate in the multidimensional invariance principle. Probab. Theory
Related Fields 76 81–101. MR0899446

[17] Einmahl, U. (1987). Strong invariance principles for partial sums of independent random vectors. Ann.
Probab. 15 1419–1440. MR0905340

[18] Einmahl, U. (1989). Extensions of results of Komlós, Major, and Tusnády to the multivariate case.
J. Multivariate Anal. 28 20–68. MR0996984

[19] Fryzlewicz, P., Sapatinas, T. and Subba Rao, S. (2008). Normalized least-squares estimation in time-
varying ARCH models. Ann. Statist. 36 742–786. MR2396814

[20] Gray, H.L., Zhang, N.-F. and Woodward, W.A. (1989). On generalized fractional processes. J. Time
Ser. Anal. 10 233–257. MR1028940

[21] Gray, H.L., Zhang, N.-F. and Woodward, W.A. (1994). A correction: “On generalized fractional pro-
cesses” [J. Time Ser. Anal. 10 (1989), no. 3, 233–257; MR1028940 (90m:62208)]. J. Time Series
Anal. 15 561–562. MR1292167

[22] Härdle, W. (1989). Asymptotic maximal deviation of M-smoothers. J. Multivariate Anal. 29 163–179.
MR1004333

[23] Harvey, C.R. (1989). Time-varying conditional covariances in tests of asset pricing models. J. Financ.
Econ. 24 289–317.

[24] Haslett, J. and Raftery, A. (1989). Space-time modelling with long-memory dependence: Assessing
Ireland’s wind power resource. Appl. Stat. 38 1–50.

[25] He, X. and Shao, Q.-M. (1996). A general Bahadur representation of M-estimators and its application
to linear regression with nonstochastic designs. Ann. Statist. 24 2608–2630. MR1425971

[26] Henry, M. and Zaffaroni, P. (2003). The long-range dependence paradigm for macroeconomics and
finance. In Theory and Applications of Long-Range Dependence (P. Doukhan, G. Oppenheim and
M.S. TurTaqqukman, eds.) 417–438. Boston, MA: Birkhäuser. MR1957502

[27] Ho, H.-C. and Hsing, T. (1997). Limit theorems for functionals of moving averages. Ann. Probab. 25
1636–1669. MR1487431

[28] Holton, G.A. (2003). Value-at-Risk: Theory and Practice. San Diego: Academic Press.
[29] Hurst, H.E. (1951). Long term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116 770–799.
[30] Jorion, P. (2006). Value at risk. In The New Benchmark for Managing Financial Risk, Vol. 9, 3rd ed.

New York: McGraw Hill Professional.

http://www.ams.org/mathscinet-getitem?mr=2462683
http://www.ams.org/mathscinet-getitem?mr=0451604
http://www.ams.org/mathscinet-getitem?mr=2438695
http://www.ams.org/mathscinet-getitem?mr=0666546
http://www.ams.org/mathscinet-getitem?mr=2546797
http://www.ams.org/mathscinet-getitem?mr=2278352
http://www.ams.org/mathscinet-getitem?mr=1026312
http://www.ams.org/mathscinet-getitem?mr=0899446
http://www.ams.org/mathscinet-getitem?mr=0905340
http://www.ams.org/mathscinet-getitem?mr=0996984
http://www.ams.org/mathscinet-getitem?mr=2396814
http://www.ams.org/mathscinet-getitem?mr=1028940
http://www.ams.org/mathscinet-getitem?mr=1292167
http://www.ams.org/mathscinet-getitem?mr=1004333
http://www.ams.org/mathscinet-getitem?mr=1425971
http://www.ams.org/mathscinet-getitem?mr=1957502
http://www.ams.org/mathscinet-getitem?mr=1487431


Non-stationary long-memory 3011

[31] Kärner, O. (2002). On nonstationarity and antipersistency in global temperature series. Journal of
Geophysical Research D: Atmospheres 107.

