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The independence sampler is one of the most commonly used MCMC algorithms usually as a component
of a Metropolis-within-Gibbs algorithm. The common focus for the independence sampler is on the choice
of proposal distribution to obtain an as high as possible acceptance rate. In this paper, we have a some-
what different focus concentrating on the use of the independence sampler for updating augmented data
in a Bayesian framework where a natural proposal distribution for the independence sampler exists. Thus,
we concentrate on the proportion of the augmented data to update to optimise the independence sampler.
Generic guidelines for optimising the independence sampler are obtained for independent and identically
distributed product densities mirroring findings for the random walk Metropolis algorithm. The generic
guidelines are shown to be informative beyond the narrow confines of idealised product densities in two
epidemic examples.
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1. Introduction

The independence sampler is the incorporation of rejection sampling within an MCMC frame-
work. The rejection sampler obtains samples from a random variable, X, with probability density
function f (·) by first proposing a candidate value y from a random variable, Y , with prob-
ability density function q(·), and secondly accepting y as a sample from X with probability
f (y)/{Kq(y)}, where K = supx f (x)/q(x). Otherwise y is rejected, see Ripley [16], page 60.
The success of the rejection sampler depends upon making a good choice of q(·) such that
K(≥ 1) is small and that q(·) is straightforward to sample from. The MCMC independence
sampler is the modification of the above where a Markov chain X0,X1, . . . is constructed with
at iteration t , a candidate y proposed from Y and if accepted Xt is set equal to y. Otherwise
Xt = Xt−1. The rejection sampler, and consequently, the independence sampler can usually be
implemented in a straightforward and efficient manner for low dimensional (target) distribu-
tions but as the dimension of X increases it becomes increasingly more challenging to obtain
a good choice of q(·). Therefore, the independence sampler is rarely used as an MCMC algo-
rithm in its own right but instead independence sampler moves are often incorporated within
Metropolis-within-Gibbs to effectively update low dimensional subsets of X, see Dellaportas
and Roberts [3], page 15.

The main focus for independence samplers has been to choose the proposal density q(·) so
as to have an acceptance probability as close to 1 as possible. Whilst this makes intuitive sense,

1350-7265 © 2018 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/16-BEJ908
mailto:p.neal@lancaster.ac.uk


Optimal scaling of the independence sampler 1637

the aim of the current paper is to challenge the idea of aiming for an acceptance probability as
close to 1 as possible within the context of using independence samplers for updating augmented
data in MCMC algorithms. Specifically, we are interested in the Bayesian statistical problem of
obtaining samples from the posterior distribution of the parameters θ of a model given data x,
π(θ |x) in the case where the likelihood, π(x|θ) is intractable. We assume that given augmented
data y, π(y,x|θ) is tractable and an MCMC algorithm can be constructed to obtain samples from
the joint posterior of θ and y, π(θ ,y|x). Then it is natural to construct an MCMC algorithm
which alternates between updating the parameters and the augmented data as follows:

1. Update θ given x and y. That is, use π(θ |x,y).
2. Update y given x and θ . That is, use π(y|x, θ).

Our focus is the use of independence samplers to update y given x and θ . For updating aug-
mented data a natural independence sampler often presents itself. For example, in an epidemic
modelling context where x denotes the removal times of infected individuals, θ denotes the infec-
tion and infectious period parameters and y denotes the infection times of individuals, a natural
candidate for the infection time of individual i who is removed at time xi is yi = xi − D, where
D denotes the infectious period distribution, see Neal and Roberts [9], Xiang and Neal [24] and
Section 3.2. For non-centered parameterisations, Papaspoliopoulos et al. [15], we can often de-
note Y as a deterministic function h(θ ,U) with π(x|y, θ) easy to compute, where U is a vector of
independent and identically distributed uniform random variables, see Neal and Huang [12] and
Section 3.3. Then to update Ui we can propose a new value from U(0,1). The dimension of the
augmented data, y, can be orders of magnitude higher than θ and x, so updating one component
of y at a time can be prohibitive. Therefore, we seek generic guidelines for updating multiple
components of y at a time and optimising the performance of the resulting independent sampler.
Specifically, this work formalises findings in Xiang and Neal [24] and Neal and Huang [12] in
using the independence sampler for data augmentation giving simple guidelines for producing
close to optimal independence samplers. The guidelines obtained are similar to those given in
Roberts et al. [17] for the random walk Metropolis algorithm and comparisons with the random
walk Metropolis algorithm are made.

