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We give necessary and sufficient conditions to characterize the convergence in distribution of a sequence
of arbitrary random variables to a probability distribution which is the invariant measure of a diffusion
process. This class of target distributions includes the most known continuous probability distributions.
Precisely speaking, we characterize the convergence in total variation to target distributions which are not
Gaussian or Gamma distributed, in terms of the Malliavin calculus and of the coefficients of the associated
diffusion process. We also prove that, among the distributions whose associated squared diffusion coeffi-
cient is a polynomial of second degree (with some restrictions on its coefficients), the only possible limits
of sequences of multiple integrals are the Gaussian and the Gamma laws.
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1. Introduction

In the seminal paper [14], Nualart and Peccati discovered a surprising central limit theorem
(called The Fourth Moment Theorem) for sequences of multiple stochastic integrals in a Wiener
chaos of fixed order. This result says that the convergence in distribution of such a sequence
of random variables to the standard normal law is actually equivalent to the convergence of
only the sequence of their fourth moments. A multidimensional version of this result has been
given in [15]. Since the publication of these two pathbreaking papers, many improvements and
developments on this theme have been considered. Among them is the work [13], giving a new
proof only based on Malliavin calculus and the use of integration by parts on the Wiener space.

Another pathbreaking paper is the work [6] by Nourdin and Peccati in which the authors
bring together Stein’s method with Malliavin calculus and obtain useful estimates for the dis-
tance between the law of an arbitrary random variable and the Gaussian distribution in terms of
the Malliavin calculus. It turns out that Stein’s method and Malliavin calculus fit together ad-
mirably well, and that their interaction has led to some remarkable new results involving central
and non-central limit theorems for functionals of infinite-dimensional Gaussian fields. We refer
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to the recent monographs [8] for an overview of the existing literature and to [16] for various
applications of the Stein’s method and Malliavin calculus to limit theorems and statistics.

There is also a version of the Fourth Moment Theorem having the Gamma distribution as
the target distribution (see [7]). The convergence of a sequence of multiple stochastic integrals
toward a Gamma distribution is characterized by the convergence of the sequences of the third
and fourth moments; alternatively, one can also characterize the convergence to the Gamma law
in terms of the Malliavin derivatives.

In the paper [5], we obtained bounds between the distance of an arbitrary random variable
and target distributions which are invariant measures of diffusions processes. This class contains
the most common continuous probability distributions, including the Gaussian, Gamma, Beta,
Pareto, uniform, Student or log-normal distributions, among others. See also [1,4] for other at-
tempts to extend the theory to more general target distribution via Malliavin calculus. Now, our
purpose is to give necessary and sufficient conditions for the convergence of a sequence of ran-
dom variables (regular enough in the Malliavin sense) to such target distributions. We obtain
several results based on the Malliavin derivatives of the sequence and of the diffusion coeffi-
cients associated to the target distribution. Precisely speaking, we prove the equivalence between
the convergence in total variation of random variables under a suitable condition and the con-
vergence of a quantity consisting of the diffusion coefficients and the Malliavin derivatives. The
value is associated to the so-called Stein factor, and the result also characterizes the convergence
of the Stein factor. Several situations when this theory can be applied (meaning that the diffusion
coefficients have an explicit expression) are presented. Then we treat the case of the convergence
in law of special sequences of random variables that belong to a Wiener chaos of fixed order and
we characterize their convergence to target distributions that are different from the Gaussian and
Gamma laws. For example, we obtain necessary and sufficient conditions in the case when the
limit is a product normal distribution (the product of two independent normal random variables)
or the sum of a normal and an independent random variable.

We will also focus our analysis on the particular case when the squared diffusion coefficient is
a polynomial of (at most) second degree. Several common probability laws are contained in this
class. In this situation, the necessary and sufficient conditions for the convergence of a sequence
of multiple integrals to the target distribution can be analyzed in details. We actually show that,
among the distributions whose associated squared diffusion coefficient is a polynomial of second
degree with some restrictions on its coefficients, the only possible limits of sequences of multiple
integrals are the Gaussian and the Gamma laws. In particular, we show that a sequence of multi-
ple Wiener–Itô integrals cannot converge toward a beta or uniform distribution. We retrieve the
standard Fourth Moment Theorem (Theorem 2.2) and its version for the Gamma law as particular
cases.

We organized our paper as follows. Section 2 contains some preliminaries on the Malliavin
calculus. In Section 3, we recall and extend several results in [5] concerning the characterization
of the random variables whose probability distribution is the invariant measure of a diffusion
process. In Section 4, we give necessary and sufficient conditions for the convergence of a se-
quence of random variables (regular enough in the Malliavin sense), while Section 5 and 6 treat
the convergence in distribution of sequence of multiple stochastic integrals.
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2. Preliminary: Wiener-chaos and Malliavin derivatives

Here we describe the elements from stochastic analysis that we will need in the paper. Con-
sider H a real separable Hilbert space and (W(h),h ∈ H) an isonormal Gaussian process on a
probability space (�,A,P ), which is a centered Gaussian family of random variables such that
E[W(ϕ)W(ψ)] = 〈ϕ,ψ〉H . Denote by In the multiple stochastic integral with respect to B (see
[12]). This mapping In is actually an isometry between the Hilbert space H�n(symmetric tensor
product) equipped with the scaled norm 1√

n! ‖ · ‖H⊗n and the Wiener chaos of order n which is

defined as the closed linear span of the random variables Hn(W(h)) where h ∈ H,‖h‖H = 1 and
Hn is the Hermite polynomial of degree n ∈N

Hn(x) = (−1)n

n! exp

(
x2

2

)
dn

dxn

(
exp

(
−x2

2

))
, x ∈ R.

The isometry of multiple integrals can be written as follows: for m,n positive integers,

E
(
In(f )Im(g)

) = n!〈f̃ , g̃〉H⊗n if m = n,
(2.1)

E
(
In(f )Im(g)

) = 0 if m 	= n.

It also holds that

In(f ) = In(f̃ ),

where f̃ denotes the symmetrization of f defined by the formula f̃ (x1, . . . , xn) =
1
n!

∑
σ∈Sn

f (xσ(1), . . . , xσ(n)).
We recall that any square integrable random variable which is measurable with respect to

the σ -algebra generated by W can be expanded into an orthogonal sum of multiple stochastic
integrals

F =
∞∑

n=0

In(fn), (2.2)

where fn ∈ H�n are (uniquely determined) symmetric functions and I0(f0) = E[F ].
Let L be the Ornstein–Uhlenbeck operator

LF = −
∑
n≥0

nIn(fn)

if F is given by (2.2) and it is such that
∑∞

n=1 n2n!‖fn‖2
H⊗n < ∞.

For p > 1 and α ∈ R, we introduce the Sobolev–Watanabe space D
α,p as the closure of the

set of polynomial random variables with respect to the norm

‖F‖α,p = ∥∥(I − L)
α
2 F

∥∥
Lp(�)

,

where I represents the identity. We denote by D the Malliavin derivative operator that acts on
smooth functions of the form F = g(W(h1), . . . ,W(hn)) (g is a smooth function with compact
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support and hi ∈ H )

DF =
n∑

i=1

∂g

∂xi

(
W(h1), . . . ,W(hn)

)
hi.

The operator D is continuous from D
α,p into D

α−1,p(H).
We will intensively use the product formula for multiple integrals. It is well known that for

f ∈ H�n and g ∈ H�m

In(f )Im(g) =
n∧m∑
r=0

r!
(

n

r

)(
m

r

)
Im+n−2r (f ⊗r g), (2.3)

where f ⊗r g means the r-contraction of f and g (see, e.g., Section 1.1.2 in [12]).
We recall the expression of the third and fourth moment of a random variable in a fixed Wiener

chaos. These formulas play an important role in our proofs.

Lemma 2.1. Let F = In(f ) with n ∈N and f ∈ H�n. Then

E
[
F 3] = (n!)3

[(n/2)!]3
〈f,f ⊗̃n/2 f 〉1{n is even} (2.4)

and

E
[
F 4] = 3E

[
F 2]2 + 3n

n−1∑
p=1

(p − 1)!
(

n − 1
p − 1

)2

p!
(

n

p

)2

(2n − 2p)!‖fm ⊗̃p fm‖2

(2.5)

= 3E
[
In(f )2]2 + n!2

n−1∑
r=1

(
Cr

n

)2[‖f ⊗r f ‖2 + Cn−r
2n−2r‖f ⊗̃r f ‖2].

Proof. We refer to [7], proof of Theorem 1.2 for the first two relations and to [8], formula (5.2.6)
for the last equality. �

The Fourth Moment Theorem states as follows.

Theorem 2.2 ([14] and [13]). Fix n ∈ N. Consider a sequence (Fk = In(fk))k∈N of square
integrable random variables in the nth Wiener chaos. Assume that

lim
k→∞ E

[
F 2

k

] = lim
k→∞‖fk‖2

H�n = 1. (2.6)

Then, the following statements are equivalent.

(i) The sequence of random variables (Fk = In(fk))k≥1 converges to the standard normal
law in distribution as k → ∞.

(ii) limk→∞ E[F 4
k ] = 3.
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(iii) limk→∞ ‖fk ⊗l fk‖H⊗2(n−l) = 0 for l = 1,2, . . . , n − 1.
(iv) ‖DFk‖2

H converges to n in L2(�) as k → ∞.

We consider the general version of this theorem below.

3. General versions of Stein’s method and Stein’s bound

In order to discuss the general version of the Fourth Moment Theorem, we review Stein’s method
and Stein’s bound obtained in [5] with small extension. Let us briefly recall the context in [5]. Let
S be the interval (l, u) (−∞ ≤ l < u ≤ ∞) and μ be a probability measure on S with a density
function p which is continuous, strictly positive on S, and admits finite variance. Consider a
continuous function b on S such that there exists k ∈ (l, u) such that b(x) > 0 for x ∈ (l, k) and
b(x) < 0 for x ∈ (k, u), b ∈ L1(μ), bp is bounded on S and∫ u

l

b(x)p(x)dx = 0.

