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The efficiency of simulation algorithms for max-stable processes relies on the choice of the spectral repre-
sentation: different choices result in different sequences of finite approximations to the process. We propose
a constructive approach yielding a normalized spectral representation that solves an optimization problem
related to the efficiency of simulating max-stable processes. The simulation algorithm based on the normal-
ized spectral representation can be regarded as max-importance sampling. Compared to other simulation
algorithms hitherto, our approach has at least two advantages. First, it allows the exact simulation of a
comprising class of max-stable processes. Second, the algorithm has a stopping time with finite expecta-
tion. In practice, our approach has the potential of considerably reducing the simulation time of max-stable
processes.
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1. Introduction

Max-stable processes have become a popular tool for modeling spatial extremes, particularly in
environmental sciences, see, for example, Coles [3], Coles and Tawn [4] and Padoan, Ribatet and
Sisson [22]. A stochastic process {Z(y) : y ∈ K} with standard Fréchet margins defined on an
index set K , that is, P(Z(y) ≤ z) = exp(−z−1), z > 0, for all y ∈ K , is called max-stable if

1

n

n
max
i=1

Zi =d Z

for any n ∈N and independent copies Zi , i = 1, . . . , n, of Z, where the maximum is taken point-
wise. Max-stable processes occur naturally as limits of suitably normalized pointwise maxima
of stochastic processes which motivates their usage in the context of spatial extremes.

Simulating max-stable processes is an important step in application for the following three
reasons. First, while bivariate marginal distributions can be calculated frequently, higher dimen-
sional marginal distributions do not have, in nearly all the cases, explicit formulae. Consequently,
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they can be addressed only by simulation. Second, most applications require the estimation of
characteristics of max-stable processes that cannot be explicitly calculated. That leaves simula-
tion as the only option, see, for example, Buishand, de Haan and Zhou [2] and Blanchet and
Davison [1]. Finally, unconditional simulation appears as part of the conditional simulation of
max-stable processes (Dombry, Éyi-Minko and Ribatet [13], Oesting and Schlather [19]).

Schlather [26] suggested an algorithm to simulate max-stable processes. However, the simula-
tion is exact only under substantial restrictions, namely when the shape function is bounded and
has compact support. In this case, the algorithm ends in finite time almost surely. Compact sup-
port can be enforced by cutting the shape function, which introduces an approximation error. In
some cases, such an error is not negligible. For example, consider moving maximum processes
with monotone shape functions that have a pole at the origin. Strokorb, Ballani and Schlather
[31] provided a derivation of such processes whose realizations have poles on a dense subset
of the space. In particular, they are discontinuous everywhere with probability one. For such
processes, any modification of the shape function towards a bounded shape function will alter
dramatically the properties of the process. Consequently, the use of Schlather’s [26] algorithm
becomes doubtful. By contrast, this paper deals with the question of drawing random samples of
max-stable processes in an exact and efficient way, including shape functions that are unbounded
and do not have compact support.

Simulation of max-stable processes is based on their spectral representation (see de Haan [6],
Giné, Hahn and Vatan [14], Kabluchko [16], Wang and Stoev [32] for instance): For any max-
stable process Z with standard Fréchet margins defined on an index set K , there exists a spectral
measure H defined on an appropriate set H of non-negative functions such that

Z(y) = max
(t,f )∈�

tf (y), y ∈ K, (1.1)

where � is a Poisson point process on (0,∞) ×H with intensity t−2 dtH(df ) and∫
H

f (y)H(df ) = 1 (1.2)

for all y ∈ K . The functions f in H are the spectral functions of the max-stable process Z.
As any max-stable process can be obtained from a max-stable process with standard Fréchet
marginals via marginal transformations, we will henceforth assume processes with standard
Fréchet marginals, that is, processes with representation (1.1) and (1.2).

According to the spectral representation (1.1), the construction of a max-stable process in-
volves infinitely many points (t, f ) ∈ �. Nevertheless, since only the maximum over all func-
tions tf counts, the number of points (t, f ) that contribute to Z, that is, Z(y) = tf (y) for at
least one point y ∈ K , is finite under mild conditions, see de Haan and Ferreira [7], Cor. 9.4.4.
However, their statement is a theoretical one that does not help for simulation purposes because
one cannot determine ex ante which functions f will contribute.

Schlather’s [26] algorithm for simulating max-stable processes requires that K is compact, the
shape functions f : Rd → [0,∞) are bounded by some C ∈ (0,∞) and the support is within
a ball of radius r centered at the origin. For example, consider a stationary moving maxima
processes with the measure H given by

H
({

f (· − x) : f ∈ B,x ∈ A
})= �(A)Hf (B) (1.3)
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for some probability measure Hf and the Lebesgue measure �. Let Kr = {x ∈ Rd : ‖x − y‖ ≤
r for some y ∈ K}. Under the aforementioned assumptions, Schlather [26] showed that the right-
hand side of (1.3) can be restricted to �(A ∩ Kr)Hf (B). Hence, the intensity for (t, f (· − x))

equals

t−2�(Kr)dt · �(dx ∩ Kr)

�(Kr)
Hf (df ),

where f (· − x) can be reinterpreted as realization of a random function F with law �(dx ∩
Kr)/�(Kr) ·Hf (df ) that is independent of the Poisson point process with intensity t−2�(Kr)dt .

Schlather [26] suggested to start with those points (t, f ) that will contribute most likely to
Z, i.e., with those points (t, f ) that have the highest values of t . By ranking the points t in a
descending order t1 > t2, . . . , we have that ti =d 1/(

∑i
j=1 Ej), where Ej are independent and

identically distributed random variables with standard exponential distribution. Let Fi ∼i.i.d. F

be independent of the Ej and

Z(m)(y) = max
1≤i≤m

1∑i
j=1 Ej

Fi(y), y ∈ K,

be a finite approximation for Z. Then, Z =d Z(∞). Assume that for some m the inequality

Z(m)(y) ≥ 1∑m+1
j=1 Ej

sup
f ∈H

f (y) for all y ∈ K, (1.4)

holds. Then, obviously, Z(n)(y) = Z(∞)(y) for all y ∈ K and all n ≥ m. In other words, any
spectral function fi with i > m cannot contribute to Z. This results in a stopping rule for a “m-
step representation” of Z which can be used to construct an exact simulation procedure. Here, the
minimal number of steps M = min{m ∈N : m satisfies (1.4)} is a random integer. The properties
of M depend on the choices of the spectral functions.

Schlather [26] proposed to replace inequality (1.4) by a stronger stopping rule
infy∈K Z(m)(y) ≥ C/

∑m+1
j=1 Ej . As a generalization of Schlather [26], we consider stopping

rule (1.4) with H being any locally finite measure, not necessarily of the form (1.3).
The random number of steps in the simulation of a max-stable process depends on the choice

of the corresponding ensemble of spectral functions which is not unique (cf. de Haan and Fer-
reira [7], Remark 9.6.2). Some specific choices may bear severe disadvantages for the accuracy
and speed of the simulation. For instance, finite approximations based on the original definition
of the Brown–Resnick process are usually far from the actual process (Kabluchko, Schlather and
de Haan [17], Oesting, Kabluchko and Schlather [18]). The optimality of the choice of spec-
tral functions with respect to the number of steps in simulating max-stable processes has not
been discussed in literature yet. Here, we propose a choice of spectral functions, the normalized
spectral representation and show that it is the solution to an optimization problem related to the
number of steps in the simulation.

An illustrative example may clarify why the choice of spectral functions can have a significant
impact on the distribution of the stochastic number M . Consider the simplest case where Z
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is univariate. Specializing (1.1) to K = {y0} and f ≡ 1, the random variable Z(y0) follows a
univariate Fréchet distribution. It has a representation given by

Z(y0) =d max
t∈�

t, (1.5)

where � is the Poisson point process on (0,∞) with intensity t−2 dt . By ranking the points t ,
we get that

Z(m)(y0) = max
1≤i≤m

1∑i
j=1 Ej

= 1

E1
= Z(1)(y0).

In other words, M ≡ 1 based on the constant spectral function f ≡ 1. Differently, Z(y0) can
also be constructed by (1.1) with f (y0) being a non-degenerate random variable satisfying
Ef (y0) = 1. In that case, the stochastic number M is greater than 1 with positive probability.
Therefore, for simulating Z(y0), the spectral representation in (1.5) would be considered as op-
timal. This example illustrates the optimality we intend to achieve by the choice of spectral
functions for an arbitrary max-stable process.

The very general optimality problem for general index sets K and arbitrary random functions
f seems to be rather complicated. Therefore, we shall suggest a modified optimization problem
and shall demonstrate that its solution is explicit and unique for each given max-stable process
and index set K . The optimality is achieved by transforming any ensemble of spectral functions
to a new ensemble of spectral functions satisfying supy∈K f (y) = c, for all f ∈ H. We call such
a representation with all spectral functions sharing the same supremum the normalized spectral
representation. This representation was initially used in constructing the spectral representation
for max-stable processes with a continuous sample path on K = [0,1], see, for example, de
Haan and Lin [8] and de Haan and Ferreira [7], Cor. 9.4.5. In this paper, we provide a theoretical
justification on the use of this normalized spectral representation in simulation algorithms.

This paper is organized as follows. In Section 2, we revisit de Haan’s [6] spectral represen-
tation of max-stable processes and give the formula of spectral representation transformation,
i.e. transforming one ensemble of spectral functions under a given spectral measure to another
ensemble under a different spectral measure. Based on the transformed representation, we for-
mulate a stopping rule that allows an exact simulation of max-stable processes. In Section 3,
we pose an optimization problem for selecting the spectral representation that yields the most
efficient simulation procedure. This problem is closely related to the problem of importance
sampling. In addition, we give the explicit solution of a modified optimization problem. This
results in the normalized spectral representation. Differences between the modified problem and
the original optimization problem are evaluated in Section 4. Section 5 deals with the normal-
ized spectral representation for moving maxima processes. For moving maxima processes and
Brown–Resnick processes, the performance of the simulation procedure based on the normalized
spectral representation is compared to other algorithms in Section 6. In Section 7, we summarize
and discuss our results.
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2. Transformation of spectral representations

Throughout the paper, we consider a max-stable process Z on some index set K that is assumed
to be a compact Polish space. Further, we will assume that the spectral functions f from repre-
sentation (1.1) lie in some Polish space H⊂ [0,∞)K equipped with a σ -algebra H such that the
mapping f �→ supy∈K f (y) is (H,B ∩ [0,∞))-measurable where B denotes the standard Borel
σ -algebra on R.

The subsequent proposition presents a general procedure to transform one spectral represen-
tation to another yielding the same max-stable process. It can be proved by standard arguments
from extreme value theory, see Oesting, Schlather and Zhou [20] for details.

Proposition 2.1. Let Z be a max-stable process with standard Fréchet margins defined as in
(1.1) and (1.2). Suppose that H is a locally finite measure on H. Let g be some probability
density on H w.r.t. H , that is, g ≥ 0 and

∫
H

g(f )H(df ) = 1, such that

H
({

f : g(f ) = 0, sup
y∈K

f (y) > 0
})

= 0. (2.1)

Then, by excluding all the functions f ∈H with g(f ) = 0, we get

Z(y) =d max
(t,f )∈�̃

t
f (y)

g(f )
, y ∈ K, (2.2)

where �̃ is a Poisson point process with intensity t−2 dtg(f )H(df ).