The paper is structured as follows. In Section 2, we study the properties of the independence
sampler for independent and identically distributed product densities π(x) = ∏n

i=1 f (xi). This
idealised scenario mimics the set up in Roberts et al. [17] where optimal scaling of the random
walk Metropolis algorithm was first explored and as in Roberts et al. [17] allows us to get a
handle on understanding the key factors in optimising the independence sampler. In particular,
we show that the optimal number of components, k, of x to update, is the k which maximises the
mean number of components per move. In the case where this optimal k is large this corresponds
to a mean acceptance rate of approximately 23.4%. Thus, there is a somewhat surprising link with
the optimal scaling of the random walk Metropolis algorithm, Roberts et al. [17] with which we
make comparison and highlight the benefits of the independence sampler. In Section 3, we ex-
plore the optimal performance of the independence sampler for increasingly complex problems.
In Section 3.1, we study product Gaussian target densities with Gaussian and t -distribution pro-
posals demonstrating the optimal scaling results obtained in Section 2. In Sections 3.2 and 3.3,
we apply the independence sampler to two epidemic models, the classic homogeneously mixing
SIR epidemic model, Bailey [1] and O’Neill and Roberts [14] and a birth–death-mutation (BDM)
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model for an emerging, evolving disease, Tanaka et al. [22] and Fearnhead and Prangle [6]. In
Section 3.2, we show that for the homogeneously mixing SIR epidemic model updating a pro-
portion of the infection times so as to obtain a mean acceptance rate of approximately 23.4%
is optimal. This demonstrates that as observed with the random walk Metropolis algorithm the
findings of Section 2 are informative in designing independence samplers beyond the limited
confines of product densities. For the BDM model in Section 3.3 the findings are somewhat dif-
ferent with a lower optimal mean acceptance rate corresponding to large scale data augmentation.
Finally, in Section 4, we make some concluding remarks highlighting the possible benefits of the
independence sampler over random walk Metropolis for large scale data augmentation and the
differences seen between the two epidemic models in Sections 3.2 and 3.3.

2. Theoretical properties of the independent sampler

In this section, we consider the theoretical properties of the independence sampler for the special
case where πn(xn) = ∏n

i=1 f (xi), a product of independent and identically distributed univariate
densities, f (x). The main focus is on the asymptotic behaviour as the number of components,
n → ∞ mirroring analysis performed in Roberts et al. [17] for the random walk Metropolis
algorithm. The aim is to characterise the optimal performance of the independence sampler in
terms of the number of components to update and to draw interesting comparisons of similarities
and differences with the random walk Metropolis algorithm.

For the independence sampler, we propose to select uniformly at random k components
{I1, I2, . . . , Ik} from {1,2, . . . , n} to update. For j ∈ {I1, I2, . . . , Ik}, yj is drawn from Y with
probability density function q(y), whilst for l /∈ {I1, I2, . . . , Ik}, yl = xl . Therefore, the accep-
tance probability for the proposed move from xn to yn is

min

{
1,

πn(yn)

πn(xn)
× q(yn → xn)

q(xn → yn)

}
= min

{
1,

k∏
j=1

f (yIj
)/q(yIj

)

f (xIj
)/q(xIj

)

}
. (2.1)

For n = 1,2, . . . and t = 0,1, . . . , let Xn
t = (Xn

t,1,X
n
t,2, . . . ,X

n
t,n) denote the position of the

Markov chain after t iterations. As in Roberts et al. [17], we assume that the Markov chain
is initiated with Xn

0 drawn from πn(·) and thus for all t ≥ 0, Xn
t ∼ πn(·). The independent and

identically distributed nature of the stationary and proposal distributions means that as in Roberts
et al. [17] it suffices to focus on the behaviour and performance of the independence sampler on
the first component only. Specifically, for t ≥ 0, letting Zn

t = Xn[nt] we show that for fixed k, as
n → ∞, the movement in the first component of Zn

t converges to a Markov jump process with
jumps governed by f (·) and q(·).

Let ω(x) = f (x)/q(x), then for the independence sampler to be well-behaved we require
that supx ω(x) < ∞, see Tiernay [23] and we make this assumption throughout. For a move
to occur in the first component, we must propose to move the first component and k − 1 other
components from {2,3, . . . , n}. Let {J1, J2, . . . , Jk−1} be a random sample from {2,3, . . . , n}
with Wk−1(xn−) = ∏k−1

i=1 ω(YJi
)/ω(xJi

), where xn− = (x2, x3, . . . , xn). Define Yn−, Xn− and
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yn− in the obvious fashion. Then we define

H
(
y,xn

) = H
(
y, x1,xn−)

= EYn−,Jk−1

[
1 ∧ ω(y)

ω(x1)
Wk−1

(
xn−)]

(2.2)

= EYn−,Jk−1

[
1 ∧ ω(y)

ω(x1)

k−1∏
i=1

ω(YJi
)

ω(xJi
)

]
,

where Jk−1 = (J1, J2, . . . , Jk−1). A useful observation is that the proposed values (Y1, YJ1 , . . . ,

YJk−1) are independent of xn. Let H ∗(y, x1) = EXn−[H(y,x1,Xn−)] and let

An =
{

xn;
∫ ∣∣H (

y,xn
) − H ∗(y, x1)

∣∣q(y)dy ≤ n−1/8
}
. (2.3)

We have the following lemma which mirrors Roberts et al. [17], Lemma 2.1, which states that
with sufficiently high probability we can focus upon Xn[nt] (Zn

t ) contained in An. The proof of
Lemma 2.1 is given in the Appendix.

Lemma 2.1. For t > 0,

P
(
Zn

s ∈An,0 ≤ s ≤ t
) → 1 as n → ∞. (2.4)

We are now in position to state and prove the main result of this section, Theorem 2.2.

