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Let (Xj )j≥1 be a multivariate long-range dependent Gaussian process. We study the asymptotic behavior
of the corresponding sequential empirical process indexed by a class of functions. If some entropy condition
is satisfied we have weak convergence to a linear combination of Hermite processes.
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1. Introduction

For a real-valued stationary process (Yj )j≥1 the sequential empirical process (RN(x, t)) is de-
fined by

RN(x, t) :=
�Nt�∑
j=1

(
1{Yj ≤x} − P(Yj ≤ x)

)
, x ∈ R, t ∈ [0,1]. (1)

This process plays an important role in nonparametric statistics, for example, in change-point
analysis. If (Yj )j≥1 is a subordinated Gaussian process which exhibits long-range dependence,
weak convergence was established by Dehling and Taqqu [9]. The limiting process is given by
the product of a deterministic function and an Hermite process (Zm(t))0≤t≤1. The latter can be
represented as a stochastic integral in the spectral domain, more precisely

Zm(t) = K(m,D)

∫ ′′

Rm

eit (x1+···+xm) − 1

i(x1 + · · · + xm)

m∏
j=1

|xj |−(1−D)/2B̃(dx1) · · · B̃(dxm), (2)

where B̃ is a suitable random spectral measure and K(m,D) is normalizing constant. The double
prime indicates that integration excludes not only {x ∈ R

m : x(i) = x(j),1 ≤ i < j ≤ m} but also
{x ∈ R

m : x(i) = −x(j),1 ≤ i < j ≤ m}. For details and further representations, see [22] and [18].
A first step in generalizing this result to multivariate observations was done by Marinucci [16].
He studied the asymptotics of the empirical process (RN(x,1)) based on a two-dimensional long-
range dependent process, where ≤ in (1) is understood componentwise. However, this is nothing
but checking if the observation lies inside a rectangle or not. Since there is no reason to restrict
ourselves to such specific sets, it could be interesting to study indicators of balls or ellipsoids as
well. This purpose yields the sequential empirical process indexed by a class of functions F .
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Definition 1. Let (Xj )j≥1 be stationary R
p-valued process and let F ⊂ L2(PX1) be a class of

square-integrable functions. Furthermore, let F be uniformly bounded, i.e. supf ∈F |f (x)| < ∞
for all x ∈ R

p . We define the function-indexed sequential empirical process (RN(f, t))F×[0,1]
by

RN(f, t) =
�Nt�∑
j=1

f (Xj ) − E
(
f (X1)

)
.

Most asymptotic results one can find in the literature are formulated for the one-parameter
process (RN(f,1)). Under independence Dudley [11] studied the empirical process indexed by
a class of measurable sets, that is, he considered F = {1A(·) : A ∈ A}, where A is a suitable
subset of the Borel σ -algebra. He stated different assumptions under which weak convergence to
a Gaussian process holds, including a so-called metric entropy with inclusion. Generalizing this
idea, Ossiander [17] introduced L2-brackets to approximate the elements of F . These brackets
allow to study larger classes of functions as long as a metric entropy integrability condition
is satisfied, see [17], Theorem 3.1. A bracketing condition under strong mixing was stated by
Andrews and Pollard [1]. Doukhan, Massart and Rio [10] studied the function-indexed empirical
process for β-mixing sequences. The case of Gaussian long-range dependent random vectors was
already handled by Arcones [2], Theorem 9. The assumption on the bracketing number therein is
very restrictive and will be considerably improved in this paper. Note, the only known result for
the two-parameter process (RN(f, t)) was given by Dehling, Durieu and Tusche [7] for multiple
mixing data.

The simplest way to define multivariate long-range dependence for an R
p-valued process

(Xj )j≥1, Xj = (X
(1)
j , . . . ,X

(p)
j ), is the following one. Assume that the component-processes

(X
(1)
j ), . . . , (X

(p)
j ) are independent and that each of them individually satisfies the well-known

time-domain long-range dependence condition that is

r(i)(k) = Cov
(
X

(i)
1 ,X

(i)
1+k

) = k−Di Li(k), 1 ≤ i ≤ p.

For p = 2, this concept was used by Marinucci [16] and, if L1 = L2 and D1 = D2, by Taufer [23].
However, using this approach we can not model dependency between different components.
Therefore, we have to replace the assumption of independent components by a suitable cross-
covariance structure. For 1 ≤ i, j ≤ p we call the function

r(i,j)(k) = Cov
(
X

(i)
1 ,X

(j)

1+k

)
a cross-covariance function. Ho and Sun [13] considered a stationary bivariate Gaussian process
such that for 1 ≤ i, j ≤ 2, r(i,j)(k) is asymptotic equal to k−βi,j , βi,j > 0. The definition of
multivariate long-range dependence we use here can also be labeled as a single-parameter long-
range dependence. It was originally stated by Arcones [2], page 2259, see also Beran et al. [4],
page 300, and is included in the very general concept of multivariate long-range dependence
given by Kechagias and Pipiras [14], Definition 2.1.
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Definition 2. A stationary R
p-valued process (Xj )j≥1 with finite second moments is called

long-range dependent if for each 1 ≤ i, j ≤ p

r(i,j)(k) = cij k
−DL(k) for k ≥ 1, (3)

where L is slowly varying at infinity, 0 < D < 1, and cij ∈R are not all equal to zero.

In the definition given in [14] the long-range dependence parameter D also depends on i and
j so that the cross-covariance is given by

r(i,j)(k) = cij k
−(Di+Dj )/2L(k), 0 < Di,Dj < 1. (4)

Although this assumption is more realistic, multiple different parameters yield a degenerate lim-
iting behavior, see Leonenko, Sakhno and Taufer [15], page 308. We briefly discuss this phe-
nomenon subsequent to Theorem 3.