Applying Proposition 2.1, a given ensemble of spectral functions {f }(t,f )∈� can be trans-
formed to a new ensemble {f/g(f )}(t,f )∈�̃, where f follows the transformed probability mea-
sure gH defined by

gH(A) =
∫

A

g(f )H(df )

for all measurable sets A ⊂ H. For this transformed spectral representation (2.2), the stopping
rule (1.4) can be formulated as follows. Denote

Z(m)(y) = max
1≤i≤m

1∑i
j=1 Ej

· Fi(y)

g(Fi)
, y ∈ K, (2.3)

for standard exponentially distributed random variables Ej and Fj ∼ gH , which are all indepen-
dent. Let

Z(∞) = lim
m→∞Z(m). (2.4)

Then, Z(∞) =d Z and, for fixed ω ∈ �, we have Z(m) ≡ Z(∞) on K if

esssupf ∈H sup
y∈K

f (y)

g(f )Z(m)(y)
≤

m+1∑
j=1

Ej , (2.5)
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where the essential supremum is taken w.r.t. the probability measure gH . Note that, by (2.1), up
to a H null set, the set {f ∈ H : g(f ) = 0} consists of functions f ∈ H with f |K≡ 0. Thus, for
fixed g, we may exclude all the functions f ∈ H with g(f ) = 0.

If the number Mg := min{m ∈ N : m satisfies (2.5)} is finite, the max-stable process Z can be
simulated exactly in finite time via the following algorithm.

Algorithm 2.2.
Set m = 0 and Z(0)(y) = 0 for all y ∈ K .
Simulate a standard exponentially distributed random variable E1.
while (2.5) is not satisfied {

Update m by m + 1.
Sample Fm from gH .
Set Z(m)(y) = max{Z(m−1)(y), 1∑m

j=1 Ej

Fm(y)
g(Fm)

} for all y ∈ K .

Simulate a standard exponentially distributed random variable Em+1.
}
Return Z(m).

Algorithm 2.2 requires the evaluation of the stopping rule (2.5) which involves suprema with
respect to y ∈ K and f ∈ H. While, in practice, the set K often is finite, that is, the supremum
w.r.t. y is a maximum, the evaluation of the essential supremum w.r.t. f is more difficult. How-
ever, with the normalized spectral representation (cf. Algorithm 3.11), it is possible to provide a
bound for the essential supremum facilitating this evaluation; see Remark 3.12.

The exact simulation based on the stopping rule (2.5) requires the simulation of Mg processes
from law gH and Mg + 1 exponentially distributed random variables. Therefore, the time costs
of Algorithm 2.2 depend on the stopping rule, which essentially depends on the choice of g.
Consequently, the following question arises: which density g minimizes the random number of
steps Mg? This optimization problem will be formulated in a more rigorous way in the next
section.

3. The optimization problem

Henceforth, we will always assume that we are in the framework of Proposition 2.1. Further, the
process Z is assumed to be almost surely strictly positive on K , that is,

P

(
inf
y∈K

Z(y) > 0
)

= 1. (3.1)

Note that this assumption is valid for processes with continuous sample paths.1

1Assuming sample continuity, we even have

E

((
inf

y∈K
Z(y)

)−1)
< ∞

(Dombry and Eyi-Minko [11], Thm. 2.2). It can be shown that this also holds true under weaker assumptions than sample
continuity (see Oesting, Schlather and Zhou [20]).
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We are interested in minimizing the number of steps in Algorithm 2.2, Mg , that is, the minimal
number m such that (2.5) holds. Since Mg is a random variable, we aim at minimizing some of
its mathematical characteristics. As many applications require a large number of simulations, a
natural choice to start with is to minimize the mean Qg of Mg by choosing a proper density g,
that is,

Qg = EMg, Mg = min

{
m ∈N : esssupf ∈H sup

y∈K

f (y)

g(f )Z(m)(y)
≤

m+1∑
j=1

Ej

}
. (3.2)

In addition, we aim to determine at least one member of

G = arg min
g

Qg.

We remark that the finiteness of Qg is not ensured. As a first step, the following proposition
provides a sufficient condition for Mg being finite almost surely. It follows directly from the
definition of Mg .

Proposition 3.1. Assume that (3.1) holds. Then Mg is finite a.s. if

esssupf ∈H sup
y∈K

f (y)

g(f )
< ∞. (3.3)

Proposition 4.6 below assures the finiteness of Qg provided that condition (3.3) is fulfilled and
Z is sample-continuous.

There is a close relation between our approach and the importance sampling (Hastings [15]).
We interpret (2.2) as “max-importance sampling” as follows. Importance sampling is targeted on
calculating an integral

∫
f (x)λ(dx) in an efficient way for a function f : X → R and a measure

λ on some space X . It uses the fact that∫
f (x)λ(dx) =

∫
f (x)

g(x)
(gλ)(dx), (3.4)

where g : X → (0,∞) is a probability density w.r.t. λ and (gλ)(A) = ∫
A

g(x)λ(dx). Then the
integral can be approximated by Î (n) = 1

n

∑n
i=1

f (Xi)
g(Xi)

, where (Xi)
n
i=1 is an i.i.d. sequence of

random variables on X with law gλ. Importance sampling considers a practically advantageous
choice of the density g such that Var(f (X1)/g(X1)) and hence Var(Î (n)) are small. Exchanging
the underlying space X with the function space H, and replacing the integral with the max-
integral (de Haan [6]), we receive a similar description of our approach:

Z(y) =
∫ ∨

y(f )H ∗(df ) =
∫ ∨ y(f )

g(f )

(
gH ∗)(df ), (3.5)

where y :H → [0,∞), f �→ f (y), is the punctual evaluation of a function f at y, H ∗ is a random
discrete measure on H defined as H ∗({f }) = sup(t,f )∈� t and the integral

∫ ∨ is understood as
taking the maximum of the integrand weighted by the measure H ∗.
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Despite the formal correspondence between (3.4) and (3.5), there are some notable differences.
First, in our approach, y, which is formally an element of the dual space of H, is not fixed.
Second, importance sampling is always an approximation to the integral value of interest. Under
mild conditions, see Section 4, a finite approach to the right-hand side of equality (3.5) renders
the exact value of the max-integral. Hence, we intend to choose g so that the required number
of steps is minimized in order to eliminate the error of the finite approximation. In contrast,
importance sampling searches for a g that leads to a high speed of convergence, that is, a small
variance of Î (n).

Whilst the theoretical optimum is well known in importance sampling, and the difficulty there
is to find a numerically advantageous function g, the optimization problem (3.2) itself is difficult
to solve, since both the numerator and the denominator of f (y)/(g(f )Z(m)(y)) depend on y and
the denominator is stochastic. To circumvent this difficulty, we modify the optimization prob-
lem in Section 3.1 and solve the modified problem in Section 3.2. The solution of the modified
problem leads to the normalized spectral representation discussed in Section 3.3.

3.1. A modified optimization problem

We first motivate the modification of the optimization problem. Recall the stopping rule (2.5) as

esssupf ∈H sup
y∈K

f (y)

g(f )Z(m)(y)
≤

m+1∑
j=1

Ej .

A stronger inequality that implies this stopping rule is

esssupf ∈H
supy∈K f (y)

g(f ) infỹ∈K Z(m)(ỹ)
≤

m+1∑
j=1

Ej , (3.6)

while a weaker inequality that is implied by the stopping rule is

esssupf ∈H
supy∈K f (y)

g(f ) supỹ∈K Z(m)(ỹ)
≤

m+1∑
j=1

Ej . (3.7)

The actual stopping time is larger than that under the weaker rule and smaller than that under the
stronger rule. In other words, if we consider (3.6) and (3.7) as stopping rules, we might simulate
too many or too few spectral functions, respectively. Next, we define an ensemble of alternative
stopping rules that also lie in between the rules (3.6) and (3.7). Suppose T : [0,∞)K → [0,∞)

is a functional that satisfies T (1) = 1 and that is max-linear, that is,

T
(
max{a1h1, a2h2}

)= max
{
a1T (h1), a2T (h2)

}
for all a1, a2 ≥ 0 and h1, h2 : K → [0,∞). Then, we have that T (h) ≤ T (g) for all h ≤ g, which
leads to

inf
y∈K

h(y) ≤ T (h) ≤ sup
y∈K

h(y) (3.8)
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for all h : K → [0,∞). Therefore, any max-linear functional T delivers a stopping rule

esssupf ∈H
supy∈K f (y)

g(f )T (Z(m))
≤

m+1∑
j=1

Ej (3.9)

that lies also in between the aforementioned stronger and weaker stopping rules.
We regard these new conditions (3.9) as surrogates for the actual stopping rule (2.5). The

corresponding modified optimization problem is then

G∗ = arg min
g

Q∗
g,

Q∗
g = EM∗

g = Emin

{
m ∈N : esssupf ∈H

supy∈K f (y)

g(f )T (Z(m))
≤

m+1∑
j=1

Ej

}
.

(3.10)

Examples of T are T (h) = supy∈K h(y) and T (h) = h(y0) for some y0 ∈ K . The correspond-
ing modified problems based on these two specific T minimize the quantities

Q(1)
g = Emin

{
m ∈N : esssupf ∈H

supy∈K f (y)

g(f ) supỹ∈K Z(m)(ỹ)
≤

m+1∑
j=1

Ej

}
, (3.11)

and Q(2)
g (y0) = Emin

{
m ∈N : esssupf ∈H

supy∈K f (y)

g(f )Z(m)(y0)
≤

m+1∑
j=1

Ej

}
. (3.12)

Note that the modified condition (3.9) does not correspond to the stopping rule under considera-
tion (Algorithm 2.2).

3.2. The solution of the modified optimization problem

The following proposition provides a first but also a key step towards the solution of (3.10). It
shows that the solution of (3.10) is independent of T .

Proposition 3.2. The solution of the modified optimization problem in (3.10) satisfies

G∗ = arg min
g

esssupf ∈H
supy∈K f (y)

g(f )
.

Proof. If there exists some g such that Q∗
g is finite, then necessarily

esssupf ∈H

supy∈K f (y)

g(f )
< ∞.
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Thus, we can restrict ourselves to

g ∈ D =
{
g : esssupf ∈H

supy∈K f (y)

g(f )
< ∞

}
and assume w.l.o.g. that D �=∅. For c = ∫

H
supy∈K f (y)H(df ) and any g ∈ D, we have

c ≤
∫
H

esssuph∈H
supy∈K h(y)

g(h)
g(f )H(df ) = esssuph∈H

supy∈K h(y)

g(h)
< ∞. (3.13)

Thus, by (3.8), for cT = ∫
H

T (f )H(df ), we obtain cT ≤ c < ∞.
Next, we prove cT > 0 by contradiction. Assume that cT = 0. This yields T (f ) = 0 for

H -a.e. f ∈ H which – by the max-linearity of Z – implies T (Z) = 0 a.s. in contradiction to
infy∈K Z(y) > 0 a.s. and (3.8). Thus, we conclude that cT ∈ (0,∞).

