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The block maxima method in extreme-value analysis proceeds by fitting an extreme-value distribution to
a sample of block maxima extracted from an observed stretch of a time series. The method is usually
validated under two simplifying assumptions: the block maxima should be distributed exactly according to
an extreme-value distribution and the sample of block maxima should be independent. Both assumptions
are only approximately true. The present paper validates that the simplifying assumptions can in fact be
safely made.

For general triangular arrays of block maxima attracted to the Fréchet distribution, consistency and
asymptotic normality is established for the maximum likelihood estimator of the parameters of the lim-
iting Fréchet distribution. The results are specialized to the common setting of block maxima extracted
from a strictly stationary time series. The case where the underlying random variables are independent and
identically distributed is further worked out in detail. The results are illustrated by theoretical examples and
Monte Carlo simulations.

Keywords: asymptotic normality; block maxima method; heavy tails; maximum likelihood estimation;
stationary time series; triangular arrays

1. Introduction

For the analysis of extreme values, two fundamental approaches can be distinguished. First,
the peaks-over-threshold method consists of extracting those values from the observation pe-
riod which exceed a high threshold. To model such threshold excesses, asymptotic theory sug-
gests the use of the Generalized Pareto distribution (Pickands [21]). Second, the block maxima
method consists of dividing the observation period into a sequence of non-overlapping intervals
and restricting attention to the largest observation in each time interval. Thanks to the extremal
types theorem, the probability distribution of such block maxima is approximately Generalized
Extreme-Value (GEV), popularized by Gumbel [14]. The block maxima method is particularly
common in environmental applications, since appropriate choices of the block size yield a simple
but effective way to deal with seasonal patterns.

For both methods, honest theoretical justifications must take into account two distinct features.
First, the postulated models for either threshold excesses or block maxima arise from asymptotic
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theory and are not necessarily accurate at sub-asymptotic thresholds or at finite block lengths.
Second, if the underlying data exhibit serial dependence, then the same will likely be true for the
extreme values extracted from those data.

How to deal with both issues is well-understood for the peaks-over-threshold method. The
model approximation can be justified under a second-order condition (see, e.g., de Haan and Fer-
reira [7] for a vast variety of applications), while serial dependence is taken care of in Hsing [16],
Drees [11] or Rootzén [24], among others. Excesses over large thresholds often occur in clus-
ters, and such serial dependence usually has an impact on the asymptotic variances of estimators
based on these threshold excesses.

Surprisingly, perhaps, is that for the block maxima method, no comparable analysis has yet
been done. With the exception of some recent articles, which we will discuss in the next para-
graph, the commonly used assumption is that the block maxima constitute an independent ran-
dom sample from a GEV distribution. The heuristic justification for assuming independence over
time, even for block maxima extracted from time series data, is that for large block sizes, the oc-
currence times of the consecutive block maxima are likely to be well separated.

A more accurate framework is that of a triangular array of block maxima extracted from a
sequence of random variables, the block size growing with the sample size. While Dombry [9]
shows consistency of the maximum likelihood estimator (Prescott and Walden [22]) for the pa-
rameters of the GEV distribution, Ferreira and de Haan [12] show both consistency and asymp-
totic normality of the probability weighted moment estimators (Hosking, Wallis and Wood [15]).
In both papers, however, the random variables from which the block maxima are extracted are
supposed to be independent and identically distributed. In many situations, this assumption is
clearly violated. To the best of our knowledge, Bücher and Segers [3] is the only reference treat-
ing both the approximation error and the time series character, providing large-sample theory of
nonparametric estimators of extreme-value copulas based on samples of componentwise block
maxima extracted out of multivariate stationary time series.

The aim of the paper is to show the consistency and asymptotic normality of the maximum
likelihood estimator for more general sampling schemes, including the common situation of ex-
tracting block maxima from an underlying stationary time series. For technical reasons explained
below, we restrict attention to the heavy-tailed case. The block maxima paradigm then suggests
to use the two-parametric Fréchet distribution as a model for a sample of block maxima extracted
from that time series.

The first (quite general) main result, Theorem 2.5, is that for triangular arrays of random vari-
ables whose empirical measures, upon rescaling, converge in an appropriate sense to a Fréchet
distribution, the maximum likelihood estimator for the Fréchet parameters based on those vari-
ables is consistent and asymptotically normal. The theorem can be applied to the common set-up
discussed above of block maxima extracted from an underlying time series, and the second main
result, Theorem 3.6, shows that, in this case, the asymptotic variance matrix is the inverse of the
Fisher information of the Fréchet family: asymptotically, it is as if the data were an independent
random sample from the Fréchet attractor. In this sense, our theorem confirms the soundness of
the common simplifying assumption that block maxima can be treated as if they were serially
independent. Interestingly enough, the result allows for time series of which the strong mixing
coefficients are not summable, allowing for some long range dependence scenarios.

Restricting attention to the heavy-tailed case is done because of the non-standard nature of the
three-parameter GEV distribution. The issue is that the support of a GEV distribution depends
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on its parameters. Even for the maximum likelihood estimator based on an independent random
sample from a GEV distribution, asymptotic normality has not yet been established. The article
usually cited in this context is Smith [25], although no formal result is stated therein. Even the
differentiability in quadratic mean of the three-parameter GEV is still to be proven; Marohn [18]
only shows differentiability in quadratic mean for the one-parameter GEV family (shape param-
eter only) at the Gumbel distribution. We feel that solving all issues simultaneously (irregularity
of the GEV model, finite block size approximation error and serial dependence) is a far too am-
ple program for one paper. For that reason, we focus on the analytically simpler Fréchet family,
while thoroughly treating the triangular nature of the array of block maxima and the issue of se-
rial dependence within the underlying time series. In a companion paper (Bücher and Segers [4]),
we consider the maximum likelihood estimator in the general GEV-model based on independent
and identically distributed random variables sampled directly from the GEV distribution. The
main focus of that paper is devoted to resolving the considerable technical issues arising from
the dependence of the GEV support on its parameters.