2. Assumptions and techniques

From the probabilistic point of view, we will interpret (RN(f, t)) as a random element in
�∞(F × [0,1]), that is the space of real-valued bounded functions on F × [0,1]. The uniformly
boundedness of F stated in Definition 1 ensures well-definedness. We equip �∞(F ×[0,1]) with
the supremum norm and the corresponding Borel σ -algebra. In general, empirical processes are
not measurable with respect to the Borel σ -algebra generated by the uniform metric, see [5],
page 157. Dehling and Taqqu [9] handled this problem by considering the open ball σ -algebra
instead of the Borel one. We will use the idea of outer expectation introduced by Hoffmann-
Jørgensen. For the sake of completeness we recall the definition. A detailed introduction to this
concept can be found in [24], Chapter 1.

Definition 3. Let (�,A,P ) be an arbitrary probability space and let R̂ be the extended real line
equipped with the Borel σ -algebra.

(i) For any B ⊂ �, we call

P ∗(B) := inf
{
P(A) : A ⊃ B,A ∈A

}
the outer probability.

(ii) For any map X : � → R̂ we call

E∗X := inf{EY : Y ≥ X,Y : � → R̂ measurable and EY exists}
the outer integral of X.

(iii) A sequence of maps (Xn)n≥1, taking values in a metric space S, converges weakly to a
Borel-measurable random variable X : � → S if

E∗f (Xn) −→ Ef (X)

for all continuous, bounded functions f : S → R.
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If measurability holds, part (iii) of the above definition conforms with classical weak conver-
gence of random variables. Moreover, one can show that the Portmanteau theorem, continuous
mapping theorem, Prohorov’s theorem, and other well-known results are still applicable in the
context of outer weak convergence, see [24], Section 1.3. Convergence in outer probability and
outer almost sure convergence can be defined analogous.

From now on, assume that the process (Xj )j≥1 is standard normal and long-range dependent
in the sense of Definition 2, that is,

EX
(i)
1 = 0, 1 ≤ i ≤ p,

EX
(i)
1 X

(j)

1 = δij ,

r(i,j)(k) = cijL(k)k−D for k ≥ 1.

(5)

The existence of such a process is ensured because there exist a linear representation for multi-
variate long-range dependent processes, see [14], Corollary 4.1. Condition (5) is not restrictive,
since for an arbitrary covariance matrix � we have GX1 ∼ N (0,�), where G is the Cholesky
decomposition of �. In this case, one can study (RN(f ◦ G, t)) instead of (RN(f, t)).

By Np we denote a p-dimensional standard normal distribution and by Hk the kth Hermite
polynomial given by

Hk(x) := (−1)kex2/2 dk

dxk
e−x2/2.

Using these univariate polynomials, we define multivariate Hermite polynomials by

Hl1,...,lp (x) := Hl1

(
x(1)

)
Hl2

(
x(2)

) · · ·Hlp

(
x(p)

)
, x ∈ R

p.

The collection of all multivariate Hermite polynomials of order p forms an orthogonal basis of
L2(Np), see [4], page 122. Thus, for any f ∈ F ⊂ L2(Np) we have a L2-series expansion of
f (Xj ) − E(f (X1)) namely

f (Xj ) − E
(
f (X1)

) =
∞∑

k=m(f )

∑
l1+···+lp=k

Jl1,...,lp (f )

l1! · · · lp! Hl1,...,lp (Xj ).

The index m(f ) ≥ 1 denotes the order of the first non-zero Hermite coefficient. We call the
minimum m := min{m(f ) : f ∈ F} the Hermite rank of F . Note, the Hermite rank m is only
determined by f and not by a specific choice of cij .

Next we must account for the fact that the elements of F can be well approximated based on
a relatively small number of functions. The definition of L2-brackets we give next based on that
of Ossiander [17].

Definition 4.

(i) For ε > 0 and l, u ∈F with l ≤ u we call {f ∈ F : l ≤ f ≤ u} a ε-bracket if ‖u − l‖2 ≤ ε,
where ‖ · ‖2 denotes the L2-norm with respect to Np .



2158 J. Buchsteiner

(ii) The smallest number N(ε) of ε-brackets needed to cover F is called bracketing number.

Obviously, the bracketing number increases if ε tends to zero. Therefore, we assume that the
following entropy condition holds∫ 1

0
εr−1N(ε)2 dε < ∞ for some integer r ≥ 1. (6)

Roughly speaking, condition (6) is satisfied as long as N(ε) grows polynomial in ε−1. Although
under independence one can handle exponential growth rates, see [17], Theorem 3.1, the entropy
condition we require here is not untypical for the dependent case. Similar conditions were stated
in [1], Theorem 2.2, and [7], Theorem 2.5. Besides, (6) is a much weaker assumptions than the
one used in [2], (5.1), namely ∫ 1

0
N(ε)dε < ∞.

Additionally, we need uniformly bounded 2qth moments for all f ∈ F , where q depends on
the Hermite rank m, the long-range dependence parameter D, and r from (6). More precisely,

sup
f ∈F

E
(
f (X1)

)2q
< ∞, where 2q >

mDr

1 − mD
∨ mr. (7)

This choice of range for 2q is determined by technical constraints arising in the proof of
Lemma 3. The lower bound is mr , if and only if D < 1/(m + 1).

3. Results

Theorem 1. Let (Xj )j≥1 be a p-dimensional standard Gaussian long-range dependent process
in the sense of Definition 2 and let F be a uniformly bounded class of functions satisfying (6)
and (7). Moreover, let 0 < D < 1/m, where m is the Hermite rank of F , and set

d2
N = Var

(
N∑

j=1

Hm

(
X

(1)
j

))
.

Then {
d−1
N RN(f, t) : (f, t) ∈F × [0,1]}

converges weakly in �∞(F × [0,1]) in the sense of Definition 3, to{
p∑

j1,...,jm=1

J̃j1,...,jm(f )K̃j1,...,jm(m,D)

∫ ′′

Rm

eit (x1+···+xm) − 1

i(x1 + · · · + xm)

m∏
j=1

|xj |−(1−D)/2

× B̃(j1)(dx1) · · · B̃(jm)(dxm) : (f, t) ∈F × [0,1]
}

.

