
Bernoulli 24(3), 2018, 2043–2063
https://doi.org/10.3150/16-BEJ919

Deviation of polynomials from their
expectations and isoperimetry
LAVRENTIN M. ARUTYUNYAN* and EGOR D. KOSOV**

National Research University Higher School of Economics, Moscow, Russia.
E-mail: *lavrentin@yandex.ru; **ked_2006@mail.ru

The article is divided into two parts. In the first part, we study the deviation of a polynomial from its
mathematical expectation. This deviation can be estimated from above by Carbery–Wright inequality, so
we investigate estimates of the deviation from below. We obtain such type estimates in two different cases:
for Gaussian measures and a polynomial of an arbitrary degree and for an arbitrary log-concave measure but
only for polynomials of the second degree. In the second part, we deal with the isoperimetric inequality and
the Poincaré inequality for probability measures on the real line that are images of the uniform distributions
on convex compact sets in R

n under polynomial mappings.
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Polynomials on spaces endowed with log-concave measures possess a number of important and
useful properties. These properties have been studied in many works, see, for example, [1,4,5,
16,26]. Some authors (see [11,12,27,28]) also consider the special case of Gaussian measures.

Results about polynomial images of log-concave measures find many applications in various
fields. One of such applications is concerned with geometrical properties of convex bodies, espe-
cially when the dimension tends to infinity. For example, Bourgain [16] proved an upper bound in
the hyperplane conjecture using a Khinchin-type inequality for polynomials of a fixed degree on
convex bodies (about this inequality see also [4,5]). It should be remarked that the best known up-
per bound in the hyperplane conjecture is due to Klartag (see [23]). On the other hand, properties
of polynomials and polynomial distributions play an important role in probabilistic questions. In
particular, Gaussian measures are also logarithmically concave and there are certain properties of
Gaussian measures that were proved only in the framework of general logarithmically concave
measures. One of them is the following Carbery–Wright inequality that holds for any polynomial
f of degree d and any log-concave measure μ on R

n (see [17], Theorem 2):

‖f ‖1/d

L1(μ)
μ

(
x : ∣∣f (x)

∣∣ ≤ α
) ≤ C(d)α1/d .

This inequality has already found interesting applications in probability theory (see, for exam-
ple, [27,28]). Concentration and anti-concentration inequalities play an important role in modern
probability theory. One of such inequalities is well-known estimate of large deviation for Lip-
schitz functions on Gaussian space (see [9], Theorem 4.5.6). On the other hand, many articles
study Lévy concentration function (see [20,24]), which is closely related to the anti-concentration
inequalities, and which is used in study of properties of random matrices (see [29,30]).
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In the first part of this work, we discuss inequalities that are reverse in some sense to the
Carbery–Wright inequality, more precisely, inequalities of the form

μ
(|f − mf | ≤ σf s

) ≥ C(d)ϕ(s),

where f is a polynomial of degree d and mf and σ 2
f are its expectation and variance, respectively,

and s ∈ [0,1/2]. We prove inequalities of such a type in two different cases. In the first case, the
measure μ is Gaussian and ϕ(s) = s| ln s|−d/2 (see Theorem 2.3). In the second case, the measure
μ is an arbitrary log-concave measure and the degree of the polynomial f is at most two while
ϕ(s) = s (see Theorem 2.9). The main feature of our inequalities is their independence of the
dimension of the space and of the measure μ itself.

The second part of our work is devoted to the isoperimetric inequality and the Poincaré in-
equality for distributions of polynomials. It is well known that for the standard Gaussian measure
on R

n both inequalities hold true (see [9,15,31]). For log-concave measures, inequalities of these
types have been studied in [3,22]. In our work, these inequalities are proved for probability mea-
sures on the real line that are polynomial images of the uniform distributions on convex compact
sets in R

n (see Theorem 3.5 and Corollaries 3.6 and 3.7). The study of the Poincaré inequality for
the distributions of random variables is an important step in the study of the Poincaré inequality
for multidimensional measures (see [6]). For example, it is known that the Poincaré inequality is
stable under taking product of measures (see [7,8]). The work [8] established the precise value of
constant in the isoperimetric inequality and in the Poincaré inequality for one dimensional dis-
tributions, but it is given in terms of the distribution function and the density of the distribution
that are usually hard to calculate explicitly. In our case, we obtain the estimate of these constants
by other means, which allows to avoid difficulties concerning study of the distribution function.

One of the main tools used in this paper is the so-called localization technique (see [22,25]).
The idea of localization of a problem was used in many papers as an approach for obtaining es-
timates in multidimensional spaces. For example, it was used to study isoperimetric inequalities
for the uniform distributions on convex bodies in [22] and for the distributions on spheres in
[21]. Also it was used in [4,5] in the proof of Khinchin-type inequalities for polynomials. This
technique allows to reduce some multidimensional inequalities to one-dimensional ones. In the
case of polynomials it is especially convenient, because a restriction of a polynomial to a straight
line is again a polynomial. A new approach to the ideas of localization was developed in [19],
where localization is interpreted as a property of extreme points of some special convex sets in
the space of all probability measures.

1. Preliminaries

First of all, we introduce some notation and mention certain previously known results used in
our work.

Let μ be a probability measure on R
n and let f be a μ-measurable function. We use the

following notation:

μf = μ ◦ f −1 is the image of the measure μ under the mapping f,
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mf =
∫

f dμ is the expectation of the random variable f,

σ 2
f =

∫
(f − mf )2 dμ is the variance of the random variable f,

αf =
∫

|f − mf |dμ,

‖f ‖p =
(∫

|f |p dμ

)1/p

for p > 0, ‖f ‖0 = exp

(∫
ln |f |dμ

)
= lim

r→0
‖f ‖r .