We will build up the theory in three stages. First, we consider general triangular arrays of ob-
servations that asymptotically follow a Fréchet distribution in Section 2. Second, we apply the
theory to the set-up of block maxima extracted from a strictly stationary time series in Section 3.
Third, we further specialize the results to the special case of block maxima formed from indepen-
dent and identically distributed random variables in Section 4. This section can hence be regarded
as a continuation of Dombry [9] by reinforcing consistency to asymptotic normality, albeit for
the Fréchet domain of attraction only. We work out an example and present finite-sample results
from a simulation study in Section 5. The main proofs are deferred to Appendix A, while some
auxiliary results concerning the Fréchet distribution are mentioned in Appendix B. The proofs of
the less central results are postponed to a supplement.

2. Triangular arrays of block maxima

In this section, we summarize results concerning the maximum likelihood estimator for the pa-
rameters of the Fréchet distribution: given a sample of observations which are not all tied, the
Fréchet likelihood admits a unique maximum (Section 2.1). If the observations are based on a
triangular array which is approximately Fréchet distributed in the sense that certain functionals
admit a weak law of large numbers or a central limit theorem, the maximum likelihood estimator
is consistent or asymptotically normal, respectively (Sections 2.2 and 2.3). Proofs are given in
Section A.1.

2.1. Existence and uniqueness

Let Pθ denote the two-parameter Fréchet distribution on (0,∞) with parameter θ = (α,σ ) ∈
(0,∞)2 = �, defined through its cumulative distribution function

Gθ(x) = exp
{−(x/σ )−α

}
, x > 0.
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Its probability density function is equal to

pθ(x) = α

σ
exp

{−(x/σ )−α
}
(x/σ )−α−1, x > 0,

with log-likelihood function

�θ (x) = log(α/σ) − (x/σ )−α − (α + 1) log(x/σ ), x > 0,

and score functions �̇θ = (�̇θ,1, �̇θ,2)
T , with

�̇θ,1(x) = ∂α�θ (x) = α−1 + (
(x/σ )−α − 1

)
log(x/σ ), (2.1)

�̇θ,2(x) = ∂σ �θ (x) = (
1 − (x/σ )−α

)
α/σ. (2.2)

Let x = (x1, . . . , xk) ∈ (0,∞)k be a sample vector to which the Fréchet distribution is to be
fitted. Consider the log-likelihood function

L(θ | x) =
k∑

i=1

�θ (xi). (2.3)

Further, define

�k(α | x) = 1

α
+

1
k

∑k
i=1 x−α

i log(xi)

1
k

∑k
i=1 x−α

i

− 1

k

k∑
i=1

log(xi), (2.4)

σ(α | x) =
(

1

k

k∑
i=1

x−α
i

)−1/α

. (2.5)

Lemma 2.1 (Existence and uniqueness). If the scalars x1, . . . , xk ∈ (0,∞) are not all equal
(k ≥ 2), then there exists a unique maximizer

θ̂ (x) = (
α̂(x), σ̂ (x)

)= arg max
θ∈�

L(θ | x).

We have σ̂ (x) = σ(α̂(x) | x) while α̂(x) is the unique zero of the strictly decreasing function
α �→ �k(α | x):

�k

(
α̂(x) | x)= 0. (2.6)

It is easily verified that the estimating equation for α is scale invariant: for any c ∈ (0,∞),
we have �k(α | cx) = �k(α | x). As a consequence, the maximum likelihood estimator for the
shape parameter is scale invariant:

α̂(cx) = α̂(x).
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Moreover, the estimator for σ is a scale parameter in the sense that

σ̂ (cx) = σ
(
α̂(cx) | cx)= cσ

(
α̂(x) | x)= cσ̂ (x).

Until now, the maximum likelihood estimator is defined only in case not all xi values are
identical. For definiteness, if x1 = · · · = xk , define α̂(x) = ∞ and σ̂ (x) = min(x1, . . . , xk) = x1.

2.2. Consistency

We derive a general condition under which the maximum likelihood estimator for the parameters
of the Fréchet distribution is consistent. The central result, Theorem 2.3 below, shows that, apart
from a not-all-tied condition, the only thing that is required for consistency is a weak law of large
numbers for the functions appearing in the estimating equation (2.6) for the shape parameter.

Suppose that for each positive integer n, we are given a random vector Xn = (Xn,1, . . . ,Xn,kn)

taking values in (0,∞)kn , where kn ≥ 2 is a positive integer sequence such that kn → ∞ as n →
∞. One may think of Xn,i as being (approximately) Fréchet distributed with shape parameter
α0 > 0 and scale parameter σn > 0. This statement is made precise in Condition 2.2 below. On
the event that the kn variables Xn,i are not all equal, Lemma 2.1 allows us to define

α̂n = α̂(Xn), (2.7)

the unique zero of the function 0 < α �→ �kn(α | Xn). Further, as in (2.5), put

σ̂n = σ(α̂n | Xn) =
(

1

kn

kn∑
i=1

X
−α̂n

n,i

)−1/α̂n

. (2.8)