(8)
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The measures B̃(1), . . . , B̃(p) are suitable Hermitian Gaussian random measures, K̃j1,...,jm(m,

D) is a normalizing constant, 1 ≤ j1, . . . , jm ≤ p, and

J̃j1,...,jm(f ) = (m!)−1E

(
f (X1)

p∏
i=1

Hi(j1,...,jm)

(
X

(i)
1

))
,

where i(j1, . . . , jm) is the number of indices j1, . . . , jm that are equal to i.

The limiting process (8) can be interpreted as a generalization of the univariate limit studied in
[9], Theorem 1.1, especially the integrand is the same. But due to the fact that each component
of (Xj )j≥1 contributes to the limit, we are faced with p different integrators. More precisely,
the above sum includes all possibilities to generate a m-fold stochastic integral using p Gaussian
random measures. Such integrals were initially studied by Fox and Taqqu [12], Section 2, in the
case of real-valued Gaussian random measures. The process (8) appeared first time in a paper by
Arcones [2], Theorem 6. He studied Theorem 1 in the non-uniform case, particularly, Arcones
proved a functional non-central limit theorem for (f (Xj ))j≥1, f ∈ L2(Np). We have corrected
the domain of integration, i.e. we replaced [−π,π]m by R

m, see also [4], Theorem 4.22.
Dehling, Durieu and Tusche [8], Section 3, calculated the bracketing number for a few dif-

ferent classes of functions including indicators of hyperrectangles. In all cases, the bracketing
number grows polynomially so that condition (6) is fulfilled. Thus, Theorem 1 implies a multi-
variate version of Theorem 1.1 by Dehling and Taqqu [9].

Corollary 2. Let (Xj )j≥1 be a p-dimensional standard Gaussian long-range dependent process
in the sense of Definition 2 and let G : Rp → R

k be a measurable function. Moreover, let 0 <

D < 1/m, where m is the Hermite rank of F = {1{G(·)≤x} : x ∈R
k}. Then

(
d−1
N

�Nt�∑
j=1

(
1{G(Xj )≤x} − P

(
G(X1) ≤ x

)))

converges weakly in �∞(F × [0,1]) in the sense of Definition 3, to (8).

We prove Theorem 1 by establishing a weak uniform reduction principle. The formulation is
similiar to Theorem 3.1 by Dehling and Taqqu [9]. The notation P ∗ denotes outer probability.

Theorem 3 (Reduction principle). Under the assumptions of Theorem 1, there exist constants
C,κ > 0 such that for any 0 < ε ≤ 1

P ∗
(

max
n≤N

sup
f ∈F

d−1
N

∣∣∣∣∣
n∑

j=1

(
f (Xj ) − E

(
f (X1)

) −
∑

l1+···+lp=m

Jl1,...,lp (f )

l1! · · · lp! Hl1,...,lp (Xj )

)∣∣∣∣∣ > ε

)

≤ CN−κ
(
1 + ε−(2q+r+1)

)
.
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It is well known that dN behaves asymptotically like N1−mD/2Lm/2, see [20], Theo-
rem 3.1. If the cross-covariance is given by (4) instead of (3) one has to normalize with
Var(

∑N
j=1 Hm(X

(k)
j )), where Dk = min{Di : 1 ≤ i ≤ p}. Consequently, only

∑�Nt�
j=1 Hm(X

(k)
j )

contributes to the limit because all other terms tend to zero. This behavior was already studied
by Leonenko, Sakhno and Taufer [15], Theorem 1b, and reasoned why we focus on a single
long-range dependence parameter only. Note, all lemmas in the following section remain valid if
we would study (4) instead of (3), only the proof of Lemma 3 has to be slightly modified.

4. Proofs

The proof of Theorem 3 is organized as follows. First we prove a moment inequality for partial
sums of subordinated Gaussian random vectors (Lemma 2). We can use this result to control
the increments of the reduced function-indexed process (Lemma 3). This is essential for proving
Lemma 4.

The following lemma by Bardet and Surgailis [3] is the multivariate version of Lemma 4.5
by Taqqu [21]. The term ε-standard used therein denotes a collection of standardized Gaussian
random vectors, whose cross-covariance function is bounded by ε. Furthermore,

∑′ is the sum
over all different indices 1 ≤ ti ≤ n, 1 ≤ i ≤ p′, such that ti �= tj for i �= j .

Lemma 1 (Bardet and Surgailis [3], Lemma 1). Let (X1, . . . ,Xn) be a ε-standard Gaussian
vector, Xt = (X

(1)
t , . . . ,X

(p)
t ) ∈ R

p , p ≥ 1, and consider a set of functions fj,t,n ∈ L2(Np),
1 ≤ j ≤ p′, p′ ≥ 2, 1 ≤ t ≤ n. For given integers m ≥ 1, 0 ≤ α ≤ p′, n ≥ 1, define

Qn := max
1≤t≤n

∑
1≤s≤n,s �=t

max
1≤u,v≤p

∣∣EX
(u)
t X(v)

s

∣∣m.

Assume that the functions f1,t,n, . . . , fα,t,n have a Hermite rank at least equal to m for any n ≥ 1,
1 ≤ t ≤ n, and that

ε <
1

pp′ − 1
.

Then

n∑′
t1,...,tp′=1

∣∣E(
f1,t1,n(Xt1) · · ·fp′,tp′ ,n(Xtp′ )

)∣∣ ≤ C
(
ε,p′,m,α,p

)
Knp′−α/2Q

α/2
n ,

where the constant C(ε,p′,m,α,p) depends on ε,p′,m,α,p only, and

K =
p′∏

j=1

max
1≤t≤n

‖fj,t,n‖2.

For our purposes, it is enough to consider functions fj,t,n which do not depend on t and n,
that is, fj,t,n = gj . In this case the connection to the result of Taqqu [21], Lemma 4.5, becomes
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clearer. An advantage of the above bound is that the constant on the right-hand side is separated
into C(ε,p′,m,α,p) and K . This detail will help us to prove the following lemma.

