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The problem of parameter estimation is considered for the two-state telegraph process, observed in the white
Gaussian observation noise. An online one-step Maximum Likelihood Estimator process is constructed,
using a preliminary Method of Moments Estimator. The obtained estimation procedure is shown to be
asymptotically normal and asymptotically efficient in the large sample regime.
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1. Introduction

In this work, we address the problem of estimating the unknown transition rates λ and μ of
a continuous time stationary Markov chain Y(t),0 ≤ t ≤ T with two states, y1 and y2, and
infinitesemal transition matrix (−λ λ

μ −μ

)
.

Trajectory of the chain is observed in a white noise and the unknown two-dimensional parameter
ϑ = (λ,μ) is to be estimated from the observations XT = (X(t),0 ≤ t ≤ T ), generated by the
equation

dX(t) = Y(t)dt + dW(t), subject to X0, (1.1)

where the initial condition X(0) = X0 is independent of the standard Wiener process W(t),0 ≤
t ≤ T . We will assume that ϑ ∈ � = (c0, c1) × (c0, c1) for some known constants 0 < c0 < c1.

Our goal is to construct an online estimator process ϑ�
T = (ϑ�

t,T ,0 < t ≤ T ) which, on one
hand, is easy to compute, and on the other hand, is asymptotically optimal in an appropriate
sense, as T → ∞. The construction is carried out in two steps. First, we introduce a learning

interval [0, T δ] with δ ∈ ( 1
2 ,1) and propose a T

δ
2 -consistent preliminary estimator using the

Method of Moments. Then we improve it up to asymptotic efficiency with the help of a slightly
modified one-step MLE procedure.

Observation models, such as the one studied in this paper, are called Hidden Markov Mod-
els (HMM) or partially observed systems. HMMs have been extensively studied in the discrete

1350-7265 © 2018 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/16-BEJ920
mailto:ab3340@wayne.edu
mailto:kutoyants@univ-lemans.fr


Parameter estimation of hidden telegraph process 2065

time setup; see, for example, Elliott et al. [5]; Bickel et al. [1]; Cappé et al. [2] and the refer-
ences therein. In particular, asymptotic normality of various estimators in the different settings
have been established. Asymptotic theory for continuous time models seems to be less explored.
Nonlinear filtering and parameter estimation problems for the partially observed continuous
time Markov chains are considered, for example, in Elliott et al. [5]. Identification problems
of partially observed linear processes were studied in, for example, Kutoyants [11]; Dembo and
Zeitouni [4]; Zeitouni and Dembo [21]; Kutoyants [12]. The problem of asymptotically efficient
estimation for continuous time telegraph process observed on a discrete grid was studied in Iacus
and Yoshida [7].

The problem, closest in spirit to ours, is addressed in Chigansky [3], where parameter es-
timation is considered in the case of hidden finite-state Markov process with continuous time
observations. It proves consistency, asymptotic normality and asymptotic efficiency of the MLE
under appropriate conditions, which may not be easy to check in general. The case of two-state
hidden telegraph process under consideration appears in Chigansky [3] as an example with one-
dimensional parameter (ϑ = λ = μ).

The one-step MLE-process proposed here is based on the so-called Fisher scoring method. Let
us briefly recall its main elements in the case of i.i.d. observations Xn = (X1, . . . ,Xn), sampled
from the density f (ϑ,x). Suppose that we have a

√
n-consistent estimator ϑ̄n, that is,

√
n(ϑ̄n −

ϑ) is bounded in probability. Then the estimator ϑ�
n

ϑ�
n = ϑ̄n + I(ϑ̄n)

−1n−1
n∑

j=1

ḟ (ϑ̄n,Xj )

f (ϑ̄n,Xj )

is asymptotically efficient. Here dot stands for the derivative w.r.t. ϑ and I(ϑ) is the Fisher infor-
mation. This estimator was proposed by Fisher [6] and studied by Le Cam [16]. It is also known
that the preliminary estimator can have convergence rate slower than

√
n, see Robinson [18] and

references therein. Newton–Raphson multi-step estimators were introduced by Kamatani and
Uchida [9] in parameter estimation problems for diffusion processes with discrete time observa-
tions. Note that the Newton–Raphson procedure is very close to one-step estimation device. In
particular, it was shown by Kamatani and Uchida [9] that multi-step Newton–Raphson procedure
allows to improve convergence rate of the preliminary estimator up to asymptotic efficiency. The
preliminary estimator there is constructed using all available observations.

Let us now illustrate the basic idea behind our MLE-process in this classical discrete time
setup. Suppose that ϑ̄N is a preliminary estimator constructed by the first N = [nδ] observations
XN = (X1, . . . ,XN) with δ ∈ ( 1

2 ,1). Then the one-step MLE-process ϑ�
k,n,N ≤ k ≤ n is given

by the following expression

ϑ�
k,n = ϑ̄N + Ik(ϑ̄N )−1k−1

k∑
j=N+1

ḟ (ϑ̄N ,Xj )

f (ϑ̄N ,Xj )
, N ≤ k ≤ n,

where Ik(ϑ) is the empirical Fisher information matrix

Ik(ϑ) = 1

k

k∑
j=N+1

ḟ (ϑ,Xj )ḟ (ϑ,Xj )
∗

f (ϑ,Xj )2
.
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Here a∗ denotes transpose of a vector (or a matrix) a. For any τ ∈ (0,1) and k = [nτ ] we have
√

k
(
ϑ�

k,n − ϑ
) =⇒ N

(
0, I(ϑ)−1)

as n → ∞. Therefore this estimator-process is asymptotically efficient for all τ ∈ (0,1]. Note
that its calculation is much simpler than the calculation of the exact MLE.

The MLE-process for the partially observed system (1.1) with observations XT = (Xt ,0 ≤
t ≤ T ), proposed in this paper, uses the preliminary estimator ϑ̄T δ based on the observations
XT δ = (Xt ,0 ≤ t ≤ T δ) over the initial learning interval [0, T δ] with δ ∈ ( 1

2 ,1) and is carried
out following the similar construction in Kutoyants [15] (see also Kutoyants [14]).

2. Problem statement and auxiliary results

Let us start with description of the MLE for the model under consideration. By the innovation
theorem (see Liptser and Shiryaev [17], Theorem 7.12), the stochastic process (1.1) admits the
representation

dXt = m(t,ϑ)dt + dW̄t , subject to X0, 0 ≤ t ≤ T ,

where m(t,ϑ) is the conditional expectation

m(t,ϑ) = Eϑ

[
Y(t)|FX

t

] = y1Pϑ

(
Y(t) = y1|FX

t

) + y2Pϑ

(
Y(t) = y2|FX

t

)
.

Here FX
t is the σ -algebra of events generated by the observations up to time t , that is, FX

t :=
σ(Xt ,0 ≤ s ≤ t) and W̄t ,0 ≤ t ≤ T is the innovation Wiener process. Let us denote

π(t,ϑ) = Pϑ

(
Y(t) = y1|FX

t

)
, Pϑ

(
Y(t) = y2|FX

t

) = 1 − π(t,ϑ).

Then

m(t,ϑ) = y2 + (y1 − y2)π(t,ϑ).

The random process π(t,ϑ),0 ≤ t ≤ T satisfies the following equation (see Wonham [20] or
Liptser and Shiryaev [17], Theorem 9.1 and equation (9.23) therein)

dπ(t,ϑ) = [
μ − (λ + μ)π(t,ϑ)

+ π(t,ϑ)
(
1 − π(t,ϑ)

)
(y2 − y1)

(
y2 + (y1 − y2)π(t,ϑ)

)]
dt (2.1)

+ π(t,ϑ)
(
1 − π(t,ϑ)

)
(y1 − y2)dXt .