For definiteness, put α̂n = ∞ and σ̂n = Xn,1 on the event {Xn,1 = · · · = Xn,kn}. Subsequently,
we will assume that this event is asymptotically negligible:

lim
n→∞ Pr(Xn,1 = · · · = Xn,kn) = 0. (2.9)

We refer to (α̂n, σ̂n) as the maximum likelihood estimator.
The fundamental condition guaranteeing consistency of the maximum likelihood estimator

concerns the asymptotic behavior of sample averages of f (Xn,i/σn) for certain functions f . For
0 < α− < α+ < ∞, consider the function class

F1(α−, α+) = {x �→ logx} ∪ {
x �→ x−α : α− < α < α+

}
∪ {

x �→ x−α logx : α− < α < α+
}
,

(2.10)

all functions being from (0,∞) into R. Let the arrow ‘�’ denote weak convergence.
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Condition 2.2. There exist 0 < α− < α0 < α+ < ∞ and a positive sequence (σn)n∈N such that,
for all f ∈ F1(α−, α+),

1

kn

kn∑
i=1

f (Xn,i/σn) �
∫ ∞

0
f (x)pα0,1(x)dx, n → ∞. (2.11)

Theorem 2.3 (Consistency). Let Xn = (Xn,1, . . . ,Xn,kn) be a sequence of random vectors in
(0,∞)kn , where kn → ∞. Assume that Equation (2.9) and Condition 2.2 hold. On the comple-
ment of the event {Xn,1 = · · · = Xn,kn}, the random vector (α̂n, σ̂n) is the unique maximizer of the
log-likelihood (α,σ ) �→ L(α,σ | Xn,1, . . . ,Xn,kn). Moreover, the maximum likelihood estimator
is consistent in the sense that

(α̂n, σ̂n/σn) � (α0,1), n → ∞.

2.3. Asymptotic distribution

We formulate a general condition under which the estimation error of the maximum likelihood
estimator for the Fréchet parameter vector converges weakly. The central result is Theorem 2.5
below.

For 0 < α− < α+ < ∞, recall the function class F1(α−, α+) in (2.10) and define another one:

F2(α−, α+) =F1(α−, α+) ∪ {
x �→ x−α(logx)2 : α− < α < α+

}
. (2.12)

Furthermore, fix α0 > 0 and consider the following triple of real-valued functions on (0,∞):

H = {f1, f2, f3} = {
x �→ x−α0 log(x), x �→ x−α0 , x �→ logx

}
. (2.13)

The following condition strengthens Condition 2.2.

Condition 2.4. There exist α0 ∈ (0,∞) and a positive sequence (σn)n∈N such that the following
two statements hold:

(i) There exist 0 < α− < α0 < α+ < ∞ such that Equation (2.11) holds for all f ∈
F2(α−, α+).

(ii) There exists a sequence 0 < vn → ∞ and a random vector Y = (Y1, Y2, Y3)
T such that,

denoting

Gnf = vn

(
1

kn

kn∑
i=1

f (Xn,i/σn) −
∫ ∞

0
f (x)pα0,1(x)dx

)
, (2.14)

we have, for fj as in (2.13),

(Gnf1,Gnf2,Gnf3)
T � Y , n → ∞. (2.15)
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Let 	 be the Euler gamma function and let γ = −	′(1) = 0.5772 . . . be the Euler–Mascheroni
constant. Recall 	′′(2) = (1 − γ )2 + π2/6 − 1. Define the matrix

M(α0) = 6

π2

(
α2

0 α0(1 − γ ) −α2
0

γ − 1 −(	′′(2) + 1
)
/α0 1 − γ

)
, α0 ∈ (0,∞). (2.16)

Theorem 2.5 (Asymptotic distribution). Let Xn = (Xn,1, . . . ,Xn,kn) be a sequence of random
vectors in (0,∞)kn , where kn → ∞. Assume that Equation (2.9) and Condition 2.4 hold. As
n → ∞, the maximum likelihood estimator (α̂n, σ̂n) satisfies

(
vn(α̂n − α0)

vn(σ̂n/σn − 1)

)
= M(α0)

⎛
⎝Gnx

−α0 log(x)

Gnx
−α0

Gn log(x)

⎞
⎠+ op(1) �M(α0)Y , (2.17)

where Y = (Y1, Y2, Y3)
T and M(α0) are given in Equations (2.15) and (2.16), respectively.

For block maxima extracted from a strongly mixing stationary time series, Condition 2.4 with
vn = √

kn, where kn denotes the number of blocks, will be derived from the Lindeberg central
limit theorem. In that case, the distribution of Y is trivariate Gaussian with some mean vector μY

(possibly different from 0, see Theorem 3.6 below for details) and covariance matrix

�Y = 1

α2
0

⎛
⎝1 − 4γ + γ 2 + π2/3 α0(γ − 2) π2/6 − γ

α0(γ − 2) α2
0 −α0

π2/6 − γ −α0 π2/6

⎞
⎠ . (2.18)

According to Lemma B.2 below, the right-hand side in (2.18) coincides with the covariance
matrix of the random vector (X−α0 log(X),X−α0, log(X))T , where X is Fréchet distributed with
parameter (α0,1). From Lemma B.3, recall the inverse of the Fisher information matrix of the
Fréchet family at (α,σ ) = (α0,1):

I−1
(α0,1) = 6

π2

(
α2

0 (γ − 1)

(γ − 1) α−2
0

{
(1 − γ )2 + π2/6

}) . (2.19)

Addendum 2.6. If Y is normally distributed with covariance matrix �Y as in (2.18), then the
limit M(α0)Y in Theorem 2.5 is also normally distributed and its covariance matrix is equal to
the inverse of the Fisher information matrix of the Fréchet family, M(α0)�Y M(α0)

T = I−1
(α0,1).