Lemma 2. Let (Xj )j≥1 be a p-dimensional standard Gaussian process which exhibits long-
range dependence in the sense of Definition 2 and let r(i,j)(k) ≤ 1/(4pq − 1) for all k ∈ N,
1 ≤ i, j ≤ p and some q ∈ N. Furthermore, let g : Rp → R be a measurable function such that
the Hermite rank of g is at least m and E(g(X1))

2q < ∞. If 0 < D < 1/m then for all n ∈ N we
have

E

(
n∑

j=1

g(Xj )

)2q

≤ C
(
1 ∨ (

Eg(X1)
2q

)q)(
n

n∑
k=0

max
1≤i,j≤p

(
r(i,j)(k)

)m

)q

.

Proof. We follow the lines of the proof given in [21], Proposition 4.2.. Using the multinomial
theorem, we get

E

(
n∑

j=1

g(Xj )

)2q

=
∑

k1+···+kn=2q
k1,...,kn≥1

(2q)!
k1! · · ·kn!Egk1(X1) · · ·gkn(Xn)

=
2q∑

p′=1

∑
1≤u1<···<up′≤n

∑
ku1+···+ku

p′ =2q

ku1 ,...,ku
p′ ≥1

(2q)!
ku1 ! · · ·kup′ !Egku1 (Xu1) · · ·gku

p′ (Xup′ )

≤ C

2q∑
p′=1

max
v1+···+vp′=2q

v1,...,vp′≥1

n∑′
u1,...,up′=1

∣∣Egv1(Xu1) · · ·gvp′ (Xup′ )
∣∣.

(9)

Let us distinguish two cases, p′ ≤ q and p′ > q , starting with the first one. For v1, . . . , vp′ ≥ 1,
satisfying v1 + · · · + vp′ = 2q we have by Hölder’s inequality

∣∣Egv1(Xu1) · · ·gvp′ (Xup′ )
∣∣ ≤

p′∏
i=1

vi∏
j=1

(
Eg(Xui

)2q
)1/2q

=
p′∏

i=1

(
Eg(X1)

2q
)vi/2q

= Eg(X1)
2q .
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Thus,

max
v1+···+vp′=2q

v1,...,vp′≥1

n∑′
u1,...,up′=1

∣∣Egv1(Xu1) · · ·gvp′ (Xup′ )
∣∣

≤ np′
Eg(X1)

2q

≤ Eg(X1)
2q

(
n

n∑
k=0

max
1≤i,j≤p

(
r(i,j)(k)

)m

)q

,

since p′ < q . To handle the second case, we have to ensure that Lemma 1 can be applied. If
p′ > q and v1 + · · · + vp′ = 2q , then it is impossible that all indices v1, . . . , vp′ are greater than
one. We separate those which are equal to one as follows

max
v1+···+vp′=2q

v1,...,vp′≥1

n∑′
u1,...,up′=1

∣∣Egv1(Xu1) · · ·gvp′ (Xup′ )
∣∣

= max
αmin≤α≤αmax

max
vα+1+···+vp′=2q

vα+1,...,vp′≥2

n∑′
u1,...,up′=1

∣∣Eg(Xu1) · · ·g(Xuα )g
vα+1(Xuα+1) · · ·gvp′ (Xup′ )

∣∣.

The numbers αmin and αmax describe the minimum and maximum number of indices that could
be equal to one. More precisely, αmin = 2p′ − 2q and

αmax =
{

2q if p′ = 2q,

p′ − 1 otherwise.

For fixed α and vα+1, . . . , vp′ we set gi(·) = g(·), if 1 ≤ i ≤ α, and gi(·) = gvi (·), if α + 1 ≤ i ≤
p′. Since max(vα+1, . . . , vp′) ≤ q , we have gi ∈ L2(Np) for all 1 ≤ i ≤ p′. The Hermite rank of
g1, . . . , gα is at least m and r(i,j)(k) ≤ 1/(4pq − 1) < 1/(pp′ − 1) for all k ∈ N. Therefore, the
assumptions of Lemma 1 are satisfied with ε = 1/(4pq − 1) and so

n∑′
u1,...,up′=1

∣∣Eg1(Xu1) · · ·gp′(Xup′ )
∣∣

≤ C
(
q,p′,m,α,p

)( p′∏
i=1

‖gi‖2

)
np′−α/2

(
n∑

k=0

max
1≤i,j≤p

(
r(i,j)(k)

)m

)α/2

≤ C
(
q,p′,m,α,p

)(
1 ∨ (

Eg(X1)
2q

)q)(
n

n∑
k=0

max
1≤i,j≤p

(
r(i,j)(k)

)m

)q

,
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since p′ − α/2 ≤ p′ − αmin/2 = q and α/2 ≤ αmax/2 ≤ q . With respect to (9), we get

E

(
n∑

j=1

g(Xj )

)2q

≤ C

2q∑
p′=1

max
v1+···+vp′=2q

v1,...,vp′≥1

n∑′
u1,...,up′=1

∣∣Egv1(Xu1) · · ·gvp′ (Xup′ )
∣∣

≤ C

(
n

n∑
k=0

max
1≤i,j≤p

(
r(i,j)(k)

)m

)q(
qEg(X1)

2q

+
2q∑

p′=q+1

max
αmin≤α≤αmax

max
vα+1+···+vp′=2q

vα+1,...,vp′≥2
v1=···=vα=1

C
(
q,p′,m,α,p

)(
1 ∨ (

Eg(X1)
2q

)q))

≤ C
(
1 ∨ (

Eg(X1)
2q

)q)(
n

n∑
k=0

max
1≤i,j≤p

(
r(i,j)(k)

)m

)q

,

where C only depends on p, q and m. �

To simplify the notation, we set

SN(n,f ) = d−1
N

n∑
j=1

(
f (Xj ) − Ef (X1) −

∑
l1+···+lp=m

Jl1,...,lp (f )

l1! · · · lp! Hl1,...,lp (Xj )

)

and SN(n,g,h) = SN(n,h) − SN(n,g).

Lemma 3. Let the assumptions of Theorem 1 be satisfied and assume further that r(i,j)(k) ≤
1/(4pq − 1) for all k ∈ N, 1 ≤ i, j ≤ p. Then there exist positive constants C and γ such that
for all g,h ∈F

(
Nd−1

N

)r
E

(
SN(n,g,h)

)2q ≤ C

(
n

N

)
N−γ .