Theorem 2.2. For k ∈ N, let Xn
0 ∼ πn, then

Zn
·,1 ⇒ Z· as n → ∞, (2.5)

where Z· is a Markov jump process with infinitesimal generator

Gh(x) = k

∫ {
h(y) − h(x)

}
H ∗(y, x)q(y) dy, (2.6)

for any C∞
c function h.

Proof. We begin by defining the (discrete time) generator of Xn,

Gnh
(
xn

) = nE

[{
h
(
Yn

) − h
(
xn

)}{
1 ∧ πn(Yn)

πn(xn)

}]
, (2.7)

where h is any C∞
c function of the first component. Note that if there is no proposed update in

the first component then Yn
1 = x1. Therefore, letting χn = 1 if there is a proposed update of the
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first component and 0 otherwise, we have that

Gnh
(
xn

) =
1∑

i=0

nP
(
χn = i

)
E

[{
h
(
Yn

) − h
(
xn

)}{
1 ∧ πn(Yn)

πn(xn)

}∣∣∣χn = i

]

= n × k

n
×E

[{
h
(
Yn

) − h
(
xn

)}{
1 ∧ πn(Yn)

πn(xn)

}∣∣∣χn = 1

]
(2.8)

= kEY1

[(
h(Y1) − h(x1)

)
EYn−,Jk−1

[
1 ∧ ω(Y1)

ω(x1)

k−1∏
j=1

ω(YJj
)

ω(xJj
)

]]
.

We compare Gnh(xn) with the generator Gh(x) defined in (2.6) for the limiting jump process.
Now by (2.3), for all xn ∈An and h ∈ C∞

c ,∣∣Gnh
(
xn

) − Gh(x1)
∣∣

=
∣∣∣∣∣
∫ {

h(y) − h(x1)
}
q(y)

(
E

[
1 ∧ ω(y)

ω(x1)

k−1∏
j=1

ω(YJj
)

ω(xJj
)

]
− H ∗(y, x)

)
dy

∣∣∣∣∣
=

∣∣∣∣
∫ {

h(y) − h(x1)
}
q(y)

(
H

(
y, x1,xn−) − H ∗(y, x)

)
dy

∣∣∣∣ (2.9)

≤ 2 sup
z

∣∣h(z)
∣∣ ∫ q(y)

(
H

(
y,xn

) − H ∗(y, x)
)
dy

≤ 2 sup
z

∣∣h(z)
∣∣n− 1

8 → 0 as n → ∞.

Hence,

sup
xn∈An

∣∣Gnh
(
xn

) − Gh(x1)
∣∣ → 0 as n → ∞. (2.10)

The theorem follows along identical lines to Roberts et al. [17], Theorem 1.1. Since C∞
c sepa-

rates points (see, Ethier and Kurtz [5], page 113), the theorem follows from (2.10) and Lemma 2.1
by Corollary 8.7(f) of Chapter 4 of Ethier and Kurtz [5]. �

We proceed by discussing properties of the limiting jump process. Let

W ∗
k

D=
k∏

i=1

ω(Yi)

ω(Xi)
, (2.11)

where Yi ∼ q(·) and Xi ∼ f (·). Then E[1 ∧ W ∗
k ] denotes the mean acceptance probability, in

stationarity, of a proposed move and kE[1 ∧ W ∗
k ] denotes the corresponding mean number of

components updated. Moreover, kE[1 ∧ W ∗
k ] denotes the mean number of jumps, per unit time,

of the limiting jump process, and hence, we seek k which maximises kE[1 ∧ W ∗
k ].
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The distribution of W ∗
k depends largely on the closeness of the target (f (·)) and proposal (q(·))

distributions with W ∗
k ≡ 1 if for all x, f (x) ≡ q(x). Let g(x) = logω(x) = logf (x) − logq(x),

then

logW ∗
k

D=
k∑

i=1

{
g(Yi) − g(Xi)

}
, (2.12)

where the {g(Yi) − g(Xi)} are independent and identically distributed. Note that E[g(Y1)] =
−D(q‖f ) and E[g(X1)] = D(f ‖q), where for two probability density functions u and v,

D(u‖v) =
∫

u(x) log
{
u(x)/v(x)

}
dx (2.13)

is the Kullback–Leibler divergence. Hence,

E
[
g(Y1) − g(X1)

] = −{
D(q‖f ) + D(f ‖q)

} = −I say, (2.14)

which makes explicit the role played by the closeness of the two densities. It should be noted that
I = ∞ if there exists x such that q(x) > 0 and f (x) = 0, in such cases efficient independence
sampling may still exist, for example, X ∼ U(0,1) and Y ∼ U(0,1 + ε) for small, positive ε.