Denote by {P(t)
ϑ ,ϑ ∈ �} the family of measures, induced by the random process Xt = (Xs,0 ≤

s ≤ t) from (1.1) on the space of realizations C[0, t] (continuous functions on [0, t]) for different
values of the parameter. These measures are equivalent and the likelihood ratio function

L
(
ϑ,Xt

) = dP(t)
ϑ

dP(t)
0

(
Xt

)
, ϑ ∈ �,0 < t ≤ T
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can be written as follows

L
(
ϑ,Xt

) = exp

{∫ t

0
m(s,ϑ)dXs − 1

2

∫ t

0
m(s,ϑ)2 ds

}
.

Here P(t)
0 is the measure corresponding to Xt with Y(s) ≡ 0.

The MLE-process ϑ̂t ,0 < t ≤ T is any root of the equation

L
(
ϑ̂t ,X

t
) = sup

ϑ∈�

L
(
ϑ,Xt

)
, 0 < t ≤ T . (2.2)

Asymptotic behavior of the MLE ϑ̂T was studied by Chigansky [3]. It was shown that in the
one-dimensional case (d = 1, λ = μ = ϑ ) the MLE ϑ̂T is consistent, asymptotically normal

√
T (ϑ̂T − ϑ) =⇒ N

(
0, I(ϑ)−1)

and asymptotically efficient. Here I(ϑ) is the Fisher information.
In our model the observations are given by (1.1) and the unknown parameter ϑ = (λ,μ) has

to be estimated from the sample path XT = (Xt ,0 ≤ t ≤ T ). We will construct an MLE-process
ϑ�

t,T ,0 < t ≤ T , such that for any fixed τ ∈ (0,1] and t = τT we have

√
t
(
ϑ�

t,T − ϑ
) =⇒ N

(
0, I(ϑ)−1), T → ∞.

Here I(ϑ) is the corresponding Fisher information matrix. Recall that an estimator is asymptoti-
cally efficient if it is asymptotically normal with the limit covariance matrix I(ϑ)−1. The family
of measures in the statistical problem under consideration is locally asymptotically normal and
therefore it can be shown that the latter implies asymptotic efficiency in the usual minimax sense
(see Ibragimov and Has′minskiı̆ [8]).

Note that the construction of the MLE-process ϑ̂t ,0 < t ≤ T according to (2.2) and (2.1) is
a computationally hard problem, because it requires solving the family of equations (2.1) for
all ϑ ∈ � and equations (2.2) for all t ∈ (0, T ]. Computational complexity can be reduced as
follows. First, we construct an estimator ϑ̄T = (λ̄T , μ̄T ) by means of the Method of Moments
(see (3.8) below) and show that it is

√
T -consistent, that is,

Eϑ

∣∣√T (ϑ̄T − ϑ)
∣∣2 ≤ C,

where the constant C > 0 does not depend on T . Then applying this estimator ϑ̄T δ to the obser-
vations on the learning interval [0, T δ] with 1

2 < δ < 1, we introduce the one-step MLE-process

ϑ�
t,T = ϑ̄T δ + t−1/2

It (ϑ̄T δ )−1
t

(
ϑ̄T δ ,Xt

)
, T δ ≤ t ≤ T . (2.3)

Here the empirical Fisher information matrix satisfies

It (ϑ) = 1

t

∫ t

T δ

ṁ(ϑ, s)ṁ(ϑ, s)∗ ds −→ I(ϑ),
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as t → ∞, T δ = o(t) and


t

(
ϑ,Xt

) = 1√
t

∫ t

T δ

ṁ(ϑ, s)
[
dXs − m(ϑ, s)ds

]
is the vector score-function process.

Computation of this MLE-process uses the solutions m(ϑ, t) and ṁ(ϑ, t) of the equation (2.1)
and of the corresponding equation for ṁ(ϑ, t) only for one value of the parameter, namely for
ϑ = ϑ̄T δ . Solving the maximum likelihood equation (2.2) is avoided and the estimator ϑ�

t,T can
be easily calculated using (2.3). This is the main computational advantage of the proposed esti-
mation procedure. On the other hand, as it was mentioned above, the estimator ϑ�

t,T is asymptot-
ically efficient and, in particular, ϑ�

T,T = ϑ�
T satisfies

√
T

(
ϑ�

T − ϑ
) =⇒ N

(
0, I(ϑ)−1),

being therefore asymptotically equivalent to the exact MLE.
Hereafter, we will use the following notations: the derivative w.r.t. parameter ϑ is denoted by

a dot, ṁ(ϑ, t) stands for the column vector of the derivatives ṁλ(ϑ, t), ṁμ(ϑ, t).
Let us recall some relevant well known properties of the (stationary) telegraph process

Y(t), t ≥ 0.

1. The stationary distribution of the process Y(t) is given by

Pϑ

{
Y(t) = y1

} = μ

λ + μ
, Pϑ

{
Y(t) = y2

} = λ

λ + μ
. (2.4)

2. Let us denote Pij (t) = Pϑ {Y(t) = yj |Y(0) = yi}, then solving the Kolmogorov equation
we obtain

P11(t) = μ

λ + μ
+ λ

λ + μ
e−(λ+μ)t , P12(t) = λ

λ + μ
− λ

λ + μ
e−(λ+μ)t ,

P21(t) = μ

λ + μ
− μ

λ + μ
e−(λ+μ)t , P22(t) = λ

λ + μ
+ μ

λ + μ
e−(λ+μ)t .

(2.5)

It follows from (2.4) and (2.5) that

K(s) = Eϑ

[
Y(t)Y (t + s)

] =
(

y1μ + y2λ

λ + μ

)2

(2.6)

+ (y2 − y1)
2 λμ

(λ + μ)2
e−(λ+μ)s = (Ȳ )2 + De−(λ+μ)s,

where

Ȳ = EϑY (t) = y1μ + y2λ

λ + μ
, D = (y2 − y1)

2 λμ

(λ + μ)2
. (2.7)
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3. Let FY
t ⊂F be the family of σ -algebras of events{

Y(s) = yi,0 ≤ s ≤ t, i = 1,2
}
.

It follows from (2.5) that for some constant K > 0 and A < T and for all s > A, t > 0 the
inequality ∣∣Eϑ

{
Y(s + T )Y (t + T )|FY

A

} − Eϑ

[
Y(s)Y (t)

]∣∣ < Ke−(λ+μ)(T −A) (2.8)

holds.

3. Method of moments estimator

Let us first consider the problem of constructing a
√

T -consistent estimator of the unknown
parameter ϑ by the Method of Moments. Recall that we observe the stochastic process

dXt = Y(t)dt + dWt, X0, 0 ≤ t ≤ T , (3.1)

in continuous time, where Wt,0 ≤ t ≤ T is a standard Wiener process, X0 is an independent of
it random initial condition, and Y(t), t ≥ 0 is the stationary Markov process with two states y1
and y2 and infinitesimal transition matrix(−λ λ

μ −μ

)
.