Proof. For all g,h ∈ F the Hermite rank of

h(Xj ) − g(Xj ) − E
(
h(X1) − g(X1)

) −
∑

l1+···+lp=m

Jl1,...,lp (h − g)

l1! · · · lp! Hl1,...,lp (Xj )

is at least m + 1. By assumption (7) the 2qth moment of these functions are uniformly bounded.
Therefore, we can apply Lemma 2. Remember that d2

N ∈ O(N2−mDLm(N)), see [20], Theo-
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rem 3.1, and that

n

n∑
k=0

(
k−DL(k)

)m+1 ≤ Cn1∨(2−(m+1)D)L′(n),

where L′ is slowly varying at infinity, see [9], page 1777. For simplicity, products of slowly
varying functions in n and N will combined into L(n,N). Lemma 2 yields

E
(
SN(n,g,h)

)2q ≤ Cd
−2q
N

(
n

n∑
k=0

max
1≤i,j≤p

(
r(i,j)(k)

)m+1

)q

≤ Cd
−2q
N

(
n

n∑
k=0

(
k−DL(k)

)m+1

)q

≤ Cd
−2q
N nq∨q(2−(m+1)D)L(n,N)

≤ CNq(mD−2)nq∨q(2−(m+1)D)L(n,N)

≤ C

(
n

N

)q∨q(2−(m+1)D)

Nq(mD−2)Nq∨q(2−(m+1)D)L(n,N)

≤ C

(
n

N

)
Nq(mD−1)∨−qDL(n,N).

Using the lower bound for 2q from (7), we can conclude the proof, since

(
Nd−1

N

)r
C

(
n

N

)
Nq(mD−1)∨−qDL(n,N)

≤ CNmDr/2
(

n

N

)
Nq(mD−1)∨−qDL(n,N)

≤ C

(
n

N

)
N−γ

for an appropriate small γ > 0. �

Lemma 4. Let the assumptions of Theorem 1 be satisfied and assume further that r(i,j)(k) ≤
1/(4pq − 1) for all k ∈N, 1 ≤ i, j ≤ p. Then there exist positive constants ρ and C such that for
all n ≤ N and 0 < ε ≤ 1,

P ∗( sup
f ∈F

∣∣SN(n,f )
∣∣ > ε

)
≤ CN−ρ

((
n

N

)
ε−(2q+r+1) +

(
n

N

)2−mD)
.

Proof. For each f ∈ F and each k ≤ K , where K will be specified in (12), we can find func-
tions l

(k)
ik(f ) and u

(k)
ik(f ) such that l

(k)
ik(f ) ≤ f ≤ u

(k)
ik(f ) and ‖u(k)

ik(f ) − l
(k)
ik(f )‖2 ≤ 2−k . Using the lower
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functions, we get the telescoping sum

SN(n,f ) = SN

(
n, l

(0)
i0(f )

) + SN

(
n, l

(0)
i0(f ), l

(1)
i1(f )

) + SN

(
n, l

(1)
i1(f ), l

(2)
i2(f )

) + · · ·
+ SN

(
n, l

(K−1)
iK−1(f ), l

(K)
iK(f )

) + SN

(
n, l

(K)
iK(f ), f

)
.

The last term can be handled as follows

∣∣SN

(
n, l

(K)
iK(f ), f

)∣∣
=

∣∣∣∣∣d−1
N

n∑
j=1

(
f (Xj ) − l

(K)
iK(f )(Xj ) − E

(
f (X1) − l

(K)
iK(f )(X1)

)

−
∑

l1+···+lp=m

Jl1,...,lp (f ) − Jl1,...,lp (l
(K)
iK(f ))

l1! · · · lp! Hl1,...,lp (Xj )

)∣∣∣∣∣
≤ d−1

N

n∑
j=1

(
f (Xj ) − l

(K)
iK(f )(Xj ) + E

(
f (X1) − l

(K)
iK(f )(X1)

))

+
∑

l1+···+lp=m

∣∣∣∣E((f (X1) − l
(K)
iK(f )(X1))Hl1,...,lp (X1))

l1! · · · lp!
∣∣∣∣d−1

N

∣∣∣∣∣
n∑

j=1

Hl1,...,lp (Xj )

∣∣∣∣∣
≤ d−1

N

n∑
j=1

(
u

(K)
iK(f )(Xj ) − l

(K)
iK(f )(Xj ) + E

(
u

(K)
iK(f )(X1) − l

(K)
iK(f )(X1)

))

+
∑

l1+···+lp=m

∣∣∣∣E(|u(K)
iK(f )(X1) − l

(K)
iK(f )(X1)| · |Hl1,...,lp (X1)|)
l1! · · · lp!

∣∣∣∣d−1
N

∣∣∣∣∣
n∑

j=1

Hl1,...,lp (Xj )

∣∣∣∣∣
≤ SN

(
n, l

(K)
iK(f )

, u
(K)
iK(f )

) + 2nd−1
N E

(
u

(K)
iK(f )

(X1) − l
(K)
iK(f )

(X1)
)

+ 2 ·
∑

l1+···+lp=m

∣∣∣∣E(|u(K)
iK(f )(X1) − l

(K)
iK(f )(X1)| · |Hl1,...,lp (X1)|)
l1! · · · lp!