For finite I , it follows from (2.12) by the central limit theorem that for large k, logW ∗
k is ap-

proximately Gaussian with mean kE[g(Y1) − g(X1)] and variance k var(g(Y1) − g(X1)) = kJ ,
say. Now if I is small, which will be the case where the Central limit theorem is relevant, then
q(x) ≈ f (x). Moreover, if f (x) = q(x){1 + ε(x)} where ε(x) is small, then it is straightforward
to show that I = ∫

q(x){ε(x)2 + O(ε(x))3}dx and that J = 2
∫

q(x){ε(x)2 + O(ε(x))3}dx ≈
2I . Thus for k large, with logW ∗

k ≈ V ∗
k ≡ N(−kI, kJ ), we have by Roberts et al. [17], Proposi-

tion 2.4, that

kE
[
1 ∧ exp

(
logW ∗

k

)]
≈ kE

[
1 ∧ exp

(
V ∗

k

)]
(2.15)

= k ×
{
�

(
− kI√

kJ

)
+ exp

(
−kI + kJ

2

)
�

(
−√

kJ + kI√
kJ

)}

≈ k × 2�

(
−

√
kI

2

)
,

where the latter approximation follows from setting J = 2I . Replacing k by z2 and I by Ĩ = √
2I

in the right-hand side of (2.15), we obtain j (z) = 2z2�(−z
√

Ĩ /2), which is the function max-
imized in Roberts et al. [17], Corollary 1.2 to maximise the optimal scaling of the random
walk Metropolis algorithm. The only difference is the form of I which here depends upon the
Kullback–Leibler divergence between the target and proposal distribution, whereas in Roberts et
al. [17] I ≡ Ef [(f ′(X)/f (X))2] and depends upon the smoothness of f (·). Most importantly,
z2I = 2.835 maximises j (z) and therefore k should be chosen approximately equal to 2.835/I .
Thus if I is small (there is close agreement between f (·) and q(·)) k will be large. Moreover,



1642 C. Lee and P. Neal

mirroring Roberts et al. [17], Corollary 1.2, such a k corresponds to a mean acceptance prob-
ability of (approximately) 0.234. Thus it is not necessary to compute I but instead suffices to
monitor the mean acceptance probability. This will be shown to be a useful guiding principle
in the examples below. However, it should be noted that scenarios exist, see Section 3.2 below,
where the acceptance rate is above (below) 0.234 for all k, in such cases it is optimal to choose
k = n (k = 1).

Returning to optimising the independence sampler in the case X ∼ U(0,1) and Y ∼ U(0,1 +
ε), it is straightforward to show that the probability a proposed move is accepted is (1 + ε)−k .
Optimising the function k(1 + ε)−k gives k = 1/ log(1 + ε), and hence for small ε, k ≈ 1/ε.
Thus as ε ↓ 0, the optimal acceptance probability ((1 + ε)−1/ log(1+ε) ≈ (1 − ε)1/ε) converges
to exp(−1) = 0.368. Therefore, non-trivial asymptotic acceptance probabilities can exist in the
case I = ∞ and typically these will be different from 0.234.

A key question is how does the independence sampler compare to the random walk Metropolis
algorithm. Provided supx ω(x) < ∞, Theorem 2.2 holds and we have that the mixing of the inde-
pendence sampler algorithm is O(n), the same order of mixing as for the random walk Metropo-
lis algorithm for continuous (and sufficiently differentiable) densities. The mixing of the random
walk Metropolis algorithm for discontinuous densities is O(n2), Neal et al. [11] whilst modifica-
tions such as Metropolis adjusted Langevin algorithms (MALA) and hybrid Monte Carlo (HMC)

algorithms mix in O(n
1
3 ) and O(n

1
4 ) iterations, see Roberts and Rosenthal [18] and Beskos et

al. [2], respectively, for sufficiently well behaved (continuous) target densities. Thus the inde-
pendence sampler is competitive with the random walk Metropolis algorithm and Theorem 2.2
holds under very weak conditions compared with those imposed for corresponding random walk
Metropolis algorithms. The similarity of the right-hand side of (2.15) to j (z) might suggest that
computing I for the two algorithms would assist in comparing there performances with smaller
I the better. However, the different nature of the moves, global in the independence sampler and
local in the random walk Metropolis, means that this is not the case. In simulation studies with
X ∼ N(0,1), Y ∼ N(0, φ2) and a range of n ≥ 50, the independence sampler, with appropriately
chosen k was found to outperform the optimal random walk Metropolis algorithm (σ = 2.4/

√
n)

for 1 ≤ φ ≤ 2.4. Thus, the independence sampler is competitive with, and often superior to, ran-
dom walk Metropolis, for continuous target densities so long as a reasonable choice of q(·) is
made, and is clearly preferable for discontinuous target densities which is often the case in real
life Bayesian problems, see Section 3.

3. Examples

3.1. Introduction

In this section, we illustrate how large scale independence sampling can be exploited to
construct effective MCMC algorithms. We start with an independent and identically dis-
tributed Gaussian product density as the target distribution and consider both Gaussian and
t -distribution proposals. Specifically, we take π(x) = ∏n

i=1 f (xi), where f (x) is a standard
Gaussian density. The proposal distributions are symmetric about 0 with Gaussian proposals
qN(y) = (

√
2πλ)−1 exp(−y2/2λ2), where λ ≥ 1 and t -distribution proposals qt (y) = 
((ν +
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Figure 1. Gaussian proposal λ = 1.05 (©),1.1 (�),1.2 (♦),1.5 (�),2.0 (�). (a) Solid line given by
j (z) = 2z2�(−z/2)/1.3257 plotted against acceptance rate. (b) Solid line x = y.