Define

a(x) := 2
∫ x

l
b(y)p(y)dy

p(x)
, x ∈ S. (3.1)

Then, the stochastic differential equation:

dXt = b(Xt ) dt + √
a(Xt ) dWt , t ≥ 0

has a unique Markovian weak solution, ergodic with invariant density p. See Theorem 2.4 in [2].
Based on this fact, it is possible to define a so-called Stein’s equation for a given function

f ∈ L1(μ). In Section 3 of [5], we have considered only the case where f ∈ C0(S) (the set of
continuous functions on S vanishing at the boundary of S). However, it is easy to see that the
argument is valid even if f ∈ L1(μ), as shown below.

For f ∈ L1(μ), let mf := ∫ u

l
f (x)μ(dx) and define g̃f by, for every x ∈ S,

g̃f (x) := 2

a(x)p(x)

∫ x

l

(
f (y) − mf

)
p(y)dy. (3.2)

Then, by Proposition 1 in Section 3.2 of [5], we have

g̃f (x) =
∫ x

l

2(f (y) − mf )

a(y)
exp

(
−

∫ x

y

2b(z)

a(z)
dz

)
dy, x ∈ S.

The function gf (x) := ∫ x

k
g̃f (y) dy satisfies that f − mf = Agf (A is the generator of the dif-

fusion (Xt )t≥0) μ-almost everywhere, and

f (x) − E
[
f (X)

] = 1

2
a(x)g̃′

f (x) + b(x)g̃f (x), μ-a.e. x, (3.3)
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where X is a random variable with its law μ. The equation (3.3) is a generalized version of
Stein’s equation.

Remark 3.1. (i) If f ∈ L1(μ) ∩ C(S) (where C(S) denotes the class of continuous functions
on S), (3.3) holds for all x ∈ S.

(ii) Since μ has the density function p, (3.3) follows almost everywhere with respect to the
Lebesgue measure.

Similarly to the original Stein’s equation, (3.3) characterizes the distribution of X as follows.
This result will play a crucial role in the proofs of the main results in the next sections.

Theorem 3.2. Assume that
∫
S
a(x)μ(dx) < ∞. Let Y be a S-valued random variable such that

E[|b(Y )|] < ∞. Then, the distribution of Y coincides with μ if and only if

E
[

1

2
a(Y )h′(Y ) + b(Y )h(Y )

]
= 0 (3.4)

for every h ∈ C1(S) such that E[|b(Y )h(Y )|] < ∞ and E[|a(Y )h′(Y )|] < ∞.

Proof. Assume that the distribution of Y is μ. Let h ∈ C1
b(S) such that E[|b(Y )h(Y )|] < ∞ and

E[|a(Y )h′(Y )|] < ∞, and

f (x) := 1

2p(x)

d

dx

[
a(x)p(x)h(x)

]
, x ∈ S.

Here, note that ap ∈ C1(S) follows by the definition of a. Since

d

dx

[
a(x)p(x)h(x)

] = [
a(x)p(x)

]′
h(x) + a(x)p(x)h′(x)

= 2b(x)p(x)h(x) + a(x)p(x)h′(x),

we have ∫
S

∣∣f (x)
∣∣μ(dx) = 1

2

∫
S

∣∣∣∣ d

dx

[
a(x)p(x)h(x)

]∣∣∣∣dx

≤
∫

S

∣∣b(x)h(x)
∣∣p(x)dx + 1

2

∫
S

a(x)p(x)
∣∣h′(x)

∣∣dx

= E
[∣∣b(X)h(X)

∣∣] + 1

2
E

[
a(X)

∣∣h′(X)
∣∣].

Hence, f ∈ L1(μ). Define g̃f as in (3.2). Then, we have h = g̃f by explicit calculation. There-
fore, in view of (3.3), we obtain (3.4) in the case where h is bounded. The case where h is not
bounded is obtained by approximation.

Next, we show that the distribution of Y is μ if (3.4) holds. Let f ∈ CK(S), where CK(S) is
the total set of continuous functions on S with compact support. Note that the support of f is
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strictly included by S, because S is a open set in R. Since f (x) = 0 for x sufficiently near to u,
there exists u′ ∈ (l, u) such that∫ x

l

[
f (y) − mf

]
p(y)dy = mf

(
1 −

∫ x

l

p(y) dy

)
= mf

∫ u

x

p(y)dy, x ∈ [
u′, u

)
,

where mf = ∫ u

l
f (x)p(x)dx. On the other hand, for sufficiently small ε > 0 the assumption on

b implies that there exists u′′ ∈ (l, u) such that

b(x) < −ε and
∫ u

x

b(y)p(y)dy < 0

for x ∈ [u′′, u). Let ũ := max{u′, u′′}. Hence, by (3.1) we have for x ∈ [ũ, u)

∣∣g̃f (x)
∣∣ = 2

a(x)p(x)

∣∣∣∣
∫ x

l

(
f (y) − mf

)
p(y)dy

∣∣∣∣
= |mf | ∫ u

x
p(y)dy

| ∫ x

l
b(y)p(y)dy| = |mf | ∫ u

x
p(y)dy

| ∫ u

x
b(y)p(y)dy|

≤ |mf |
ε

.

Similarly, there exists l̃ ∈ (l, u) such that

∣∣g̃f (x)
∣∣ ≤ |mf |

ε
, x ∈ (l, l̃].

These estimates and the continuity and positivity of a(x)p(x) in S imply that the function g̃f

defined by (3.2) is bounded and satisfies E[|b(Y )g̃f (Y )|] < ∞. The finiteness of E[|a(Y )g̃′
f (Y )|]

is obtained from (3.3). By (3.3) and (3.4) we have

E
[
f (Y )

] − E
[
f (X)

] = E
[

1

2
a(Y )g̃′

f (Y ) + b(Y )g̃f (Y )

]
= 0.

Since this equality holds for any f ∈ CK(S), X and Y have the same distribution. �

An alternative characterization of the random variables Y with distribution μ has been The-
orem 2 in Section 3.2 of [5]. It involves operators from Malliavin calculus and a conditional
expectation given the σ -field generated by Y . The same conditional expectation will appear in
the statement of the main result in the next section.

Theorem 3.3. Consider a random variable Y ∈ D
1,2 with its values on S which satisfies that

b(Y ) ∈ L2(�). Then, Y has probability distribution μ if and only if E[b(Y )] = 0 and

E
[

1

2
a(Y ) + 〈

D(−L)−1b(Y ),DY
〉
H

∣∣∣Y]
= 0.
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Stein’s bounds below for the distance between the law of an arbitrary random variable and the
measure μ are based on the Stein equation (3.3) and the bounds of g̃f and g̃′

f are obtained in
Section 3.2 of [5]. Now we state the result in [5] for later use.

Assumption 3.4. (i) If u < ∞, assume that there exists u′ ∈ (l, u) such that b is non-increasing
and Lipschitz continuous on [u′, u) and lim infx→u a(x)/(u − x) > 0. If u = ∞, assume that
there exists u′ ∈ (l, u) such that b is non-increasing on [u′, u) and lim infx→u a(x) > 0.

(ii) If l > −∞, assume that there exists l′ ∈ (l, u) such that b is non-increasing and Lipschitz
continuous on (l, l′] and lim infx→l a(x)/(x − l) > 0. If l = −∞, assume that there exists l′ ∈
(l, u) such that b is non-decreasing on (l, l′] and lim infx→l a(x) > 0.

Theorem 3.5. (i) Let d be the Fortet–Mourier distance. Under Assumption 3.4, we have for
S-valued random variable Y ∈D

1,2

d
(
L(Y ),μ

) ≤ CE
[

E
[∣∣∣∣1

2
a(Y ) + 〈

D(−L)−1{b(Y ) − E
[
b(Y )

]}
,DY

〉
H

∣∣∣Y ∣∣∣∣
]]

+ C
∣∣E[

b(Y )
]∣∣,

where C is a positive constant independent of Y and L(Y ) is the law of Y .
(ii) Let d be the Kolmogorov distance or the total variation distance. Assume infx∈S a(x) > 0.

Then, we have for S-valued random variable Y ∈D
1,2

d
(
L(Y ),μ

) ≤ CE
[∣∣∣∣E

[
1

2
a(Y ) + 〈

D(−L)−1{b(Y ) − E
[
b(Y )

]}
,DY

〉
H

∣∣∣Y]∣∣∣∣
]

+ C
∣∣E[

b(Y )
]∣∣,

where C is a positive constant independent of Y and L(Y ) is the law of Y .

We remark that Assumption 3.4 is designed for the estimate of the Kolmogorov distance or
the total variation distance, while the estimate of the Fortet-Mourier distance is obtained under a
simple assumption. This difference of the assumptions comes from the estimate of g̃′

f . We also
remark that the cases that μ has the normal distribution and μ has the Gamma distribution satisfy
the Assumption 3.4 under suitable choices of a and b. See Section 3.2 of [5] for the details.

The Fourth Moment Theorem tells us that the Stein’s bound is sharp for multiple integrals in
the case of Gaussian law, meaning that a sequence of multiple stochastic integrals convergences
to a Gaussian distribution if and only if the right-hand side of the Stein’s bound vanishes. The
purpose of the last three sections of our paper is to give a necessary and sufficient condition for
sequences of random variables to converge to the invariant measure μ of a diffusion processes as
described above.
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4. Necessary and sufficient conditions for the convergence to the
invariant measure of a diffusion

The purpose of this section is to provide necessary and sufficient conditions for the convergence
of the sequence (Fm)m∈N to the invariant measure μ of a diffusion (as described in Section 3).
We aim to give such a characterization in terms of the squared diffusion coefficient a and of
the Malliavin derivatives of Fm. The main result in [5] (see also Section 3) implies that a suf-
ficient condition for the convergence in distribution of (Fm)m∈N in a certain class to μ is that
E[ 1

2a(Fm) − 〈DFm,D(−L)−1{Fm − b(Fm)}〉|Fm] converges in L1(�) to zero as m → ∞ and
E[b(Fm)] converges to zero as m → ∞. But it will follow from the results presented below in
this section that this condition is sometimes too strong and it is not a necessary condition for
the convergence of (Fm)m≥1 in distribution to μ. Actually, we will consider the convergence in
total variation which is strictly stronger than the convergence in distribution. Recall that the total
variation distance between the law of two random variables X and Y is defined by

dTV
(
L(X),L(Y )

) = sup
A

∣∣P(X ∈ A) − P(Y ∈ A)
∣∣,

where the supremum is taken over all Borel sets A ⊂ R. We also have (see, e.g., Appendix C
in [8])

dTV
(
L(X),L(Y )

) = 1

2
sup
h

∣∣E[
h(X)

] − E
[
h(Y )

]∣∣,
where the supremum is considered over all Borel measurable functions h with ‖h‖∞ ≤ 1. Let us
start with the following result which is connected with Theorem 3.3.