Let IA denote the indicator function of a set A.
A probability measure μ on R

n is called logarithmically concave (also log-concave or convex)
if it has a density of the form e−V with respect to Lebesgue measure on some affine subspace,
where V is a convex function (possibly with infinite values) on this subspace (see [10]). This
property is equivalent (see [13,14]) to the property that for every pair of Borel sets A,B one has

μ
(
tA + (1 − t)B

) ≥ μ(A)tμ(B)1−t , ∀t ∈ [0,1].
There are two important examples of log-concave measures. First, a uniform distribution on an
arbitrary convex body in R

n is a logarithmically concave measure. Second, any Gaussian measure
(e.g., the Wiener measure generated by the Wiener process) is also a log-concave measure.

A polynomial of degree d is a function f on R
n of the form

f (x) =
d∑

m=0

Bm(x, . . . , x) =
d∑

m=0

∑
ii+···+in=m

bm
i1,...,in

x
i1
1 · · ·xin

n ,

where B(x1, . . . , xm) is a symmetric m-linear function.
Let ν be a probability measure on the real line. Define the ν-perimeter of a set A by the

following formula:

ν+(A) = lim inf
ε→0

ν(A + (−ε, ε)) − ν(A)

ε
.

The proofs of our main results use the following known facts.

Theorem 1.1 (see [4], Theorem 1, [5], Theorem 3). There is an absolute constant c such that,
for every log-concave measure μ on R

n, every polynomial f of degree d , and every number
q ≥ 1, the following inequalities hold true:

‖f ‖q ≤ (cqd)d‖f ‖0, ‖f ‖q ≤ (cq)d‖f ‖1.

The property in the theorem above is sometimes called hypercontractivity, especially when we
deals with Gaussian measures, when polynomials are eigenfunctions of the Ornstein–Uhlenbeck
operator.

Some infinite-dimensional analogues of previous theorem are presented in [1].
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Theorem 1.2 (see [1], Theorem 2.1). There is an absolute constant C such that, for every log-
concave measure μ on R

n, every set U of positive μ-measure, and every polynomial f of de-
gree d , the following estimate holds:

μ(U)d+1
∫

|f |dμ ≤ (Cd)2d

∫
U

|f |dμ.

Let us recall two localization lemmas. The first one is concerned with log-concave measures.

Theorem 1.3 (see [19], Theorem 1 and Corollary 1, [22], Theorem 2.7). Let f1, f2 be a pair
of two upper semi-continuous nonnegative functions on R

n and let f3, f4 be a pair of two lower
semi-continuous nonnegative functions on R

n. Suppose that for every compact interval � =
[a, b] ⊂R

n and every measure ν with a density of the form e� with respect to Lebesgue measure
on �, where � is an affine function on �, one has

(∫
�

f1 dν

)α(∫
�

f2 dν

)β

≤
(∫

�

f3 dν

)α(∫
�

f4 dν

)β

.

Then the following inequality holds for every log-concave measure μ on R
n:

(∫
f1 dμ

)α(∫
f2 dμ

)β

≤
(∫

f3 dμ

)α(∫
f4 dμ

)β

.

The second localization lemma is applicable in the case of uniform distributions on convex
bodies.

Theorem 1.4 (see [19], Theorem 1 and Corollary 1, [22], Corollary 2.2, [25], Lemma 2.5).
Let f1, f2 be a pair of two upper semi-continuous nonnegative functions on R

n and let f3, f4

be a pair of two lower semi-continuous nonnegative functions on R
n. Suppose that for every

compact interval � = [a, b] ⊂ R
n and every measure ν with a density of the form (αt + β)n−1

with respect to Lebesgue measure on � one has

(∫
�

f1 dν

)α(∫
�

f2 dν

)β

≤
(∫

�

f3 dν

)α(∫
�

f4 dν

)β

.

Then the following inequality holds for every convex body K in R
n:

(∫
K

f1 dλ

)α(∫
K

f2 dλ

)β

≤
(∫

K

f3 dλ

)α(∫
K

f4 dλ

)β

,

where λ is Lebesgue measure.
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2. Behavior of the distribution of a polynomial in a
neighbourhood of its expectation

In this section, we estimate from below the measure of small deviations of a polynomial from its
mean.

In the following lemma, we present the proof, kindly proposed by one of our referees, which
is far shorter than the original one.

Lemma 2.1. For every number d ∈N there are positive constants c(d) and s(d) depending only
on the number d such that for every log-concave measure μ on R

n and for every polynomial f

of degree d with αf > 0 and mf = 0 one has

μ(f ≥ εαf ) ≥ c(d) for every number ε ∈ [
0, s(d)

]
.

Proof. Note that in our case ‖f ‖1 = αf , since the polynomial f is of zero mean. By Theorem
1.1 and by Carbery–Wright inequality ([17], Theorem 2), one has

αf =
∫

|f |dμ =
∫

f >0
f dμ −

∫
f <0

f dμ = 2
∫

f >0
f dμ

= 2

(∫
f ≥εαf

f dμ +
∫

0<f <εαf

f dμ

)
≤ 2‖f ‖2

(√
μ(f ≥ εαf ) +

√
μ

(|f | < εαf

))
≤ 2(2c)dαf

(√
μ(f ≥ εαf ) +

√
C(d)ε1/d

)
,

where in the third equality we have used the fact that mf = 0. Thus, we have

μ(f ≥ εαf ) ≥ (
2−1(2c)−d −

√
C(d)ε1/d

)2
.