Now, let g ∈ D. Using the max-linearity of T and the fact that Q∗
g = EM∗

g = ∑∞
m=0 P(M∗

g >

m), we have

Q∗
g − 1 =

∞∑
m=1

P

(
esssupf ∈H sup

y∈K

f (y)

g(f )

/m+1∑
j=1

Ej > max
1≤k≤m

1∑k
j=1 Ej

T (fk)

g(fk)

)

=
∞∑

m=1

P

(∑k
j=1 Ej∑m+1
j=1 Ej

>
T (fk)

g(fk)

/
esssupf ∈H sup

y∈K

f (y)

g(f )
,1 ≤ k ≤ m

)
.

(3.14)

Note that

T (fk)

g(fk)

/
esssupf ∈H sup

y∈K

f (y)

g(f )
∈ [0,1].

As the joint distribution of (
∑k

j=1 Ej/
∑m+1

j=1 Ej)k=1,...,m equals the joint distribution of the
order statistics of m independent random variables U1, . . . ,Um which are uniformly distributed
on [0,1], and as, by exchangeability,

P(U(1) > X1, . . . ,U(m) > Xm) = P(U1 > X1, . . . ,Um > Xm)

holds for i.i.d. [0,1]-valued random variables X1, . . . ,Xm, we obtain

Q∗
g = 1 +

∞∑
m=1

[
1 −E

(
T (f1)

g(f1)

)/
esssupf ∈H sup

y∈K

f (y)

g(f )

]m

= esssupf ∈H sup
y∈K

f (y)

g(f )

/
E

(
T (f1)

g(f1)

)

= esssupf ∈H
supy∈K f (y)

g(f )

/∫
H

T (f1)H(df1).

(3.15)

This finishes the proof since cT ∈ (0,∞). �
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Remark 3.3. In the proof of Proposition 3.2, the distribution of the random variable M∗
g

defined in (3.10) is calculated. We see that M∗
g follows a geometric distribution with pa-

rameter
∫
H

T (h)H(dh)/ esssupf ∈H supy∈K(f (y)/g(f )). Therefore, a density g that minimizes
esssupf ∈H supy∈K(f (y)/g(f )) does not only minimize the expectation of M∗

g , but also other
characteristics. For example, the probability P(M∗

g > m0) for a given m0 ∈ N, or the quantile of
M∗

g at a given probability level. However, this property does not necessarily hold for the stochas-
tic number Mg in the actual stopping rule (2.5).

We carry on to find the density g that minimizes esssupf ∈H
supy∈K f (y)

g(f )
. Instead of considering

the supremum in the numerator, we deal with a broader class of functionals in the following
proposition.

Proposition 3.4. Let L : H → (0,∞) be measurable and cL := ∫
H

L(f )H(df ) < ∞. Then,

gL(f ) = c−1
L L(f ) (3.16)

is an element of

G(L) = arg min
g

esssupf ∈H
L(f )

g(f )
.

Furthermore, for every g ∈ G(L), Equation (3.16) holds for H -a.e. f ∈ H.

Proof. First, by contradiction, we show that the inequality

esssupf ∈H

L(f )

g(f )
≥ cL (3.17)

holds for all g. So, assume that (3.17) does not hold for some g considered in Proposition 2.1.
Then some ε > 0 and some density g with

∫
g(f )H(df ) = 1 exist such that, for almost all

f ∈H, we have L(f )/g(f ) ≤ cL − ε. Hence,

cL =
∫
H

L(f )H(df ) ≤ (cL − ε)

∫
H

g(f )H(df ) < cL

which is a contradiction. Hence, (3.17) is proved. Note that the choice g(f ) = c−1
L L(f ) implies

equality in (3.17). The first assertion follows.
For the proof of the second assertion, assume that there is some g ∈ G(L) such that (3.16) does

not hold for H -a.e. f ∈ H. Then, as∫
H

g(f )H(df ) = 1 =
∫
H

c−1
L L(f )H(df ),

there is some set A ⊂H with H(A) > 0 such that, for all f ∈ A, g(f ) < c−1
L L(f ), but g(f ) > 0

by (2.1). This yields gH(A) > 0 and, hence, esssupf ∈H L(f )/g(f ) > cL, which is a contradic-
tion to g ∈ G(L). �
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Remark 3.5. Let Lp(H) be the space of p-integrable functionals with respect to H . Then cL =
‖L‖L1(H) and esssupf ∈H

L(f )
g(f )

= ‖L/g‖L∞(H). Proposition 3.4 states a special case of Hölder’s
inequality for all density functions g, cL ≤ ‖L/g‖L∞(H)‖g‖L1(H) = ‖L/g‖L∞(H) and equality
holds if and only if g is proportional to L (H -a.e.).

Similarly, in importance sampling, the second moment E(f̃ (X1)/g(X1))
2 = ‖f̃ /

√
g‖2

2 is
intended to be small. Now, cg := ‖f̃ ‖1 ≤ ‖f̃ /

√
g‖2‖√g‖2 = E(f̃ (X1)/g(X1))

2 and equality
holds if and only if g is proportional to f̃ .

Both cL and cg can simply be regarded as a factor that normalize L and f̃ , respectively.

The results stated above enable us to describe the solution of the optimization problem (3.10).
To be rigorous, we first give a necessary and sufficient condition for the solvability of the prob-
lem. Here an optimization problem

arg min
x∈A

h(x), h : A → R∪ {∞},

is solvable if infx∈A h(x) ∈ (−∞,∞) and there exists some x0 ∈ A such that h(x0) =
infx∈A h(x). Our key theorem is given as follows.

Theorem 3.6. The optimization problem (3.10) is solvable if and only if

c =
∫
H

sup
y∈K

f (y)H(df ) < ∞.

Assuming c < ∞, the solution is given as

g∗(f ) := c−1 sup
y∈K

f (y), f ∈ H. (3.18)

The solution is unique H -a.s.

Proof. If c = ∞, Equation (3.13) and Proposition 3.2 yield that (3.10) is not solvable. For c <

∞, the solution and its uniqueness follow directly from Propositions 3.2 and 3.4 with L(f ) =
supy∈K f (y). �

Remark 3.7. It is obvious that g∗ is also the H -a.s. solution for the two examples of the modified
optimization problem in (3.11) and (3.12) and these problems are solvable if and only if c < ∞.
Consequently, the original optimization problem (3.2) is not solvable if c = ∞, because Q

(1)
g ≤

Qg for any g.

We close this subsection with analyzing under which conditions c is finite, that is, the modified
optimization problem is solvable. For instance, if Z is sample-continuous or if K is finite, c < ∞
follows from a result by Resnick and Roy [24] (see also de Haan and Ferreira [7], Thm. 9.6.1)
who showed the equivalence of the first and third assertion in the following proposition. Our re-
sult is more general as it shows the equivalence to further conditions and supy∈K f (y) is replaced
by a general max-linear functional L.
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Proposition 3.8. Assume the framework of Proposition 2.1. Furthermore, assume that the func-
tional L : H → (0,∞) is measurable and max-linear. Then the following conditions are equiva-
lent:

1. cL := ∫
H

L(f )H(df ) < ∞.
2. P(L(Z) ≤ a) > 0 for some a > 0.
3. P(L(Z) < ∞) = 1 (or, equivalently, P(L(Z) < ∞) > 0).

If there is some stochastic process W such that

Z =d max
t∈�0

tWt , (3.19)

where �0 is a Poisson point process on (0,∞) with intensity t−2 dt and Wt , t ∈ �0, are inde-
pendent copies of W , we get another equivalent condition:

4. EL(W) < ∞.

Proof. The assertion follows from the following continued equality:

exp

(
−cL

a

)
= exp

(
−
∫
H

∫ ∞

a/L(f )

t−2 dtH(df )

)
= P

(
L(Z) ≤ a

)
= exp

(
−EW

(∫ ∞

a/L(W)

u−2 du

))
= exp

(−a−1EL(W)
)

for any a > 0. The equivalence to the third assertion follows from the relation P(L(Z) < ∞) =
lima→∞ P(L(Z) ≤ a). �

3.3. The normalized spectral representation

Plugging in the solution g∗ of (3.10) given by (3.18) into (2.2), we obtain Z =d Z̃ with

Z̃(y) = max
t∈�0

t
cFt (y)

supỹ∈K Ft(ỹ)
, y ∈ K, (3.20)

where �0 is a Poisson point process on (0,∞) with intensity t−2dt and Ft , t ∈ �0, are indepen-
dent random processes with density g∗(f )H(df ). It can be verified that the transformed spectral
functions {cFt/ supy∈K Ft(y)} are independent copies of a stochastic process F ∗ with

sup
y∈K

F ∗(y) ≡ c. (3.21)

We define such a representation as the normalized spectral representation as follows.

Definition 3.9. Let Z be a max-stable process on K satisfying

Z =d max
t∈�0

tF ∗
t . (3.22)
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Here, �0 is a Poisson point process on (0,∞) with intensity t−2dt and F ∗
t , t ∈ �0, are indepen-

dent copies of a stochastic process F ∗ satisfying (3.21) for some c ∈ (0,∞). Then, the right-hand
side of (3.22) is called normalized spectral representation of Z.

Theorem 3.6 implies that the normalized spectral representation exists if and only if c < ∞.
The following proposition implies that the constant c and the finite-dimensional distributions
of the processes F ∗

t in the normalized spectral representation are uniquely determined by the
process Z.

Proposition 3.10. Let Z be a max-stable process with a normalized spectral representation.
Furthermore, let ZK := supy∈K Z(y). Then, we have

1. c = − logP(ZK ≤ 1).
2. For any y1, . . . , yn ∈ K , v1, . . . , vn > 0, it holds

P
(
F ∗(yi) ≤ vi,1 ≤ i ≤ n

)= lim
z→∞P

(
Z(yi)

ZK
≤ vi

c
,1 ≤ i ≤ n

∣∣∣ZK > z

)
. (3.23)

Proof. The first part is a consequence of the proof of Proposition 3.8. In order to prove the
second part, we provide an lower and an upper bound for the probability of the event

A = {
Z(yi) ≤ viZ

K/c, i = 1, . . . , n,ZK > z
}
.

To this end, let �̃ = {(t,F ∗
t ) : t ∈ �0} and note that ZK > z if and only if there is some (u,w) ∈

�̃ such that ZK = uc = u supy∈K w(y) > z. Now, suppose that further Z(yi) ≤ viZ
K/c holds for

all i = 1, . . . , n. Then, this point (u,w) necessarily satisfies w(yi) ≤ vi for all i = 1, . . . , n. This
yields an upper bound for P(A). If, on the other hand, Z(yi) > viZ

K/c for some i = 1, . . . , n,
then one point (u,w) ∈ �̃ with uc > z satisfies w(yi) > vi for some i = 1, . . . , n or there is
some point (u,w) ∈ �̃ with uc ≤ z, but uw(yi)/z > vi/c for some i = 1, . . . , n. Considering the
complementary probabilities, we obtain a lower bound. Summing up, we have

P

(∣∣∣∣�̃ ∩
{
(u,w) : u >

z

c

}∣∣∣∣> 0,

∣∣∣∣�̃ ∩
{
(u,w) : u >

z

c
,1 > min

1≤i≤n

vi

w(yi)

}∣∣∣∣= 0,∣∣∣∣�̃ ∩
{
(u,w) : u ≤ z

c
,
u

z
> min

1≤i≤n

vi

cw(yi)

}∣∣∣∣= 0

)
≤ P(A)

≤ P

(∣∣∣∣�̃ ∩
{
(u,w) : u >

z

c
, max

1≤i≤n

w(yi)

vi

≤ 1

}∣∣∣∣> 0

)
.