∣∣∣∣

· d−1
N

∣∣∣∣∣
n∑

j=1

Hl1,...,lp (Xj )

∣∣∣∣∣
≤ SN

(
n, l

(K)
iK(f ), u

(K)
iK(f )

) + 2nd−1
N 2−K + 2 · 2−Kd−1

N ·
∑

l1+···+lp=m

∣∣∣∣∣
n∑

j=1

Hl1,...,lp (Xj )

∣∣∣∣∣,
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by using Cauchy–Schwarz inequality. Since ε/2 + ∑K
k=0 ε/(k + 3)2 < ε for all K ∈ N, we have

P ∗( sup
f ∈F

∣∣SN(n,f )
∣∣ > ε

)

≤ P ∗(max
f ∈F

∣∣SN

(
n, l

(0)
i0(f )

)∣∣ > ε/9
)

+ P ∗(max
f ∈F

∣∣SN

(
n, l

(0)
i0(f ), l

(1)
i1(f )

)∣∣ > ε/16
)

+ · · ·

+ P ∗(max
f ∈F

∣∣SN

(
n, l

(K−1)
iK−1(f ), l

(K)
iK(f )

)∣∣ > ε/(K + 3)2
)

+ P ∗(max
f ∈F

∣∣SN

(
n, l

(K)
iK(f ), u

(K)
iK(f )

)∣∣ > ε/(K + 4)2
)

+ P

(
2 · 2−Kd−1

N ·
∑

l1+···+lp=m

∣∣∣∣∣
n∑

j=1

Hl1,...,lp (Xj )

∣∣∣∣∣ > ε/2 − 2nd−1
N 2−K

)
.

(10)

Set

M =∣∣{(l1, . . . , lp) ∈N
p : l1 + · · · lp = m

}∣∣ =
(

m + p − 1

m

)
, (11)

K =
⌈

log2

(
8Nd−1

N

ε

)⌉
(12)

and let Nk be the bracketing number with respect to 2−k . Applying Lemma 3 yields

P ∗(max
f ∈F

∣∣SN

(
n, l

(k−1)
ik−1(f )

, l
(k)
ik(f )

)∣∣ > ε/(k + 3)2
)

≤
Nk−1∑
s=1

Nk∑
u=1

P
(∣∣SN

(
n, l(k−1)

s , l(k)
u

)∣∣ > ε/(k + 3)2)

≤
Nk−1∑
s=1

Nk∑
u=1

(k + 3)4qε−2qE
∣∣SN

(
n, l(k−1)

s , l(k)
u

)∣∣2q

≤ C(k + 3)4qN2
k ε−2q

(
Nd−1

N

)−r
(

n

N

)
N−γ

for 1 ≤ k ≤ K . In the same way, we get

P ∗(max
f ∈F

∣∣SN

(
n, l

(0)
i0(f )

)∣∣ > ε/9
)

≤ C34qN1ε
−2q

(
Nd−1

N

)−r
(

n

N

)
N−γ



The function-indexed sequential empirical process under long-range dependence 2167

and

P ∗(max
f ∈F

∣∣SN

(
n, l

(K)
iK(f ), u

(K)
iK(f )

)∣∣ > ε/(K + 4)2
)

≤ C(K + 4)4qNKε−2q
(
Nd−1

N

)−r
(

n

N

)
N−γ .

Let M be the quantity given by (11). Since (12) implies (ε/4)−2 < 22K−2N−2d2
N we have

P

(
2 · 2−Kd−1

N ·
∑

l1+···+lp=m

∣∣∣∣∣
n∑

j=1

Hl1,...,lp (Xj )

∣∣∣∣∣ > ε/2 − 2nd−1
N 2−K

)

≤ P

(
d−1
N ·

∑
l1+···+lp=m

∣∣∣∣∣
n∑

j=1

Hl1,...,lp (Xj )

∣∣∣∣∣ >
2K−1ε

4

)

≤
∑

l1+···+lp=m

P

(
d−1
N

∣∣∣∣∣
n∑

j=1

Hl1,...,lp (Xj )

∣∣∣∣∣ >
2K−1ε

4M

)

≤ d−2
N

∑
l1+···+lp=m

E

∣∣∣∣∣
n∑

j=1

Hl1,...,lp (Xj )

∣∣∣∣∣
2(

ε

4

)−2

2−2K+2M2

≤ Cd−2
N n2−mDL(bn)mN−2d2

N

≤ C

(
n

N

)2−mD(
L(bn)

L(N)

)m

N−mDLm(N)

≤ C

(
n

N

)2−mD

N−mD+λ

for any λ > 0. Thus, assumption (6) and (12) can be used to bound (10) finally in the following
way

P ∗( sup
f ∈F

∣∣SN(n,f )
∣∣ > ε

)

≤ Cε−2q
(
Nd−1

N

)−r
(

n

N

)
N−γ

K∑
k=0

(k + 3)4qN2
k + C

(
n

N

)2−mD

N−mD+λ

= Cε−2q
(
Nd−1

N

)−r
(

n

N

)
N−γ

K∑
k=0

2−rk2rk(k + 3)4qN2
k + C

(
n

N

)2−mD

N−mD+λ
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≤ Cε−2q
(
Nd−1

N

)−r
(

n

N

)
N−γ

(
2K

)r
(K + 3)4q

∞∑
k=0

2−rkN2
k + C

(
n

N

)2−mD

N−mD+λ

≤ Cε−2q
(
Nd−1

N

)−r
(

n

N

)
N−γ ε−r

(
Nd−1

N

)r
(K + 3)4q + C

(
n

N

)2−mD

N−mD+λ

≤ C

(
n

N

)
N−γ (K + 3)4qε−(2q+r) + C

(
n

N

)2−mD

N−mD+λ

≤ CN−ρ

((
n

N

)
ε−(2q+r+1) +

(
n

N

)2−mD)

for a sufficient small ρ. Note, for the last inequality, we use (K + 3)4q ≤ Cε−1Nδ for any
δ > 0. �

Proof of Theorem 3. If the cross-covariance function satisfies r(i,j)(k) ≤ 1/(4pq − 1) for all
k ∈ N and 1 ≤ i, j ≤ p then Lemma 4 holds and Theorem 3 follows by adapting the proof given
in [9], page 1781. The general case can be treated as in [21], page 225. Choose b ∈ N such that
r(i,j)(k) ≤ 1/(4pq − 1) for all k ≥ b and set

f̃ (Xj ) = f (Xj ) − Ef (X1) −
∑

l1+···+lp=m

Jl1,...,lp (f )

l1! · · · lp! Hl1,...,lp (Xj ).