Set S = (l, u), μ, X, p, b, a and k as in Section 3. Recall that
∫
S
|b(x)|μ(dx) < ∞. We assume

that
∫
S
a(x)μ(dx) < ∞. Denote the Lebesgue measure on R by dx. Additionally, we consider

the function φ on S given by

φ(x) := 1

2
a(x) + (|k| + |x|)∣∣b(x)

∣∣,
where k is an element in S which appeared in the assumption of b.

Theorem 4.1. Let Y be an S-valued random variable in D
1,2 such that b(Y ) ∈ L2(�), and

assume that the distribution of Y is absolutely continuous with respect to the Lebesgue measure.
Then, for every p > 1 we have

E
[∣∣∣∣E

[
1

2
a(Y ) + 〈

D(−L)−1{b(Y ) − E
[
b(Y )

]}
,DY

〉
H

∣∣∣Y]∣∣∣∣
]

≤ {
1 + (

1 + E
[∣∣b(Y )

∣∣p] + E
[∣∣b(X)

∣∣p])
E

[|Y − k|] + E
[
φ(Y )p

] + E
[
φ(X)p

]}
× dTV

(
L(Y ),μ

)1−1/p
.
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Proof. It is sufficient to show the case that E[φ(X)] < ∞ and E[φ(Y )] < ∞. First we show that
for M ≥ 1

E
[∣∣∣∣E

[
1

2
a(Y ) + 〈

D(−L)−1{b(Y ) − E
[
b(Y )

]}
,DY

〉
H

∣∣∣Y]∣∣∣∣
]

≤ (
M + E

[|Y − k|])dTV
(
L(Y ),μ

)
(4.1)+ E

[
φ(Y );φ(Y ) > M

] + E
[
φ(X);φ(X) > M

]
+ E

[|Y − k|](E
[∣∣b(Y )

∣∣; ∣∣b(Y )
∣∣ > M

] + E
[∣∣b(X)

∣∣; ∣∣b(X)
∣∣ > M

])
.

Let h ∈ L∞(S, dx) (the space of essentially bounded functions on S with respect to dx). For
x ∈ S define

fh(x) := 1

2
a(x)h(x) + b(x)

∫ x

k

h(y) dy.

We remark that the existence of the density function of X implies |h(X)| ≤ ‖h‖∞ almost surely.
Since E[|a(X)h(X)|] < ∞ and

E
[∣∣∣∣b(X)

∫ X

k

h(y)dy

∣∣∣∣
]

≤ ‖h‖∞E
[∣∣b(X)X

∣∣] + |k|‖h‖∞E
[∣∣b(X)

∣∣]
< ∞,

Theorem 3.2 implies E[fh(X)] = 0. Hence, by integration by parts formula, we have

E
[
fh(Y )

] − E
[
fh(X)

]
= E

[
1

2
a(Y )h(Y ) + b(Y )

∫ Y

k

h(y) dy

]

= E
[

1

2
a(Y )h(Y ) + (

b(Y ) − E
[
b(Y )

])∫ Y

k

h(y) dy

]
+ E

[
b(Y )

]
E

[∫ Y

k

h(y) dy

]

= E
[

1

2
a(Y )h(Y ) + [

δD(−L)−1(b(Y ) − E
[
b(Y )

])] ∫ Y

k

h(y) dy

]

+ E
[
b(Y )

]
E

[∫ Y

k

h(y) dy

]

= E
[

1

2
a(Y )h(Y ) +

〈
D(−L)−1(b(Y ) − E

[
b(Y )

])
,D

∫ Y

k

h(y) dy

〉
H

]

+ E
[
b(Y )

]
E

[∫ Y

k

h(y) dy

]

= E
[
h(Y )

(
1

2
a(Y ) + 〈

D(−L)−1(b(Y ) − E
[
b(Y )

])
,DY

〉
H

)]

+ E
[
b(Y )

]
E

[∫ Y

k

h(y) dy

]
.
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Since the duality between the L1(S, dx) and the L∞(S, dx) yields

E
[∣∣∣∣E

[
1

2
a(Y ) + 〈

D(−L)−1{b(Y ) − E
[
b(Y )

]}
,DY

〉
H

∣∣∣Y]∣∣∣∣
]

= sup
‖h‖∞≤1

∣∣∣∣E
[(

1

2
a(Y ) + 〈

D(−L)−1{b(Y ) − E
[
b(Y )

]}
,DY

〉
H

)
h(Y )

]∣∣∣∣,
we obtain

E
[∣∣∣∣E

[
1

2
a(Y ) + 〈

D(−L)−1{b(Y ) − E
[
b(Y )

]}
,DY

〉
H

∣∣∣Y]∣∣∣∣
]

(4.2)
≤ sup

‖h‖∞≤1

∣∣E[
fh(Y )

] − E
[
fh(X)

]∣∣ + ∣∣E[
b(Y )

]∣∣E[|Y − k|].
Now we consider the estimate of fh. For x ∈ S, it holds that

∣∣fh(x)
∣∣ ≤

∣∣∣∣b(x)

∫ x

k

h(y) dy

∣∣∣∣ + 1

2
a(x)

∣∣h(x)
∣∣

≤ ‖h‖∞
(|k| + |x|)∣∣b(x)

∣∣ + 1

2
a(x)

∣∣h(x)
∣∣.

Since the existence of the density function of X and Y implies |h(X)| ≤ ‖h‖∞ and |h(Y )| ≤
‖h‖∞ almost surely, we have

∣∣fh(X)
∣∣ ≤ ‖h‖∞

{(|k| + |X|)∣∣b(X)
∣∣ + 1

2
a(X)

}
= ‖h‖∞φ(X),

∣∣fh(Y )
∣∣ ≤ ‖h‖∞

{(|k| + |Y |)∣∣b(Y )
∣∣ + 1

2
a(Y )

}
= ‖h‖∞φ(Y )

almost surely. Hence,∣∣E[
fh(Y )

] − E
[
fh(X)

]∣∣
≤ ∣∣E[

fh(Y );φ(Y ) ≤ M
] − E

[
fh(X);φ(X) ≤ M

]∣∣
+ ∣∣E[

fh(Y );φ(Y ) > M
] − E

[
fh(X);φ(X) > M

]∣∣
≤ ‖h‖∞MdTV

(
L(Y ),μ

)
+ ‖h‖∞

(
E

[
φ(Y );φ(Y ) > M

] + E
[
φ(X);φ(X) > M

])
.

This inequality and (4.2) yield

E
[∣∣∣∣E

[
1

2
a(Y ) + 〈

D(−L)−1{b(Y ) − E
[
b(Y )

]}
,DY

〉
H

∣∣∣Y]∣∣∣∣
]

≤ MdTV
(
L(Y ),μ

) + E
[
φ(Y );φ(Y ) > M

] + E
[
φ(X);φ(X) > M

]
(4.3)

+ ∣∣E[
b(Y )

]∣∣E[|Y − k|].
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Since E[b(X)] = 0, we have∣∣E[
b(Y )

]∣∣
= ∣∣E[

b(Y )
] − E

[
b(X)

]∣∣
≤ ∣∣E[

b(Y ); ∣∣b(Y )
∣∣ ≤ M

] − E
[
b(X); ∣∣b(X)

∣∣ ≤ M
]∣∣

+ E
[∣∣b(Y )

∣∣; ∣∣b(Y )
∣∣ > M

] + E
[∣∣b(X)

∣∣; ∣∣b(X)
∣∣ > M

]
≤ MdTV

(
L(Y ),μ

) + E
[∣∣b(Y )

∣∣; ∣∣b(Y )
∣∣ > M

] + E
[∣∣b(X)

∣∣; ∣∣b(X)
∣∣ > M

]
.

From this inequality and (4.3), we obtain (4.1).
It is easy to see

E
[
φ(Y );φ(Y ) > M

] ≤ M1−pE
[
φ(Y )p;φ(Y ) > M

]
≤ M1−pE

[
φ(Y )p

]
.

Similarly, we have

E
[
φ(X);φ(X) > M

] ≤ M1−pE
[
φ(X)p

]
,

E
[∣∣b(Y )

∣∣; ∣∣b(Y )
∣∣ > M

] ≤ M1−pE
[∣∣b(Y )

∣∣p]
,

E
[∣∣b(X)

∣∣; ∣∣b(X)
∣∣ > M

] ≤ M1−pE
[∣∣b(X)

∣∣p]
.

Hence, (4.1) implies

E
[∣∣∣∣E

[
1

2
a(Y ) + 〈

D(−L)−1{b(Y ) − E
[
b(Y )

]}
,DY

〉
H

∣∣∣Y]∣∣∣∣
]

≤ M
(
1 + E

[|Y − k|])dTV
(
L(Y ),μ

)
+ M1−p

(
E

[∣∣b(Y )
∣∣p + ∣∣b(X)

∣∣p]
E

[|Y − k|] + E
[
φ(Y )p + φ(X)p

])
.

Letting M = dTV(L(Y ),μ)−1/p and using the fact that dTV(L(Y ),μ) ≤ 1, we obtain the desired
estimate. �

Theorems 3.5 and 4.1 give a necessary and sufficient condition of the convergence of in total
variation.

Theorem 4.2. Assume infx∈S a(x) > 0. Let Fm be a sequence of S-valued random variables in
D

1,2 and assume that the distribution of Fm is absolutely continuous with respect to the Lebesgue
measure for m ∈N. Assume that there exists ε > 0 such that

E
[|X|] + E

[∣∣b(X)
∣∣1+ε] + E

[
φ(X)1+ε

]
< ∞,

sup
m∈N

(
E

[|Fm|] + E
[∣∣b(Fm)

∣∣1+ε] + E
[
φ(Fm)1+ε

])
< ∞.
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Then, the following statements are equivalent.