1)/2)/(
√

νπ
(ν/2))(1+x2/ν)− ν+1
2 (ν ∈ N). We conducted a simulation study using 5 Gaussian

and 5 t -distribution proposals with n = 1000 and 106 iterations of the MCMC algorithm starting
from the stationary distribution. For each proposal distribution, we considered 50 choices of k,
the exact choices of which depended on I and were chosen to give acceptance rates on the full
range 0 to 1.

For the Gaussian proposal, it is straightforward to show that I = 1/2(λ − 1/λ)2. We con-
sidered λ = 1.05,1.1,1.2,1.5,2 with corresponding I = 0.0048,0.0182,0.0672,0.347,1.125.
A key quantity for comparing the independence sampler for different choices of λ, and hence I , is
the normalised efficiency. We define the normalised efficiency for k as the mean number of com-
ponents updated (k× acceptance rate) when proposing to update k components divided through
by the maximum mean number of components updated for j = 1,2, . . . , n. Correspondingly
the normalised theoretical efficiency is given by j (z) = 2z2�(−z/2)/ supy{2y2�(−y/2)} =
2z2�(−z/2)/1.3257 from applying the central limit theorem approximation obtained in Sec-
tion 2. The plots in Figure 1 show that in all cases the optimal acceptance rate is close to 0.234
with very similar behaviour for the normalised efficiency varying with acceptance rate, even for
λ = 2 with I = 1.125. Similar results are obtained in Section in Neal and Roberts [10], Sec-
tion 6 for the optimal performance of the random walk Metropolis algorithm. As λ ↓ 1, I ↓ 0
and the agreement between the observed normalised efficiency normalised theoretical efficiency
becomes very close.

For the t -distribution, I = ∞ for ν = 1,2, otherwise

I = 1

ν − 2
+ ν + 1

2

{
E

[
log

(
1 + X2/ν

)] −E
[
log

(
1 + Y 2

ν /ν
)]}

,
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Figure 2. Gaussian proposal t = 1 (©),2 (�),5 (♦),10 (�),20 (�). (a) Solid line given by
j (z) = 2z2�(−z/2)/1.3257 plotted against acceptance rate. (b) Solid line x = y.

where X ∼ N(0,1) and Y ∼ tν . It is not possible to obtain a closed form analytical expres-
sion for I but it is straightforward to estimate using Monte Carlo integration. We consider
ν = 1,2,5,10,20 with corresponding I = ∞,∞,0.1582,0.0338,0.0083. The plots in Figure 2
show that the optimal acceptance rate is higher than 0.234 for a t -distribution proposal with
an optimal acceptance rate of 0.383 corresponding to k = 3 for a t1 proposal. Note that this is
close to exp(−1), the optimal acceptance rate of the uniform distributions example given in Sec-
tion 2. It is worth noting that choosing k to obtain an acceptance rate of approximately 0.234
is in general a good approach as only a small loss in efficiency is observed. As ν increases the
optimal acceptance rate converges towards 0.234 and the normalised efficiency tends towards the
theoretical normalised efficiency given by the central limit theorem approximation. This is fur-
ther demonstrated in Figure 2(b) by plotting normalised efficiency against normalised theoretical
efficiency. Note that ν = 1 and ν = 2 do not feature on this plot as I = ∞.

3.2. Homogeneously mixing SIR epidemic

In this section, we show how the importance sampler can be applied to temporally observed,
homogeneously mixing SIR epidemic models, Bailey [1], O’Neill and Roberts [14]. We assume
that there is a population of size N with the disease introduced into the population via a single
introductory case. (The extension to multiple introductory cases is trivial.) We assume that the
disease follows an SIR epidemic model, where initially all individuals, except the introductory
case, are susceptible. On becoming infectious, an individual is infectious for a given period of
time, distributed according to a Gamma random variable Q ∼ Gamma(α, δ). (Alternative infec-
tious period distributions can easily be considered.) Whilst infectious, an individual i, say, makes
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infectious contacts at the points of a homogeneous Poisson point process with rate β with the
individual contacted chosen uniformly at random from the entire population. Infectious contacts
with susceptible individuals result in the immediate infection of the individual and the start of
their infectious period. Infectious contacts with infectives have no effect on the recipient.

Suppose that m individuals are infected during the course of the epidemic and we are analysing
the completed epidemic data. For each individual, i say, infected during the course of the epi-
demic there will be an infection time, Ii and a removal (recovery) time, Ri , which mark the start
and end of the infectious period, respectively. We follow O’Neill and Roberts [14], Neal and
Roberts [9] and Xiang and Neal [24] in assuming that the removal times, R = (R1, . . . ,Rm) are
observed, whilst the infection times I = (I1, . . . , Im) are unobserved. Furthermore, we assume
that the removal times are ordered such that R1 ≤ R2 ≤ · · · ≤ Rm. The key interest is in the pos-
terior distribution of π(β,α, δ|R) and to obtain samples from this distribution imputation of I is
required.