The processes Y(t), t ≥ 0 and Wt, t ≥ 0 are independent.
For simplicity, we assume that T is an integer and impose the condition

λ ∈ [c0, c1], μ ∈ [c0, c1], (3.2)

where c0 and c1 are some positive constants. To introduce our preliminary estimator, we need
the following objects:

• The function

�(x) = 1

x
− 1

x2

(
1 − e−x

)
. (3.3)

• The statistics

ζT = 1

T

T −1∑
i=0

[Xi+1 − Xi]2 − 1. (3.4)

• The random variable αT is defined as a solution of the equation

ζT =
(

XT

T

)2

+ 2ηT �(αT ), (3.5)
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where

ηT =
(

XT

T
− y1

)(
y2 − XT

T

)
. (3.6)

• The event AT =“the equation (3.5) has a solution αT ∈ [2c0,2c1]”.
• The random variable

βT = αT 1{AT } + (c0 + c1)1{Ac
T }. (3.7)

Define the estimator ϑ̄T = (λ̄T , μ̄T ) where

λ̄T =
X(T )

T
− y1

y2 − y1
βT ; μ̄T = y2 − X(T )

T

y2 − y1
βT . (3.8)

Properties of these estimators are given in the following theorem.

Theorem 1. Assume the condition (3.2) holds; then the estimators in (3.8) satisfy

Eϑ

[√
T (λ̄T − λ)

]2
< C, Eϑ

[√
T (μ̄T − μ)

]2
< C (3.9)

with a constant C > 0, independent of T .

The proof is split below into several steps.
The next lemma gives

√
T -consistent estimator for Ȳ (see (2.7)).

Lemma 1. Under the assumption (3.2), the estimator XT /T is uniformly consistent for Ȳ and
moreover :

Eϑ

(
XT

T
− Ȳ

)2

≤ C

T
, T > 0 (3.10)

with a constant C > 0 independent of ϑ and T .

Proof. Using (2.6), we obtain the following relations

Eϑ

(
XT

T
− Ȳ

)2

= Eϑ

∣∣∣∣ 1

T

∫ T

0

[
Y(t) − Ȳ

]
dt + WT

T

∣∣∣∣
2

= 1

T
+ 1

T 2
Eϑ

∣∣∣∣
∫ T

0

[
Y(t) − Ȳ

]
dt

∣∣∣∣
2

≤ 1

T

(
1 + 2λμ

(λ + μ)3
(y2 − y1)

2
)

≤ 1

T

(
1 + c2

1

4c3
0

(y2 − y1)
2
)

. �
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Corollary. Existence of consistent estimators for λ
λ+μ

and μ
λ+μ

follows from (2.4) and Lemma 1.
Indeed, from the equality

Ȳ = λ

λ + μ
y2 + μ

λ + μ
y1

and Lemma 1 we obtain

Eϑ

[√
T

(
T −1XT − y1

y2 − y1
− λ

λ + μ

)]2

< C,

Eϑ

[√
T

(
y2 − T −1XT

y2 − y1
− μ

λ + μ

)]2

< C.

(3.11)

The statistic

XT

T
= 1

T

∫ T

0
Y(t)dt + WT

T

is a sum of a bounded random variable and an independent normal random variable N(0, T −1).
Hence, ηT defined in (3.6) satisfies

Eϑ

[√
T (ηT − D)

]2
< C, (3.12)

where the constant C > 0 does not depend on T and ϑ . The constant D is defined in (2.7).

Note that from the condition (3.2) we have

λμ

(λ + μ)2
>

c2
0

4c2
1

and we easily obtain the bound (3.12) for the estimator

η̃T = max

{
ηT , (y2 − y1)

2 c2
0

8c2
1

}
. (3.13)

Lemma 2. The following equality holds

EϑζT = Ȳ 2 + 2D�(λ + μ) (3.14)

and under condition (3.2) we also have

Eϑ

[√
T (ζT − EϑζT )

]2
< C. (3.15)
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Proof. By (2.6) and stationarity of the process Y(t), we obtain

EϑζT = Eϑ [X1 − X0]2 − 1 = Eϑ

∫ 1

0

∫ 1

0
Y(s)Y (t)ds dt + 1 − 1

(3.16)
= Ȳ 2 + 2D�(λ + μ).

Denote

γi =
∫ i+1

i

Y (t)dt; 
W(i) = Wi+1 − Wi.

Further, the equality

ζT − EϑζT = 1

T

T −1∑
i=0

(
γ 2
i − Eϑγ 2

i

) + 2

T

T −1∑
i=0

γi
W(i) + 1

T

T −1∑
i=0

(

W(i)2 − 1

)

implies

Eϑ(ζT − EϑζT )2 ≤ 3

T 2
Eϑ

(
T −1∑
i=0

(
γ 2
i − Eϑγ 2

i

))2

+ 12

T 2
Eϑ

(
T −1∑
i=0

γi
W(i)

)2

(3.17)

+ 3

T 2
Eϑ

(
T −1∑
i=0

(

W(i)2 − 1

))2

:= 3J1 + 12J2 + 3J3.

By stationarity of Y(t)

J1 = 1

T 2
Eϑ

(
T −1∑
i=0

(
γ 2
i − Eϑγ 2

i

))2

= 1

T 2

T −1∑
i=0

T −1∑
j=0

Eϑ

(
γ 2
i − Eϑγ 2

i

)(
γ 2
j − Eϑγ 2

j

)

= 1

T 2

T −1∑
i,j=0

{∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
Eϑ

{
Y(s)Y (t) (3.18)

× Eϑ

[
Y

(|i − j | + s1
)
Y

(|i − j | + t1
)|FY

1

]}
ds dt ds1 dt1 − (

Eϑγ 2
0

)2
}
.

The bound (2.8) gives∣∣Eϑ

[
Y

(|i − j | + s1
)
Y

(|i − j | + t1
)|FY

1

] − EϑY (s1)Y (t1)
∣∣ ≤ Ke−(λ+μ)|j−i|

and, using (3.18) and (3.2), we obtain

J1 ≤ K

T 2

T −1∑
i,j=0

e−(λ+μ)|j−i| ≤ K1

T
.
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The obvious bounds

J2 = 1

T 2
Eϑ

(
T −1∑
i=0

γi
W(i)

)2

= 1

T 2

T −1∑
i=0

Eϑγ 2
i = Eϑγ 2

0

T
≤ K

T
,

J3 = 1

T 2
Eϑ

(
T −1∑
i=0

[

W(i)2 − 1

])2

= 1

T 2

T −1∑
i=0

Eϑ

[

W(i)2 − 1

]2 ≤ K

T

and (3.17) imply the second assertion of the lemma. �

Lemma 3. The function �(x) (see (3.3)) has the following properties

lim
x→0+�(x) = 1

2
, (3.19)

lim
x→∞�(x) = 0, (3.20)

�′(x) < 0, for x > 0. (3.21)

Proof. Expanding (3.3) into power series, we get

�(x) = 1

2
− x

3! + x2

4! − x3

5! + · · ·

�′(x) = −
(

1

3! − 2x

4!
)

−
(

3x2

5! − 4x3

6!
)

− · · ·

which give the limits (3.19) and (3.20) and the bound (3.21) for x < 2. For x ≥ 2 it follows from
the explicit expression for this derivative

�′(x) = 1

x2

(
2

x
− 1

)
−

(
2

x3
+ 1

x2

)
e−x.

Let us consider the equation (3.5) for αT , where ζT and ηT are defined in (3.4) and (3.6)
respectively. By Lemma 3 this equation has at most one solution. Recall that on the event AT ,
the equation (3.5) does have a solution and consider the statistic βT defined in (3.7) (here c0, c1
are the constants from the condition (3.2)). �

Lemma 4. Under the condition (3.2), the estimate βT is
√

T -consistent for λ + μ:

Eϑ

[√
T

(
βT − (λ + μ)

)]2
< C, (3.22)

with a constant C > 0, independent of ϑ and T .