We can decompose SN(n,f ) as follows

∣∣SN(n,f )
∣∣ ≤ d−1

N

(
j∗∑

j=1

∣∣∣∣∣
� n

b
�∑

k=0

f̃ (Xj+kb)

∣∣∣∣∣ +
b∑

j=j∗+1

∣∣∣∣∣
� n

b
�−1∑

k=0

f̃ (Xj+kb)

∣∣∣∣∣
)

≤
b∑

j=1

max
1≤l≤N/b

d−1
N

∣∣∣∣∣
l∑

k=0

f̃ (Xj+kb)

∣∣∣∣∣,

where j∗ = b, if n/b is an integer, and j∗ = n−�n/b�b otherwise. Taking the supremum of both
sides yields

max
1≤n≤N

sup
f ∈F

∣∣SN(n,f )
∣∣ ≤

b∑
j=1

max
1≤l≤N

sup
f ∈F

d−1
N

∣∣∣∣∣
l∑

k=1

f̃ (Xj+(k−1)b)

∣∣∣∣∣.
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For any j the series (Xj+(k−1)b)k≥1 satisfies the assumption of Lemma 4. Therefore,

P ∗( max
1≤n≤N

sup
f ∈F

∣∣SN(n,f )
∣∣ > ε

)

≤
b∑

j=1

P ∗
(

max
1≤l≤N

sup
f ∈F

d−1
N

∣∣∣∣∣
l∑

k=1

f̃ (Xj+(k−1)b)

∣∣∣∣∣ > ε/b

)

≤ CN−κ
(
1 + ε−(2q+r+1)

)
. �

Lemma 5. For all m ∈ N and a1, . . . , ap ∈R with a2
1 + · · · + a2

p = 1 we have

Hm

(
p∑

j=1

ajxj

)
=

∑
m1+···+mp=m

m!
m1! · · ·mp!

p∏
j=1

a
mj

j Hmj
(xj ). (13)

Since we could not find a proof for this well known result in the literature, see, for example,
[2], page 2255, and [4], page 113, we give one here.

Proof. We first show that all partial derivatives are equal by using induction. For m = 1, this is
obvious. Since H ′

n(x) = nHn−1(x) we have

∂

∂x1

( ∑
m1+···+mp=m+1

(m + 1)!
m1! · · ·mp!

p∏
j=1

a
mj

j Hmj
(xj )

)

=
∑

m1+···+mp=m+1

(m + 1)!
(m1 − 1)! · · ·mp!a

m1
1 Hm1−1(x1)

p∏
j=2

a
mj

j Hmj
(xj )

= a1(m + 1)
∑

m1+···+mp=m

(m)!
m1! · · ·mp!

p∏
j=1

a
mj

j Hmj
(xj )

= a1(m + 1)Hm

(
p∑

j=1

ajxj

)

= ∂

∂x1
Hm+1

(
p∑

j=1

ajxj

)
.

The other derivatives can be handled similarly. Therefore, (13) holds up to a constant. Let x1 =
· · · = xp = 0. If m is odd, both sides of (13) are equal to zero and thus the constant vanishes. For
even m we have Hm(0) = (−1)m/2(m − 1)!!, where

(m − 1)!! := (m − 1)(m − 3) · · ·3 · 1 = m!
2m/2(m/2)! .
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This yields

∑
m1+···+mp=m

m!
m1! · · ·mp!

p∏
j=1

a
mj

j Hmj
(0)

=
∑

2m1+···+2mp=m

m!
(2m1)! · · · (2mp)!

p∏
j=1

(−1)mj a
2mj

j (2mj − 1)!!

= (−1)m/2
∑

2m1+···+2mp=m

m!
(2m1)!! · · · (2mp)!!

p∏
j=1

(
a2
j

)mj

= (−1)m/2
∑

m1+···+mp=m/2

m!
2m/2m1! · · ·mp!

p∏
j=1

(
a2
j

)mj

= (−1)m/2
∑

m1+···+mp=m/2

(m − 1)!!2m/2(m/2)!
2m/2m1! · · ·mp!

p∏
j=1

(
a2
j

)mj

= (−1)m/2(m − 1)!!
∑

m1+···+mp=m/2

(m/2)!
m1! · · ·mp!

p∏
j=1

(
a2
j

)mj

= Hm(0)

(
p∑

j=1

a2
j

)m/2

= Hm(0). �

Proof of Theorem 1. By Theorem 3, it is enough to study the limit of

{
d−1
N

�Nt�∑
j=1

∑
l1+···+lp=m

Jl1,...,lp (f )

l1! · · · lp! Hl1,...,lp (Xj ) : (f, t) ∈ F × [0,1]
}

.

We first show that in the current situation Lemma 5 can be applied. By independence of multi-
variate monomials of degree m, we can find for all k1, . . . , kp satisfying k1 + · · · + kp = m, real

numbers a
(1)
k1,...,kp

, . . . a
(p)
k1,...,kp

, such that the
(
m+p−1

m

) × (
m+p−1

m

)
matrix

A =
(

p∏
i=1

(
a

(i)
k1,...,kp

)mi

)
m1+···+mp=m

k1+···+kp=m

is invertible. More precisely, sorting the tuples (m1, . . . ,mp), m1 + · · · + mp = m and
(k1, . . . , kp), k1 + · · · + kp = m lexicographically, the entry aq1,q2 of A is given by
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∏p

i=1(a
(i)
k1,...,kp

)mi with respect to this order. After normalization, we have
∑p

i=1(a
(i)
k1,...,kp

)2 = 1.

For a suitable diagonal matrix M of the same size define B := MA−1 such that

∑
k1+···+kp=m

b(k1, . . . , kp, l1, . . . , lp)
(
a

(1)
k1,...,kp

)m1 · · · (a(p)
k1,...,kp

)mp

=

⎧⎪⎨
⎪⎩

(m!)−1
p∏

i=1

li ! if (m1, . . . ,mp) = (l1, . . . , lp),

0 otherwise,

(14)

where b(k1, . . . , kp, l1, . . . , lp) denotes that entry of B whose row and column number is given
by the lexicographical order of k1, . . . , kp and l1, . . . , lp . Using Lemma 5 together with (14) we
get

∑
l1+···+lp=m

k1+···+kp=m

Jl1,...,lp (f )

(
p∏

i=1

(li !)−1

)
b(k1, . . . , kp, l1, . . . , lp)Hm

(
p∑

i=1

a
(i)
k1,...,kp

X
(i)
j

)

=
∑

l1+···+lp=m

k1+···+kp=m

∑
m1+···+mp=m

Jl1,...,lp (f )

(
p∏

i=1

(li !)−1

)
b(k1, . . . , kp, l1, . . . , lp)

× m!
p∏

i=1

(mi !)−1(a(i)
k1,...,kp

)mi Hmi

(
X

(i)
j

)

=
∑

l1+···+lp=m

Jl1,...,lp (f )

p∏
i=1

(li !)−1Hli

(
X

(i)
j

)
.