We immediately conclude the statement of the lemma taking ε small enough. �

Taking ε = 0 one can obtain the following corollary.

Corollary 2.2. For every number d ∈ N there is a constant c(d) ∈ (0,1) depending only on d

such that for every log-concave measure μ on R
n and for every polynomial f of degree d with

σf > 0 one has

1 − c(d) ≥ μ(f < mf ) ≥ c(d).

A. The case of a Gaussian measure
First, we consider the case of the standard Gaussian measure on R

n and a polynomial of an
arbitrary degree.

Below we need the following elementary estimate. Let f be a smooth function on R
n. Let

Dmf (x) denote the m-fold derivative of f , that is, a multilinear function such that

dm

dtm
f (x + th)

∣∣∣∣
t=0

= Dmf (x)(h, . . . , h).
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Let now f be a polynomial of degree d on R
n. Set

ϕ(t) = f
(
x + t (y − x)

)
.

Then one has

f (y) = ϕ(1) = ϕ(0) +
d∑

m=1

(m!)−1ϕ(m)(0) = f (x) +
d∑

m=1

(m!)−1Dmf (x)(y − x, . . . , y − x),

thus,

∣∣f (y) − f (x)
∣∣ ≤

d∑
m=1

(m!)−1
∣∣Dmf (x)

∣∣|y − x|m, (2.1)

where |Dmf (x)|2 = ∑
i1,...,im

|∂xi1 ,...,xim
f (x)|2.

We also need the following estimate for the standard Gaussian measure γ on R
n:

∥∥Dmf
∥∥2

2 :=
∫ ∣∣Dmf

∣∣2
dγ ≤ a(m,d)σ 2

f , (2.2)

where the constant a(m,d) depends only on m and d and is independent of the dimension n.
This estimate follows from the equivalence of the Sobolev and Lp-norms on the space of all
polynomials of a fixed degree (see [9], Corollary 5.5.5).

Let us recall the isoperimetric inequality for Gaussian measures (see [31], Theorem 3 and The-
orem 4, [15], Theorem 3.1, [9], Theorem 4.3.1), which is used in the proof of the next theorem.
Let γ be the standard Gaussian measure on R

n, let C be a measurable set in R
n, and let B be the

closed unit ball centered at the origin. Then

γ (C + εB) ≥ (a + ε), (2.3)

where  is the distribution function of the standard Gaussian random variable on the real line
and the number a is chosen from the relation γ (C) = (a).

For a Gaussian measure, there is the following estimate for the tails of a polynomial f of
degree d :

γ
(|f | > ‖f ‖2t

d
) ≤ R exp

(−rt2) (2.4)

for every t > 0 and some positive constants R and r (see [9], Corollary 5.5.7).

Theorem 2.3. Let γ be the standard Gaussian measure on R
n. Then for every number d ∈ N

there exists a number L(d) > 0, which depends only on d and is independent of anything else,
such that for every polynomial f of degree d the estimate

γ
(|f − mf | ≤ σf s

) ≥ L(d)s| ln s|−d/2 holds for every s ∈ (0,1/2].



Deviation of polynomials from their expectations and isoperimetry 2049

Proof. Without loss of generality, we can assume that mf = 0. Fix a number t > 1 (this number
will be chosen later). Let B be the unit ball in R

n centered at the origin. For ε < 1 consider the
set

A = ({f < 0} + εB
) ∩ ({f > 0} + εB

) ∩
d⋂

m=1

{∣∣Dmf (x)
∣∣ ≤ td−m

∥∥Dmf
∥∥

2

}
.

Note that by (2.1) we have A ⊂ {|f | ≤ ∑d
m=1(m!)−1td−m‖Dmf ‖2ε

m}. Since t > 1 and ε < 1,
we have εm ≤ ε, td−m ≤ td , and inequality (2.2) yields the estimate

d∑
m=1

(m!)−1td−m
∥∥Dmf

∥∥
2ε

m ≤ C(d)σf tdε,

where C(d) is a constant, which depends only on the degree d of a polynomial. Thus, we have
the inclusion

A ⊂ {|f | ≤ C(d)σf tdε
}
.

Let af be the number such that γ (f < 0) = (af ). Using the Gaussian isoperimetric inequality
(2.3), we can estimate the measure of the set A as follows:

γ (A) ≥ 1 − (
1 − γ

({f < 0} + εB
)) − (

1 − γ
({f > 0} + εB

))
−

d∑
m=1

γ
(∣∣Dmf (x)

∣∣ ≥ td−m
∥∥Dmf

∥∥
2

)

≥ −1 + (af + ε) + (−af + ε) − R

d∑
m=1

e−rt2

= (af + ε) − (af ) + (−af + ε) − (−af ) − Rde−rt2
.

In the second inequality, estimate (2.4) and isoperimetric inequality (2.3) were used and in the
last step the equality (−af ) = 1 − (af ) was used.

By Corollary 2.2, there is a number c(d) such that

1 − c(d) ≥ γ (f < mf ) ≥ c(d),

so, there is a constant a(d) such that for every polynomial f of degree d with zero expectation
one has |af | ≤ a(d). Let q(d) be the minimal value of the standard Gaussian density on the
interval [−a(d) − 1, a(d) + 1]. Then (af + ε) − (af ) ≥ q(d)ε and similarly (−af + ε) −
(−af ) ≥ q(d)ε. Therefore,

γ
(|f | ≤ C(d)σf tdε

) ≥ γ (A) ≥ 2q(d)ε − Rde−rt2
.
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Let 0 < s < e−1, ε = C(d)−12−drd/2s| ln s|−d/2, t = 2r−1/2| ln s|1/2. Then

γ
(|f | ≤ σf s

) ≥ 2q(d)C(d)−12−drd/2s| ln s|−d/2 − Rde−2| ln s|

= 2q(d)C(d)−12−drd/2s| ln s|−d/2 − R ds2.