3. Block maxima extracted from a stationary time series

Let (ξt )t∈Z be a strictly stationary time series, that is, for any k ∈ N and τ, t1, . . . , tk ∈ Z, the
distribution of (ξt1+τ , . . . , ξtk+τ ) is the same as the distribution of (ξt1 , . . . , ξtk ). For positive
integer i and r , consider the block maximum

Mr,i = max(ξ(i−1)r+1, . . . , ξir ).
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Abbreviate Mr,1 = Mr . The classical block maxima method consists of choosing a sufficiently
large block size r and fitting an extreme-value distribution to the sample of block maxima
Mr,1, . . . ,Mr,k . The likelihood is constructed under the simplifying assumption that the block
maxima are independent. The present section shows consistency and asymptotic normality of
this method in an appropriate asymptotic framework.

For the block maxima distribution to approach its extreme-value limit, the block sizes must
increase to infinity. Moreover, consistency can only be achieved when the number of blocks
grows to infinity too. Hence, we consider a positive integer sequence rn, to be thought of as a
sequence of block sizes. The number of disjoint blocks of size rn that fit into a sample of size n

is equal to kn = 
n/rn�, where 
x� denotes the integer part of a real number x. Assume that both
rn → ∞ and kn → ∞ as n → ∞.

The theory will be based on an application of Theorem 2.5 to the sample of left-truncated
block maxima Xn,i = Mrn,i ∨c (i = 1, . . . , kn), for some positive constant c specified below. The
estimators α̂n and σ̂n are thus the ones in (2.7) and (2.8), respectively. The reason for the left-
truncation is that otherwise, some of the block maxima could be zero or negative. Asymptotically,
such left-truncation does not matter, since all maxima will simultaneously diverge to infinity in
probability (Condition 3.2 below).

In Section 4 below, we will specialize things further to the case where the random variables ξt

are independent. In particular, we will simplify the list of conditions given in this section.
The basic assumption is that the distribution of rescaled block maxima is asymptotically

Fréchet. The sequence of scaling constants should possess a minimal degree of regularity. The
assumption is satisfied in case the stationary distribution of the series is in the Fréchet domain of
attraction and the series possesses a positive extremal index; see Remark 3.7 below.

Condition 3.1 (Domain of attraction). The time series (ξt )t∈Z is strictly stationary and there
exists a sequence (σn)n∈N of positive numbers with σn → ∞ and a positive number α0 such that

Mn/σn � Fréchet(α0,1), n → ∞. (3.1)

Moreover, σmn/σn → 1 for any integer sequence (mn)n∈N such that mn/n → 1 as n → ∞.

The domain-of-attraction condition implies that, for every scalar c, we have Pr[Mn ≤ c] =
Pr[Mn/σn ≤ c/σn] → 0 as n → ∞. In words, the block maxima become unboundedly large as
the sample size grows to infinity. Still, out of a sample of kn block maxima, the smallest of the
maxima might still be small, especially when the number of blocks is large, or, equivalently, the
block sizes are not large enough. The following condition prevents this from happening.

Condition 3.2 (All block maxima diverge). For every c ∈ (0,∞), we have

lim
n→∞ Pr

[
min(Mrn,1, . . . ,Mrn,kn) ≤ c

]= 0.

To control the serial dependence within the time series, we require that the Rosenblatt mixing
coefficients decay sufficiently fast: for positive integer �, put

α(�) = sup
{∣∣Pr(A ∩ B) − Pr(A)Pr(B)

∣∣ : A ∈ σ(ξt : t ≤ 0),B ∈ σ(ξt : t ≥ �)
}
,
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where σ(·) denotes the σ -field generated by its argument.

Condition 3.3 (α-Mixing with rate). We have lim�→∞ α(�) = 0. Moreover, there exists ω > 0
such that

k1+ω
n α(rn) → 0, n → ∞. (3.2)

Condition 3.3 can be interpreted as requiring the block sizes rn to be sufficiently large. For
instance, if α(�) = O(�−a) for some a > 0, then (3.2) is satisfied as soon as rn is of larger
order than n(1+ε)/(1+a) for some 0 < ε < a; in that case, one may choose ω = ε. Note that the
exponent a is allowed to be smaller than one, in which case the sequence of mixing coefficients
is not summable.

In order to be able to integrate (3.1) to the limit, we require an asymptotic bound on certain
moments of the block maxima; more precisely, on negative power moments in the left tail and
on logarithmic moments in the right tail.

Condition 3.4 (Moments). There exists some ν > 2/ω with ω from Condition 3.3 such that

lim sup
n→∞

E
[
gν,α0

(
(Mn ∨ 1)/σn

)]
< ∞, (3.3)

where gν,α0(x) = {x−α01(x ≤ e) + log(x)1(x > e)}2+ν .

An elementary argument shows that if Condition 3.4 holds, then Mn ∨ 1 in the lim sup may
be replaced by Mn ∨ c, for arbitrary c > 0. Moreover, note that the limiting Fréchet distribution
satisfies

∫∞
0 xβpα0,1(x)dx < ∞ if and only if β is less than α0. In some scenarios, for example,

for the i.i.d. case considered in Section 4 or for the moving maximum process considered in
Section 5.1, it can be shown that the following sufficient condition for Condition 3.4 is true:

lim sup
n→∞

E
[{

(Mn ∨ c)/σn

}β]
< ∞ (3.4)

for all c > 0 and all β ∈ (−∞, α0). In that case, Condition 3.4 is easily satisfied for any ν > 0.
By Condition 3.2 and Lemma A.5, the probability that all block maxima Mrn,1, . . . ,Mrn,kn are

larger than some positive constant c and that they are not all equal tends to unity. On this event,
we can study the maximum likelihood estimators (α̂n, σ̂n) for the parameters of the Fréchet
distribution based on the sample of block maxima.