Define for simplicity

I (f ; k1, . . . , kp) :=
∑

l1+···+lp=m

Jl1,...,lp (f )

(
p∏

i=1

(li !)−1

)
b(k1, . . . , kp, l1, . . . , lp),

whereby the following identity holds

d−1
N

�Nt�∑
j=1

∑
l1+···+lp=m

Jl1,...,lp (f )

p∏
i=1

(li !)−1Hli

(
X

(i)
j

)

= d−1
N

�Nt�∑
j=1

∑
k1+···+kp=m

I (f ; k1, . . . , kp)Hm

(
p∑

i=1

a
(i)
k1,...,kp

X
(i)
j

)
.
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As stated by Arcones [2], (3.6), there exist Hermitian Gaussian random measures B̃(1), . . . , B̃(p),
such that {

d−1
N

�Nt�∑
j=1

(
Hm

(
X

(1)
j

)
, . . . ,Hm

(
X

(p)
j

)) : 0 ≤ t ≤ 1

}

d−→ {
(Z(1)

m (t), . . . ,
(
Z

(p)
m (t)

) : 0 ≤ t ≤ 1
}
,

in (D[0,1])p , where the processes (Z
(j)
m (t)) are up to a constant the Hermite processes defined

by (2) with respect to B̃(j). More precisely, if Z = (Z(1), . . . ,Z(p)) is the vector-valued random
spectral measure such that

Xk =
∫ π

−π

eikxZ(dx),

see, for example, [6], Theorem 11.8.2, then for any bounded symmetric intervals
A1, . . . ,Ap ⊂ R, the random vector (B̃(1)(A1), . . . , B̃

(p)(Ap)) is the weak limit of
L−1/2(N)ND/2(Z(1)(N−1A1), . . . ,Z

(p)(N−1Ap)), see [13], page 1172.
Note that for any integrable function h

∫ ′′

Rm

h(x1, . . . , xm)

(
p∑

i=1

a
(i)
k1,...,kp

B̃(i)

)
(dx1) · · ·

(
p∑

i=1

a
(i)
k1,...,kp

B̃(i)

)
(dxm)

=
p∑

j1,...,jm=1

a
(j1)
k1,...,kp

· · ·a(jm)
k1,...,kp

∫ ′′

Rm

h(x1, . . . , xm)B̃(j1)(dx1) · · · B̃(jm)(dxm).

and therefore{
d−1
N

�Nt�∑
j=1

Hm

(
p∑

i=1

a
(i)
k1,...,kp

X
(i)
j

)
: k1, . . . , kp = m, t ∈ [0,1]

}

d−→
{

p∑
j1,...,jm=1

a
(j1)
k1,...,kp

· · ·a(jm)
k1,...,kp

Zj1,...,jm(t) : k1, . . . , kp = m, t ∈ [0,1]
}

,

(15)

where

Zj1,...,jm(t)

= K̃j1,...,jm(m,D)

∫ ′′

Rm

eit (x1+···+xm) − 1

i(x1 + · · · + xm)

m∏
j=1

|xj |−(1−D)/2B̃(j1)(dx1) · · · B̃(jm)(dxm)

and K̃j1,...,jm(m,D) is a suitable constant. Using the almost sure representation theorem, see
[19], page 71, we can find suitable versions (S̃N (t))N≥1 and (Z̃(t)) such that this convergence
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holds almost surely. Since the functions I (f ; k1, . . . , kp), k1 + · · · + kp = m, are bounded we
have

{
d−1
N I (f ; k1, . . . , kp)S̃

(k1,...,kp)

N (t) : k1 + · · · + kp = m,f ∈F, t ∈ [0,1]}
a.s.−−→ {

I (f ; k1, . . . , kp)Z̃(k1,...,kp)(t) : k1 + · · · + kp = m,f ∈ F, t ∈ [0,1]}
and consequently

{
d−1
N

�Nt�∑
j=1

∑
k1+···+kp=m

I (f ; k1, . . . , kp)Hm

(
p∑

i=1

a
(i)
k1,...,kp

X
(i)
j

)
: f ∈F, t ∈ [0,1]

}

d−→
{

p∑
j1,...,jm=1

∑
k1+···+kp=m

a
(j1)
k1,...,kp

· · ·a(jm)
k1,...,kp

I (f ; k1, . . . , kp)Zj1,...,jm(t) :

f ∈F, t ∈ [0,1]
}

in �∞(F × [0,1]). To conclude, we have to verify that the limiting process is the one stated in
Theorem 1.

p∑
j1,...,jm=1

∑
k1+···+kp=m

I (f ; k1, . . . , kp)a
(j1)
k1,...,kp

· · ·a(jm)
k1,...,kp

=
p∑

j1,...,jm=1

∑
k1+···+kp=m

l1+···+lp=m

Jl1,...,lp (f )

(
p∏

i=1

(li !)−1

)
b(k1, . . . , kp, l1, . . . , lp)a

(j1)
k1,...,kp

· · ·a(jm)
k1,...,kp

=
{

(m!)−1Jl1,...,lp (f ) if li = i(j1, . . . , jm) := ∣∣{ju = i : u = 1, . . . ,m}∣∣,
0 otherwise.

At this point, we can close the proof since for li = i(j1, . . . , jm), 1 ≤ i ≤ p, we have

J̃j1,...,jm(f ) = (m!)−1Jl1,...,lp (f ). �
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