(3.24)

The lower bound in (3.24) equals(
1 − exp

(
−c

z
P
(
F ∗(yi) ≤ vi,1 ≤ i ≤ n

)))
· exp

(
−c

z
P

(
max

1≤i≤n

F ∗(yi)

vi

> 1

))
exp

(
−E

∫ z
c

z
c
∧min1≤i≤n

zvi
cF∗(yi )

u−2du

)
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=
(

1 − exp

(
−c

z
P
(
F ∗(yi) ≤ vi,1 ≤ i ≤ n

)))
· exp

(
−c

z
P

(
max

1≤i≤n

F ∗(yi)

vi

> 1

))
exp

(
−c

z
E

(
max

1≤i≤n

F ∗(yi)

vi

− 1

)
+

)
,

while the upper bound equals 1 − exp(− c
z
P(F ∗(yi) ≤ vi,1 ≤ i ≤ n)). By using that P(ZK >

z) = 1 − e−c/z and taking the limit z → ∞, inequality (3.24) yields (3.23). �

Proposition 3.10 implies that the solution of the optimization problem (3.10) is unique in two
different aspects. First, as stated in Theorem 3.6, any solution g ∈ G∗ satisfies g = g∗ H -a.s.
Second, the finite-dimensional distributions of the normalized spectral functions {f/g∗(f )} do
not depend on the initial choice of the spectral functions. In particular, the normalized spectral
representation is unique if H is the space of continuous functions on K equipped with the Borel
σ -algebra, that is, the product σ -algebra on [0,∞)K .

Summarizing the results in this section, we suggest to make use of the normalized spectral rep-
resentation for exact and efficient simulation as it is the unique solution to the modified optimiza-
tion problem provided that c < ∞. Analogously to Algorithm 2.2, the algorithm for simulation
via the normalized spectral representation is given as follows.

Algorithm 3.11.
Set m = 0 and Z(0)(y) = 0 for all y ∈ K .
Simulate a standard exponentially distributed random variable E1.
while esssupf ∈H supy∈K

cf (y)

supỹ∈K f (ỹ)Z(m)(y)
>
∑m+1

j=1 Ej {

Update m by m + 1.
Sample Fm with density c−1 supy∈K f (y)H(df ).

Set Z(m)(y) = max{Z(m−1)(y), c∑m
j=1 Ej

Fm(y)
supỹ∈K Fm(ỹ)

} for all y ∈ K .

Simulate a standard exponentially distributed random variable Em+1.
}
Return Z(m).

Remark 3.12. In practice, with the normalized spectral representation, the criterion in the while-
loop in Algorithm 3.11 might be replaced by the weaker criterion c

infy∈K Z(m)(y)
>
∑m+1

j=1 Ej .

Although the use of the weaker stopping rule based on this criterion may increase the number of
iterations, it simplifies the evaluation of the essential supremum.

The constant c plays the role analogous to the bound of the quotient of the genuine density
function and the proposed density function in rejection sampling. In particular, c controls the
speed of the algorithm, while (2.5) guarantees the exactness.

Finally, we investigate the sampling of Fm in Algorithm 3.11. The simulation of the stochas-
tic processes Fm = {Fm(y), y ∈ K}, m ∈ N, according to the transformed measure g∗H may
not be always straightforward. For some processes, such as the moving maxima processes (cf.
Section 5), the distribution of Fm can be calculated explicitly, which allows for efficient sam-
pling. For many other processes, such as Brown–Resnick or extremal t processes, there is no
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direct way to simulate the normalized spectral functions. One solution is to use the following
Metropolis–Hastings algorithm.

Algorithm 3.13.
Simulate f (1) according to the law H .
for k = 1, . . . , nMCMC − 1 {

Sample f prop from H and set

f (k+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f prop with probability min

{
supy∈K f prop(y)

supy∈K f (k)(y)
,1

}
,

f (k) with probability max

{
1 − supy∈K f prop(y)

supy∈K f (k)(y)
,0

}
.

}
Return f (nMCMC).

If H is a probability measure, Algorithm 3.13 generates a Markov chain of length nMCMC

whose stationary distribution is g∗H based on simulations from H .

4. Evaluating the modified optimization problem

In this section, we discuss how close the modified optimization problem and the original prob-
lem are. Considering the two examples (3.11) and (3.12) of the modified problem, we have that
Q

(1)
g ≤ Q

(2)
g (y0) ≤ Qg for all g under some mild condition on H (see the proof of Proposi-

tion 4.1). Therefore, the modified optimization problem is in fact minimizing a lower bound of
g �→ Qg . This section proceeds in two steps. First, we will improve the lower bound and show
that the normalized spectral representation also minimizes the improved lower bound function.
Second, we give a formula for calculating Qg . In particular, this formula allows the calculation
of Qg∗ , that is, the expected number of steps when simulating Z using the normalized spectral
representation and the original stopping rule (2.5).

We start giving bounds for the expected number of iterations in the simulation algorithm. The
proof is given in the appendix.

Proposition 4.1. Assume the existence of a countable subset K0 ⊂ K such that supy∈K f (y) =
supy∈K0

f (y) for H -a.e. f ∈ H. Denoting by g0 ∈ G a solution of the original optimization
problem, we get for all y0 ∈ K ,

1 = Q
(1)
g∗ ≤ Q

(2)
g∗ (y0) ≤ Qg0 ≤ Qg∗ .

As Proposition 4.1 shows, approximating the optimal number of steps in the original problem
(3.2) by the solution for the two example problems (3.11) and (3.12) might be quite vague. In
particular, the achieved minimum of Q

(1)
g always equals to 1. In other words, some spectral

functions that in fact contribute to Z are not taken into account in the calculation of Q
(1)
g or Q

(2)
g .
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To overcome the aforementioned pitfall, we proceed with a theoretical investigation to improve
the lower bound of Qg for a given density g. The idea is to evaluate Qg by separating two
types of spectral functions. First, we consider those functions that contribute to the max-stable
process under the transformed spectral representation. Second, we deal with those functions that
do not contribute, but are taken into consideration because of the stopping rule. To this end,
we replace the processes Z(m) occurring in the construction of Z by the final process Z(∞)

given by (2.4). Theoretically, this will not affect the construction of the process because once
we stop after m steps according to the stopping rule (2.5), we have Z(m) = Z(∞). However, the
modified inequality is not a stopping rule. This is why we call the analysis below a “theoretical
investigation”.

We further assume that H corresponds to the space C+(K) of nonnegative continuous func-
tions on K endowed with the Borel σ -algebra H. This ensures the finiteness of c, and thus the
solvability of all the optimization problems. Note that all the results of this section hold true for
more general spaces H, see Oesting, Schlather and Zhou [20].

In order to separately consider these two types of functions, we adopt the concepts of K-
extremal and K-subextremal points introduced by Dombry and Eyi-Minko [12] and Dombry and
Eyi-Minko [11] as follows.

Definition 4.2. Let 	 be some Poisson point process on (0,∞)×C+(K) with intensity measure
u−2 du×ν(dh) where ν is a locally finite measure on C+(K). We call (t∗, h∗) ∈ 	 a K-extremal
point and write (t∗, h∗) ∈ 	+

K if and only if

t∗h∗(y) = max
(t,h)∈	

th(y) for some y ∈ K.

Otherwise, i.e. if t∗h∗(y) < max(t,h)∈	 th(y) for all y ∈ K , (t∗, h∗) ∈ 	 is called a K-
subextremal point and we write (t∗, h∗) ∈ 	−

K .

In contrast to Dombry and Eyi-Minko [12], we are interested in tuples (t, h) instead of the
product th. Therefore, we generalize a result given in Dombry and Eyi-Minko [12] and show that
the random sets 	+

K and 	−
K are point processes on (0,∞)×C+(K), i.e. 	+

K(S) and 	−
K(S) are

random variables for any bounded set S ∈ B × C+(K); see the following proposition. The proof
runs analogously using the fact that the mapping φ : (0,∞) × C+(K) → C+(K), (t, h) �→ th(·)
is measurable and is therefore omitted.

Proposition 4.3. 	+
K and 	−

K are point processes on (0,∞) × C+(K).

To apply the theory of extremal and subextremal points in the construction of the process
Z(∞), we define the Poisson point process

	 = {(
t, f/g(f )

) : (t, f ) ∈ �̃
}
.

Similar to the proof of Lemma 3.2 in Dombry and Eyi-Minko [11], the following lemma
characterizes the points of the point process 	−

K .
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Lemma 4.4. Conditional on Z(∞), the point process 	−
K is a Poisson point process on (0,∞)×

C+(K) with intensity measure

d�̃−

dt × dH
(t,h) = t−2g(h) · 1th(·)/g(h)<Z(∞)(·).

In addition, we calculate the expected number of points in the point process 	+
K in the follow-

ing lemma.

Lemma 4.5. We have

E
∣∣	+

K

∣∣= EZ

(∫
C+(K)

sup
y∈K

f (y)

Z(y)
H(df )

)
which does not depend on the choice of g.

Proof. Let B = [t0,∞)×C+(K) with t0 > 0. Then, we have E|	+
K ∩B| = E|	∩B|−E|	−

K ∩
B|. Conditioning on Z(∞), Lemma 4.4 yields

E
∣∣	+

K ∩ B
∣∣= ∫

C+(K)

∫ ∞

0
t−21t≥t0 dtg(f )H(df )

−EZ(∞)

(∫
C+(K)

∫ ∞

0
t−21t≥t01 1

t
>supy∈K

f (y)

g(f )Z(∞)(y)

dtg(f )H(df )

)
= EZ

(∫
C+(K)

∫ ∞

0
t−21t≥t01 1

t
≤supy∈K

f (y)
g(f )Z(y)

dtg(f )H(df )

)
.

Considering a monotone sequence t0,n ↘ 0 as n → ∞, the monotone convergence theorem
yields

E
∣∣	+

K

∣∣= EZ

(∫
C+(K)

∫ ∞

0
t−21

t>1/ supy∈K
f (y)

g(f )Z(y)

dtg(f )H(df )

)
= EZ

(∫
C+(K)

sup
y∈K

f (y)

Z(y)
H(df )

)
,

which completes the proof. �

The first type of spectral functions that contribute to Mg correspond to the points (t∗, h∗) ∈
	+

K . Thus, we can rewrite (3.2) as

Qg = E
∣∣	+

K

∣∣+E

(∣∣∣∣{(t, h) ∈ 	−
K : esssupf ∈C+(K) sup

y∈K

f (y)

g(f )Z(∞)(y)
>

1

t

}∣∣∣∣). (4.1)

The second term in the right-hand side of (4.1) corresponds to the number of the second type of
spectral functions: they do not contribute to the max-stable process but are counted due to the
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stopping criterion (2.5). Notice that the component E|	+
K | is independent of the choice of g. We

thus modify the optimization problems by maintaining this component, while refining the second
component in an analogous way as the modification in (3.10). This results in a refined version of
the modified optimization problem (3.10) as

Q̃∗
g = E

∣∣	+
K

∣∣+E

(∣∣∣∣{(t, h) ∈ 	−
K : esssupf ∈C+(K)

supy∈K f (y)

g(f )T (Z(∞))
>

1

t

}∣∣∣∣). (4.2)

The following proposition relates the minimizer of (4.2) to the solution of our previously
modified optimization problem, g∗ ∈ G∗. In addition, it provides a formula for Qg for any given
g based on the results in Lemma 4.4 and 4.5.