(i) The distribution of Fm converges to the distribution of X in total variation.
(ii) limm→∞ E[| 1

2a(Fm) + E[〈D(−L)−1{b(Fm) − E[b(Fm)]},DFm〉H |Fm]|] = 0 and
limm→∞ E[b(Fm)] = 0.

Proof. The implication of (i) to (ii) follows from Theorem 4.1, the uniform integrability of
{b(Fm)} and E[b(X)] = 0. The converse implication follows from Theorem 3.5. �

If the random variables Fm from Theorem 4.2 belong to a Wiener chaos of fixed order and
the limit distribution is not trivial, then the convergence in total variation is equivalent to the
convergence in distribution (see [10]). Hence, we also have the following theorem.

Theorem 4.3. Suppose Assumption 3.4. Let Fm be a sequence of S-valued random variables
and assume that there exists p ∈N such that Fm is expressed as

Fm =
p∑

k=0

Ik

(
f

(m)
k

)
, f

(m)
k ∈ H�k

for all m ∈N. Furthermore, assume that there exists ε > 0 such that

E
[|X|] + E

[∣∣b(X)
∣∣1+ε] + E

[
φ(X)1+ε

]
< ∞,

sup
m∈N

(
E

[|Fm|] + E
[∣∣b(Fm)

∣∣1+ε] + E
[
φ(Fm)1+ε

])
< ∞.

Then, the following statements are equivalent.

(i) The distribution of Fm converges to the distribution of X in distribution.
(ii) The distribution of Fm converges to the distribution of X in total variation.

(iii) limm→∞ E[| 1
2a(Fm) + E[〈D(−L)−1{b(Fm) − E[b(Fm)]},DFm〉H |Fm]|] = 0 and

limm→∞ E[b(Fm)] = 0.

Proof. The implication of (i) to (ii) follows from Theorem 3.1 in [10]. The implication of (ii)
to (iii) follows from Theorem 4.1, the uniform integrability of {b(Fm)} and E[b(X)] = 0. The
implication of (iii) to (i) follows from Theorem 3.5. �

Remark 4.4. • Our Theorem 4.3 is related to the result stated in Theorem 3.2 in [1]. In this
reference, a criterium involving the conditional expectation for the convergence towards a linear
combination of chi squared random variable is given.

• The result in Theorem 4.2 indicates that the conditions

lim
m→∞ E

[∣∣∣∣1

2
a(Fm) + E

[〈
DFm,D(−L)−1(b(Fm) − E

[
b(Fm)

])〉
H

|Fm

]∣∣∣∣
]

= 0 and

lim
m→∞E

[
b(Fm)

] = 0

are sometimes maybe stronger than the convergence in law.
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From now on, for simplicity, we additionally assume that E[X] = ∫
S
xμ(dx) = 0 and b(x) =

−x. In this case, k = 0 ∈ S and φ(x) := 1
2a(x) + |x|2. Then, we have the following corollaries

from Theorems 4.2 and 4.3.

Corollary 4.5. Assume infx∈S a(x) > 0. Let Fm be a sequence of S-valued random variables in
D

1,2 and assume that the distribution of Fm is absolutely continuous with respect to the Lebesgue
measure for m ∈N. Assume that there exists ε > 0 such that

E
[

1

2
a(X)1+ε + |X|2+ε

]
< ∞ and sup

m∈N
E

[
1

2
a(Fm)1+ε + |Fm|2+ε

]
< ∞.

Then, the following statements are equivalent.

(i) The distributions of Fm converges to the distribution of X in total variation.
(ii) limm→∞ E[| 1

2a(Fm) − E[〈D(−L)−1Fm,DFm〉H |Fm]|] = 0 and limm→∞ E[Fm] = 0.

Corollary 4.6. Suppose Assumption 3.4. Let Fm be a sequence of S-valued random variables
and assume that there exists p ∈ N such that Fm is expressed as

Fm =
p∑

k=0

Ik

(
f

(m)
k

)
, f

(m)
k ∈ H�k

for all m ∈ N. Furthermore, assume that there exists ε > 0 such that

E
[

1

2
a(X)1+ε + |X|2+ε

]
< ∞ and sup

m∈N
E

[
1

2
a(Fm)1+ε

]
< ∞.

Then, the following statements are equivalent.

(i) The distributions of Fm converges to the distribution of X in distribution.
(ii) The distributions of Fm converges to the distribution of X in total variation.

(iii) limm→∞ E[| 1
2a(Fm) − E[〈D(−L)−1Fm,DFm〉H |Fm]|] = 0 and limm→∞ E[Fm] = 0.

Remark 4.7. The conditional expectation

E
[〈
D(−L)−1F,DF

〉
H

|F ]
is called the Stein factor associated with the random variable F , and Corollaries 4.5 and 4.6
imply that the convergence of the distributions in total variation is characterized by the Stein
factor. Recently, the Stein factor and the applications are studied as a hot topic, and many results
have been obtained (see [9] for details).

We continue the consideration of the necessary and sufficient conditions of the convergence in
distributions. We additionally assume

∫
S
a(x)2μ(dx) < ∞.
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Proposition 4.8. Consider a sequence (Fm)m≥1 of S-valued random variables in D
1,4, which

satisfies that there exists ε > 0 satisfying

sup
m

E
[
a(Fm)2+ε + |Fm|4+ε

]
< ∞. (4.4)

Suppose that the distribution of Fm converges to μ as m → ∞. Then the condition that 1
2a(Fm)−

〈DFm,D(−L)−1Fm〉H converges to 0 in L2(�) as m → ∞ is equivalent to the condition that
1
4 E[a(Fm)2] − E[〈DFm,D(−L)−1Fm〉2

H ] converges to 0 as m → ∞.

Proof. Since distribution of Fm converges to μ, by Theorem 3.2 we have

lim
m→∞ E

[
1

2
a(Fm)h′(Fm) − Fmh(Fm)

]
= 0

for h ∈ C1(S) such that supm E[|h(Fm)|2+ε + |h′(Fm)|2+ε] < ∞. On the other hand,

E
[
Fmh(Fm)

] = E
[
h(Fm)(δD)(−L)−1Fm

] = E
[
h′(Fm)

〈
DFm,D(−L)−1Fm

〉
H

]
.

Hence, we have

lim
m→∞ E

[(
1

2
a(Fm) − 〈

DFm,D(−L)−1Fm

〉
H

)
h′(Fm)

]
= 0

for h ∈ C1(S) such that supm E[|h(Fm)|2+ε +|h′(Fm)|2+ε] < ∞. We have assumed (4.4). Hence,
we can choose h ∈ C1(S) such that h′(x) = a(x). Thus, we obtain

lim
m→∞

(
1

2
E

[
a(Fm)2] − E

[
a(Fm)

〈
DFm,D(−L)−1Fm

〉
H

]) = 0. (4.5)

On the other hand,

E
[(

1

2
a(Fm) − 〈

DFm,D(−L)−1Fm

〉
H

)2]

= E
[〈
DFm,D(−L)−1Fm

〉2
H

] − 1

4
E

[
a(Fm)2]

+ 1

2
E

[
a(Fm)2] − E

[
a(Fm)

〈
DFm,D(−L)−1Fm

〉
H

]
.

Hence, applying (4.5), we obtain the required equivalence. �

The necessary and sufficient condition in Theorem 4.3 for the convergence of the sequence
(Fm)m≥1 to the distribution μ in total variation is that the sequence

E
[

1

2
a(Fm) + 〈

D(−L)−1{b(Fm) − E
[
b(Fm)

]}
,DFm

〉
H

∣∣∣Fm

]
and E

[
b(Fm)

]
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converge to zero in L1(�) as m → ∞. Due to the appearance of the conditional expectation,
this condition is sometimes hard to be checked. Therefore, we give below in Theorem 4.9 an
alternative result which does not involve the conditional expectation.

Theorem 4.9. Suppose Assumption 3.4, and assume that there exists a random variable G ∈
D

1,4 such that the distribution of G is equal to μ and 〈DG,D(−L)−1G〉H is measurable with
respect to the σ -field generated by G. Consider a sequence (Fm)m≥1 of S-valued random vari-
ables in D

1,4 such that E[Fm] = 0 and (4.4) is satisfied. Then, the following statements are
equivalent.

(i) The vector valued random variable (Fm, 〈DFm,D(−L)−1Fm〉H ) converges to (G, 〈DG,

D(−L)−1G〉H ) in distribution as m → ∞, and {a(Fm)2} and 〈DFm,D(−L)−1Fm〉2
H are uni-

formly integrable.
(ii) 1

2a(Fm) − 〈DFm,D(−L)−1Fm〉H converges to 0 in L2(�) as m → ∞.

Proof. Assume (ii). By Theorem 3.5, Fm converges to G in distribution. Since 〈DG,

D(−L)−1G〉H is measurable with respect to the σ -field generated by G, by Theorem 3.3, we
obtain

1

2
a(G) = 〈

DG,D(−L)−1G
〉
H

(4.6)

almost surely. Hence, by the convergence of Fm to G in distribution and (ii), we have for h1, h2 ∈
Cb(R)

lim sup
m→∞

∣∣E[
h1(Fm)h2

(〈
DFm,D(−L)−1Fm

〉
H

)]
− E

[
h1(G)h2

(〈
DG,D(−L)−1G

〉
H

)]∣∣
≤ lim sup

m→∞

∣∣∣∣E
[
h1(Fm)h2

(
1

2
a(Fm)

)]
− E

[
h1(G)h2

(
1

2
a(G)

)]∣∣∣∣
+ lim sup

m→∞

∣∣∣∣E
[
h1(Fm)

{
h2

(
1

2
a(Fm)

)
− h2

(〈
DFm,D(−L)−1Fm

〉
H

)}]∣∣∣∣
= 0.

Thus, (i) is obtained.
Assume (i). Noting that (4.6) holds, by the assumption (i), we have

lim
m→∞

(
1

4
E

[
a(Fm)2] − E

[〈
DFm,D(−L)−1Fm

〉2
H

])

= 1

4
E

[
a(G)2] − E

[〈
DG,D(−L)−1G

〉2
H

] = 0.