We use the MCMC algorithm proposed in Xiang and Neal [24], Section 3 with the modifica-
tion that the number of components to be updated is fixed to k ∈ {1,2, . . . ,m}. As with Xiang and
Neal [24], the MCMC algorithm is applied to the extensively studied Abakaliki smallpox out-
break (Bailey [1], p. 125), O’Neill and Roberts [14], O’Neill and Becker [13], McKinley et al.
[8], where m = 30 and N = 120. We considered various fixed values of α = 1,3,10 with optimal
k = 9,17 and 30, respectively, based upon the maximised mean number of components updated
over 100 000 iterations, see Figure 3. For α = 1,3,10, the corresponding values of k which had
acceptance rates closest to 23.4% were k = 10,19 and 29, respectively. Thus, choosing k so that
the acceptance rate is close to 23.4% is effective in obtaining a close to optimal algorithm. In
Xiang and Neal [24], the situation where α is assumed to be unknown is also considered with
the posterior mean of α being 33.8. For unknown α, the acceptance rate is above 23.4% for all k

and thus k = m(= 30) performs optimally.
We can go further in illustrating the usefulness of the theoretical results derived in Section 2

for choosing k. In Figure 4, we plot the normalised efficiency for α = 1,2, . . . ,9, since for α > 9,
the acceptance rate is always above 23.4%. Also on the plot (in red) is the normalised theoretical
curve j (z) = 2z2�(−z/2)/1.3257 given by (2.15) against acceptance rate 2�(−z). In a similar
fashion to Section 3.1 this illustrates that the asymptotic results which are valid as the number of
components updated tend to ∞ are applicable for small k.

A simulation study was conducted to study the general applicability of the results obtained
above for the Abakaliki data. Data sets were simulated with N = 200,400,600,800,1000,1200,
m = 0.25N,0.5N,0.75N and α = 1,2,3,5,10,15,20 with δ = 0.1α chosen to give a mean
infectious period of 10 and β to give the mean size of a major epidemic outbreak to be 10. For
each α, the optimal k increases with N and vice versa. Throughout choosing k with acceptance
rate closest to 23.4% produced close to optimal performance. Plots of the normalised efficiency
against the acceptance rate showed increasing agreement with the asymptotic theoretical curve
as N increases.

3.3. Birth–death–mutation model

In this section, we consider a birth–death-mutation (BDM) model which is applicable to the early
stages of a mutating disease. The model has previously been used by Tanaka et al. [22], Sisson
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Figure 3. Acceptance rate (left) and mean number of components updated (right) against k for α = 1
(solid), 3 (dashed), 10 (dot-dashed) and unknown (posterior mean 33.8) (long dashed).

et al. [20], Fearnhead and Prangle [6], Del Moral et al. [4], Neal and Huang [12] to analyse data
from a tuberculosis outbreak in San Francisco in the early 1990s reported in Small et al. [21].
We explore and seek to optimise the performance of the forward simulation MCMC algorithm
introduced by Neal and Huang [12]. Note that all the other analyses reported above used ABC
algorithms.

The data consist of the genotypes of 473 bacteria samples sampled from individuals infected
with tuberculosis in San Francisco during an observational period in 1991–92. The data are
clustered by genotype and summarised in Table 1. Let Nt denote the total number of tuber-
culosis cases at time t . The data are assumed to be a random sample taken at time T , where
T = min{t;Nt = 10 000} evolving from N0 = 1.

Figure 4. Normalised mean number of components updated against acceptance rate, overlaid by the theo-
retical normalised curve (red), given by j (z) = 2z2�(−z/2)/1.3257.
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Table 1. Observed cluster size distribution of Tuberculosis bacteria genotype data, Small et al. [21]

Cluster size 1 2 3 4 5 8 10 15 23 30
Number of clusters 282 20 13 4 2 1 1 1 1 1

The BDM model is a Markov process defined as follows. Individuals are classified by
(geno)type. Each individual born into the process has an exponentially distributed lifetime (in-
fectious period) with mean 1/δ. Whilst alive individuals give birth (infects) and mutates at the
points of independent homogeneous Poisson point processes with rates α and ϑ , respectively.
Each individual born inherits the (geno)type of their parent and all mutations result in the cre-
ation of a new, previously unseen (geno)type (infinite allele model, Kimura and Crow [7]). We
reparameterise the model by setting φ = α + δ + ϑ , a = α/φ and d = δ/φ, where φ is the rate
at which events occur for an individual, a is the probability that the event is a birth (infection)
and d is the probability that the event is a death (recovery). Since the stopping time T at which
the population is observed only depends upon the number of individuals alive in the population,
there is no information in the data about φ. Thus, without loss of generality, we assume φ = 1
making inference about (a, d) given the genotype data x. In order to construct a tractable likeli-
hood, it is necessary to generate the state of the population at time T , NT = 10 000. This can be
done using a non-centered parameterisation Papaspoliopoulos et al. [15] where the augmented
data y = (u,w,v) consist of realisations of U(0,1) with (u,w) combine with (a, d) to generate
the underlying state of the BDM model at time T and v is used to estimate the probability of
observing x. Details of the construction are given in Neal and Huang [12], Section 4.