Proof. It follows from Lemmas 1 and 2 that

ζT = Ȳ 2 + 2D�(λ + μ) + ε1(T ). (3.23)
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Here and below εi(T ), i = 1,2 . . . satisfy

Eϑ

(√
T εi(T )

)2
< C.

By Lemma 1, estimates (3.12), (3.13) and boundedness of �(x) we also obtain

ζT = Ȳ 2 + 2η̃T �(λ + μ) + ε2(T ). (3.24)

It follows from (3.5) and (3.24) that on the event AT

2η̃T �(αT ) = 2η̃T �(λ + μ) + ε3(T ).

Since η̃T is bounded away from zero by a positive constant (see Corollary to Lemma 1), the latter
equality and Lemma 3 imply that on AT

�(αT ) − �(λ + μ) = ε4(T ).

Therefore by Lemma 3, we obtain

Eϑ

{
1{AT }

√
T

(
βT − (λ + μ)

)}2
< C. (3.25)

If ω ∈Ac
T then the equation

Ȳ 2 + 2D�(λ + μ) + ε3(T ) =
(

X(T )

T

)2

+ 2η̃T �(x) (3.26)

has no solution x ∈ [2c0,2c1].
It follows from (3.26), Lemma 1 and the corollary that the equation

�(x) = �(λ + μ) + ε4(T )

has no solution for x ∈ [2c0,2c1]. This means that[
Ȳ 2 + 2D�(λ + μ) + ε3 − (Ȳ + ε0)

2](2D + 2ε5)
−1 /∈ [

�(2c0),�(2c1)
]
,

where we used the notations ε0 = T −1XT − Ȳ and ε5 = η̃T − D.
Hence, we can write

Ac
T ⊂ {∣∣ε0(T )

∣∣ > α1
} ∪ {∣∣ε3(T )

∣∣ > α2
} ∪ {∣∣ε5(T )

∣∣ > α3
}

for some positive constants α1, α2 and α3, which do not depend on T . This inclusion implies

P
(
Ac

T

) ≤ P
{∣∣ε0(T )

∣∣ > α1
} + P

{∣∣ε3(T )
∣∣ > α2

} + P
{∣∣ε5(T )

∣∣ > α3
}

<
C

T

and the claim of Lemma 4 holds by (3.25). �
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Proof of Theorem 1. Let us now apply obtained results to prove
√

T -consistency of the estima-
tors defined in (3.9). To this end, the obvious equality

λ̄T − λ = βT

X(T )
T

− y1

y2 − y1
− βT

λ

λ + μ
+ λ

λ + μ

(
βT − (λ + μ)

)
,

the bounds (3.11) and Lemma 4 give

Eϑ

(√
T (λ̄T − λ)

)2 ≤ 2Eϑ

[√
T βT

( X(T )
T

− y1

y2 − y1
− λ

λ + μ

)]2

+ 2

(
λ

λ + μ

)2

Eϑ

[√
T

(
βT − (λ + μ)

)]2
< C.

The second inequality in (3.9) is shown similarly and thus the estimator ϑ̄T = (λ̄T , μ̄T ) is
√

T -
consistent. �

4. One-step MLE

Our next goal is to construct the asymptotically efficient MLE-process for the parameter ϑ =
(λ,μ) ∈ �. We do it in two steps. First, we define the preliminary estimator ϑ̄T δ = (λ̄T δ , μ̄T δ ),
obtained by applying the estimator from the previous section to the observations XT δ = (Xt ,0 ≤
t ≤ T δ) on the learning interval [0, T δ], with δ ∈ ( 1

2 ,1). By Theorem 1, this estimator satisfies
the condition:

sup
ϑ∈K

T δEϑ |ϑ̄T δ − ϑ |2 ≤ C,

with a constant C > 0 independent of T and ϑ ∈ �. Let us introduce the additional condition
(recall that � = (c0, c1) × (c0, c1)):

M(N). There exists N ≥ 2, such that

c0

(y1 − y2)2
>

2N + 9

8
. (4.1)

With the preliminary estimator ϑ̄T δ at hand, we propose one-step MLE:

ϑ�
t,T = ϑ̄T δ + t−1

It (ϑ̄T δ )−1
∫ t

T δ

ṁ(ϑ̄T δ , s)
[
dXs − m(ϑ̄T δ , s)ds

]
, (4.2)

based on the slightly modified score-function


t

(
ϑ,Xt

) = 1√
t

∫ t

0
ṁ(ϑ, s)

[
dXs − m(ϑ, s)ds

]
, T δ ≤ t ≤ T .
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Here we defined the vector

ṁ(ϑ, s) = (y1 − y2)
∂π(s,ϑ)

∂ϑ
= (y1 − y2)

(
∂π(t,ϑ)

∂λ
,
∂π(t,ϑ)

∂μ

)∗

and the empirical Fisher information matrix It (ϑ)

It (ϑ) = 1

t

∫ t

T δ

ṁ(ϑ, s)ṁ(ϑ, s)∗ ds −→ I(ϑ), t → ∞,

where the limit holds by the Law of Large Numbers; I(ϑ) is the Fisher information matrix

I(ϑ) = (y1 − y2)
2Eϑ

∂π(s,ϑ)

∂ϑ

∂π(s,ϑ)∗

∂ϑ
.

The stochastic process ∂π(s,ϑ)
∂ϑ

has relevant ergodic properties (see the proof of Lemma 6 below)

and we assume here that ∂π(s,ϑ)
∂ϑ

has invariant distribution. Therefore, the expectation above does
not depend on s.

Let us change the variable τ = tT −1 ∈ [0,1] and introduce the stochastic process ϑ�
T (τ ), τδ ≤

τ ≤ 1, where ϑ�
T (τ ) = ϑ�

τT ,T and τδ = T δ−1 → 0. Below ϑ0 denotes the true value of the param-
eter.

Theorem 2. Suppose ϑ0 ∈ �, δ ∈ ( 1
2 ,1) and the condition M(2) holds. Then the one-step MLE-

process is consistent: for any ν > 0 and any τ ∈ (0,1]
Pϑ0

{∣∣ϑ�
T (τ ) − ϑ0

∣∣ > ν
} → 0 (4.3)

as T → ∞. Moreover, it is asymptotically normal
√

τT
(
ϑ�

T (τ ) − ϑ0
) =⇒ N

(
0, I(ϑ0)

−1). (4.4)

Proof. Let us denote the partial derivatives

π̇λ(t, ϑ) = ∂π(t,ϑ)

∂λ
, π̇μ(t, ϑ) = ∂π(t,ϑ)

∂μ
, π̈λ,λ(t, ϑ) = ∂2π(t,ϑ)

∂λ2
,

and so on. �

Lemma 5. Suppose ϑ0 ∈ � and N > 1. If the condition

c0

(y1 − y2)2
>

N + 3

4
(4.5)

holds, then

sup
ϑ∈�

Eϑ0

(∣∣π̇λ(t, ϑ)
∣∣N + ∣∣π̇μ(t, ϑ)

∣∣N )
< C1, (4.6)
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and, if the condition

c0

(y1 − y2)2
>

2N + 9

8
(4.7)

holds, then

sup
ϑ∈�

Eϑ0

(∣∣π̈λ,λ(t, ϑ)
∣∣N + ∣∣π̈λ,μ(t, ϑ)

∣∣N + ∣∣π̈μ,μ(t, ϑ)
∣∣N )

< C2. (4.8)

Here the constants C1 > 0,C2 > 0 do not depend on t .