Fix c ∈ (0,∞) and put

Xn,i = Mrn,i ∨ c.

Let Gn be the empirical process associated to Xn,1/σrn, . . . ,Xn,kn/σrn as in (2.14) with vn =√
kn. The empirical process is not necessarily centered, which is why we need a handle on its

expectation.
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Condition 3.5 (Bias). There exists c ∈ (0,∞) such that for every function f in H defined in
(2.13), the following limit exists:

lim
n→∞

√
kn

(
E
[
f
(
(Mrn ∨ c)/σrn

)]−
∫ ∞

0
f (x)pα0,1(x)dx

)
= B(f ). (3.5)

Theorem 3.6. Suppose that Conditions 3.1 up to 3.5 are satisfied and fix c as in Condition 3.5.
Then, with probability tending to one, there exists a unique maximizer (α̂n, σ̂n) of the Fréchet
log-likelihood (2.3) based on the block maxima Mrn,1, . . . ,Mrn,kn , and we have, as n → ∞,

( √
kn(α̂n − α0)√

kn(σ̂n/σrn − 1)

)
= M(α0)

⎛
⎝Gnx

−α0 log(x)

Gnx
−α0

Gn log(x)

⎞
⎠+ op(1) �N2

(
M(α0)B, I−1

α0,1

)
.

Here, M(α0) and I−1
α0,1

are defined in Equations (2.16) and (2.19), respectively, while B =
(B(f1),B(f2),B(f3))

T , where B(f ) is the limit in (3.5) and where f1, f2, f3 are defined in
(2.13).

The proof of Theorem 3.6 is given in Section A.2. The conditions imposed in Theorem 3.6 are
rather high-level. In the setting of a sequence of independent and identically distributed random
variables, they can be brought down to analytical conditions on the tail of the stationary distribu-
tion function (Theorem 4.2). Moreover, all conditions will be worked out in a moving maximum
model in Section 5.1. Still, we admit that for more common time series models, such as linear
time series with heavy-tailed innovations or solutions to stochastic recurrence equations, check-
ing the conditions in Theorem 3.6 may not be an easy matter. Especially the bias Condition 3.5,
which requires quite detailed knowledge on the distribution of the sample maximum, may be
hard to verify. Even in the i.i.d. case, where the distribution of the sample maximum is known
explicitly, checking Condition 3.5 occupies more than three pages in the proof of Theorem 4.2
below.

Interestingly, the asymptotic covariance matrix in Theorem 3.6 is unaffected by serial depen-
dence and the asymptotic standard deviation of

√
kn(α̂n −α0) is always equal to (

√
6/π)×α0 ≈

0.7797×α0. The reason for this invariance is that even for time series, maxima over large disjoint
blocks are asymptotically independent because of the strong mixing condition.

Remark 3.7 (Domain-of-attraction condition for positive extremal index). Let F be the cu-
mulative distribution function of ξ1. Assume that there exist 0 < an → ∞ and α0 ∈ (0,∞) such
that

lim
n→∞Fn(anx) = exp

(−x−α0
)
, x ∈ (0,∞).

Moreover, assume that the sequence (ξt )t∈Z has extremal index ϑ ∈ (0,1] (Leadbetter [17]): If
un → ∞ is such that Fn(un) converges, then

Pr(Mn ≤ un) = Fnϑ(un) + o(1), n → ∞.
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Note that we assume that ϑ > 0. Putting σn = ϑ1/α0an we obtain that Condition 3.1 is satisfied:
for every x ∈ (0,∞), we have

Pr(Mn/σn ≤ x) = Fnϑ(σnx) + o(1) → exp
(−ϑ

(
ϑ1/α0x

)−α0
)= exp

(−x−α0
)
, n → ∞.

4. Block maxima extracted from an iid sample

We specialize Theorem 3.6 to the case where the random variables ξ1, ξ2, . . . are independent and
identically distributed with common distribution function F . In this setting, fitting extreme-value
distributions to block maxima is also considered in Dombry [9] (consistency of the maximum
likelihood estimator in the GEV-family with γ > −1) and Ferreira and de Haan [12] (asymptotic
normality of the probability weighted moment estimator in the GEV-family with γ < 1/2). As-
sume that F is in the maximum domain of attraction of the Fréchet distribution with shape param-
eter α0 ∈ (0,∞): there exists a positive scalar sequence (an)n∈N such that, for every x ∈ (0,∞),

Fn(anx) → e−x−α0
, n → ∞. (4.1)

Because of serial independence, the conditions in Theorem 3.6 can be simplified considerably.
In addition, the mean vector of the asymptotic bivariate normal distribution of the maximum
likelihood estimator can be made explicit. Required is a second-order reinforcement of (4.1) in
conjunction with a growth restriction on the number of blocks.

Equation (4.1) is equivalent to regular variation of − logF at infinity with index −α0 (Gne-
denko [13]): we have F(x) < 1 for all x ∈R and

lim
u→∞

− logF(ux)

− logF(u)
= x−α0 , x ∈ (0,∞). (4.2)

The scaling constants in (4.1) may be chosen as any sequence (an)n∈N that satisfies

lim
n→∞n

{− logF(an)
}= 1. (4.3)

Being constructed from the asymptotic inverse of a regularly varying function with non-zero
index, the sequence (an)n∈N is itself regularly varying at infinity with index 1/α0.