Thus, by Proposition 4.8, (ii) is obtained. �
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Remark 4.10. If we suppose the assumptions in both Corollary 4.5 and Theorem 4.9, then the
equivalent conditions in Corollary 4.5 and Theorem 4.9 will be also equivalent. This fact perhaps
implies that generally the convergence of distributions to the invariant measures of diffusion
processes would be complicated, while the fourth moment theorems with respect to Gaussian
distributions and Gamma distributions are simple.

In order to apply the above result, we need to know how to compute the squared diffusion
coefficient for a given law and to check the measurability of 〈DG,D(−L)−1G〉H with respect
to G.

Proposition 4.11. (i) Let F = cW(h) where c ∈ R and h ∈ H such that ‖h‖H = 1. Then,〈
D(−L)−1F,DF

〉
H

= c2.

In particular, 〈D(−L)−1F,DF 〉H is measurable with respect to the σ -field generated by F .
(ii) Let F = c(W(h)2 − 1) where c ∈ R and h ∈ H such that ‖h‖H = 1. Then,〈

D(−L)−1(F − E[F ]),DF
〉
H

= 2cF + 2c2.

In particular, 〈D(−L)−1F,DF 〉H is measurable with respect to the σ -field generated by F .
(iii) Let F = ecW(h) where c ∈ R and h ∈ H such that ‖h‖H = 1. Then,

〈
D(−L)−1(F − E[F ]),DF

〉
H

= c2F

∫ 1

0
Fve

c2
2 (1−v2) dv.

In particular, 〈D(−L)−1(F − E[F ]),DF 〉H is measurable with respect to the σ -field generated
by F .

(iv) Let F = ec
∑n

k=1 W(hk)
2

where n ∈ N, c ∈ (−∞,1/2) and h1, h2, . . . , hn ∈ H such that
‖hk‖H = 1 for k = 1,2, . . . , n, and 〈hk,hl〉H = 0 for k, l = 1,2, . . . , n. Then,

〈
D(−L)−1(F − E[F ]),DF

〉
H

= 4cF (logF)

∫ 1

0

vF
v2

1−2c(1−v2)

(1 − 2c(1 − v2))
n
2 +1

dv.

In particular, 〈D(−L)−1(F − E[F ]),DF 〉H is measurable with respect to the σ -field generated
by F .

(v) Let F = W(h)n − E[W(h)n] where n ∈ N and h ∈ H such that ‖h‖H = 1. Then,〈
D(−L)−1F,DF

〉
H

= n2

2

�(n−1)/2�∑
l=0

(n − 1)!(2l − 1)!!
(2l)!(n − 1 − 2l)!β

(
n

2
− l, l + 1

)∣∣F + E
[
W(h)n

]∣∣2−2(l+1)/n
,

where �(n − 1)/2� is the largest integer which is no larger than (n − 1)/2. In particular,
〈D(−L)−1F,DF 〉H is measurable with respect to the σ -field generated by F .
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Proof. When F is given as in (i), E[F ] = 0 and〈
D(−L)−1F,DF

〉
H

= c2〈DW(h),DW(h)
〉
H

= c2.

Hence, (i) holds.
When F is given as in (ii), E[F ] = 0 and

〈
D(−L)−1F,DF

〉
H

= 1

2
c2〈D(

W(h)2 − 1
)
,D

(
W(h)2 − 1

)〉
H

= 2c2W(h)2 = 2cF + 2c2.

Hence, (ii) holds.
Next, we show the case that F is given as in (iii). In this case, we use the following formula

proved in [11]: if Y = f (N)−E[f (N)] where f ∈ C1
b(Rn;R) with bounded derivatives and N =

(N1, . . . ,Nn) is a Gaussian vector with zero mean and covariance matrix K = (Ki,j )i,j=1,..,n

then 〈
D(−L)−1(Y − E[Y ]),DY

〉
H

(4.7)

=
∫ ∞

0
e−u duE′

[
n∑

i,j=1

Ki,j

∂f

∂xi

(N)
∂f

∂xj

(
e−uN +

√
1 − e−2uN ′)].

Here N ′ denotes an independent copy of N , and N and N ′ are defined on a product probability
space (� × �′,F ⊗ F,P × P ′) and E′ denotes the expectation with respect to the probability
measure P ′.

By (4.7), we have〈
D(−L)−1(F − E[F ]),DF

〉
H

=
∫ ∞

0
e−u duE′[c2ecW(h)ec(e−uW(h)+

√
1−e−2uW ′(h))

]

= c2ecW(h)

∫ 1

0
ecvW(h)E′[ec

√
1−v2W ′(h)

]
dv

= c2F

∫ 1

0
Fve

c2
2 (1−v2) dv.

Hence, (iii) holds.
Next, we show the case that F is given as in (iv). In this case, we use Lemma 1 in Section 4

of [5]. The statement of the lemma is as follows. Let Z be a random variable with the standard
normal distribution, K > − 1

2 , C ∈R and a ∈ (0,1). Then,

E
[
e−K(C+

√
1−a2Z)2] = 1√

1 + 2K(1 − a2)
e
− C2K

1+2K(1−a2) , (4.8)
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E
[(

C +
√

1 − a2Z
)
e−K(C+

√
1−a2Z)2] = C

(1 + 2K(1 − a2))
3
2

e
− C2K

1+2K(1−a2) . (4.9)

It is sufficient to show the case that c 	= 0. By (4.7), we have

〈
D(−L)−1(F − E[F ]),DF

〉
H

=
∫ ∞

0
e−u duE′

[
n∑

i=1

2cW(hi)e
c
∑n

j=1 W(hj )2

× 2c
(
e−uW(hi) +

√
1 − e−2uW ′(hi)

)
e
c
∑n

j=1(e
−uW(hj )+

√
1−e−2uW ′(hj ))2

]

= 4c2
∫ ∞

0
e−u du

n∑
i=1

W(hi)e
c
∑n

j=1 W(hj )2 ∏
j 	=i

E′[ec(e−uW(hj )+
√

1−e−2uW ′(hj ))2]

× E′[(e−uW(hi) +
√

1 − e−2uW ′(hi)
)
ec(e−uW(hi)+

√
1−e−2uW ′(hi ))

2]
= 4c2

∫ 1

0
dv

n∑
i=1

W(hi)e
c
∑n

j=1 W(hj )2
(∏

j 	=i

E′[ec(vW(hj )+
√

1−v2W ′(hj ))2])

× E′[(vW(hi) +
√

1 − v2W ′(hi)
)
ec(vW(hi)+

√
1−v2W ′(hi ))

2]
.

Applying (4.8) and (4.9) to this equation, we obtain

〈
D(−L)−1(F − E[F ]),DF

〉
H

= 4c2
∫ 1

0
dv

n∑
i=1

W(hi)e
c
∑n

j=1 W(hj )2
(∏

j 	=i

exp(
cv2W(hj )2

1−2c(1−v2)
)√

1 − 2c(1 − v2)

)

×
vW(hi) exp(

cv2W(hj )2

1−2c(1−v2)
)

(1 − 2c(1 − v2))
3
2

= 4c2

(
n∑

i=1

W(hi)
2

)
e
c
∑n

j=1 W(hj )2
∫ 1

0

v exp(
cv2 ∑n

j=1 W(hj )2

1−2c(1−v2)
)

(1 − 2c(1 − v2))
n
2 +1

dv

= 4cF (logF)

∫ 1

0

vF
v2

1−2c(1−v2)

(1 − 2c(1 − v2))
n
2 +1

dv.

Hence, (iv) holds.
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Finally, we show (v). By (4.7), we have〈
DF,D(−L)−1F

〉
H

= n2
∫ ∞

0
e−u duE′[W(h)n−1(e−uW(h) +

√
1 − e−2uW ′(h)

)n−1]

= n2W(h)n−1
∫ 1

0
dyE′[(yW(h) +

√
1 − y2W ′(h)

)n−1]
,

where W ′(h) denotes an independent copy of W(h), and W(h) and W ′(h) are defined on a
product of abstract Wiener spaces (� × �,H ⊗ H,P × P ′) and E′ denotes the expectation with
respect to the Gaussian measure P ′. Hence,〈

DF,D(−L)−1F
〉
H

= n2W(h)n−1
∫ 1

0
dy

n−1∑
j=0

(n − 1)!
j !(n − 1 − j)!

(
yW(h)

)n−1−j E′[(√1 − y2W ′(h)
)j ]

= n2
�(n−1)/2�∑

l=0

(n − 1)!(2l − 1)!!
(2l)!(n − 1 − 2l)!W(h)2n−2−2l

∫ 1

0
yn−1−2l

(
1 − y2)l

dy,

where we regard (−1)!! = 1. Noting that the beta function β(a, b) for a, b > 0 satisfies

β(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt

= 2
∫ 1

0
s2a−1(1 − s2)b−1

ds,

we obtain〈
DF,D(−L)−1F

〉
H

= n2

2

�(n−1)/2�∑
l=0

(n − 1)!(2l − 1)!!
(2l)!(n − 1 − 2l)!β

(
n

2
− l, l + 1

)∣∣F + E
[
W(h)n

]∣∣2−2(l+1)/n
.

�

Now we give several common probability distributions as examples.

Example 4.12 (Gaussian and Gamma). Let F = cW(h) where c ∈ R and h ∈ H such that
‖h‖H = 1. Then, E[F ] = 0. By (i) of Proposition 4.11, we have 〈D(−L)−1F,DF 〉H is measur-
able with respect to the σ -field generated by F , and we have

1

2
a(x) = c2, x ∈ R.
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Let F = c(W(h)2 − 1) where c ∈ R and h ∈ H such that ‖h‖H = 1. Then, E[F ] = 0. By
(ii) of Proposition 4.11, we have 〈D(−L)−1F,DF 〉H is measurable with respect to the σ -field
generated by F , and

1

2
a(x) = 2c2(x + 1), x > −1.