Proposition 4.6.

1. For any g, we have

Qg = EZ

(
esssupf ∈C+(K) sup

y∈K

f (y)

g(f )Z(y)

)
. (4.3)

2. For any max-linear function T , it holds

arg min
g

Q̃∗
g ⊃ arg min

g
esssupf ∈C+(K)

supy∈K f (y)

g(f )
= G∗,

where Q̃∗
g is as in (4.2) and G∗ = arg ming Q∗

g .

Proof. Let Z(∞) be given by (2.4). By Lemma 4.5, we obtain

Qg = EZ

∫
C+(K)

sup
y∈K

f (y)

Z(y)
H(df )

+E

(∣∣∣∣{(t, h) ∈ 	−
K : esssupf ∈C+(K) sup

y∈K

f (y)

g(f )Z(∞)(y)
> t−1

}∣∣∣∣).

Conditioning on Z(∞), Lemma 4.4 yields

E

(∣∣∣∣{(t, h) ∈ 	−
K : esssupf ∈C+(K) sup

y∈K

f (y)

g(f )Z(∞)(y)
> t−1

}∣∣∣∣)

= EZ

(∫
C+(K)

∫ ∞

0
t−21

t>1/esssuph∈C+(K) supy∈K
h(y)

g(h)Z(y)

1
t<1/ supy∈K

f (y)
g(f )Z(y)

dtg(f )H(df )

)
= EZ

(∫
C+(K)

{
esssuph∈C+(K) sup

y∈K

h(y)g(f )

g(h)Z(y)
− sup

y∈K

f (y)

Z(y)

}
+
H(df )

)

= EZ

[
esssuph∈C+(K) sup

y∈K

h(y)

g(h)Z(y)

]
−EZ

∫
C+(K)

sup
y∈K

f (y)

Z(y)
H(df ).
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In the last step we used the fact that

esssuph∈C+(K) sup
y∈K

h(y)g(f )

g(h)Z(y)
− sup

y∈K

f (y)

Z(y)
≥ 0

for H -a.e. f ∈ C+(K). The first assertion follows.
Analogously to the first part, we get that

Q̃∗
g = EZ

∫
C+(K)

sup
y∈K

f (y)

Z(y)
H(df )

+E

(∣∣∣∣{(t, h) ∈ 	−
K : esssupf ∈C+(K)

supy∈K f (y)

g(f )T (Z(∞))
> t−1

}∣∣∣∣)
and

E

(∣∣∣∣{(t, h) ∈ 	−
K : esssupf ∈C+(K)

supy∈K f (y)

g(f )T (Z(∞))
> t−1

}∣∣∣∣)
= EZ

(∫
C+(K)

∫ ∞

0
t−21

t>1/ esssuph∈C+(K) supy∈K
h(y)

g(h)T (Z)

1
t<1/ supy∈K

f (y)
g(f )Z(y)

dtg(f )H(df )

)
(4.4)

= EZ

(∫
C+(K)

{
esssuph∈C+(K)

supy∈K h(y)

g(h)T (Z)
g(f ) − sup

y∈K

f (y)

Z(y)

}
+
H(df )

)

≥ EZ

(∫
C+(K)

{
supy∈K f (y)

T (Z)
− sup

y∈K

f (y)

Z(y)

}
+
H(df )

)
.

Now, let g ∈ G∗ = arg ming esssupf ∈C+(K)(supy∈K f (y)/g(f )). Then, by Theorem 3.4, we have

that g(f ) = c−1 supy∈K f (y) for all f ∈ C+(K), H -a.e. Thus, we get equality in Equation (4.4)

and hence G∗ ⊂ arg ming Q̃∗
g . �

Proposition 4.6 leads to two implications in applications. First, it facilitates the numerical cal-
culation of Qg = E(Mg) by simulation. While Equation (4.3) is difficult to be evaluated exactly
in many cases, it may be used to obtain bounds for EMg such as

esssupf ∈C+(K) sup
y∈K

f (y)

g(f )
≤ Qg = EMg ≤ esssupf ∈C+(K) sup

y∈K

f (y)

g(f )
E

[(
inf
y∈K

Z(y)
)−1]

. (4.5)

This confirms the finding of Proposition 3.1 that esssupf ∈C+(K) supy∈K
f (y)
g(f )

< ∞, is a necessary
condition for EMg to be finite.

In particular, the result can be applied to analyze Qg∗ . With f (y)
g∗(f )

≤ c, we obtain

Qg∗ ≤ c ·E
[(

inf
y∈K

Z(y)
)−1]

. (4.6)
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This yields that Qg∗ < ∞ if Z is sample-continuous, as in this case we have c < ∞ and
E((infy∈K Z(y))−1) < ∞ holds. In other words, the expectation of the stochastic number Mg∗
based on the normalized representation is finite. Note that the upper bound in (4.6) is reached
under some mild conditions, see Oesting, Schlather and Zhou [20]. We will see that all examples
considered in the present paper meet these conditions.

Second, Proposition 4.6 implies that the minimal value for Q̃∗
g can be achieved by any g∗ ∈ G∗.

As further Q∗
g ≤ Q̃∗

g by construction, we obtain the following corollary.

Corollary 4.7. The optimization problem given in (4.2) is solvable if and only if the optimization
problem (3.10) is solvable (cf. Theorem 3.6). With solvability, the normalized spectral represen-
tation is an optimal solution to (4.2) and (3.10).

This corollary further confirms that using the normalized spectral representation may lead to
an efficient and exact simulation, because the refined optimization problem (4.2) is closer to the
original optimization problem than the modified problem (3.10).

Lastly, we improve the lower bounds for Qg̃ . To this end, refined versions of the examples in
(3.11) and (3.12) are considered:

Q̃(1)
g = E

∣∣	+
K

∣∣+E

(∣∣∣∣{(t, h) ∈ 	−
K : esssupf ∈C+(K)

supy∈K f (y)

g(f ) supỹ∈K Z(∞)(ỹ)
>

1

t

}∣∣∣∣), (4.7)

Q̃(2)
g (y0) = E

∣∣	+
K

∣∣+E

(∣∣∣∣{(t, h) ∈ 	−
K : esssupf ∈C+(K)

supy∈K f (y)

g(f )Z(∞)(y0)
>

1

t

}∣∣∣∣). (4.8)

Proposition 4.8. For any g0 ∈ G, we have

1 ≤ Q̃
(1)
g∗ ≤ inf

y0∈K
Q̃

(2)
g∗ (y0) ≤ Qg0 ≤ Qg∗ ,

where g∗ ∈ G∗ is given by (3.18).

By definition, Q̃(1)
g ≥ Q

(1)
g and Q̃

(2)
g ≥ Q

(2)
g for all g. Hence, the results in Proposition 4.8 give

improved lower bounds of Qg0 . The proof is analogous to Proposition 4.1 and is thus omitted.

5. Example: The normalized spectral representation of moving
maxima processes

In this section, we discuss the normalized spectral representation for the class of moving maxima
processes which can be simulated via an algorithm of Schlather [26]. In this case, the normalized
spectral functions can be calculated explicitly and are convenient to handle, which allows a rather
general implementation of the simulation procedure for processes on a grid, see the R package
RandomFields (R Core Team [23], Schlather et al. [27]). The procedure is further compared
to Schlather’s [26] algorithm both from a theoretical point of view and in a simulation study in
Section 6.



1518 M. Oesting, M. Schlather and C. Zhou

Here, we focus on moving maxima processes on a compact set K ⊂ Rd , i.e. processes of the
form

Z(y) =d max
(t,x)∈�M2

th(y − x), y ∈ K, (5.1)

where �M2 is a Poisson point process on (0,∞) × Rd with intensity t−2 dt�(dx), � denotes
the Lebesgue measure on Rd and h : Rd → [0,∞) is a so-called shape function satisfying∫
Rd h(x)dx = 1. Thus, Z has a spectral representation of form (1.1) with H(A) = λ({x ∈ Rd :

h(· − x) ∈ A}), A ∈ H.
In the following, we will explicitly calculate the distribution of the normalized spectral func-

tions for moving maxima processes. First, we note that, due to the specific structure of a moving
maxima process Z defined in (5.1), its normalized spectral representation can be written as

Z(y) =d max
t∈�0

ct
h(y − Xt)

h̃(Xt )
, y ∈ K,

where �0 is a Poisson point process on (0,∞) with intensity measure t−2 dt and Xt , t ∈ �0,
are independent random vectors with Lebesgue density c−1h̃(x)dx, h̃(x) = supy∈K h(y −x) and

c = ∫
Rd h̃(x)dx. Thus, both the function h̃ and the constant c are crucial for the simulation of the

normalized spectral functions. Further, c also occurs in the stopping rule and thus influences the
number of spectral functions considered in Algorithm 3.11. If h is continuous or K is discrete,
the upper bound (4.6) is reached, i.e.

Qg∗ = EMg∗ = c ·E
[(

inf
y∈K

Z(y)
)−1]

.

In general, the term E[(infy∈K Z(y))−1] cannot be calculated analytically, but needs to be esti-
mated via simulations. For the implementation of Algorithm 3.11, however, only the constant c

and the function h̃ are needed, both of them depending on the shape function h and the geometry
of the set K .

In the following, we will calculate c and h̃ under different assumptions on the domain K . We
restrict ourselves to the case where the shape function h is radial symmetric and non-increasing,
that is, h(x) = f0(‖x‖) for a non-increasing function f0 : [0,∞) → [0,∞). Then, in general,

h̃(x) := sup
y∈K

f0
(‖y − x‖)= f0

(
min
y∈K

‖y − x‖
)
.

First, consider the case that K is a d-dimensional ball b(0,R) centered at the origin with
radius R, that is, K = {x ∈Rd : ‖x‖ ≤ R}. Then, h̃(x) = f0(0)1‖x‖≤R +1‖x‖>Rf0(‖x‖−R) and
c = f0(0)Rd + d

∫∞
0 (r̃ + R)d−1f0(r̃)dr̃ < ∞.

Second, consider the case that K is a d-dimensional cube, that is, the case that K = [−R,R]d
for some R > 0. Then, we get

h̃
(
(x1, . . . , xd)

)= f0
(∥∥((|x1| − R

)∨ 0, . . . ,
(|xd | − R

)∨ 0
)∥∥). (5.2)
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We consider the subcases d = 1 and d = 2 to derive explicit formulae. If d = 1, then K =
[−R,R] = b(0,R), and, according to the formulae above, we get that h̃(x) = 1|x|≤Rf0(0) +
1|x|>Rf0(|x| − R) and thus,

c =
∫
R

h̃(x)dx = 2Rf0(0) +
∫

|x|>0
f0
(|x|)dx = 2Rf0(0) + 1.