The following condition reinforces (4.2) and thus (4.1) from regular variation to second-order
regular variation (Bingham, Goldie and Teugels [2], Section 3.6). With − logF replaced by 1 −
F , it appears for instance in de Haan and Ferreira [7], Theorem 3.2.5, in the context of the
asymptotic distribution of the Hill estimator. For τ ∈R, define hτ : (0,∞) →R by

hτ (x) =
∫ x

1
yτ−1 dy =

⎧⎨
⎩

xτ − 1

τ
, if τ �= 0,

log(x), if τ = 0.
(4.4)

Condition 4.1 (Second-Order Condition). There exists α0 ∈ (0,∞), ρ ∈ (−∞,0], and a real
function A on (0,∞) of constant, non-zero sign such that limu→∞ A(u) = 0 and such that, for
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all x ∈ (0,∞),

lim
u→∞

1

A(u)

(− logF(ux)

− logF(u)
− x−α0

)
= x−α0hρ(x). (4.5)

The function A can be regarded as capturing the speed of convergence in (4.2). The form of
the limit function in (4.5) may seem unnecessarily specific, but actually, it is not, as explained in
Remark 4.3 below.

Let ψ = 	′/	 denote the digamma function and recall the Euler–Mascheroni constant γ =
−	′(1) = 0.5772 . . . . To express the asymptotic bias of the maximum likelihood estimators, we
will employ the functions b1 and b2 defined by

b1(x) =
⎧⎨
⎩

(1 + x)	(x)
{
γ + ψ(1 + x)

}
, if x > 0,

π2

6
, if x = 0,

(4.6)

and

b2(x) =
⎧⎨
⎩−π2

6x
+ (1 + x)	(x)

{
	′′(2) + γ + (γ − 1)ψ(1 + x)

}
, if x > 0,

0, if x = 0.

(4.7)

See Figure 1 for the graphs of these two functions. For (α0, ρ) ∈ (0,∞) × (−∞,0], define the
bias function

B(α0, ρ) = − 6

π2

(
b1
(|ρ|/α0

)
b2
(|ρ|/α0

)
/α2

0

)
. (4.8)

The proof of the following theorem is given in Section A.3.

Figure 1. Graphs of the functions b1 and b2 in (4.6) and (4.7).
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Theorem 4.2. Let ξ1, ξ2, . . . be independent random variables with common distribution func-
tion F satisfiying Condition 4.1. Let the block sizes rn be such that rn → ∞ and kn = 
n/rn� →
∞ as n → ∞ and assume that

lim
n→∞

√
knA(arn) = λ ∈ R. (4.9)

Then, with probability tending to one, there exists a unique maximizer (α̂n, σ̂n) of the Fréchet
log-likelihood (2.3) based on the block maxima Mrn,1, . . . ,Mrn,kn , and we have

√
kn

(
α̂n − α0

σ̂n/arn − 1

)
�N2

(
λB(α0, ρ), I−1

(α0,1)

)
, n → ∞, (4.10)

where I−1
(α0,1) denotes the inverse of the Fisher information of the Fréchet family as in (2.19) and

with B(α0, ρ) as in (4.8).

We conclude this section with a series of remarks on the second-order Condition 4.1 and its
link to the block-size condition in (4.9) and the mean vector of the limiting distribution in (4.10).

Remark 4.3 (Second-order regular variation). Let F satisfy (4.2). For x > 0 sufficiently large
such that F(x) > 0, define L(x) by

− logF(x) = x−α0L(x). (4.11)

In view of (4.2), the function L is slowly varying at infinity, that is,

lim
u→∞

L(ux)

L(u)
= 1, x ∈ (0,∞).

A second-order refinement of this would be that there exist A : (0,∞) → (0,∞) and h :
(0,∞) →R, the latter not identically zero, such that limu→∞ A(u) = 0 and

lim
u→∞

1

A(u)

(
L(ux)

L(u)
− 1

)
= h(x), x ∈ (0,∞).

Writing g(u) = A(u)L(u), Theorem B.2.1 in de Haan and Ferreira [7] (see also Bingham, Goldie
and Teugels [2], Section 3.6) implies that there exists ρ ∈ R such that g and thus A = g/L

are regularly varying at infinity with index ρ. Since A vanishes at infinity, necessarily ρ ≤ 0.
Furthermore, there exists κ ∈ R \ {0} such that h(x) = κhρ(x) for x ∈ (0,∞), with hρ as in
(4.4). Incorporating the constant κ into the function A, we can assume without loss of generality
that κ = 1 and we arrive at Condition 4.1. The function A then possibly takes values in (−∞,0)

rather than in (0,∞).

Remark 4.4 (Asymptotic mean squared error). According to (4.9) and (4.10), the distribution
of the estimation error α̂n − α0 is approximately equal to

N
(

−A(arn)
6

π2
b1
(|ρ|/α0

)
,
rn

n

6

π2
α2

0

)
.
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The asymptotic mean squared error is therefore equal to

AMSE(α̂n) = ABias2(α̂n) + AVar(α̂n) = ∣∣A(arn)
∣∣2 36

π4
b1
(|ρ|/α0

)2 + rn

n

6

π2
α2

0 .

The choice of the block size rn (or, equivalently, the number of blocks kn), thus involves a bias–
variance trade-off; see Section 5. Alternatively, if ρ and A(arn) could be estimated, then one
could construct bias-reduced estimators, just as in the case of the Hill estimator (see, e.g., Peng
[20], among others) or probability weighted moment estimators (Cai, de Haan and Zhou [6]).