Proof. For simplicity, we write

π̇λ(t, ϑ) = π̇λ, π̇μ(t, ϑ) = π̇μ, π(t,ϑ) = π.

Taking the derivative of

dπ = [
μ − (λ + μ)π − π(1 − π)(y1 − y2)

(
y2 + (y1 − y2)π

)]
dt

(4.9)
+ π(1 − π)(y1 − y2)dXt,

we obtain the equations

dπ̇λ = −π dt − π̇λ

[
λ + μ + (1 − 2π)(y1 − y2)

[
y2 + (y1 − y2)π

]
(4.10)

+ π(1 − π)(y1 − y2)
2]dt + π̇λ(1 − 2π)(y1 − y2)dX(t),

dπ̇μ = [1 − π]dt − π̇μ

[
λ + μ + (1 − 2π)(y1 − y2)

[
y2 + (y1 − y2)π

]
(4.11)

+ π(1 − π)(y1 − y2)
2]dt + π̇μ(1 − 2π)(y1 − y2)dX(t).

Using the standard arguments it can be shown that the stochastic process π(t,ϑ) has continuous
derivatives w.r.t. λ and μ with probability 1. If we denote the true value of the parameters by ϑ0

and π(t,ϑ0) = πo etc., then these equations with ϑ = ϑ0 read

dπ̇o
λ = −πo dt − π̇o

λ

[
λ0 + μ0 + πo

(
1 − πo

)
(y1 − y2)

2]dt
(4.12)

+ π̇o
λ

(
1 − 2πo

)
(y1 − y2)dW̄ (t),

dπ̇o
μ = [

1 − πo
]

dt − π̇o
μ

[
λ0 + μ0 + πo

(
1 − πo

)
(y1 − y2)

2]dt
(4.13)

+ π̇o
μ(1 − 2π)(y1 − y2)dW̄ (t),

where

dπo = [
μ0 − (λ0 + μ0)π

o
]

dt + πo
(
1 − πo

)
(y1 − y2)dW̄ (t). (4.14)
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This system is linear with respect to π̇λ and π̇μ and it can be written as follows (xt = πo, yt =
π̇o

λ , zt = π̇o
μ, a = λ0 + μ0, b = y1 − y2)

dxt = [μ0 − axt ]dt + bxt (1 − xt )dW̄t , (4.15)

dyt = −xt dt − [
a + b2xt (1 − xt )

]
yt dt + b(1 − 2xt )yt dW̄t , (4.16)

dzt = [1 − xt ]dt − [
a + b2xt (1 − xt )

]
zt dt + b(1 − 2xt )zt dW̄t . (4.17)

Note that as λ0 > 0 and μ0 > 0, the process π(t,ϑ0) = xt ∈ (0,1) is ergodic with two reflect-
ing boundaries at 0 and 1. Therefore the process πo(t,ϑ0) is ergodic with the invariant density

f (ϑ0, x) = [x(1 − x)]
2(μ0−λ0)

(y1−y2)2
−2

G(ϑ0)
exp

{
−2μ0 + 2(λ0 − μ0)x

(y1 − y2)2x(1 − x)

}

= [x(1 − x)]γ (μ0−λ0)−2

G(ϑ0)
exp

{
−γμ0

x
− γ λ0

1 − x

}
,

where we denote γ = 2(y1 − y2)
−2 and define the normalizing constant

G(ϑ0) =
∫ 1

0

[
x(1 − x)

]γ (μ0−λ0)−2 exp

{
−γμ0

x
− γ λ0

1 − x

}
dx.

The processes yt and zt admit the following expressions

yt = −
∫ t

0
exp

{
−

∫ t

v

[
a + b2xs(1 − xs) − b2

2
(1 − 2xs)

2
]

ds

(4.18)

+ b

∫ t

v

(1 − 2xs)dW̄s

}
xv dv,

zt =
∫ t

0
exp

{
−

∫ t

v

[
a + b2xs(1 − xs) − b2

2
(1 − 2xs)

2
]

ds

(4.19)

+ b

∫ t

v

(1 − 2xs)dW̄s

}
[1 − xv]dv.

Let us put xs = 1
2 − xs . Then we have

xs(1 − xs) − 1

2
(1 − 2xs)

2 = −3x2
s + 1

4

and

yt =
∫ t

0

(
xv − 1

2

)
e−(a+ b2

4 )(t−v) exp

{
3b2

∫ t

v

x2
s ds + 2b

∫ t

v

xs dW̄s

}
dv.



Parameter estimation of hidden telegraph process 2079

To estimate the moments Eϑ0 |yt |N , we note that |xv − 1
2 | ≤ 1

2 and use the Hölder inequality

(∫ t

0

∣∣f (v)g(v)
∣∣dv

)N

≤
(∫ t

0

∣∣f (v)
∣∣ N

N−1 dv

)N−1 ∫ t

0

∣∣g(v)
∣∣N dv

with f (v) = exp{−a(t − v)ε} and

g(v) = exp

{
−

(
a(1 − ε) + b2

4

)
(t − v) + 3b2

∫ t

v

x2
s ds + 2b

∫ t

v

xs dW̄s

}
,

where ε > 0. This yields the estimate

Eϑ0 |yt |N ≤ C(N,ε)

∫ t

0
e−N(a(1−ε)+ b2

4 )(t−v)Eϑ0e
3Nb2

∫ t
v x2

s ds+2Nb
∫ t
v xs dW̄s dv,

where the constant C(N,ε) > 0 does not depend on t . Further, we can write

Eϑ0 exp

{
3Nb2

∫ t

v

x2
s ds + 2Nb

∫ t

v

xs dW̄s

}

= Eϑ0

(
exp

{
2Nb

∫ t

v

xs dW̄s − 2N2b2
∫ t

v

x2
s ds

}

× exp

{
Nb2(2N + 3)

∫ t

v

x2
s ds

})

≤ exp

{
Nb2

4
(2N + 3)(t − v)

}

because x2
s ≤ 1/4, and

Eϑ0 exp

{
2Nb

∫ t

v

xs dW̄s − 2N2b2
∫ t

v

x2
s ds

}
= 1.

Therefore,

Eϑ0 |yt |N ≤ C(N,ε)

∫ t

0
e−N(a(1−ε)+ b2

4 − b2
4 (2N+3))(t−v) dv

= C(N,ε)

∫ t

0
e−N(a(1−ε)− b2

2 (N+1))(t−v) dv.

We see that if

λ0 + μ0

(y1 − y2)2
>

1

2
+ N

2
,
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then Eϑ0 |yt |N ≤ C. In particular, if we set N = 2 in the condition (4.5) and choose a sufficiently
small ε > 0, we get the bound

sup
ϑ0∈�

Eϑ0

∣∣∣∣∂π(t,ϑ0)

∂λ

∣∣∣∣
2

≤ C, (4.20)

where the constant C > 0 does not depend on t .
We also need to estimate the derivatives (4.10), (4.11) for the values ϑ �= ϑ0. The equation for

π̇λ becomes

dπ̇λ = −π dt − π̇λ

[
λ + μ + (1 − 2π)(y1 − y2)

2(π − π0)
(4.21)

+ π(1 − π)(y1 − y2)
2]dt + π̇λ(1 − 2π)(y1 − y2)dW̄ (t).

Hence if we put a = λ + μ,yt = π̇λ and b = y1 − y2, we obtain the equation

dyt = −xt dt − [
a + b2(1 − 2xt )

(
xt − x0

t

) + b2xt (1 − xt )
]
yt dt

+ b(1 − 2xt )yt dW̄t .