Example 4.13 (Log-normal). Let F = ecW(h) where c ∈ R\ {0} and h ∈ H such that ‖h‖H = 1.
By (iii) of Proposition 4.11, we have 〈D(−L)−1(F − E[F ]),DF 〉H is measurable with respect
to the σ -field generated by F , and

1

2
a(x) = c2x

∫ 1

0
xve

c2
2 (1−v2) dv, x > 0.

Example 4.14 (Exponential of the sum of Gaussian squares). Let F = ec
∑n

k=1 W(hk)
2

where
n ∈ N, c ∈ (−∞,1/2) \ {0} and h1, h2, . . . , hn ∈ H such that ‖hk‖H = 1 for k = 1,2, . . . , n,
and 〈hk,hl〉H = 0 for k, l = 1,2, . . . , n. By (iv) of Proposition 4.11, we have 〈D(−L)−1(F −
E[F ]),DF 〉H is measurable with respect to the σ -field generated by F and

1

2
a(x) = 4cx(logx)

∫ 1

0

vx
v2

1−2c(1−v2)

(1 − 2c(1 − v2))
n
2 +1

dv

for x belonging to the support of the law (that depends on the choice of c). This case includes
the uniform distribution U [0,1] (by taking for example, n = 2 and c = − 1

2 ), the centered Pareto
distribution (if we consider n = 2 and c = 1

4 we obtain a centered Pareto distribution with pa-
rameter 2) or the centered beta distribution (by taking c = −1, n = 2 we have a random variable
with centered beta law with parameters 1

2 and 1). We refer to [5] for a review on these probability
distributions.

Example 4.15 (Power of Gaussian). Consider the random variable

G = W(h)n − E
[
W(h)n

]
,

where h ∈ H such that ‖h‖H = 1 and n ∈N. By (v) of Proposition 4.11, we have 〈D(−L)−1(F −
E[F ]),DF 〉H is measurable with respect to the σ -field generated by F and

1

2
a(x)

= n2

2

�(n−1)/2�∑
l=0

(n − 1)!(2l − 1)!!
(2l)!(n − 1 − 2l)!β

(
n

2
− l, l + 1

)∣∣x + E
[
W(h)n

]∣∣2−2(l+1)/n

for x in the support of the law of G. The case that n = 1 and n = 2 are associated to the standard
normal distribution and the centered Gamma distribution, respectively (see Example 4.12). When
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n = 3,

1

2
a(x) = 3|x|4/3 + 6|x|2/3, x ∈ R.

When n = 4,

1

2
a(x) = 4(x + 3)3/2 + 12(x + 3), x ∈ (−3,∞).

Many examples in which 〈D(−L)−1G,DG〉H is not measurable with respect to G can be
constructed. We will illustrate below such a situation.

Example 4.16. Let G = I2(f ⊗̃g) with f,g ∈ H , 〈f,g〉H = 0. We have G = I1(f )I1(g)

and clearly DG = I1(f )g + I1(g)f and D(−L)−1G = 1
2 (I1(f )g + I1(g)f ). This implies

〈D(−L)−1G,DG〉H = 1
2 (I1(f )2 + I1(g)2) and this random variable is not measurable with

respect to the σ -algebra generated by I1(f )I1(g).

Remark 4.17. A concrete example of application of the theory presented in this section is given
in [17] and concerns the convergence of a sequence of Pareto distributed random variables to the
exponential law. Indeed, if we consider a sequence of random variables (Fn)n≥1 such that each Fn

follows a Pareto distribution with parameter n ≥ 2 then it is well known that the sequence (Yn)n≥1

given by Yn = (n − 1)(Fn − 1) converges in law, as n → ∞, to the exponential distribution with
parameter 1. The rate of convergence has been estimated in [17] using the techniques presented
in this section.

5. Extension of the Fourth Moment Theorem

In this section, we analyze the weak convergence of sequences of random variables in a Wiener
chaos to X ∼ μ. The purpose of the argument is to generalize the Fourth Moment Theorem
(Theorem 2.2).

Through this section, μ is assumed to satisfy the hypothesis in the previous section. In addition
we set b(x) := −x and assume that

∫
a(x)2μ(dx) < ∞ and the expectation of the invariant

measure equals zero, that is,
∫

xμ(dx) = E[X] = 0.
Let us assume that Fm = Ip(fm),m ∈ N is sequence of multiple integrals in the pth Wiener,

with fm ∈ H�p for every m ∈ N. Our result in Theorem 4.9 says that the joint convergence
in distribution as m → ∞ of (Fm, 1

p
‖DFm‖2

H ) to (G, 〈DG,D(−L)−1G〉H ), with G ∼ μ, is

equivalent to the convergence in L2(�) of 1
2a(Fm) − 1

p
‖DFm‖2

H to zero as m → ∞, where a

denotes the squared diffusion coefficient associated to the law μ.
The nice results in [14] and [7] show that, in the case when the target distribution μ is Gaussian

or (centered) Gamma, then the hypothesis on the convergence of ‖DFm‖H (or the conditional
expectation in Theorem 4.2) can be eliminated. Indeed, by assuming that EF 2

m →m EG2, the
sequence (Fm)m≥1 convergence to μ (which is Gaussian or Gamma) if and only if the sequence
1
2a(Fm) − 1

p
‖DFm‖2

H converges to zero in L2(�).
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It is then natural to ask if the same holds for other target distributions. We will show in the
sequel that the answer is in general negative. We will show that in some special situations, the
convergence in law of a sequence of multiple integrals to a law (different from Gaussian and
Gamma) can be expressed in terms of the convergence of sequence of the fourth moment and
also in terms of some squared diffusion coefficients associated to the law and of the Malliavin
derivatives.

5.1. Product normal distribution

Let X,Y ∼ N(0,1) be two independent random variables (X = I1(h1), Y = I1(h2) with h1, h2 ∈
H orthonormal) and consider the random variable

G = XY.

Then G follows the so-called product normal distribution and its density is given by

fG(x) = K0
(|x|), x ∈ R,

where K0 is the modified Bessel function of the second kind. We remark that fG(x) diverges
at x = 0, in particular fG is not continuous in R. Hence, Theorems in Sections 3 and 4 are not
applicable in this case.

We will characterize the convergence in distribution (which is equivalent, on Wiener chaos, to
the convergence in total variation, see Remark 5.3) of a particular class of sequences of multiple
integrals toward the product normal distribution.

Remark 5.1. Let us recall that, if X,Y are independent multiple integrals, then (X,DX) and
(Y,DY) are independent random vectors. Moreover, 〈DX,DY 〉H = 0. See Lemma 1 in [3].

Theorem 5.2. Suppose (Xk = Ip(fk))k∈N and (Yk = Iq(gk))k∈N are two sequences of multiple
integrals in the pth and qth Wiener chaos respectively, such that

lim
k→∞ E

[
X2

k

] = 1 and lim
k→∞ E

[
Y 2

k

] = 1.

Assume that for every k ∈N, the random variables Xk and Yk are independent. Then the follow-
ing are equivalent:

(i) XkYk converges in distribution as k → ∞ to XY .
(ii) limk→∞ E[(XkYk)

4] = 9.
(iii) limk→∞ ‖fk ⊗r fk‖H⊗2(p−r) = 0 and limk→∞ ‖gk ⊗l gk‖H⊗2(q−l) = 0 for every r =

1,2, . . . , p − 1 and l = 1,2, . . . , q − 1.
(iv) limk→∞ ‖DXk‖2

H = p and limk→∞ ‖DYk‖2
H = q in L2(�).

(v) limk→∞ E[X4
k ] = 3 and limk→∞ E[Y 4

k ] = 3.
(vi) Xk →k→∞ X and Yk →k→∞ Y in distribution.
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Proof. Note that for every k ∈ N, XkYk = Ip+q(fk ⊗ gk). This comes from the product formula
for multiple stochastic integrals (2.3) and the fact that, for every k ≥ 1, the independence of Xk

and Yk is equivalent to fk ⊗1 gk = 0 almost everywhere, see [18]. Note that the implication (vi)
→ (i) is trivial, and the equivalence between (iii), (iv), (v) and (vi) follows from Theorem 2.2.
Hence, it is sufficient to prove

(i) → (ii) → (iii)

for the first assertion. The implication (i) → (ii) is obvious since XkYk is a multiple integral in
the Wiener chaos of order p +q and thus for every r ≥ 1, supk E[|XkYk|r ] < ∞. Let us show (ii)
→ (iii). We use formula (2.5) for the fourth moment of a multiple integral and we get

E
[
In(f )4] = 3E

[
In(f )2]2 + Rf ,

where, for every f ∈ H�n, we denoted

Rf := n!2
n−1∑
r=1

(
n!

r!(n − r)!
)2[‖f ⊗r f ‖2

H⊗2(n−r) + Cn−r
2n−2r‖f ⊗̃r f ‖2

H⊗2(n−r)

]
. (5.1)

We have, for every k ≥ 1,

E
[
(XkYk)

4] = E
[
X4

k

]
E

[
Y 4

k

]
= (

3E
[
X2

k

]2 + Rfk

)(
3E

[
Y 2

k

]2 + Rgk

)
with Rfk

and Rgk
defined above by (5.1). Since 3E[X2

k ]2 × 3E[Y 2
k ]2 → 9, we easily get that

‖fk ⊗r fk‖H⊗2(p−r) →k→∞ 0 and ‖gk ⊗l gk‖H⊗2(q−l) →k→∞ 0 for every r = 1, . . . , p − 1 and
l = 1, . . . , q − 1. �

Remark 5.3. The convergence of polynomials of (whose orders are uniformly dominated from
above) of multiple integrals to a non-degenerate distribution in distribution is equivalent to the
convergence in total variation (see Theorem 3.1 in [10]).

5.2. The sum of a standard normal random variable and an independent
random variable

Let Z ∼ N(0,1) and let G be a centered random variable with the fourth moment and is inde-
pendent of Z. We will characterize the convergence (of a special class of sequences of multiple
stochastic integrals) to the distribution of the random variable Z + G. See [3] for the case when
Z,G are independent Gamma distributed random variables. We assume that G has a continuous
density function on R (not necessary strictly positive on R). Below a will denote the squared
diffusion coefficient associated to Z + G.
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Proposition 5.4. Let (Xk = Ip(fk))k∈N be a sequence of random variables in the pth Wiener
chaos such that

lim
k→∞ E

[
X2

k

] = 1.