If d = 2, we obtain

h̃(x) = 1|x1|∨|x2|≤Rf0(0) + 2 · 1|x1|∧|x2|≤R,|x1|∨|x2|>Rf0
((|x1| ∧ |x2|

)− R
)

+ 1|x1|∧|x2|>Rf0
(∥∥(|x1| − R, |x2| − R

)∥∥).
Thus,

c = (2R)2 · f0(0) + 4R ·
∫
R

f0
(|x|)dx +

∫
R2

f0
(‖x‖)dx = 4R2f (0) + 4R

∫
R

f0
(|x|)dx + 1.

Next, we further specify explicit examples on the function f0, under which the constant c can
be further calculated.

Example 5.1.

1. Indicator function. We consider the case that the shape function is the indicator function of
a ball b(0, r) with radius r > 0 centered at the origin, i.e. f0(‖x‖) = 1‖x‖≤r . In this case,
we have h̃(x) = 1K⊕b(0,r)(x) and c = vol(K ⊕b(0, r)) where ⊕ denotes morphological di-
lation and vol the d-dimensional volume. Here, all the finite approximations derived from
the normalized spectral representation coincide with the corresponding approximations re-
sulting from the algorithm proposed by Schlather [26]. See Section 6 for details on this
algorithm.

2. Smith model. As a second example, we consider the Gaussian extreme value process (Smith
[29]) where f0 is a Gaussian density function. Here, for simplicity, we assume the shape
function is the density of a multivariate normal random vector Y ∼N (0, σ 2Id) with σ > 0.
Thus, it is a radial symmetric monotone function. Let K = [−R,R]d for some R > 0.
Then, by the considerations above, we get that h̃ is of type (5.2) and for d = 1,2, we obtain

c =

⎧⎪⎪⎨⎪⎪⎩
√

2

π

R

σ
+ 1, d = 1,

2

π

(
R

σ

)2

+ 2

√
2

π

R

σ
+ 1, d = 2.

Remark 5.2. Note that the results can easily be generalized to the case of mixed moving maxima
processes (Schlather [26], Stoev and Taqqu [30]), that is, the case where the deterministic shape
function h is replaced by independent copies of a random function. See Oesting, Schlather and
Zhou [20] for details.
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6. Simulation: Comparison to other algorithms

In this section, we investigate the number of spectral functions needed in simulating a max-
stable process, considering the suggested normalized spectral representation as well as other
algorithms. In Section 6.1, we compare it with the analogous number in Schlather’s [26] algo-
rithm for moving maxima processes. Then, we compare simulations via the normalized spectral
representation to the recent algorithms devised by Dieker and Mikosch [9] and Dombry, Engelke
and Oesting [10] focusing on Brown–Resnick processes in Section 6.2. Besides the number of
spectral functions, we further consider the actual computational costs accounting for the fact that
simulation of the normalized spectral functions is not straightforward in this case.

6.1. Comparison to the algorithm proposed in Schlather [26]

Let Z be a moving maxima process on K ⊂ Rd as defined in (5.1). Assume that the shape func-
tion h is bounded and has compact support, that is, h(x) < C for all x ∈ Rd for some C > 0 and
supp(h) ⊂ b(0, r) for some r > 0. Schlather’s [26] algorithm considers the following equivalent
representation

Z(y) =d

∣∣K ⊕ b(0, r)
∣∣ · max

1≤k≤M

h(y − Uk)∑k
i=1 Ei

, y ∈ K,

where Ei are standard exponentially distributed random variables, Ui are uniformly distributed
on K ⊕ b(0, r) and all these random variables are independent. Following Schlather’s [26] algo-
rithm, the number of simulated spectral functions is then a random number defined as

M = min

{
m ∈N : C∑m+1

i=1 Ei

≤ inf
x∈K

max
1≤k≤m

h(x − Uk)∑k
i=1 Ei

}
.

Here, analogously to Proposition 4.6, the following result can be shown.

Proposition 6.1. The expectation of M , defined as above, equals

EM = E

( |K ⊕ b(0, r)| · C
infy∈K Z(y)

)
.

Thus, the ratio between the expected numbers of spectral functions considered by the normal-
ized spectral representation and by Schlather’s [26] algorithm is

Q∗
g∗

EM
= EMg∗

EM
= c

|K ⊕ b(0, r)| · C .

If the shape function h is bounded, but not compactly supported, the max-stable process Z can
be approximated using a shape function which is cut off outside a compact set J , i.e. hcut(x) =
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h(x) · 1x∈J . Let Ũk ∼i.i.d. Unif(K ⊕ J̌ ) where J̌ = {−x : x ∈ J }, and ZJ (·) be given by

ZJ (y) = |K ⊕ J̌ | · max
n∈N

hcut(y − Ũn)∑n
k=1 Ek

, y ∈ K,

Then, the number MJ of shape functions that need to be considered is finite a.s., and, by Propo-
sition 6.1, its expectation equals EMJ = E((infy∈K ZJ (y))−1 · |K ⊕ J̌ | · C). Hence, in the ap-
proximative case, the ratio of expected numbers of spectral functions considered by the two
algorithms, can be written as the product

Qg∗

EMJ

= EMg∗

EMJ

= AK,J · PK,J ,

where AK,J = c

|K ⊕ J̌ | · C and PK,J = E(supy∈K Z(y)−1)

E(supy∈K ZJ (y)−1)
.

(6.1)

The first factor AK,J refers to the domain of the Poisson point process, and the second factor
PK,J refers to the precision of the approximation by Schlather’s [26] algorithm. As hcut(·) ≤ h(·),
we have that PK,J ≤ 1 with limJ↗Rd PK,J = 1. Thus, we obtain the upper bound Qg∗/EMJ ≤
AK,J which can be calculated via the formulae for c obtained in Section 5. The factor PK,J ,
however, cannot be calculated explicitly in general, but needs to be accessed via simulation.

In view of these theoretical observations, we perform a simulation study for Smith’s [29]
model described in Example 5.1 on a rectangle [−R,R]d for d = 1,2. For the simulation algo-
rithm of Schlather [26], we need an approximation as described above. Here, a natural choice for
cutting off the shape function is J = [−kσ, kσ ]d for some k ∈N. Then, by Example 5.1, the first
factor AR,k := A[−R,R]d ,[−kσ,kσ ]d in (6.1) equals (R/σ + √

π/2)d/(R/σ + k)d , i.e. AR,k < 1

if and only if k >
√

π
2 . In order to access PR,k := P[−R,R]d ,[−kσ,kσ ]d and the exact values of

Qg∗ and EM[−kσ,kσ ]d , we choose σ = 1 and simulate Z and Z[−k,k]d for k = 2,3 on a grid
K = {−R,−R + h, . . . ,R − h,R}d , d = 1,2. For simplicity, the normalized spectral represen-
tation is chosen as if K was the rectangle [−R,R]d .

In the case d = 1, for h = 0.1 and R ∈ {1,2,5,10,50,100} we simulate each process N =
5000 times. The values of Qg∗ and EM[−k,k]d are estimated via the corresponding empirical

means denoted by Q̂g∗ and ÊMk (the corresponding empirical standard deviations are denoted

by ŝ(Mgj ) and ŝ(Mk), respectively). We use a plug-in estimator P̂R,k for PR,k that is based on
the empirical means of supy∈K Z(y)−1 and supy∈K Z[−k,k]d (y)−1. The results of the simulation
study are shown in Table 1.

First, we note that – in accordance to Equation (6.1) – Qg∗ is always smaller than EM[−k,k]d .
For instance, for R = 1, the number of considered shape functions is decreased by 29% (k = 2)
and 43% (k = 3), respectively. Furthermore, we observe that PR,k seems to be almost constant
in R, namely PR,2 ≈ 0.95 and PR,3 ≈ 1 which shows that the approximation of Z by Z[−3,3] is
sufficiently good for h = 0.1. Thus, the behavior of Qg∗/EM[−k,k] is basically driven by AR,k

which tends to 1 as R → ∞. For large R, Qg∗/EM[−k,k] ≈ PR,k . This explains the surprising
fact that EM[−2,2] > EM[−3,3] even though the approximation of Z by Z[−2,2] is less accurate
than that by Z[−3,3].
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Table 1. Results for simulations of Z (via the normalized spectral representation) compared to Z[−k,k] with
k = 2 (top) and k = 3 (bottom), on {−R,−R + 0.1, . . . ,R − 0.1,R} for different R. For each case, AR,k

and the estimates for Qg∗ , EM[−k,k] and PR,k as well as the corresponding sample standard deviations are
displayed, based on N = 5000 simulations of each process

R ÊM2 Q̂g∗ AR,2 P̂R,2 ŝ(M2) ̂s(Mg∗)

1 4.38 3.12 (−29%) 0.75 0.94 2.84 1.85
2 7.57 5.73 (−24%) 0.81 0.94 4.10 3.06
5 18.83 15.82 (−16%) 0.89 0.95 7.93 6.68

10 40.57 35.63 (−12%) 0.94 0.94 14.03 12.55
50 257.61 239.75 (−7%) 0.99 0.94 62.63 60.96

100 579.11 540.44 (−7%) 0.99 0.94 124.66 117.76

R ÊM3 Q̂g∗ AR,3 P̂R,3 ŝ(M3) ̂s(Mg∗)

1 5.46 3.12 (−43%) 0.56 1.00 3.78 1.85
2 8.93 5.73 (−36%) 0.65 0.98 5.13 3.06
5 19.98 15.82 (−21%) 0.78 1.02 8.71 6.68

10 41.16 35.63 (−13%) 0.87 1.00 14.82 12.55
50 247.35 239.75 (−3%) 0.97 1.00 60.14 60.96

100 550.70 540.44 (−2%) 0.98 1.00 114.36 117.76

Next, we perform the simulation for d = 2, R ∈ {1,2,5,10} and h = 0.25. Each process is
simulated N = 2500 times. The results are shown in Table 2. In general, the results are similar to
our observations for d = 1. However, for d = 2 the improvements compared to Schlather’s [26]
algorithm are even more distinct. In the case R = 1, the number of considered spectral functions
is decreased by 45% (k = 2) and 69% (k = 3), respectively.

6.2. Comparison to the algorithms proposed in Dieker and Mikosch [9]
and Dombry, Engelke and Oesting [10]

Recently, Dieker and Mikosch [9] proposed an exact algorithm for the simulation of Brown–
Resnick processes on a finite set. In Dombry, Engelke and Oesting [10], a generalization of
this algorithm and a novel exact simulation procedure based on extremal functions have been
presented. Denote the number of stochastic processes to be simulated for obtaining an exact
simulation on K via the (generalized version of the) Dieker–Mikosch algorithm and via the
extremal functions approach by M(DM) and M(EF), respectively. Then, it can be shown that

EM(DM) = |K| ·E
[(

inf
y∈K

Z(y)
)−1]

and EM(EF) = |K| (6.2)

(cf. Dombry, Engelke and Oesting [10]). As E[(infy∈K Z(y))−1] ≥ 1 for any max-stable process
with standard Fréchet margins, we have EM(DM) ≥ EM(EF). Further, the underlying stochastic
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Table 2. Results for simulations of Z (via the normalized spectral representation) compared to Z[−k,k]2

with k = 2 (top) and k = 3 (bottom), on {−R,−R + 0.25, . . . ,R − 0.25,R}2 for different R. For each
case, AR,k and the estimates for Qg∗ , EM[−k,k]2 and PR,k as well as the corresponding sample standard
deviations are displayed, based on N = 2500 simulations of each process

R ÊM2 Q̂g∗ AR,2 P̂R,2 ŝ(M2) ̂s(Mg∗)

1 14.86 8.14 (−45%) 0.56 0.96 9.26 4.65
2 40.17 26.32 (−34%) 0.66 1.00 18.07 10.96
5 189.83 150.89 (−21%) 0.80 0.99 49.32 40.96

10 727.33 636.03 (−13%) 0.88 0.99 146.88 127.36

R ÊM3 Q̂g∗ AR,3 P̂R,3 ŝ(M3) ̂s(Mg∗)

1 26.37 8.14 (−69%) 0.32 0.96 16.63 4.65
2 61.07 26.32 (−57%) 0.42 1.03 26.99 10.96
5 247.10 150.89 (−39%) 0.61 1.00 65.75 40.96

10 839.44 636.03 (−24%) 0.75 1.01 168.31 127.36

processes follow mixtures of the same laws. Consequently, between these two approaches, the
one via extremal functions is always preferred in terms of the average computational costs of
simulation.