[32] Koenker, R. (2005). Quantile Regression. Econometric Society Monographs 38. Cambridge: Cam-
bridge Univ. Press. MR2268657

[33] Kokoszka, P.S. and Taqqu, M.S. (1994). Infinite variance stable ARMA processes. J. Time Series Anal.
15 203–220. MR1263890

[34] Kokoszka, P.S. and Taqqu, M.S. (1995). Fractional ARIMA with stable innovations. Stochastic Pro-
cess. Appl. 60 19–47. MR1362317

[35] Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent RV’s
and the sample DF. I. Z. Wahrsch. Verw. Gebiete 32 111–131. MR0375412

[36] Komlós, J., Major, P. and Tusnády, G. (1976). An approximation of partial sums of independent RV’s,
and the sample DF. II. Z. Wahrsch. Verw. Gebiete 34 33–58. MR0402883

[37] Leipus, R. and Surgailis, D. (2013). Asymptotics of partial sums of linear processes with changing
memory parameter. Lith. Math. J. 53 196–219. MR3265746

[38] Mann, M.E. (2010). On long range dependence in global surface temperature series. Clim. Change
107 267–276.

[39] Mercurio, D. and Spokoiny, V. (2004). Statistical inference for time-inhomogeneous volatility models.
Ann. Statist. 32 577–602. MR2060170

[40] Mills, T.C. (2007). Time series modelling of two millennia of northern hemisphere temperatures: Long
memory or shifting trends? J. Roy. Statist. Soc. Ser. A 170 83–94. MR2339099

[41] Orbe, S., Ferreira, E. and Rodriguez-Poo, J. (2005). Nonparametric estimation of time varying param-
eters under shape restrictions. J. Econometrics 126 53–77. MR2118278

[42] Palma, W. (2010). On the sample mean of locally stationary long-memory processes. J. Statist. Plann.
Inference 140 3764–3774. MR2674164

[43] Palma, W. and Olea, R. (2010). An efficient estimator for locally stationary Gaussian long-memory
processes. Ann. Statist. 38 2958–2997. MR2722461

[44] Pollard, D. (1990). Empirical Processes: Theory and Applications. NSF-CBMS Regional Conference
Series in Probability and Statistics 2. Hayward, CA: IMS. MR1089429

[45] Porter-Hudak, S. (1990). An application of the seasonal fractionally differenced model to the monetary
aggregates. J. Amer. Statist. Assoc. 85 338–344.

[46] Ravn, M.O., Schmitt-Grohé, S. and Uribe, M. (2008). Macroeconomics of subsistence points. Macroe-
con. Dyn. 12 136–147.

[47] Rea, W., Reale, M., Brown, J. and Oxley, L. (2011). Long memory or shifting means in geophysical
time series? Math. Comput. Simulation 81 1441–1453. MR2781674

[48] Roueff, F. and von Sachs, R. (2011). Locally stationary long memory estimation. Stochastic Process.
Appl. 121 813–844. MR2770908

[49] Shao, Q.M. (1995). Strong approximation theorems for independent random variables and their appli-
cations. J. Multivariate Anal. 52 107–130. MR1325373

[50] Smith, V. (1993). Long Range Dependence and Global Warming. In Statistics for the Environment
(V. Barnett and F. Turkman, eds.) Wiley: New York.

[51] Stock, J.H. and Watson, M.W. (1996). Evidence on structural instability in macroeconomic time series
relations. J. Bus. Econom. Statist. 14 11–30.

[52] Sun, J. (1993). Tail probabilities of the maxima of Gaussian random fields. Ann. Probab. 21 34–71.
MR1207215

[53] Sun, J. and Loader, C.R. (1994). Simultaneous confidence bands for linear regression and smoothing.
Ann. Statist. 22 1328–1345. MR1311978