The solution of this equation can be written explicitly, similarly to (4.18), but with additional
term b2(1 − 2xt )(xt − x0

t ) in the exponent. This term satisfies the inequality

(1 − 2xt )
(
xt − x0

t

) ≥ −1.

Hence by calculations as above, Eϑ0 |yt |2 will be bounded, if

λ + μ

(y1 − y2)2
>

3

2
+ N

2
.

For the second derivative π̈ = π̈λ,λ(t, ϑ) we obtain similar bounds for the moments as follows.
The equation for π̈ is

dπ̈ = −yt

[
2 − 2b2yt

(
xt − x0

t

) + 2b2yt (1 − 2xt )
]

dt − 2by2
t dW̄t

− π̈
[
a + b2(1 − 2xt )

(
xt − x0

t

) + b2xt (1 − xt )
]

dt + bπ̈(1 − 2xt )dW̄t .

Let us write it as

dπ̈ = A(t)dt + B(t)dW̄t − π̈
[
a + C(t)

]
dt + π̈tD(t)dW̄t

using the obvious notations. Its solution satisfies

∂2π(t,ϑ)

∂λ2
=

∫ t

0
e− ∫ t

v [a+C(s)− 1
2 D(s)2]ds+∫ t

v D(s)dW̄s
[
A(v)dv + B(v)dW̄v

]
.
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The bound

C(s) − D(s)2

2
= b2(1 − 2xs)

(
xs − x0

s

) + b2

2

[
2xs(1 − xs) − (1 − 2xs)

2]

≥ −b2 − 3b2
(

x − 1

2

)2

+ b2

4
= −3b2

4
− 3b2

(
x − 1

2

)2

≥ −3b2

2

holds since (x − 1
2 )2 ≤ 1

4 . Therefore,

a − 3

2
b2 − 2N + 3

4
b2 = a − 9

4
b2 − N

2
b2

and if

λ + μ

(y1 − y2)2
>

9

4
+ N

2
,

then we obtain

Eϑ0

∣∣∣∣∂2π(t,ϑ)

∂λ2

∣∣∣∣
N

< C.

Hence under the condition (4.7), we have

sup
ϑ∈�

Eϑ0

∣∣∣∣∂2π(t,ϑ)

∂λ2

∣∣∣∣
N

< C.

Similar estimates can be obtained for other derivatives and the claimed assertion follows. �

Lemma 6. The solutions (xt , yt , zt ) of the equations (4.15)–(4.17) have the following ergodic
properties

1

T

∫ T

0
ṁλ(t, ϑ0)

2 dt = b2

T

∫ T

0
y2
t dt −→ I11(ϑ0),

1

T

∫ T

0
ṁλ(t, ϑ0)ṁμ(t,ϑ0)dt = b2

T

∫ T

0
ytzt dt −→ I12(ϑ0),

1

T

∫ T

0
ṁμ(t,ϑ0)

2 dt = b2

T

∫ T

0
z2
t dt −→ I22(ϑ0),

where convergence is in the mean square.

Proof. The proof of existence of the invariant measure can be found in Chigansky [3], Sec-
tion 4.2. Note that the equations (4.15)–(4.17) do not coincide with those in Chigansky [3],
where the case λ = μ and y1 = 1, y2 = 0 is considered; however the same arguments apply to
the system of equations (4.15)–(4.17).
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The strong mixing coefficient α(t) for ergodic diffusion process (4.15) satisfies the estimate

α(t) < e−c|t |,

as shown by Veretennikov [19]. The conditions, under which this bound holds, can be checked
by applying the following transformation to the equation (4.15):

ξt = g(xt ), g(x) =
∫ x

1/2

dv

bv(1 − v)
, x ∈ (0,1).

The obtained process solves the stochastic differential equation

dξt = A(ξt )dt + dWt, ξ0 = g(x0), 0 ≤ t ≤ T ,

whose drift coefficient A(·) satisfies the assumptions needed in Veretennikov [19].
Now to verify the convergence

Eϑ0

(
1

T

∫ T

0
y2
t dt − 1

T

∫ T

0
Eϑ0y

2
t dt

)2

= Eϑ0

(
1

T

∫ T

0

[
y2
t − Eϑ0y

2
t

]
dt

)2

−→ 0 (4.22)

we can apply the result of the following lemma. �

Lemma 7. Let {Yt , t > 0} be a stochastic process with zero mean, satisfying

E|Yt |m(2k−1) < C1,

∫ ∞

0
tk−1[α(t)

](m−2)/m dt < C2,

for some m > 2 and k ≥ 1, where α(t) is the strong mixing coefficient. Then

E

∣∣∣∣
∫ T

0
Yt dt

∣∣∣∣
2k

≤ C3T
k.

Proof. For the proof see Lemma 2.1 in Khasminskii [10]. �

The limit (4.22) is obtained by setting Yt = y2
t − Eϑ0y

2
t , m = 3 and k = 1.

Let us now verify consistency of the one-step MLE-process. To this end, we have

Pϑ0

{∣∣ϑ�
T (τ ) − ϑ0

∣∣ > ν
}

≤ Pϑ0

{
|ϑ̄T δ − ϑ0| > ν

2

}

+ Pϑ0

{∣∣∣∣ IτT (ϑ̄T δ )−1

τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)
[
dXs − m(ϑ̄T δ , s)ds

]∣∣∣∣ >
ν

2

}
.

By the Theorem 1, the first term on the right satisfies

Pϑ0

{
|ϑ̄T δ − ϑ0| > ν

2

}
≤ 4

ν2
Eϑ0 |ϑ̄T δ − ϑ0|2 ≤ C

ν2T δ
→ 0.
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The second term can be estimated as follows

Pϑ0

{∣∣∣∣ IτT (ϑ̄T δ )−1

τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)
[
dXs − m(ϑ̄T δ , s)ds

]∣∣∣∣ >
ν

2

}

≤ Pϑ0

{∣∣∣∣ IτT (ϑ̄T δ )−1

τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)dW̄s

∣∣∣∣ >
ν

4

}

+ Pϑ0

{∣∣∣∣ IτT (ϑ̄T δ )−1

τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)
m(ϑ̄T δ , s)ds

∣∣∣∣ >
ν

4

}
,

where 
m(ϑ̄T δ , s) = m(ϑ0, s) − m(ϑ̄T δ , s). We can write∣∣∣∣ IτT (ϑ̄T δ )−1

τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)dW̄s

∣∣∣∣ ≤ ‖IτT (ϑ̄T δ )−1‖
T γ

∣∣∣∣ 1

T δ−γ

∫ τT

T δ

ṁ(ϑ̄T δ , s)dW̄s

∣∣∣∣,
where 0 < γ < δ − 1

2 . Hence

Pϑ0

{∣∣∣∣ IτT (ϑ̄T δ )−1

τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)dW̄s

∣∣∣∣ >
ν

4

}

≤ Pϑ0

{
1

T δ−γ

∣∣∣∣
∫ τT

T δ

ṁ(ϑ̄T δ , s)dW̄s

∣∣∣∣ >

√
ν

2

}

+ Pϑ0

{‖IτT (ϑ̄T δ )−1‖
T γ

>

√
ν

2

}
−→ 0,

as T → ∞, because

Pϑ0

{
1

T δ−γ

∣∣∣∣
∫ τT

T δ

ṁ(ϑ̄T δ , s)dW̄s

∣∣∣∣ >

√
ν

2

}

≤ 1

νT 2δ−2γ
Eϑ0

∫ T

T δ

∣∣ṁ(ϑ̄T δ , s)
∣∣2 ds ≤ C

νT 2δ−2γ−1
→ 0.