In this subsection, we will compare the computational costs of these algorithms to that of
simulation via the normalized spectral representation for simulating Brown–Resnick processes.
This is what the original Dieker–Mikosch algorithm was designed for. Let Z be a Brown–Resnick
process on K ⊂ Rd associated to a variogram γ (Kabluchko, Schlather and de Haan [17]), that
is, a max-stable process with representation (1.1) with H being the probability measure of the
stochastic process

W(y) = exp
(
G(y) − Var

(
G(y)

)
/2
)
, y ∈ Rd .

Here G is a centered Gaussian process with stationary increments and variogram γ (h) =
E(W(y + h) − W(y))2. In the following, we consider a Brown–Resnick process associated to
the variogram γ (h) = ‖h‖ on the rectangle [0,1]2. We simulate N = 500 realizations of the
process on the grids {0,0.05, . . . ,0.95}2 (400 points) and {0,0.01, . . . ,0.99}2 (10 000 points),
respectively, via each of the three algorithms on a 2.90 GHz processor.

We start with comparing the average numbers of spectral processes to be simulated, i.e. Qg∗ =
EMg∗ , EM(DM) and EM(EF). Since the terms c in (4.6) and E[(infy∈K Z(y))−1] in (4.6) and (6.2)
often cannot be calculated explicitly, the above expectations need to be estimated via simulations.
Furthermore, in the Dieker–Mikosch algorithm and the extremal functions approach, we can
directly simulate the underlying spectral functions as a single log-Gaussian process, whereas we
have to use the Algorithm 3.13 to simulate the normalized spectral functions. For each process
F (m), we simulate nMCMC log-Gaussian processes. Consequently, a fair comparison across the
three algorithms should be based on the average computational costs accounting for the number
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of simulated log-Gaussian processes. The costs for the simulation via the normalized spectral
representation, the Dieker–Mikosch algorithm and the extremal functions approach are thus

C(NSR) = nMCMC ·EMg∗ = nMCMC · c ·E
[(

inf
y∈K

Z(y)
)−1]

,

C(DM) = EM(DM) = |K| ·E
[(

inf
y∈K

Z(y)
)−1]

and C(EF) = EM(EF) = |K|.

We use nMCMC = 100, 500 and 1000 in our simulation. The normalization constant c is finally
estimated by the average of the maxima of the nMCMC log-Gaussian processes simulated in each
Markov chain.

Finally, we consider the exactness of the simulations. Notice that the Dieker–Mikosch al-
gorithm and the extremal functions approach yield exact realizations of the Brown–Resnick
process. This is true for the normalized spectral representation approach only if the Markov
chains have converged. Therefore, we need to evaluate the quality of the simulations. As a mea-
sure of exactness, we first calculate the Kolmogorov–Smirnov distance between the standard
Fréchet distribution 	1 and the empirical cumulative distribution function F

y

(500) obtained from
the N = 500 realizations Z1(y), . . . ,ZN(y) at each location y. Then we calculate the average of
these distances across all y ∈ K i.e.

dKS = 1

|K|
∑
y∈K

∥∥Fy

(500) − 	1
∥∥∞.

Further, we consider the extremal coefficient (Smith [29], Schlather and Tawn [28]), θ(y1, y2)

defined by

P
(
Z(y1) ≤ z,Z(y2) ≤ z

)= P
(
Z(y1) ≤ z

)θ(y1,y2), z > 0,

as a measure of extremal dependence between Z(y1) and Z(y2). By definition, θ(y1, y2) ∈ [1,2]
with θ(y1, y2) = 1 if Z(y1) = Z(y2) a.s. and θ(y1, y2) = 2 if Z(y1) and Z(y2) are indepen-
dent. For a Brown-Resnick process Z, we have θ(y1, y2) = 2	(

√
γ (h)/2) where 	 denotes the

standard normal distribution function. We estimate the extremal coefficients making use of the
relation

θ(y1, y2) = 1 + 2νF (y1, y2)

1 − 2νF (y1, y2)
, y1, y2 ∈ K, (6.3)

between θ(y1, y2) and the F -madogram (Cooley, Naveau and Poncet [5])

νF (y1, y2) = 1

2
E
∣∣Fy1

(
Z(y1)

)− Fy1
(
Z(y1)

)∣∣, y1, y2 ∈ K,
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with F (y) being the cumulative distribution function of Z(y), y ∈ K . The F -madogram can be
estimated non-parametrically by

ν̂F (y1, y2) = 1

2N(N + 1)

N∑
i=1

∣∣Ri(y1) − Ri(y2)
∣∣, y1, y2 ∈ K,

where Ri(y) denotes the rank of Zi(y) (Ribatet [25]). Plugging the estimator ν̂F (y1, y2) into
relation (6.3), we obtain an estimator θ̂ (y1, y2) and θ(y1, y2). As a measure of quality of the
simulations, we calculate the root-mean-square error between the estimated and the theoretical
extremal coefficients, that is,

dEC =
[

1

|Y|
∑

(y1,y2)∈Y

(
θ̂ (y1, y2) − 2	

(√‖y1 − y2‖/2
))2

]1/2

for some finite set Y ⊂ K × K \ {(y, y) : y ∈ K}.
Table 3 reports the average number of simulated spectral functions M , the average computa-

tional costs both in terms of the number of log-Gaussian processes simulated C and in terms of
the CPU time for a single simulation (in seconds), the average Kolmogorov–Smirnov distance
dKS and the root-mean-square error dEC based on 79 800 pairs. We note that the average CPU
time t is effectively proportional to the average number C of simulated log-Gaussian processes.

Table 3. Results for simulations of Brown–Resnick processes on the grids {0,0.05, . . . ,0.95}2 (top) and
{0,0.01, . . . ,0.99}2 (bottom). For simulation via the normalized spectral representation with nMCMC =
100, 500 and 1000 (NSR100, NSR500 and NSR1000), the Dieker–Mikosch algorithm (DM) and simulation
via extremal functions (EF), the average number M of simulated spectral functions, the average compu-
tational costs C (with sample standard deviation s(C)), the average CPU time t (with sample standard
deviation s(t)), the average Kolmogorov–Smirnov distance dKS and the root-mean-square error dEC are
displayed

M C t dKS dEC s(C) s(t)

NSR100 7 704 0.13 0.030 0.011 492 0.07
NSR500 7 3677 0.56 0.050 0.014 2462 0.36
NSR1000 7 7244 1.07 0.047 0.020 4971 0.71
DM 932 932 0.17 0.036 0.020 713 0.11
EF 390 390 0.09 0.036 0.013 355 0.05

M C t dKS dEC s(C) s(t)

NSR100 9 896 108 0.041 0.012 666 81
NSR500 9 4357 522 0.028 0.013 2888 346
NSR1000 9 9194 1095 0.040 0.011 6131 737
DM 26 270 26 270 3126 0.027 0.012 21 199 2542
EF 9361 9361 1116 0.054 0.015 8448 1014
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For the grid {0,0.05, . . . ,0.95}2, we observe t ≈ 2 · 10−4C while we have t ≈ 0.12C for the grid
{0,0.01, . . . ,0.99}2. Smaller deviations from this proportion in case of the first grid are mainly
due to some preparatory computations which have a larger effect in case of small C. Thus, we
can conclude that C is an appropriate measure of the computational costs of the simulations.

Comparing the results for the different algorithms in more detail, we first focus on the ex-
actness of the simulations via the normalized spectral representation. As both the Kolmogorov–
Smirnov distances and the root-mean-square errors for the extremal coefficients indicate, the
Markov chains converge quite fast. In all the cases, both measures of the quality of the simu-
lations via the normalized spectral representation are comparable to those for the exact simula-
tions via the Dieker–Mikosch [9] algorithm or via extremal functions. Therefore, the algorithms
perform with equivalent exactness even though the algorithm based on the normalized spectral
representation provides approximations only.

Secondly, the number of simulated normalized spectral functions in our algorithm is much
lower than that in the other two algorithms. This difference becomes even more pronounced in
the case of a dense grid: While the numbers of simulated processes in the Dieker–Mikosch [9]
algorithm and the algorithm via extremal functions grow (at least) linearly in |K|, that in our
algorithm remains bounded and practically stable (increased from 7 to 9), as long as K ⊂ [0,1]2.

Lastly, even though the computational costs of a single normalized spectral function in our
algorithm is nMCMC times higher than that for the other two algorithms, on a dense grid, the total
computational costs is much lower than that via the other two algorithms.

The aforementioned three features make the simulation via the normalized spectral repre-
sentation very attractive, particularly when the process should be simulated at a large number of
locations on a dense grid. Simulation via extremal functions (Dombry, Engelke and Oesting [10])
is preferred only if the process should be simulated at a small or moderate number of locations.

7. Summary and discussion

Whilst in the definition of a max-stable process an infinite number of spectral functions is in-
volved, the minimal expected number of spectral functions that are actually needed for a simula-
tion is an open problem. We consider two substitution problems, problems (3.10) and (4.2), and
show that the unique normalized spectral representation is a solution in both cases. Consequently,
we propose a simulation algorithm based on the normalized spectral representation.

Our simulation result reveals two advantages of the proposed algorithm. First, it improves
the algorithm of Schlather [26] for (mixed) moving maxima processes, because in this case the
normalized spectral functions can be simulated easily.

Second, it is competitive to other algorithms even if simulation of the underlying normalized
spectral functions from the transformed measure g∗H is not straightforward, such as in the sim-
ulation of Brown–Resnick processes, even though simulations are no longer exact in this case.
Similar results are also expected for other popular max-stable models, such as the extremal Gaus-
sian (Schlather [26]) and extremal t processes (Opitz [21]).

Although the problem (4.2) is rather close to the original problem (3.2), it remains unclear
whether the normalized spectral representation is also the solution to the original one. It is even
not known whether different initial choices of the spectral representation in (1.1) may lead to the
same solution via renormalizations g in (2.2) and whether the solution is unique.
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Other representations of max-stable processes may also allow for exact simulations. For ex-
ample, Wang and Stoev [32] considered a representation based on a finite number of Fréchet
variables when the spectral measure H is discrete. Our approach may be advantageous if the
number of Fréchet variables gets large while the domain K is bounded. The assessment of the
relative performance is left to future research.