There is a number s0 = s0(d) ∈ (0, e−1) such that for any s ≤ s0 one has

γ
(|f | ≤ σf s

) ≥ q(d)C(d)−12−drd/2s| ln s|−d/2.

For every s ∈ (s0,1/2], we have

γ
(|f | ≤ σf s

) ≥ γ
(|f | ≤ σf s0

) ≥ q(d)C(d)−12−drd/2s0| ln s0|−d/2

≥ q(d)C(d)−12−drd/2s0| ln s0|−d/2
(

max
τ∈[s0,1/2]

τ | ln τ |−d/2
)−1

s| ln s|−d/2.

Thus, there is a positive constant L(d) such that

γ
(|f | ≤ σf s

) ≥ L(d)s| ln s|−d/2,

whenever 0 ≤ s ≤ 1/2. �

Remark 2.4. We note that up to a logarithmic factor | ln s|−d/2, the estimate in the previous the-
orem is close to optimal. Indeed, one can find a polynomial f such that f (x) = (x −mf )(xd−1 +
xd−2). For such a polynomial we have f (x) ∼ C(x − mf ) in the neighborhood of the point mf ,
so, γ (|f | ≤ s) ∼ C1s for small s.

B. The case of a log-concave measure and a polynomial of degree two
Here we obtain an estimate that is sharper than the previous one in the case of an arbitrary

log-concave measure, but only for polynomials of degree 2. The proof in this case relies on the
following lemma.

Lemma 2.5. There is an absolute constant c such that for every polynomial f of degree two on
the real line and for every pair of positive numbers s and ε we have the inequality

ε

∫ s

0
e−t I{f ≤−ε} dt

∫ s

0
e−t I{f ≥ε} dt ≤ c

∫ s

0
e−t I{|f |<ε} dt

∫ s

0
e−t

∣∣f (t)
∣∣dt. (2.5)

Proof. Without loss of generality, we can assume that the coefficient at the highest degree term
of the polynomial f is 1. Suppose first that s ≥ 1.

If the left-hand side is not zero, then there is a root of the polynomial f in the interval (0, s).
Let τ denote the minimal root in (0, s) and let σ be the second root (which may or may not be
in this interval). Then on the interval (0, τ ) the polynomial f is either strictly positive or strictly
negative, hence, ∫ s

0
e−t I{f ≤−ε} dt

∫ s

0
e−t I{f ≥ε} dt ≤

∫ ∞

τ

e−t dt = e−τ .
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Thus, we have to obtain the estimate

εe−τ ≤ c

∫ s

0
e−t I{|f |<ε} dt

∫ s

0
e−t

∣∣f (t)
∣∣dt.

By Theorems 1.1 and 1.2 for a polynomial g of degree d , affine functions �1, �2 and a log-
concave measure ν we have

‖g‖L1(ν) ≥ (2c)−d‖g‖L2(ν),

16c2‖�1‖2
L2(ν)

‖�2‖2
L2(ν)

≥ ‖�1�2‖2
L2(ν)

≥ (2c)−2‖�1‖2
L2(ν)

‖�2‖2
L2(ν)

,∫
A

|g|dν ≥ (Cd)−2dν(A)1+d

∫
|g|dν,

where in the second estimate for the right-hand side we used the inequality ‖�1�2‖2 ≥ ‖�1�2‖0

and the multiplicative property of the ‖ · ‖0 (‖�1�2‖0 = ‖�1‖0‖�2‖0) along with Theorem 1.1
and for the left-hand side we used Theorem 1.1, the multiplicative property of the ‖ · ‖0, and
the estimates ‖�1‖0 ≤ ‖�1‖2, ‖�2‖0 ≤ ‖�2‖2. Applying these inequalities to the functions g = f ,
�1(t) = t − τ , �2(t) = t − σ and to the measure dν = e−t I{t>0} dt , we obtain that∫ s

0
e−t

∣∣f (t)
∣∣dt ≥ (2C)−4(1 − e−s

)3
∫ ∞

0
e−t

∣∣f (t)
∣∣dt

≥ (2C)−4(2c)−2(2c)−2(1 − e−s
)3

(∫ ∞

0
(t − σ)2e−t dt

∫ ∞

0
(t − τ)2e−t dt

)1/2

≥ (2C)−4(2c)−2(2c)−2(1 − e−1)3(1 + (1 − τ)2)1/2(1 + (1 − σ)2)1/2
,

where in the last estimate we have used the inequality 1 − e−s > 1 − e−1 for s ≥ 1 and we have
calculated the integrals. Let us pick a point u such that τ ∈ [u,u + 1] ⊂ [0, s]. Then |t − σ | ≤
|τ − σ | + 1 for t ∈ [u,u + 1].

Let us firstly consider the case ε < 1
2 (1 + |τ − σ |). In this case

∫ s

0
e−t I{|f |<ε} dt ≥ e−τ−1

∫ u+1

u

I{|t−τ |<ε(|τ−σ |+1)−1} dt ≥ e−τ−1ε
(|τ − σ | + 1

)−1
.