Let (Yk = Iq(gk))k∈N be another sequence of random variables in the qth Wiener chaos such
that Xk and Yk are independent for every k ∈N and

lim
k→∞ E

[
Y 2

k

] = E
[
G2] and lim

k→∞ E
[
Y 4

k

] = E
[
G4].

Then the following assertions are equivalent:

(i) Xk →k Z and Yk →k G in distribution,
(ii) Xk + Yk →k Z + G in distribution.

If in addition, a satisfies the assumptions in Corollary 4.6, then the following is also equivalent.

(iii) 1
2a(Xk + Yk) − E[ 1

p
‖DYk‖2

H + 1
q
‖DXk‖2

H |Xk + Yk] →k 0 in L1(�).

Proof. Clearly (i) → (ii). We show that (ii) → (i). We use the relation

E
[
(Xk + Yk)

4] = E
[
X4

k

] + 6E
[
X2

k

]
E

[
Y 2

k

] + E
[
Y 4

k

]
= 3E

[
X2

k

] + 6E
[
X2

k

]
E

[
Y 2

k

] + E
[
Y 4

k

] + Rfk
(5.2)

∼ 3 + 6E
[
G2] + E

[
G4] + Rfk

,

where we used (2.5) and Rfk
given by (5.1). Recall that ∼ means that the sides have the same

limit as k → ∞. On the other hand, from (ii) we have

E
[
(Xk + Yk)

4] →k E
[
(Z + G)4] = 3 + 6E

[
G2] + E

[
G4]. (5.3)

By combining (5.2) and (5.3), we get Rfk
→k 0 and thus

‖fk ⊗r fk‖H⊗2(p−r) →k 0

for every r = 1,2, . . . , p − 1. This gives the converges in distribution of Xk to Z as k → ∞ (see
Theorem 2.2), and then we easily get the convergence in law as k → ∞ of Yk to G.

Theorem 3.1 in [10] implies that (ii) is equivalent to the convergence of Xk +Yk in total varia-
tion. Hence, if we additionally give the assumptions in Corollary 4.6, we obtain the equivalence
between (ii) and (iii) by Corollary 4.6. �

We apply the above result to the particular case when G follows a centered chi-squared distri-
bution.

Corollary 5.5. Consider two sequences (Xk)k≥1 and (Yk)k≥1 as in Proposition 5.4 and assume
that the random variable G from Proposition 5.4 is a centered Gamma random variable i.e.
G = W(h)2 − 1 where h ∈ H , ‖h‖H = 1. Then the following are equivalent:
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(i) Xk + Yk →k Z + G in distribution.
(ii) Xk →k Z and Yk →k G in distribution.

(iii) 1
p
‖DXk‖2

H → 1 and 1
q
‖DYk‖2

H − 2Yk →k 0 in L2(�).

(iv) 1 − 1
p
‖DXk‖2

H + 2Yk − 1
q
‖DYk‖2

H →k 0 in L2(�).

(v) 1
2a(Xk + Yk) − E[ 1

p
‖DXk‖2

H + 1
q
‖DYk‖2

H |Xk + Yk] →k 0 in L1(�).

Proof. The points (i) and (v) are equivalent due to Proposition 5.4 by noting the squared diffu-
sion coefficient a associated with the law Z + G satisfies the assumptions from Corollary 4.6.
The fact that (i) is equivalent to (ii), (iii), (iv) follows from Theorem 1.2 in [7] and Remark 5.1.
On the other hand, the explicit expression for a (that can be calculated via (3.1)), is pretty com-
plex. �

Remark 5.6. Condition (iv) above show that the convergence toward the sum Z + G of a Gaus-
sian and an independent Gamma distribution can be characterized (without the appearance of the
conditional expectation) in terms of the diffusion coefficients associated with Z and G.

6. The case when the diffusion coefficient is a polynomial of
second degree

Since we are studying the convergence of a sequence of multiple stochastic integrals, whose
expectation is zero, we will assume that the measure μ is centered and the drift coefficient is
b(x) = −x. We will also assume that the diffusion coefficient is a polynomial of second degree
expressed as

a(x) = αx2 + βx + γ, x ∈ S,α,β, γ ∈ R (6.1)

such that a(x) > 0 for every x ∈ S. In this case, it is possible to understand better when the
necessary and sufficient condition for the weak convergence (or equivalently, the convergence in
total variation, see Remark 5.3) of a sequence of multiple integrals toward the law μ is satisfied.

This class contains the known continuous probability distributions. See Table 1 in [2]. It con-
tains among others, the normal, Gamma, uniform, Student, Pareto, inverse Gamma or F distri-
butions. We mention by the way that, except the first laws listed here, the others cannot be limits
in distribution of a sequence of multiple integrals, because they do not admit moments of any
order. Nevertheless, the class satisfying (6.1) and admitting moments of any order contains an
infinity of probability distributions.

We give below some examples qualified as candidate to be limit in distribution of sequences
of multiple integrals. Note that in Table 1 in [2] the diffusion coefficient is given for non centered
probability distributions. In order to obtain the diffusion coefficient a of the centered measure
from the diffusion coefficient a0 of the non-centered measure, we apply the following rule (see
Lemma 2.5 in [2])

a(x) = a0
(
x + E[X]),

where X ∼ μ.
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Example 6.1 (The normal distribution N(0, γ ), γ > 0). In this case a(x) = 2γ .

Example 6.2 (The Gamma (a,λ), a,λ > 0 law). Here the density is f (x) = λa

(a)
xa−1e−λx

for x > 0 and f (x) = 0 otherwise. Also E[X] = a
λ

and the centered Gamma law has

a(x) = 2

λ

(
x + a

λ

)

meaning that α = 0, β = 2
λ
, γ = 2a

λ2 .

Example 6.3 (The uniform U(0,1) distribution). Here the density is f (x) = 1[0,1](x), the
mean is E[X] = 1

2 and U [0,1] − E[U [0,1]] has squared diffusion coefficient

a(x) =
(

x + 1

2

)(
1

2
− x

)
= 1

4
− x2.

So α = −1, β = 0, γ = 1
4 .

Example 6.4 (The Beta β(a, b) law, a, b > 0). In this case, the probability density function is

f (x) = (a + b)

(a)(b)
xa−1(1 − x)b−11(0,1)(x),

E[X] = a
a+b

and the centered beta law has

a(x) = 2

a + b

(
x + a

a + b

)(
b

a + b
− x

)
.

Note that the beta distribution with a = b has the fourth cumulant negative and therefore it cannot
be limit of a sequence of multiple integrals.

Therefore α = − 2
a+b

, β = 2
a+b

b−a
a+b

, γ = 2
a+b

a
a+b

b
a+b

.

The polynomial form of the diffusion coefficient a together with Theorem 3.2 implies several
consequences on the moments of the probability distribution of X ∼ μ. We will present them in
the following useful lemma. In particular, we give a recurrence formula for the moments of X.

Lemma 6.5. Suppose that a is given by (6.1). Then for every k ∈ R, k ≥ 1 such that E[X2k] < ∞
one has (

1 − 2k − 1

2
α

)
E

[
X2k

] = 2k − 1

2
βE

[
X2k−1] + 2k − 1

2
γ E

[
X2k−2]. (6.2)

In particular, if α 	= 2,

E
[
X2] = γ

2 − α
, (6.3)
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if α 	= 1,2,

E
[
X3] = β

1 − α
E

[
X2] = βγ

(1 − α)(2 − α)
(6.4)

and if α 	= 2, 2
3 , then

E
[
X4] = 3(

β2

1−α
+ γ )

2 − 3α
E

[
X2] = 3γ (

β2

1−α
+ γ )

(2 − α)(2 − 3α)
. (6.5)

Proof. Relation (6.2) is obtained by applying Theorem 3.2 with h(x) = x2k−1. In particular, for
k = 1, since E[X] = 0

E
[
X2] = E

[
1

2
a(X)

]
= 1

2

(
αE

[
X2] + βE[X] + γ

)
and thus E[X2] = γ

2−α
. By applying successively Proposition 3.2 with h(x) = x2 (k = 3

2 ) and

h(x) = x3 (k = 2), we obtain the expressions (6.4) and (6.5). �

Lemma 6.6. Assume (6.1) with α 	= 1,2, 2
3 . Fix n ≥ 1 and let {Fm = In(fm),m ≥ 1} such that

E
[
F 2

m

] →
m→∞ E

[
X2], E

[
F 4

m

] →
m→∞ E

[
X4] and E

[
F 3

m

] →
m→∞ E

[
X3]. (6.6)

Then

E
[
F 4

m − 3

2
a(Fm)F 2

m

]

� C0n!‖fm‖2 + 3n

n−1∑
p=1;p 	= n

2

(p − 1)!
(

n − 1
p − 1

)2

p!
(

n

p

)2

(2n − 2p)!‖fm ⊗̃p fm‖2 (6.7)

+ 3

2
c−2
n n!‖fm ⊗̃n/2 fm‖2 − 3

2
βE

[
F 3

m

] →
m→∞ 0,

where � means that the two sides have the same limit as m → ∞, cn is defined by

cn = (n/2)!3
n!2 (6.8)

and

C0 = 3

2
α

[ −4γ

(2 − α)(2 − 3α)
− 3β2

(1 − α)(2 − 3α)

]
. (6.9)

Proof. From assumption (6.6) and Theorem 3.2,

E
[
F 4

m − 3

2
a(Fm)F 2

m

]
→
m

E
[
X4 − 3

2
a(X)X2

]
= 0.