[54] Tsay, R.S. (2010). Analysis of Financial Time Series, 3rd ed. Wiley Series in Probability and Statistics.
Hoboken, NJ: Wiley. MR2778591

http://www.ams.org/mathscinet-getitem?mr=2268657
http://www.ams.org/mathscinet-getitem?mr=1263890
http://www.ams.org/mathscinet-getitem?mr=1362317
http://www.ams.org/mathscinet-getitem?mr=0375412
http://www.ams.org/mathscinet-getitem?mr=0402883
http://www.ams.org/mathscinet-getitem?mr=3265746
http://www.ams.org/mathscinet-getitem?mr=2060170
http://www.ams.org/mathscinet-getitem?mr=2339099
http://www.ams.org/mathscinet-getitem?mr=2118278
http://www.ams.org/mathscinet-getitem?mr=2674164
http://www.ams.org/mathscinet-getitem?mr=2722461
http://www.ams.org/mathscinet-getitem?mr=1089429
http://www.ams.org/mathscinet-getitem?mr=2781674
http://www.ams.org/mathscinet-getitem?mr=2770908
http://www.ams.org/mathscinet-getitem?mr=1325373
http://www.ams.org/mathscinet-getitem?mr=1207215
http://www.ams.org/mathscinet-getitem?mr=1311978
http://www.ams.org/mathscinet-getitem?mr=2778591


3012 W. Wu and Z. Zhou

[55] Wang, Q., Lin, Y.-X. and Gulati, C.M. (2003). Strong approximation for long memory processes with
applications. J. Theoret. Probab. 16 377–389. MR1982033

[56] Wu, W. and Zhou, Z. (2017). Supplement to “Simultaneous Quantile Inference For Non-Stationary
Long-Memory Time Series.” DOI:10.3150/17-BEJ951SUPP.

[57] Wu, W.B. (2007). Strong invariance principles for dependent random variables. Ann. Probab. 35
2294–2320. MR2353389

[58] Wu, W.B. and Zhou, Z. (2011). Gaussian approximations for non-stationary multiple time series.
Statist. Sinica 21 1397–1413. MR2827528

[59] Xia, Y. (1998). Bias-corrected confidence bands in nonparametric regression. J. R. Stat. Soc. Ser. B.
Stat. Methodol. 60 797–811. MR1649488

[60] Zaitsev, A.Yu. (2000). Multidimensional version of a result of Sakhanenko in the invariance principle
for vectors with finite exponential moments. I. Theory Probab. Appl. 45 624–641.

[61] Zaitsev, A.Yu. (2001). Multidimensional version of a result of Sakhanenko in the invariance principle
for vectors with finite exponential moments. II. Theory Probab. Appl. 46 490–514.

[62] Zaitsev, A.Yu. (2001). Multidimensional version of a result of Sakhanenko in the invariance principle
for vectors with finite exponential moments. III. Theory Probab. Appl. 46 676–698.

[63] Zhang, T. and Wu, W.B. (2012). Inference of time-varying regression models. Ann. Statist. 40 1376–
1402. MR3015029

[64] Zhou, Z. (2010). Nonparametric inference of quantile curves for nonstationary time series. Ann.
Statist. 38 2187–2217. MR2676887

[65] Zhou, Z. (2013). Heteroscedasticity and autocorrelation robust structural change detection. J. Amer.
Statist. Assoc. 108 726–740. MR3174655

[66] Zhou, Z. and Wu, W.B. (2009). Local linear quantile estimation for nonstationary time series. Ann.
Statist. 37 2696–2729. MR2541444

[67] Zhou, Z. and Wu, W.B. (2011). On linear models with long memory and heavy-tailed errors. J. Mul-
tivariate Anal. 102 349–362. MR2739120

Received April 2016 and revised April 2017

http://www.ams.org/mathscinet-getitem?mr=1982033
https://doi.org/10.3150/17-BEJ951SUPP
http://www.ams.org/mathscinet-getitem?mr=2353389
http://www.ams.org/mathscinet-getitem?mr=2827528
http://www.ams.org/mathscinet-getitem?mr=1649488
http://www.ams.org/mathscinet-getitem?mr=3015029
http://www.ams.org/mathscinet-getitem?mr=2676887
http://www.ams.org/mathscinet-getitem?mr=3174655
http://www.ams.org/mathscinet-getitem?mr=2541444
http://www.ams.org/mathscinet-getitem?mr=2739120

	Introduction
	Preliminaries
	Notation
	Assumptions

	Main results
	Uniform bahadur representation
	Gaussian approximation
	Maximum deviation

	Examples
	Discussion
	Proofs
	Acknowlegement
	Supplementary Material
	References