Note that

inf
τ,σ

(1 + (1 − τ)2)1/2(1 + (1 − σ)2)1/2

|τ − σ | + 1
≥ (

√
3)−1 > 0.

Thus, in the case when ε < 1
2 (1 + |τ − σ |) the desired estimate is proved.

Now let us consider the case ε ≥ 1
2 (1 + |τ − σ |). If

ε ≤ 2
(
1 − e−1)−1

∫ ∞

0
e−t

∣∣f (t)
∣∣dt,
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then ∫ s

0
e−t I{|f |<ε} dt ≥ e−τ−1

∫ u+1

u

I{|t−τ |<ε(|τ−σ |+1)−1} dt

≥ e−τ−1
∫ u+1

u

I{|t−τ |<1/2} dt ≥ e−τ−1/2.

Using the estimate ∫ s

0
e−t

∣∣f (t)
∣∣dt ≥ (2C)−4(1 − e−1)−1

∫ ∞

0
e−t

∣∣f (t)
∣∣dt, (2.6)

which was obtained above, we also get the desired inequality in this case. If now

ε ≥ 2
(
1 − e−1)−1

∫ ∞

0
e−t

∣∣f (t)
∣∣dt,

then, by Chebyshev’s inequality∫ s

0
e−t I{|f |≥ε} dt ≤

∫ ∞

0
e−t I{|f |≥ε} dt ≤ ε−1

∫ ∞

0
e−t

∣∣f (t)
∣∣dt.

On the other hand, using previous estimate and the fact, that s ≥ 1, we have∫ s

0
e−t I{|f |<ε} dt ≥

∫ s

0
e−t dt −

∫ s

0
e−t I{|f |≥ε} dt

≥ 1 − e−1 − ε−1
∫ ∞

0
e−t

∣∣f (t)
∣∣dt ≥ (

1 − e−1)2−1.

Using again the estimate (2.6) and estimating one of the integrals in the left-hand side of (2.5) by
one, we have

ε

∫ s

0
e−t I{f ≤−ε} dt

∫ s

0
e−t I{f ≥ε} dt ≤ ε

∫ s

0
e−t I{|f |≥ε} dt ≤

∫ ∞

0
e−t

∣∣f (t)
∣∣dt

≤ (2C)4(1 − e−1)∫ s

0
e−t

∣∣f (t)
∣∣dt

≤ 2(2C)4
∫ s

0
e−t I{|f |<ε} dt

∫ s

0
e−t

∣∣f (t)
∣∣dt.

Thus, the desired estimate is also valid in the considered case.
Now let s < 1. In this case e−1 ≤ e−t ≤ 1 on [0, s] and our estimate in this case is equivalent

to the following one:

ε

∫ s

0
I{f ≤−ε} dt

∫ s

0
I{f ≥ε} dt ≤ c

∫ s

0
I{|f |<ε} dt

∫ s

0

∣∣f (t)
∣∣dt.
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Moreover, after a linear change of variables, we can assume s = 1, i.e., the desired inequality
takes the form

ε

∫ 1

0
I{f ≤−ε} dt

∫ 1

0
I{f ≥ε} dt ≤ c

∫ 1

0
I{|f |<ε} dt

∫ 1

0

∣∣f (t)
∣∣dt,

probably for some other ε > 0 and some other polynomial f . It can be easily seen that if we
multiply the integrand by e−t in each integral, then each integral will differ from the former one
by the factor which belongs to [1, e]. So, this case follows from the previous one for s = 1. �

Remark 2.6. The estimate from Lemma 2.5 can not be extended to polynomials of the third
degree. It is sufficient to take

s = ∞, f (t) = (t + 1)2(t − a).

Indeed, for a > 1 and ε < 1 we note that f (t) < −a < −1 < −ε for t ∈ (0, a − 1) and f (t) >

(a + 2)2 > 1 > ε for t > a + 1. Thus, {f ≤ −ε} ⊃ (0, a − 1), {f ≥ ε} ⊃ (a + 1,+∞), and
{|f | ≤ ε} ∩ [0,+∞) ⊂ (a − 1, a + 1). So,∫ +∞

0
e−t I{f ≤−ε} dt

∫ +∞

0
e−t I{f ≥ε} dt ≥

∫ a−1

0
e−t dt

∫ +∞

a+1
e−t dt = (

1 − e1−a
)
e−a−1;

∫ +∞

0
e−t I{|f |<ε} dt ≤

∫ a+1

a−1
e−t I{(t+1)2|t−a|<ε} dt

≤
∫ a+1

a−1
e−t I{a2|t−a|<ε} dt ≤ e1−a2εa−2;

∫ +∞

0
e−t (t + 1)2|t − a|dt ≤

(∫ +∞

0
e−t (t + 1)4 dt

)1/2(∫ +∞

0
e−t (t − a)2 dt

)1/2

=
(∫ +∞

0
e−t (t + 1)4 dt

)1/2(
1 + (a − 1)2)1/2

≤ 2a

(∫ +∞

0
e−t (t + 1)4 dt

)1/2

.

Thus, if estimate (2.5) is valid for such polynomials f of the third degree with an absolute
constant, then for another absolute constant c̃ one has

ε
(
1 − e1−a

)
e−a−1 ≤ c̃e1−a2εa−2a,

which can not be true for a large enough.

Remark 2.7. If the estimate from Lemma 2.5 were true for∫ s

0
e−t

∣∣f (t) − r
∣∣dt instead of

∫ s

0
e−t

∣∣f (t)
∣∣dt
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for every r > 0, the isoperimetric inequality in the Cheeger form would be true for the distribution
of any polynomial, see Lemma 3.1 and Theorem 3.5. However, this inequality cannot be true for
an arbitrary log-concave measure. Indeed, this inequality for an arbitrary polynomial of degree
two would have implied the exponential integrability of such polynomials with respect to an
arbitrary log-concave measure (see [2]).