Characterization of the convergence in total variation 1491

Now, by (6.1)

E
[
F 4

m − 3

2
a(Fm)F 2

m

]
= E

[
F 4

m

] − 3

2
αE

[
F 4

m

] − 3

2
γ E

[
F 2

m

] − 3

2
βE

[
F 3

m

]
and, on the other hand, using (6.6), (6.5) and (2.5) we get(

1 − 3

2
α

)
E

[
F 4

m

] − 3

2
γ E

[
F 2

m

]

� 3E
[
F 2

m

]2 + 3n

n−1∑
p=1

(p − 1)!
(

n − 1
p − 1

)2

p!
(

n

p

)2

(2n − 2p)!‖fm ⊗̃p fm‖2

− 3

2
α

3(
β2

1−α
+ γ )

2 − 3α
E

[
F 2

m

] − 3

2
γ E

[
F 2

m

]

� C0E
[
F 2

m

] + 3n

n−1∑
p=1

(p − 1)!
(

n − 1
p − 1

)2

p!
(

n

p

)2

(2n − 2p)!‖fm ⊗̃p fm‖2

with C0 given by (6.9). Therefore, the desired relation (6.7) is obtained. �

From the above result, we will deduce several restrictions on the probability distributions that
can be limits of sequences of multiple stochastic integrals. We will discuss separately the cases
β = 0 and β 	= 0.

6.1. The case β = 0

Let us assume that β = 0 in (6.1). This is the case of the Student, uniform and beta (with param-
eters a = b) distributions. In this situation, since EX3 = 0 (see (6.4)), the order of the chaos n

can be even or odd in principle.

Theorem 6.7. Assume (6.1) with α 	= 2, 2
3 and β = 0. Fix n ≥ 1 and let (Fm = In(fm))m≥1 sat-

isfying (6.6). Then α = 0, γ > 0 and if S = (−∞,∞), X follows a centered normal distribution
with variance γ .

Proof. Let us show that C0 ≥ 0. Note that

C0 = − 6αγ

(2 − α)(2 − 3α)
.

Relations (6.3) and (6.5) with β = 0 give

E
[
X2] = γ

2 − α
and E

[
X4] = 3γ 2

(2 − α)(2 − 3α)

and this implies in particular
(2 − α)(2 − 3α) > 0.
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On the other hand, from the relation (6.2) with β = 0 we notice that(
1 − 2k − 1

2
α

)
E

[
X2k

] = 2k − 1

2
γ E

[
X2k−2]

for every k ≥ 1 we notice that α,γ have different parities. Indeed, if α > 0 then for k large
enough (1 − 2k−1

2 α) becomes negative and thus γ < 0. If α < 0 then (1 − 2k−1
2 α) is positive and

so γ should be positive. So C0 ≥ 0.
Next, since E[F 4

m − 3
2a(Fm)F 2

m] →m 0 we have from Lemma 6.6

C0E
[
F 2

m

] + 3n

n−1∑
p=1

(p − 1)!
(

n − 1
p − 1

)2

p!
(

n

p

)2

(2n − 2p)!‖fm ⊗̃p fm‖2 →
m→∞ 0

and this is not possible unless C0 = 0. In this case, we have α = 0 (from (6.9)), γ > 0 (from
(6.3)) and consequently, when S = (−∞,∞), X follows a normal distribution with mean zero
and variance γ . This can be easily obtained by computing the density of X using Proposition 1
in [5]. �

As a consequence, we notice that several probability distributions cannot be limits in distribu-
tion of sequences of multiple stochastic integrals.

Corollary 6.8. A sequence of random variables in a fixed Wiener chaos cannot converge to the
uniform distribution.

6.2. The case β �= 0

In this paragraph, we study the convergence of a sequence a multiple stochastic integrals to
the law of a random variable X ∼ μ where μ is the invariant measure of a diffusion with drift
coefficient b(x) = −x (meaning that E[X] = 0) and diffusion coefficient a given by (6.1) with
β 	= 0. This is the case of the Pareto, Gamma, inverse Gamma and F distributions.

Fix n ≥ 1. Consider throughout this section that {Fm,m ≥ 1} is a sequence of random variables
expressed as Fm = In(fm) with fm ∈ H�n. Since the third moment of a multiple Wiener–Itô
integral of odd order is zero, from (6.4) we may assume in this paragraph that n is even.

Let us first deduce some consequences on the convergence in law of Fm to X.

Lemma 6.9. Assume (6.1) with α 	= 1,2, 2
3 . Fix n ≥ 1 and let {Fm = In(fm),m ≥ 1} satisfying

(6.6). Then

lim
m

〈fm,fm ⊗̃n/2 fm〉 = lim
m

β

1 − α
cn‖fm‖2,

where cn is given by (6.8).

Proof. Condition (6.6) and Proposition 3.2 imply

E
[
F 3

m − a(Fm)Fm

] →
m→∞ E

[
X3 − a(X)X

] = 0
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or equivalently

(1 − α)E
[
F 3

m

] − βE
[
F 2

m

]→
m

0.

But from (2.4), we have

(1 − α)E
[
F 3

m

] − βE
[
F 2

m

] = (1 − α)
n!3

(n/2)!3 〈fm,fm ⊗̃ n
2
fm〉 − βn!‖fm‖2

= n!3
(n/2)!3

[
(1 − α)〈fm,fm ⊗̃ n

2
fm〉 − βcn‖fm‖2]

and since this converges to zero as m → ∞, we obtain the conclusion. Let us also mention that
the two limits in the statement of the lemma exist due to Lemma 2.1 and to the convergence of
the sequences of the second and third moments of (Fm)m≥1. �

We will need the following auxiliary lemma.

Lemma 6.10. Let the assumptions stated in Lemma 6.9 prevail. Then for every c ∈ R

E
[
F 4

m − 3

2
a(Fm)F 2

m

]

� 3

2
c−2
n n!

[
2

3
c2
n

(
C0 − 3

2
(1 − c)

β2

1 − α

)
‖fm‖2 − βccn〈fm,fm ⊗̃ n

2
fm〉 + ‖fm ⊗̃n/2 fm‖2

]
(6.10)

+ 3n

n−1∑
p=1;p 	= n

2

(p − 1)!
(

n − 1
p − 1

)2

p!
(

n

p

)2

(2n − 2p)!‖fm ⊗̃p fm‖2

→
m→∞ 0,

where � means that the two sides have the same limit as m → ∞, cn,C0 are defined by (6.8)
and (6.9), respectively.

Proof. Recall the relation (6.7). For every c ∈R, we can write

3

2
βE

[
F 3

m

] = 3

2
(1 − c)βE

[
F 3

m

] + 3

2
cβE

[
F 3

m

]
and using (6.4) and the convergence of the moments of Fm to those of μ (relation (6.6)),

3

2
(1 − c)βE

[
F 3

m

] � 3

2
(1 − c)β

β

1 − α
E

[
X2]

(6.11)

� 3

2
(1 − c)β

β

1 − α
E

[
F 2

m

] = 3

2
(1 − c)β

β

1 − α
n!‖fm‖2.

By combining (6.7) and (6.11), we obtain (6.10). �
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The next step is to find c ∈R such that

2

3

(
C0 − 3

2
(1 − c)

β2

1 − α

)
= A2 and βc = 2A.

If such c ∈ R exists, then the sequence E[F 4
m − 3

2a(Fm)F 2
m] (which converges to zero as m → ∞

due to (3.4)) will have the same limit as ‖Acnfm − fm ⊗̃n/2 fm‖2 plus a positive term (this is
consequence of (6.10)). The existence of c ∈R is equivalent to the existence of a real solution to
the second degree equation

3β2c2 − 12β2

1 − α
c −

(
8C0 − 12β2

1 − α

)
= 0 (6.12)

which has the following discriminant

� = − 144α

2 − 3α

[
β2

(1 − α)2
+ 2γ

2 − α

]
. (6.13)

Since β2

(1−α)2 + 2γ
2−α

> 0 (see (6.3)) the sign of � depends on the sign of α
2−3α

.

Theorem 6.11. Assume (6.1) with α 	= 1,2, 2
3 . Fix n ≥ 1 and let {Fm = In(fm),m ≥ 1} sat-

isfying (6.6). Moreover, let us assume α
2−3α

≤ 0 (that is, α ∈ R \ (0, 2
3 ]). Then α = 0 and, if

S = (− a
λ
,∞), X follows a centered Gamma law (a,λ) − E[(a,λ)] where β = 2

λ
, γ = 2a

λ2 .

Proof. When α /∈ [0, 2
3 ), then the discriminant � (6.13) is positive and the equation (6.12) admits

two real solutions (that may coincide). Let us denote by c1, c2 ∈ R and by Ai = βci

2 , i = 1,2.
From (6.10) we deduce that, for i = 1,2

E
[
F 4

m − 3

2
a(Fm)F 2

m

]
� 3

2
c−2
n n!‖Aicnfm − fm ⊗̃n/2 fm‖2

+ 3n

n−1∑
p=1;p 	= n

2

(p − 1)!
(

n − 1
p − 1

)2

p!
(

n

p

)2

(2n − 2p)!‖fm ⊗̃p fm‖2

→
m

0

and consequently

‖Aicnfm − fm ⊗̃n/2 fm‖ →
m

0 and
(6.14)

‖fm ⊗p fm‖ →
m→∞ 0 for p = 1, . . . , n − 1, p 	= n

2 ,

where cn is given by (6.8). Relation (6.14) and Lemma 6.9 immediately imply Ai = β
1−α

for
i = 1,2 and consequently the two solutions to (6.12) must coincide. The discriminant � (6.13)
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then vanishes and that gives α = 0. The fact that μ is a centered Gamma law follows from
(6.1) with α = 0 and β 	= 0 by computing the density of X in terms of the squared diffusion
coefficient a, see Proposition 1 in [5]. �

Since in the case of the beta distribution α = −2
a+b

and a, b > 0, we have the following corol-
lary.

Corollary 6.12. A sequence of random variables in a fixed Wiener chaos cannot converge to the
beta distribution.

Remark 6.13. In the case of the centered Gamma distribution, we obtain from the proof of
Theorem 6.11: a sequence (Fm = In(fm))m≥1 such that E[F 2

m] →m→∞ a

λ2 converges to the
centered Gamma law (a,λ) − E[(a,λ)] if and only if the following assertions are satisfied:

• E[F 3
m] →m

2a

λ3 and E[F 4
m] →m

3a(a+2)

λ4 ;

• ‖ 2
λ
cnfm − fm ⊗̃n/2 fm‖ →m 0 (recall that cn is given by (6.8));

• 1
λ
F 2

m + a

λ2 − 1
n
‖DFm‖2

H converges to zero in L2(�).

When λ = 1
2 and a = ν

2 we retrieve the results in [7], Theorem 1.2.
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