The time consuming step of the MCMC algorithm for the BDM model is the simulation of the
state of the process using (u,w) and (a, d). In Neal and Huang [12], (a, d) are updated using
random walk Metropolis keeping (u,w) fixed and (u,w) are updated using an independence
sampler, draws from U(0,1), keeping (a, d) fixed. We thus focus on the independence sampler
for updating (u,w). Note that v is updated by a separate independence sampler but this is very
fast to implement (no need to simulate the BDM process), and so we don’t comment on this
step. The dimensions of u and w are the same but vary from iteration to iteration, typically being
around 30 000. To circumvent issues with this Neal and Huang [12] used random vectors of a
fixed length n = 100 000 with only those elements needed to simulate the process used. In this
paper, we also used a fixed length vector updating k out of n components in u and w noting that
in each simulation not all (updated) components will be used.

In Neal and Huang [12], u and w are broken down into blocks of 50 components with 1 com-
ponent in each block proposed to be updated. This amounts to proposing to update n/50 = 2000
values in each iteration of which typically around 600 are used in the simulation. In this paper, we
propose to update k components each of u and w, (uIu

1
, uIu

2
, . . . , uIu

k
) and (wIw

1
,wIw

2
, . . . ,wIw

k
),

where {Iu
1 , I u

2 , . . . , I u
k } ({Iw

1 , Iw
2 , . . . , Iw

k }) is a uniformly random sample without replacement
from {1,2, . . . , n}, for the sake of consistency with the updating strategy throughout this paper.
In addition to using different values for k, we also examine the performance of the algorithm
using n = 60 000,80 000 and the original 100 000, which are all found to be empirically suffi-
cient. We ran the MCMC algorithm for 1.1 × 106 iterations with the first 105 iterations discarded
as burn-in. The acceptance rate is plotted against k for all three values of n on the left of Fig-
ure 5, which is analogous to Figure 3, with the mean number of components updated on the right.
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Figure 5. Acceptance rate (left) and mean number of components updated (right) against k for n = 60 000
(black), 80 000 (red) and 100 000 (blue).

The results shown in Figures 5 demonstrate an interesting departure from those found earlier in
the paper with an optimal acceptance rate of 23.4%. The mean number of components updated
increases with k even as the acceptance rate drops below 5%. However, for both parameters a

and d , the effective sample size levels off at around 3000 for all k ≥ 2000, which suggests that
seeking to optimise the mean number of components updated does not tell the full story in this
case.

4. Conclusions

In this paper we have demonstrated the potential benefits, both theoretical and practical, of the
independence sampler over the random walk Metropolis algorithm. In particular, we have shown
that simple choices of proposal distributions can be used to construct effective independence
samplers and that similar considerations to the tuning of the random walk Metropolis algorithm
are required. There are a number of points to consider in the wider application of the results de-
rived in Section 2 and applied in Section 3. First, we have not considered the computational time
required to update k components. In the homogeneously mixing epidemic model (Section 3.2),
and in particular, the BDM model (Section 3.3) the time taken per iteration was essentially inde-
pendent of k. However, it is possible for the homogeneously mixing epidemic model by careful
updating of the calculation of the likelihood for the time taken per iteration to be smaller for
smaller k. In such cases, the optimal acceptance rate will be larger than 23.4% and if the time per
iteration is proportional to k it will be optimal to update a single component at a time. Second, the
theoretical results of Section 2 for independent and identically distributed product densities are
shown to give clear guidance for optimising the independence sampler for the homogeneously
mixing epidemic model but not for the BDM model. The reason for this difference is not imme-
diately obvious but is likely to depend on the relationship of the observed data to the augmented
data. For the homogeneously mixing epidemics the local behaviour of I is important, for exam-
ple, ensuring I is consistent with an epidemic outbreak, whereas for the BDM model it is global
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properties of (U,W), the total numbers of births, deaths and mutations which are most impor-
tant. For the random walk Metropolis algorithm optimal scaling, results differ depending upon
whether the acceptance probability depends on local behaviour (discontinuous product densities,
Neal et al. [11]) or global behaviour (continuous product densities, Roberts et al. [17], elliptically
symmetric densities Sherlock and Roberts [19]) of the proposed moves.

Appendix: Proof of Lemma 2.1

Since Zn
0 ∼ πn, for all 0 ≤ s ≤ t , Zn

s ∼ πn, since πn is the stationary distribution of Zn
t . Therefore,

we have that

P
(
Zn

s /∈An, for some 0 ≤ s ≤ t
) ≤ tnP

(
Xn

0 /∈An

)
. (A.1)

Now,

P
(
Xn

0 /∈An

)
= P

(∫ ∣∣H (
y,Xn

0

) − H ∗(y,X0,1)
∣∣q(y)dy > n− 1

8

)
(A.2)

=
∫

P

(∫ ∣∣H (
y,xn

) − H ∗(y, x1)
∣∣q(y)dy > n− 1

8

)
πn

(
xn

)
dxn.