Lemma 2.8. There is an absolute constant c such that, for every polynomial of the second degree
on R

n, every log-concave measure μ, and every positive number ε, the following inequality holds:

ε

∫
I{f ≤−ε} dμ

∫
I{f ≥ε} dμ ≤ c

∫
I{|f |<ε} dμ

∫
|f |dμ.

Proof. The functions f1 = εI{f ≤−ε}, f2 = I{f ≥ε} are upper semi-continuous and the functions
f3 = cI{|f |<ε} and f4 = |f | are lower semi-continuous. Hence, one can apply the Theorem 1.3.
Thus, it is sufficient to prove the following inequality:

ε

∫ r

s

e�(t)I{f ≤−ε} dt

∫ r

s

e�(t)I{f ≥ε} dt ≤ c

∫ r

s

e�(t)I{|f |<ε} dt

∫ r

s

e�(t)|f |dt,

where � is an affine function. By a linear change of variables, this estimate can be reduced to the
estimate from Lemma 2.5. Hence, the theorem is proved. �

Theorem 2.9. There is a constant C > 0 such that for every polynomial of degree 2 on R
n and

every log-concave measure μ the following estimate holds:

μ
{|f − mf | < ε

}∫
|f − mf |dμ ≥ Cε for ε < αf .

Proof. This estimate follows from the previous theorem and Lemma 2.1. �

3. The isoperimetric and Poincaré inequalities

The following lemma is an analog of Lemma 2.5 for polynomials of an arbitrary degree, but for
measures with a density of the form tn on some interval instead of e−t .

Lemma 3.1. For every pair of numbers d,n ∈ N there is a constant c(d,n), depending only on
d and n, such that for every polynomial f of degree d on the real line and every pair of positive
numbers s, ε one has

ε

∫ s+1

s

tnI{f ≤−ε} dt

∫ s+1

s

tnI{f ≥ε} dt ≤ c(d,n)

∫ s+1

s

tnI{|f |<ε} dt

∫ s+1

s

tn
∣∣f (t)

∣∣dt.
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Proof. Without loss of generality, we can assume that the coefficient at the highest degree term
of the polynomial f is 1, that is, f is of the form

f (t) =
d∏

i=1

(t − ti ).

Let

μs(dt) :=
(∫ s+1

s

tn dt

)−1

I[s,s+1]tn dt,

ms :=
∫

tμs(dt), σ 2
s :=

∫
t2μs(dt) − m2

s .

Let

c1(n) = inf
s

σ 2
s .

Note that c1(n) > 0, since the limit at infinity of σ 2
s is not zero. Let

τ := max
{
ti : ti ∈ [s, s + 1]}.

Then on the interval (τ, s + 1) the polynomial f is either strictly positive or strictly negative.
Hence, ∫ s+1

s

tnI{f ≤−ε} dt

∫ s+1

s

tnI{f ≥ε} dt ≤
∫ s+1

s

tn dt

∫ τ

s

tn dt.

Thus, it is sufficient to prove the estimate

ε

∫ τ

s

tn dt ≤ c(d,n)

∫ s+1

s

tnI{|f |<ε} dt

∫
|f |dμs.

Applying Theorem 1.1 to the polynomial f and the measure μs , we obtain

‖f ‖2
L1(μs)

≥ c−2d‖f ‖2
L2(μs)

≥ c−2d
∥∥f 2

∥∥
L0(μs)

= c−2d
d∏

i=1

∥∥(t − ti )
2
∥∥

L0(μs)

≥ c−2d(2c)−2d

d∏
i=1

∥∥(t − ti )
2
∥∥

L1(μs)
= c−2d(2c)−2d

d∏
i=1

(
σ 2

s + |ms − ti |2
)
.

Let tj be a root of the polynomial f such that αj := inft∈[s,s+1] |tj − t | > 1. Then

∣∣f (t)
∣∣ ≤ (αj + 1)

∏
i �=j

|t − ti |
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on [s, s + 1], while σ 2
s + |ms − tj |2 ≥ α2

j . Let tk be a root of the polynomial f such that αk :=
inft∈[s,s+1] |tk − t | ≤ 1. Then |f (t)| ≤ 2

∏
i �=k |t − ti | on [s, s +1], while σ 2

s +|ms − tk|2 ≥ c1(n).
Applying these estimates several times, we obtain that

∣∣f (t)
∣∣ ≤ 2d

( ∏
αj >1

(αj + 1)

)
|t − τ | ≤ 4d

( ∏
αj >1

αj

)
|t − τ |

on [s, s + 1], while

d∏
i=1

(
σ 2

s + |ms − ti |2
) ≥ (

c1(n)
)d

∏
αj >1

α2
j .

Let R := ∏
αj >1 αj . Then it is sufficient to prove the estimate

ε

∫ τ

s

tn dt ≤ c(d,n)

∫ s+1

s

tnI{|t−τ |<ε4−dR−1} dt

∫
|f |dμs.

First, we consider the case ε < 2
∫ |f |dμs . If ε4−dR−1 > 1/4, then

ε

∫ τ

s

tn dt ≤ 2
∫

|f |dμs(n + 1)−1((s + 1)n+1 − sn+1),
∫ s+1

s

tnI{|t−τ |<ε4−dR−1} dt

∫
|f |dμs ≥ (n + 1)−1((s + 1/4)n+1 − sn+1)∫

|f |dμs.