Recall that 2δ − 2γ − 1 > 0; then

Pϑ0

{∣∣∣∣ IτT (ϑ̄T δ )−1

τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)
m(ϑ̄T δ , s)ds

∣∣∣∣ >
ν

4

}

≤ Pϑ0

{
1

τT 1−γ

∣∣∣∣
∫ τT

T δ

ṁ(ϑ̄T δ , s)

∫ 1

0
ṁ(ϑv, s)

∗ dv ds(ϑ̄T δ − ϑ0)

∣∣∣∣ >

√
ν

2

}

+ Pϑ0

{‖IτT (ϑ̄T δ )−1‖
T γ

>

√
ν

2

}
−→ 0

as T → ∞, because ϑ̄T δ − ϑ0 = O(T −δ/2) and other terms are bounded in probability (here
ϑv = ϑ0 + v(ϑ̄T δ − ϑ0)).
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To prove (4.4), let us write
√

τT
(
ϑ�

T (τ ) − ϑ0
)

= √
τT (ϑ̂T δ − ϑ0) + IτT (ϑ̄T δ )−1

√
τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)dW̄s

+ IτT (ϑ̄T δ )−1

√
τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)
[
m(ϑ0, s) − m(ϑ̄T δ , s)

]
ds,

and note that

Eϑ0

∣∣∣∣ 1√
τT

∫ τT

T δ

[
ṁ(ϑ̄T δ , s) − ṁ(ϑ0, s)

]
dW̄s

∣∣∣∣
2

≤ 1

τT

∫ τT

T δ

Eϑ0

∣∣ṁ(ϑ̄T δ , s) − ṁ(ϑ0, s)
∣∣2 ds −→ 0

as T → ∞. By the central limit theorem (see, e.g., Theorem 1.19 in Kutoyants [13]) the conver-
gence in distribution

1√
τT

∫ τT

T δ

ṁ(ϑ0, s)dW̄s =⇒ N
(
0, I(ϑ0)

)
holds, since by the Law of Large Numbers

1

τT

∫ τT

T δ

ṁ(ϑ0, s)ṁ(ϑ0, s)
∗ dt −→ I(ϑ0).

Further, let us denote v̂T δ = √
τT (ϑ̂T δ − ϑ0), then we can write

v̂T δ + IτT (ϑ̄T δ )−1

√
τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)
[
m(ϑ0, s) − m(ϑ̄T δ , s)

]
ds

= IτT (ϑ̄T δ )−1
(
IτT (ϑ̄T δ ) − 1

τT

∫ 1

0

∫ τT

T δ

ṁ(ϑ̄T δ , s)ṁ(ϑr , s)
∗ dr ds

)
v̂T δ ,

where ϑr = ϑ̄T δ + r(ϑ̄T δ − ϑ0). The expression

ṁ(ϑr , s) = ṁ(ϑ̄T δ , s) +
∫ 1

0
m̈(ϑq, s)dq(ϑ̄T δ − ϑ0)

and the equality

IτT (ϑ̄T δ ) = 1

τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)ṁ(ϑ̄T δ , s)∗ ds
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give

v̂T δ + IτT (ϑ̄T δ )−1

√
τT

∫ τT

T δ

ṁ(ϑ̄T δ , s)
[
m(ϑ0, s) − m(ϑ̄T δ , s)

]
ds

= √
τT |ϑ̄T δ − ϑ0|2O(1) = T

1
2 −δO(1) −→ 0,

as T → ∞.
Let us verify that the Fisher information matrix is nondegenerate. To this end, it suffices to

show invertibility of the matrix

J(ϑ0) =
(

Eϑ0 ỹ
2
t Eϑ0 ỹt z̃t

Eϑ0 ỹt z̃t Eϑ0 z̃
2
t

)
,

where ỹt , z̃t are stationary solutions of (4.16) and (4.17) respectively. If this matrix is degenerate,
then

Eϑ0 ỹ
2
t Eϑ z̃2

t = (Eϑ0 ỹt z̃t )
2. (4.23)

By the Cauchy–Schwarz inequality

(Eϑ0 ỹt z̃t )
2 ≤ Eϑ0 ỹ

2
t Eϑ0 z̃

2
t

with equality if and only if z̃t = cỹt with some constant c �= 0. Therefore in the case of equality,
we have Eϑ0(cỹt − z̃t )

2 = 0.
Introduce a new process ṽt = cỹt − z̃t as a solution of the equation

dṽt = [
x̃t (1 − c) − 1

]
dt − [

a + b2x̃t (1 − x̃t )
]
ṽt dt + b(1 − 2x̃t )ṽt dW̄t ,

where ṽt and x̃t are stationary.
Further, following Section 4 of Chigansky [3], we can write

ṽt = ṽ0e
−at +

∫ t

0
e−a(t−s)

[
x̃s(1 − c) − 1

]
ds − b2

∫ t

0
e−a(t−s)x̃s(1 − x̃s)ṽs ds

+ b

∫ t

0
e−a(t−s)(1 − 2x̃s)ṽs dW̄s.

Hence,

Eϑ0

(∫ t

0
e−a(t−s)

[
x̃s(1 − c) − 1

]
ds

)2

≤ 4
(
1 + e−2at

)
Eϑ0 ṽ

2
t

+ 4b4

a

∫ t

0
e−a(t−s) 1

16
Eϑ0 ṽ

2
s ds + 4b2

∫ t

0
e−2a(t−s)Eϑ0 ṽ

2
s ds ≤ CEϑ0 ṽ

2
t
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with some constant C > 0 which does not depend on t . By stationarity Eϑ0 ṽ
2
t does not depend

on t and hence non-degeneracy of the matrix J(ϑ0) follows, if we can show that

lim
t→∞ Eϑ0

(∫ t

0
e−a(t−s)

[
x̃s(1 − c) − 1

]
ds

)2

> 0,

for all c. The stochastic process

ζt =
∫ t

0
e−a(t−s)

[
x̃s(1 − c) − 1

]
ds

is the solution of the equation

dζt

dt
= −aζt + x̃t (1 − c) − 1, ζ0 = 0.

Elementary calculations show that for all ϑ0 and c

lim
t→∞ Eϑ0ζ

2
t = Eϑ0 [π̃0(1 − c) − 1]2

a2
> 0,

where π̃0 is a random variable with the density of the invariant distribution of the stochastic
process π(t,ϑ0). Thus the Fisher information matrix I(ϑ0) is nondegenerate for all ϑ0 ∈ �.

Note that, by the Theorem 2, the limit covariance matrix of the one-step MLE-process co-
incides with the covariance of the asymptotically efficient MLE (see Chigansky [3]), therefore
ϑ�

T (τ ) is asymptotically efficient as well.

4.1. Discussion

In this section, we dwell on several possible generalizations of the obtained results.
Using the same arguments as in Kutoyants [15] it is possible to prove the uniform consistency:

for any ν > 0

lim
T →∞ Pϑ0

{
sup

τδ≤τ≤1

∣∣ϑ�
T (τ ) − ϑ0

∣∣ ≥ ν
}

= 0.