Remark 4.5 (On the number of blocks). A version of (4.9) is used in Ferreira and de Haan
[12] to prove asymptotic normality of probability weighted moment estimators. Equation (4.9)
also implies the following limit relation, which is imposed in Dombry [9] and which we will be
needing later on as well:

lim
n→∞

kn log(kn)

n
= 0. (4.12)

Indeed, in view of Remark 4.3 and regular variation of (an)n∈N, the sequence (|A(ar)|)r∈N
is regularly varying at infinity. Potter’s theorem (Bingham, Goldie and Teugels [2], Theo-
rem 1.5.6) then implies that there exists β > 0 such that r−β = o(|A(ar)|) as r → ∞. But then√

kn(rn)
−β = √

kno(|A(arn)|) = o(1) by (4.9) and thus k
1/2+β
n /nβ = o(1) as n → ∞. We obtain

that k
1+1/(2β)
n /n = o(1), which implies (4.12).

Remark 4.6 (No asymptotic bias). If λ = 0 in (4.9), then the limiting normal distribution
in (4.10) is centered and the maximum likelihood estimator is said to be asymptotically un-
biased. If the index, ρ, of regular variation of the auxiliary function |A| is strictly negative
(see Remark 4.3), then a sufficient condition for λ = 0 to occur is that kn = O(nβ) for some
β < |ρ|/(α0/2 + |ρ|).

5. Examples and finite-sample results

5.1. Verification of conditions in a moving maximum model

For many stationary time series models, the distribution of the sample maximum is a difficult
object to work with. This is true even for linear time series models, since the maximum operator is
non-linear. In such cases, checking the conditions of Section 3 may be a hard or even impossible
task. An exception occurs for moving maximum models, where the sample maximum can be
linked directly to maxima of the innovation sequence.

Let (Zt )t∈Z be a sequence of independent and identically distributed random variables with
common distribution function F in the domain of attraction of the Fréchet distribution with shape
parameter α0 > 0, that is, such that (4.1) is satisfied for some sequence an → ∞. Let p ∈ N,
p ≥ 2, be fixed and let b1, . . . , bp be nonnegative constants, b1 �= 0 �= bp , such that

∑p

i=1 bi = 1.
We consider the moving maximum process ξt of order p, defined by

ξt = max{b1Zt , b2Zt−1, . . . , bpZt−p+1}, t ∈ Z.
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A simple calculation (see also the proof of Lemma 5.1 for the stationary distribution of ξt ) shows
that the extremal index of (ξt )t∈Z is equal to

θ =
{

p∑
i=1

b
α0
i

}−1

b
α0
(p),

where b(p) = maxp

i=1 bi . Let σn = b(p)an. The proof of the following lemma is given in Section D
in the supplementary material.

Lemma 5.1. The stationary time series (ξt )t∈Z satisfies Conditions 3.1, 3.3 and 3.4. If addition-
ally (4.12) is met, then Condition 3.2 is satisfied as well. Finally, if F satisfies the Second-Order
Condition 4.1, if (4.9) is met and if kn = o(n2/3) as n → ∞, then Condition 3.5 is also satisfied,
with B(f ) denoting the same limit as in the i.i.d. case, that is, B(f ) = β with β as in (A.23).

As a consequence, Theorem 3.6 may be applied and the asymptotic bias of the maximum
likelihood estimator is the same as specified in Theorem 4.2 for the case of independent and
identically distributed random variables.

5.2. Simulation results

We report on the results of a simulation study, highlighting some interesting features regarding
the finite-sample performance of the maximum likelihood estimator. Attention is restricted to
the estimation of the shape parameter, and particular emphasis is given to a comparison with
the common Hill estimator, which is based on the competing peaks-over-threshold method. Its
variance is of the order O(k−1), where k is the number of upper order statistics taken into ac-
count for its calculation. The Hill estimator’s asymptotic variance is given by α2

0 , which is larger
than the asymptotic variance (6/π2) × α2

0 of the block maxima maximum likelihood estimator.
Furthermore, numerical experiments (not shown) involving the probability weighted moment es-
timator showed a variance that was higher, in all cases considered, than the one of the maximum
likelihood estimator.

We consider three time series models for (ξt )t∈Z: independent and identically distributed ran-
dom variables, the moving maximum process from Section 5.1, and the absolute values of a
GARCH(1,1) time series. In the first two models, three choices are considered for the distri-
bution function F of either the variables ξt in the first model and the innovations Zt in the
second model: absolute values of a Cauchy-distribution, the standard Pareto distribution and
the Fréchet(1,1) distribution itself. All three distribution functions are attracted to the Fréchet
distribution with α0 = 1. For the moving maximum process, we fix p = 4 and bj = j/10
for j ∈ {1,2,3,4}. The GARCH(1,1) model is based on standard normal innovations, that is,
ξt = |Zt |, where Zt is the stationary solution of the equations{

Zt = εtσt ,

σ 2
t = λ0 + λ1Z

2
t−1 + λ2σ

2
t−1,

(5.1)
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with εt , t ∈ Z, independent standard normal random variables. The parameter vector (λ0, λ1, λ2)

is set to either (0.5,0.367,0.367) or (0.5,0.08,0.91). By Mikosch and Stărică [19], the station-
ary distribution associated to any of these two models is attracted to the Fréchet distribution with
shape parameter being (approximately) equal to α0 = 5.