Obviously, infs((s + 1/4)n+1 − sn+1)((s + 1)n+1 − sn+1)−1 > 0, thus, in that case the desired
inequality is proved.

Let now ε4−dR−1 ≤ 1/4. It is sufficient to prove the inequality

ε

∫ τ

s

tn dt ≤ c(d,n)R

∫ s+1

s

tnI{|t−τ |<ε4−dR−1} dt,

since
∫ |f |dμs ≥ δ(d,n)R. If τ < s + 3/4, then∫ s+1

s

tnI{|t−τ |<ε4−dR−1} dt ≥ τnε4−dR−1,

since [τ, τ + ε4−dR−1] ⊂ [s, s + 1], while∫ τ

s

tn dt ≤ τn(τ − s) ≤ τn.

Thus, in this case the desired inequality is also proved. Let now τ ≥ s + 3/4. Then∫ s+1

s

tnI{|t−τ |<ε4−dR−1} dt ≥ (
τ − ε4−dR−1)n

ε4−dR−1,
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since [τ − ε4−dR−1, τ ] ⊂ [s, s + 1]. The last expression can be estimated by

(τ − 1/4)nε4−dR−1 ≥ (s + 1/2)nε4−dR−1.

Moreover, ∫ τ

s

tn dt ≤ (s + 1)n

and, since s + 1/2 ≥ 1/2(s + 1), the desired inequality is proved in this case too.
It remains to consider the case where ε ≥ 2

∫ |f |dμs . Applying Chebyshev’s inequality, we
obtain

μs

(|f | ≥ ε
) ≤ ε−1

∫
|f |dμs ≤ 1/2,

hence

μs

(|f | < ε
) ≥ 1 − 1/2 = 1/2.

Thus, we have

εμs{f ≤ −ε}μs{f ≥ ε} ≤ c(d,n)μs

{|f | < ε
}∫

|f |dμs,

which is equivalent to the announced estimate. �

For the further purposes, we need the following lemma, which is nontrivial, since the constant
in the estimate of L2-norm of a polynomial in terms of L2-norm of its derivative depends only
on the degree of the polynomial and on the variance of the measure.

Lemma 3.2 (The reverse Poincaré inequality). Let d ∈ N. Then there is an absolute con-
stant C, independent of measure μ, such that for every polynomial f of degree d on the real line
and for every log-concave measure μ on the real line the following inequality holds:

σ(μ)
∥∥f ′∥∥

L2(μ)
≤ (Cd)d+1‖f ‖L2(μ),

where σ 2(μ) is the variance of the measure μ.

Proof. Due to homogeneity, we can assume that the polynomial f is of the form

f (t) =
d∏

i=1

(t − ti ).

Also, without loss of generality we can assume that
∫

tμ(dt) = 0. Applying the estimate of
the L1-norm of a polynomial via its L0-norm from Theorem 1.1, using multiplicativity of the
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L0-norm and estimating the L0-norm by the L1-norm, we obtain

∫
t2μ(dt)

∫ (
f ′(t)

)2
μ(dt) ≤ d

d∑
i=1

∫
t2μ(dt)

∫ ∣∣∣∣∏
j �=i

(t − tj )

∣∣∣∣2

μ(dt)

≤ d(2cd)2d
d∑

i=1

∫
t2μ(dt)

∏
j �=i

∫
|t − tj |2μ(dt)

= d(2cd)2d

d∑
i=1

∫
t2μ(dt)

∏
j �=i

(∫
t2μ(dt) + |tj |2

)

≤ d2(2cd)2d

d∏
i=1

(∫
t2μ(dt) + |ti |2

)

= d2(2cd)2d
d∏

i=1

∫
|t − ti |2μ(dt) ≤ d2(4c2d

)2d
∫

f 2μ(dt),

as announced. �

Lemma 3.3. Let d,n ∈ N. Then there is a constant C(d,n), which depends only on d and n,
such that, for every s ≥ 0, every polynomial f of degree d on R, which vanishes at some point
τ ∈ [s, s + 1], and every real number r , one has

∫ s+1

s

∣∣f (t)
∣∣tn dt ≤ C(d,n)

∫ s+1

s

∣∣f (t) − r
∣∣tn dt.

Proof. Let μs,σs be defined as in the proof of Lemma 3.1. Note that it is sufficient to prove the
inequality ∫

|f |dμs ≤ C(d,n)

∫
|f − r|dμs.

It can be easily verified that

‖f ‖L∞(μs) ≤ ∥∥f ′∥∥
L∞(μs)

,

since f (τ) = 0 for some point τ ∈ [s, s + 1]. Recall the following inequality (see [17], Theo-
rem 3) that holds with some universal constant C for any probability measure on some interval
with a density of the form ctn and for any polynomial g of degree d :

‖g‖∞ ≤
(

C max

{
1,

n + 1

d

})d

‖g‖2.
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Applying this estimate to our measure μs and the polynomial f ′, we obtain

∥∥f ′∥∥
L∞(μs)

≤
(

C max

{
1,

n + 1

d − 1

})d−1∥∥f ′∥∥
L2(μs)

.

We now use Lemma 3.2: ∥∥f ′∥∥
L2(μs)

≤ (Cd)d+1‖f − r‖L2(μ)σ
−1
s .