Applying Markov’s inequality to the right-hand side of (A.2), we have that

P
(
Xn

0 /∈An

) ≤
∫ √

n

{∫ ∣∣H (
y,xn

) − H ∗(y, x1)
∣∣q(y)dy

}4

πn

(
xn

)
dxn. (A.3)

It then follows by Jensen’s inequality that

P
(
Xn

0 /∈ An

) ≤
∫ √

n

{∫ (
H

(
y,xn

) − H ∗(y, x1)
)4

q(y)dy

}
πn

(
xn

)
dxn

(A.4)

= √
n

∫ {∫ (
H

(
y,xn

) − H ∗(y, x1)
)4

πn

(
xn

)
dxn

}
q(y)dy.

We now focus on the inner integral on the right-hand side of (A.4). Since EXn−[H(y,x1,

Xn−)] = H ∗(y, x1), we have that

∫ (
H

(
y,xn

) − H ∗(y, x1)
)4

πn

(
xn

)
dxn

(A.5)

=
∫

E
[(

H
(
y, x1,Xn−

0

) −EXn−
0

[
H

(
y, x1,Xn−

0

)])4]
f (x1) dx1.
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Let In = {i ∈ {2,3, . . . , n}k−1; i1 < i2 < · · · < ik−1}. Then letting

Ĥi
(
y, x1,xn−) = EYn

[
1 ∧ ω(Y1)

ω(x1)

k−1∏
l=1

ω(Yil )

ω(xil )

]
, (A.6)

we note that for all i, j ∈ In, Ĥi(y, x1,Xn−
0 )

D= Ĥi(y, x1,Xn−
0 ), where

D= denotes equality in

distribution. Hence for all i ∈ In, E[Ĥi(y, x1,Xn−
0 )] = H ∗(y, x1). Therefore given that

H
(
y, x1,Xn−

0

) =
(

n − 1

k − 1

)−1 ∑
i

Ĥi
(
y, x1,Xn−

0

)
, (A.7)

it follows that

E
[(

H
(
y, x1,Xn−

0

) −EXn−
0

[
H

(
y, x1,Xn−

0

)])4]
(A.8)

=
(

n − 1

k − 1

)−4 ∑
i1∈In

∑
i2∈In

∑
i3∈In

∑
i4∈In

E

[
4∏

j=1

(
Ĥij

(
y, x1,Xn−

0

) −E
[
Ĥij

(
y, x1,Xn−

0

)])]
.

Note that if i, j ∈ In have no elements in common then Ĥi(y, x1,Xn−
0 ) and Ĥj(y, x1,Xn−

0 ) are

independent. Therefore E[∏4
j=1(Ĥij (y, x1,Xn−

0 )−E[Ĥij (y, x1,Xn−
0 )])] is only non-zero if and

only if for j = 1,2,3,4, ij has at least an element in common with one of the other indices.
Moreover, |E[∏4

j=1(Ĥij (y, x1,Xn−
0 ) −E[Ĥij (y, x1,Xn−

0 )])]| ≤ 1.
The number of combinations of i1, i2 ∈ In such that i1 and i2 have at least one element in

common is (
n − 1

k − 1

){(
n − 1

k − 1

)
−

(
n − k

k − 1

)}
, (A.9)

which is bounded above by n2k−3/{(k −2)!}2 for all sufficiently large n. Similarly, the number of
combinations of i1, i2, i3, i4 ∈ In such that i2, i3 and i4 all have at least one element in common
with i1 is

(
n − 1

k − 1

){(
n − 1

k − 1

)
−

(
n − k

k − 1

)}3

, (A.10)

which is bounded above by (k − 1)2n4k−7/{(k − 2)!}4 for all sufficiently large n. Now
E[∏4

j=1(Ĥij (y, x1,Xn−
0 ) − E[Ĥij (y, x1,Xn−

0 )])] is only non-zero if either i1, i2, i3, i4 ∈ In can
be grouped into two pairs such that both pairs have at least one element in common or if three
of the components all have at least one element in common with the fourth. (Note that there is
overlap between these two classifications.) Thus using (A.9) and (A.10), it is straightforward to
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combine with (A.8) to show that

E
[(

H
(
y, x1,Xn−

0

) −EXn−
0

[
H

(
y, x1,Xn−

0

)])4]

≤
(

n − 1

k − 1

)−4{
3

(
n2k−3

{(k − 2)!}2

)2

+ 4
(k − 1)2n4k−7

{(k − 2)!}4

}
(A.11)

≤ (k − 1)4

(n − k)4k−4

{
3n4k−6 + 4(k − 1)2n4k−7}.

Since the bound obtained in (A.11), holds for all y, x1 ∈R, it follows from (A.4) and (A.5) that

nP
(
Xn

0 /∈ An

) ≤ n
√

n
(k − 1)4

(n − k)4k−4

{
3n4k−6 + 4(k − 1)2n4k−7}

(A.12)
→ 0 as n → ∞.

The lemma immediately follows by combining (A.12) and (A.1).
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