Moreover it can be shown that the normalized one-step MLE-process

ηT (τ ) = τ
√

T I(ϑ0)
−1/2(ϑ�

T (τ ) − ϑ0
)
, τ∗ ≤ τ ≤ 1,

converges to the two-dimensional standard Wiener process W(τ), τ∗ ≤ τ ≤ 1, where τ∗ is any
value satisfying τ∗ ∈ (0,1]. For the details, see the proof of a similar result in Kutoyants [15].

The condition M(2) can probably be relaxed, but it needs a special study. The finiteness of
the Fisher information follows from Chigansky [3] and the condition M(2) is basically used to
control the matrix of the second derivatives.
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4.2. Markov chain with d > 2 states

In the case of Markov chain Y(t), t ≥ 0 with d > 2 states, the only essential difficulty in our
approach is the construction of the preliminary estimator. For two states construction of a suitable
preliminary estimator, is relatively easy and it is not immediately clear how to extend it to the
more general setup. If we have some

√
T consistent estimator ϑ̄T of the unknown parameter

ϑ ∈ � ⊂ Rm, then the corresponding one-step MLE-process is

ϑ�
t = ϑ̄T δ + t−1

It (ϑ̄T δ )−1
∫ t

T δ

ṁ(ϑ̄T δ , s)
[
dXs − m(ϑ̄T δ , s)ds

]
, T δ ≤ t ≤ T ,

where δ ∈ ( 1
2 ,1). Asymptotic efficiency

√
τT

(
ϑ�

τT − ϑ0
) =⇒ N

(
0, I(ϑ0)

−1),
can be shown, applying the arguments from this paper. Note that the estimator ϑ�

T is computa-
tionally simpler than the MLE ϑ̂T .

For the discrete time hidden Markov models with d ≥ 2 states, the MLE studied in for exam-
ple, Bickel et al. [1], can be used as the preliminary estimator for the one-step MLE-process,
constructed as in our paper. The obtained online estimator of the unknown parameter will have
asymptotically optimal properties.

4.3. Two-step MLE-process

The learning interval [0, T δ] with δ ∈ ( 1
2 ,1) is negligible with respect to the observations time T .

It can be made even shorter, if we use two-step MLE-process approach, as it was proposed
by Kutoyants [15]. This modification uses the learning interval [0, T δ) with δ ∈ ( 1

3 , 1
2 ]. The

procedure is as follows. First, we obtain the preliminary estimator ϑ̄T δ by applying our Method
of Moments estimator to the observations XT δ = (Xs,0 ≤ s ≤ T δ). By (3.9)

T δEϑ0 |ϑ̄T δ − ϑ0|2 ≤ C,

where the constant C > 0 does not depend on T .
Then we introduce the second preliminary estimator-process

ϑ̄t,T = ϑ̄T δ + t−1/2
It (ϑ̄T δ )−1
t

(
ϑ̄T δ ,Xt

)
, t ∈ [

T δ, T
]
.

The two-step MLE-process is

ϑ��
t,T = ϑ̄t,T + t−1/2

It (ϑ̄T δ )−1
t

(
ϑ̄T δ , ϑ̄t,T ,Xt

)
, t ∈ [

T δ, T
]
,

where


t

(
ϑ1, ϑ2,X

t
) = 1√

t

∫ t

T δ

ṁ(ϑ1, s)
[
dXs − m(ϑ2, s)ds

]
, t ∈ [

T δ, T
]
.
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It can be shown that for all τ ∈ (0,1] and t = τT we have the asymptotic normality of the
estimator ϑ��

T (τ ) = ϑ��
τT ,T :

√
τT

(
ϑ��

T (τ ) − ϑ0
) =⇒ N

(
0, I(ϑ0)

−1). (4.24)

The first step of the proof is to study the expression

T
γ
2 (ϑ̄τT ,T − ϑ0) = T

γ
2 (ϑ̄T δ − ϑ0) + T −1+ γ

2 IτT (ϑ̄T δ )−1
τT,T

(
ϑ0,X

t
)

+ T −1+ γ
2 IτT (ϑ̄T δ )−1

∫ τT

T δ

ṁ(ϑ̄T δ , s)
[
m(ϑ0, s) − m(ϑ̄T δ , s)

]
ds.

We can show that if 2
3 < γ < 2δ, then T

γ
2 (ϑ̄τT ,T − ϑ0) is bounded in probability and we have

(4.24).
The proof is omitted, being similar in spirit to that in Kutoyants [15]. Note however that such

two-step MLE-process lacks the advantage of being computationally efficient: its construction
requires generating the family of filters m(ϑ̄s,T , s) for all ϑ̄s,T , s ∈ [T δ, t], while for one-step
MLE-process, m(ϑ, s) is to be computed only for the single value ϑ = ϑ̄T δ .

4.4. Kalman filter

The proposed device is universal and can be applied to construct asymptotically efficient estima-
tors (estimator-processes) in other models. Let us consider the following simple example of the
partially observed system

dXt = (λ + μYt )dt + dWt, X0 = 0,

dY(t) = −aY (t)dt + dVt , Y0,

where Wt, t ≥ 0 and Vt , t ≥ 0 are two independent Wiener processes and a > 0 is a known con-
stant. The unknown parameter ϑ = (λ,μ) ∈ � = (c0, c1)× (c3, c4) has to be estimated, using the
sample XT = (Xt ,0 ≤ t ≤ T ). Let us define n(ϑ, t) = Eϑ(Y (t)|FX

t ) and m(ϑ, t) = λ+μn(ϑ, t),
where FX

t = σ {Xs,0 ≤ s ≤ t}. The conditional expectation n(ϑ, t) satisfies the Kalman–Bucy
filtering equations

dn(ϑ, t) = −an(ϑ, t)dt + μγt (μ)
[
dXt − (

λ + μn(ϑ, t)
)

dt
]
, n(ϑ,0),

∂γt (μ)

∂t
= −2aγt (μ) − γt (μ)2μ2 + 1, γ0, 0 ≤ t ≤ T

and the log-likelihood function is given by

L
(
ϑ,XT

) =
∫ T

0
m(ϑ, t)dXt − 1

2

∫ T

0
m(ϑ, t)2 dt, ϑ ∈ �.

Calculation of the MLE ϑ̂T requires m(ϑ, t) for all ϑ ∈ �, t ∈ [0, T ] (see, e.g., Section 3.1 in
Kutoyants [13]) and hence we are faced with the computational problem of the same complexity
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as for the model considered in this paper. One-step procedure can reduce the computational load,
while attaining the optimal performance in the large sample limit.

A reasonable choice of the preliminary estimator is ϑ̄T = (λ̄T , μ̄T ) with

λ̄T = XT

T
, μ̄T =

√
ζT

K
,

where we denoted

ζT = max(ζ̄T ,0), ζ̄T = 1

T

T −1∑
i=0

[Xi+1 − Xi − λ̄T ]2 − 1, K = E
(∫ 1

0
Y ∗

s ds

)2

.

Here Y ∗
s is the stationary process satisfying the same equation as Y(s). It can be shown that

Eϑ0

∣∣√T (ϑ̄T − ϑ0)
∣∣2

< C.

Introduce the learning interval [0, T δ] with δ ∈ ( 1
2 ,1) and the one-step MLE

ϑ�
T = ϑ̄T δ + IT (ϑ̄T δ )−1T −1

∫ T

T δ

ṁ(ϑ̄T δ , t)
[
dXt − (

λ̄T δ + μ̄T δn(ϑ̄T δ , t)
)

dt
]
.

Using the same arguments as above, we can verify the convergence

√
T

(
ϑ�

T − ϑ0
) =⇒ N

(
0, I(ϑ0)

−1).
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