Appendix: Proof of Proposition 4.1

Proof of Proposition 4.1. First, the last part of the inequality, Qg0 ≤ Qg∗ , holds automatically
due to the optimality of g0. Second, note that

esssupf ∈H
supy∈K f (y)

g(f ) supỹ∈K Z(m)(ỹ)
≤ esssupf ∈H

supy∈K f (y)

g(f )Z(m)(y0)

and thus Q
(1)
g ≤ Q

(2)
g (y0) for any g and any y0 ∈ K . In particular, these inequalities hold for

g = g∗. Therefore, we get that Q
(1)
g∗ ≤ Q

(2)
g∗ (y0) for any y0 ∈ K .

Third, we show that Q
(1)
g∗ = 1. On the one hand, we have that

sup
y∈K

f (y)

g∗(f )
= c for g∗H -a.e. f ∈ H. (A.1)

On the other hand, with (2.3), we obtain

sup
y∈K

Z(m)(y) = sup
y∈K

max
i∈N

1∑i
j=1 Ej

fi(y)

g∗(fi)
= cE−1

1 for all m ∈ N. (A.2)

Combining equations (A.1) and (A.2) yields

Q∗
g∗ = Emin

{
m ∈ N : esssupf ∈H sup

y∈K

f (y)

g∗(f )
≤ sup

y∈K

Z(m)(y)

m+1∑
j=1

Ej

}

= Emin

{
m ∈ N : c ≤ c ·

m+1∑
j=1

Ej/E1

}
= 1.

To complete the proof of the proposition, we show that Q
(2)
g (y0) ≤ Qg for all g. We first

consider the case that esssupf ∈H supy∈K
f (y)
g(f )

= ∞. Since c < ∞, by Proposition 3.8, we get

that supy∈K Z(m)(y) ≤ supy∈K Z(y) < ∞ with probability one. Thus, by the definition of Q
(1)
g in

(3.11), we get that Q
(1)
g = ∞. Consequently, Qg ≥ Q

(1)
g = ∞. It is thus proved that Q

(2)
g ≤ Qg .

Next, consider the case esssupf ∈H supy∈K
f (y)
g(f )

< ∞. Since there exists some countable set
K0 ⊂ K such that supy∈K f (y) = supy∈K0

f (y) for H -a.e. f ∈H, we have that

esssupf ∈H sup
y∈K

f (y)

g(f )
= sup

y∈K0

esssupf ∈H
f (y)

g(f )
.
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Therefore, for every ε > 0, there exists some y(ε) ∈ K0 such that

1

1 + ε
esssupf ∈H sup

y∈K

f (y)

g(f )Z(m)(y(ε))
≤ esssupf ∈H

f (y(ε))

g(f )Z(m)(y(ε))

≤ esssupf ∈H sup
y∈K

f (y)

g(f )Z(m)(y)
.

(A.3)

Analogously to the proof of Proposition 3.2, we have that

Emin

{
m ∈N : 1

1 + ε
esssupf ∈H

supy∈K f (y)

g(f )Z(m)(y(ε))
≤

m+1∑
j=1

Ej

}

= 1 +
∞∑

m=1

[
1 −E

(
1 ∧

(
(1 + ε) · f1(y(ε))

g(f1)
/ esssupf ∈H sup

y∈K

f (y)

g(f )

))]m

=
[
E

(
1 ∧

(
(1 + ε) · f1(y(ε))

g(f1)
/ esssupf ∈H sup

y∈K

f (y)

g(f )

))]−1

≥ esssupf ∈H supy∈K
f (y)
g(f )

1 + ε
,

where the last step follows from
∫
H

f (y(ε))H(df ) = 1. From (3.15), it is straightforward to
verify that, for any y0 ∈ K , Q

(2)
g (y0) = esssupf ∈H supy∈K

f (y)
g(f )

, which is independent from the

choice of y0 ∈ K . Hence, by using (A.3) and taking ε → 0, we obtain Q
(2)
g (y0) ≤ Qg for any g,

which implies that Q
(2)
g∗ (y0) ≤ Qg0 , due to the optimality of g∗. �

Acknowledgements

The authors are grateful to Prof. C. Dombry, an associate editor and two referees for valuable
suggestions and comments. M. Oesting and M. Schlather have been financially supported by
Volkswagen Stiftung within the project ‘Mesoscale Weather Extremes – Theory, Spatial Mod-
eling and Prediction (WEX-MOP)’. The work of M. Oesting has also partly been funded by
the ANR project ‘McSim’. Views expressed do not necessarily reflect official positions of De
Nederlandsche Bank.

References

[1] Blanchet, J. and Davison, A.C. (2011). Spatial modeling of extreme snow depth. Ann. Appl. Stat. 5
1699–1725. MR2884920

[2] Buishand, T.A., de Haan, L. and Zhou, C. (2008). On spatial extremes: With application to a rainfall
problem. Ann. Appl. Stat. 2 624–642. MR2524349

[3] Coles, S.G. (1993). Regional modelling of extreme storms via max-stable processes. J. R. Stat. Soc.
Ser. B. Stat. Methodol. 55 797–816. MR1229882

[4] Coles, S.G. and Tawn, J.A. (1996). Modelling extremes of the areal rainfall process. J. R. Stat. Soc.
Ser. B. Stat. Methodol. 58 329–347. MR1377836

http://www.ams.org/mathscinet-getitem?mr=2884920
http://www.ams.org/mathscinet-getitem?mr=2524349
http://www.ams.org/mathscinet-getitem?mr=1229882
http://www.ams.org/mathscinet-getitem?mr=1377836


Exact and fast simulation of max-stable processes 1529

[5] Cooley, D., Naveau, P. and Poncet, P. (2006). Variograms for spatial max-stable random fields. In
Dependence in Probability and Statistics 373–390. New York: Springer.

[6] de Haan, L. (1984). A spectral representation for max-stable processes. Ann. Probab. 12 1194–1204.
MR0757776

[7] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer Series in Oper-
ations Research and Financial Engineering. New York: Springer. MR2234156

[8] de Haan, L. and Lin, T. (2001). On convergence toward an extreme value distribution in C[0,1]. Ann.
Probab. 29 467–483.

[9] Dieker, A.B. and Mikosch, T. (2015). Exact simulation of Brown–Resnick random fields at a finite
number of locations. Extremes 18 301–314.

[10] Dombry, C., Engelke, S. and Oesting, M. (2016). Exact simulation of max-stable processes.
Biometrika 103 303–317.

[11] Dombry, C. and Eyi-Minko, F. (2012). Strong mixing properties of max-infinitely divisible random
fields. Stochastic Process. Appl. 122 3790–3811. MR2965926

[12] Dombry, C. and Eyi-Minko, F. (2013). Regular conditional distributions of continuous max-infinitely
divisible random fields. Electron. J. Probab. 18 no. 7. MR3024101

[13] Dombry, C., Éyi-Minko, F. and Ribatet, M. (2013). Conditional simulation of max-stable processes.
Biometrika 100 111–124. MR3034327

[14] Giné, E., Hahn, M.G. and Vatan, P. (1990). Max-infinitely divisible and max-stable sample continuous
processes. Probab. Theory Related Fields 87 139–165.

[15] Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57 97–109.

[16] Kabluchko, Z. (2009). Spectral representations of sum- and max-stable processes. Extremes 12 401–
424. MR2562988

[17] Kabluchko, Z., Schlather, M. and de Haan, L. (2009). Stationary max-stable fields associated to neg-
ative definite functions. Ann. Probab. 37 2042–2065. MR2561440

[18] Oesting, M., Kabluchko, Z. and Schlather, M. (2012). Simulation of Brown–Resnick processes. Ex-
tremes 15 89–107. MR2891311

[19] Oesting, M. and Schlather, M. (2014). Conditional sampling for max-stable processes with a mixed
moving maxima representation.

[20] Oesting, M., Schlather, M. and Zhou, C. (2013). On the normalized spectral representation of max-
stable processes on a compact set. Available at arXiv:1310.1813v1.

[21] Opitz, T. (2013). Extremal t processes: Elliptical domain of attraction and a spectral representation.
J. Multivariate Anal. 122 409–413. MR3189331

[22] Padoan, S.A., Ribatet, M. and Sisson, S.A. (2010). Likelihood-based inference for max-stable pro-
cesses. J. Amer. Statist. Assoc. 105 263–277.

[23] R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing.

[24] Resnick, S.I. and Roy, R. (1991). Random usc functions, max-stable processes and continuous choice.
Ann. Appl. Probab. 267–292.

[25] Ribatet, M. (2013). Spatial extremes: Max-stable processes at work. J. Soc. Fr. Stat. 154 156–177.
[26] Schlather, M. (2002). Models for stationary max-stable random fields. Extremes 5 33–44.
[27] Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke, S., Martini, J.,

Ballani, F., Moreva, O., Menck, P.J., Gross, S., Ober, U., Berreth, C., Burmeister, K., Manitz, J.,
Ribeiro, P., Singleton, R., Pfaff, B. and R Core Team (2015). RandomFields: Simulation and analysis
of random fields. R package version 3.1.3.

[28] Schlather, M. and Tawn, J.A. (2003). A dependence measure for multivariate and spatial extreme
values: Properties and inference. Biometrika 90 139–156.

http://www.ams.org/mathscinet-getitem?mr=0757776
http://www.ams.org/mathscinet-getitem?mr=2234156
http://www.ams.org/mathscinet-getitem?mr=2965926
http://www.ams.org/mathscinet-getitem?mr=3024101
http://www.ams.org/mathscinet-getitem?mr=3034327
http://www.ams.org/mathscinet-getitem?mr=2562988
http://www.ams.org/mathscinet-getitem?mr=2561440
http://www.ams.org/mathscinet-getitem?mr=2891311
http://arxiv.org/abs/arXiv:1310.1813v1
http://www.ams.org/mathscinet-getitem?mr=3189331


1530 M. Oesting, M. Schlather and C. Zhou

[29] Smith, R.L. (1990). Max-stable processes and spatial extremes. Unpublished manuscript.
[30] Stoev, S.A. and Taqqu, M.S. (2005). Extremal stochastic integrals: A parallel between max-stable

processes and α-stable processes. Extremes 8 237–266. MR2324891
[31] Strokorb, K., Ballani, F. and Schlather, M. (2015). Tail correlation functions of max-stable processes.

Extremes 18 241–271.
[32] Wang, Y. and Stoev, S.A. (2010). On the structure and representations of max-stable processes. Adv.

in Appl. Probab. 42 855–877.

Received March 2014 and revised September 2016

http://www.ams.org/mathscinet-getitem?mr=2324891

	Introduction
	Transformation of spectral representations
	The optimization problem
	A modiﬁed optimization problem
	The solution of the modiﬁed optimization problem
	The normalized spectral representation

	Evaluating the modiﬁed optimization problem
	Example: The normalized spectral representation of moving maxima processes
	Simulation: Comparison to other algorithms
	Comparison to the algorithm proposed in Schlather schlather02
	Comparison to the algorithms proposed in Dieker and Mikosch diekermikosch15 and Dombry, Engelke and Oesting DEO15

	Summary and discussion
	Appendix: Proof of Proposition 4.1
	Acknowledgements
	References