Since infs σs > 0 and ‖f ‖L1(μs)
≤ ‖f ‖L∞(μs), the lemma is proved. �

Corollary 3.4. Let n,d ∈ N. Then there is a constant c(d,n) depending only on d and n such
that for every polynomial f of degree d on the real line, every pair of positive numbers s, ε and
every real number r one has

ε

∫ s+1

s

tnI{f ≤−ε} dt

∫ s+1

s

tnI{f ≥ε} dt ≤ c(d,n)

∫ s+1

s

tnI{|f |<ε} dt

∫ s+1

s

tn
∣∣f (t) − r

∣∣dt.

Proof. If f has no zeros in [s, s + 1], then the left-hand side vanishes and the inequality is
obvious. If f has a root in [s, s + 1], then we can apply Lemmas 3.1 and 3.3. �

Theorem 3.5. Let K be a convex compact set in R
n, let λK be the normalized Lebesgue mea-

sure on K , and let f be a polynomial of degree d . Let R = J1 � J2 � J3, where Ji are disjoint
measurable sets, and let the distance between J1 and J3 be ε > 0, i.e.,

inf
x1∈J1,x2∈J3

|x1 − x2| = ε > 0.

Then there is a constant c(d,n) depending only on d and n such that

ελK(f ∈ J1)λK(f ∈ J3) ≤ c(d,n)λK(f ∈ J2)

∫
K

|f − mf |d λK,

where mf = ∫
f dλK .

Proof. Obviously, it is sufficient to prove the estimate with an arbitrary number m in place of
mf . We will prove exactly this statement.

If we take the closures of the sets J1 and J3 and replace J2 with R \ (J1 ∪ J3), the left-hand
side of the inequality does not decrease, while the right-hand side does not increase. Hence we
can assume that J1 and J3 are closed and J2 is open. First we consider the case where J2 is an
interval. Note that our inequality can be written in the form

ε

∫
K

I{f ∈J1}(x) dx

∫
K

I{f ∈J3}(x) dx ≤ c(d,n)

∫
K

I{f ∈J2}(x) dx

∫
K

∣∣f (x) − m
∣∣dx.

Since J1 and J3 are closed and J2 is open, the functions f1 = εI{f ∈J1}, f2 = I{f ∈J3} are upper
semi-continuous and the functions f3 = c(d,n)I{f ∈J2}, f4 = |f −m| are lower semi-continuous.
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Hence, we can apply Theorem 1.4. Thus, it is sufficient to prove the inequality

ε

∫ r

s

�(t)n−1I{f ∈J1} dt

∫ r

s

�(t)n−1I{f ∈J3} dt

≤ c(d,n)

∫ r

s

�(t)n−1I{f ∈J2} dt

∫ r

s

�(t)n−1|f − m|dt,

where � is an affine function that is nonnegative on [s, r]. By a linear change of variables, we
arrive at the inequality

ε

∫ s+1

s

tn−1I{f ∈J1} dt

∫ s+1

s

tn−1I{f ∈J3} dt ≤ c(d,n)

∫ s+1

s

tn−1I{f ∈J2} dt

∫ s+1

s

tn−1|f − m|dt,

where s ≥ 0 and f is some (possibly, different) polynomial of the same degree. Thus, the case
where J2 is an open interval follows from Corollary 3.4.

Recall that μf = λK ◦ f −1 is the image of the uniform distribution on the compact set K

under the polynomial mapping f . Note that the support of the measure μf is a bounded set on
the real line. Let now J2 be the union of countably many disjoint intervals. The proof in this case
is similar to the one from [22]. For completeness, we present this argument. If there is an interval
which length is less than ε, then both its end points belong either to J1 or to J3 and we can add
this interval to J1 or J3, respectively, and prove the estimate for exactly these sets. Thus, we
assume that J2 = ⊔

i (ai, bi) (the union of disjoint intervals), moreover, bi − ai ≥ ε and there are
finitely many such intervals, since the support of the measure μf is bounded. We have already
proved that

εμf

(
(−∞, ai]

)
μf

([bi,∞)
) ≤ c(d,n)μf

(
(ai, bi)

)
αf .

Summing these inequalities in i, we obtain

∑
i

μf

(
(−∞, ai]

)
μf

([bi,∞)
) ≤ c(d,n)αf

ε
μf (J2).

Since every point of J1 and every point of J3 are separated by at least one interval (ai, bi), we
have ∑

i

μf

(
(−∞, ai]

)
μf

([bi,∞)
) ≥ μf (J1)μf (J3),

which completes the proof. �

Corollary 3.6 (The isoperimetric inequality in Cheeger’s form). For every numbers n,d ∈N

there is a constant δ(d,n) depending only on d and n such that for every convex compact set K

in R
n and for every polynomial f of degree d one has

μ+
f (A) ≥ δ(d,n)

αf

μf (A)μf (R \ A),

where μf := λK ◦ f −1 and λK is the normalized Lebesgue measure on K .
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Proof. It is sufficient to apply the previous theorem to the sets

J1 = A, J3 =R \ (
A + (−ε, ε)

)
, J2 =R \ (J1 ∪ J2)

and let ε tend to zero. �

As it is known (see [18], a proof can also be found in [2]), the previous assertion implies the
following result.

Corollary 3.7 (The Poincaré inequality). For every numbers n,d ∈ N there is a constant
C(d,n) depending only on d and n such that for every convex compact set K in R

n, for ev-
ery polynomial f of degree d and for every smooth function ϕ one has∥∥∥∥ϕ −

∫
ϕ dμf

∥∥∥∥
L2(μf )

≤ C(d,n)αf

∥∥ϕ′∥∥
L2(μf )

,

where μf := λK ◦ f −1 and λK is the normalized Lebesgue measure on K .
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