We generate samples from all of the afore-mentioned models for a fixed sample size of n =
1000. Based on N = 3000 Monte Carlo repetitions, we obtain empirical estimates of the finite
sample bias, variance and mean squared error (MSE) of the competing estimators. The results
are summarized in Figure 2 for the i.i.d. and the moving maxima model, and in Figure 3 for
the GARCH-model. Additional details for the case of independent random sampling from the
absolute value of a Cauchy distribution are provided in the Supplement, Section F.

In general, (most of) the graphs nicely reproduce the bias-variance tradeoff, its characteristic
form however varying from model to model. Consider the i.i.d. scenario: since the Hill estimator
is essentially the maximum likelihood estimator in the Pareto family, it is to be expected that
it outperforms the block maxima estimator. On the other hand, by max-stability of the Fréchet
family, the block maxima estimator should outperform the Hill estimator for that family. These
expectations are confirmed by the simulation results in the left column of Figure 2. For the
Cauchy distribution, it turns out that the block maxima maximum likelihood estimator shows a
better performance.

Now, consider the moving maxima time series scenarios (right column in Figure 2). Compared
to the i.i.d. case, we observe an increase in the mean squared error (note that the scale on the
axis of ordinates is row-wise identical). The block maxima method clearly outperforms the Hill
estimator, except for the Pareto model. The big increase in relative performance is perhaps not too
surprising, as the data points from a moving maximum process are already (weighted) maxima,
which principally favors the block maxima method with small block sizes.

Finally, consider the GARCH models in Figure 3. While, as in line with the theoretical find-
ings, the variance of the block maxima estimator is smaller than the one of the Hill estimator,
the squared bias turns out to be substantially higher for a large range of values for k. The MSE-
optimal point is smaller for the Hill estimator.

Appendix A: Proofs

A.1. Proofs for Section 2

Proof of Lemma 2.1. The proof extends the development in Section 2 of Balakrishnan and
Kateri [1]. First, fix α > 0 and consider the function 0 < σ �→ L(α,σ | x). By Equation (2.2), its
derivative is equal to

∂σ L(α,σ | x) =
k∑

i=1

∂σ �θ (xi) = (α/σ)

(
k − σα

k∑
i=1

x−α
i

)
.

We find that ∂σ L(α,σ | x) is positive, zero, or negative according to whether σ is smaller than,
equal to, or larger than σ(α | x), respectively. In particular, for fixed α, the expression L(α,σ | x)
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Figure 2. Simulation results (Section 5.2). Effective sample size refers to the number of blocks (block
maxima MLE) or the number of upper order statistics (Hill estimator). Time series models: i.i.d. (left) and
moving maximum model (right). Innovations: absolute values of Cauchy (top), unit Fréchet (middle) and
unit Pareto (bottom) random variables. Block sizes r ∈ {2,3, . . . ,24}, resulting in k ∈ {500,333, . . . ,41}
blocks.
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Figure 3. Simulation results (Section 5.2). Effective sample size refers to the number of blocks (block max-
ima MLE) or the number of upper order statistics (Hill estimator). Both panels refer to the GARCH(1,1)

model in (5.1), with (λ0, λ1, λ2) equal to (0.5,0.367,0.367) on the left and to (0.5,0.08,0.91) on the right.

is maximal at σ equal to σ(α | x). Hence, we need to find the maximum of the function 0 < α �→
L(α,σ (α | x) | x). By (2.1), its derivative is given by

d

dα
L
(
α,σ (α | x) | x)=

k∑
i=1

∂α�α,σ (xi)|σ=σ(α|x) +
k∑

i=1

∂σ �α,σ (xi)|σ=σ(α|x) × d

dα
σ(α | x).

The second sum is equal to zero, by definition of σ(α | x). We obtain

d

dα
L
(
α,σ (α | x) | x)= k�k(α | x),

with �k as in (2.4). This is the same expression as Eq. (2.3) in Balakrishnan and Kateri [1], with
their xi replaced by our x−1

i . Differentiating once more with respect to α, we obtain that

d2

dα2
L
(
α,σ (α | x) | x)

= − k

α2
− k

∑k
i=1 x−α

i (log(xi))
2∑k

i=1 x−α
i − (

∑k
i=1 x−α

i log(xi))
2

(
∑k

i=1 x−α
i )2

.

(A.1)

By the Cauchy–Schwarz inequality, the numerator of the big fraction is nonnegative, whence

d2

dα2
L
(
α,σ (α | x) | x)≤ − k

α2
< 0.
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Hence, α �→ �k(α | x) is strictly decreasing. For α → 0, this function diverges to ∞, whereas for
α → ∞, it converges to log(min(x1, . . . , xk)) − k−1∑k

i=1 log(xi), which is less than zero given
the assumptions on x1, . . . , xk . Hence, there exists a unique α̂(x) ∈ (0,∞) such that this function
is zero. We conclude that the function θ �→ L(θ | x) admits a unique maximum at θ̂ (x). �

Fix α0 ∈ (0,∞). Let P denote the Fréchet distribution with parameter θ0 = (α0,1), with sup-
port X = (0,∞). The tentative limit of the functions α �→ �k(α | x) is the function

�(α) = 1

α
+
∫∞

0 x−α log(x)dP(x)∫∞
0 x−α dP(x)

−
∫ ∞

0
log(x)dP(x).

Let 	 be the gamma function and let ψ = 	′/	 be the digamma function.

Lemma A.1. Fix α0 ∈ (0,∞). We have

�(α) = 1

α0

(
ψ(1) − ψ(α/α0)

)
, α ∈ (0,∞). (A.2)

As a consequence, � : (0,∞) → R is a decreasing bijection with a unique zero at α = α0.

Proof. By Lemma B.1,

�(α) = 1

α
+ (−α−1

0 )	′(1 + α/α0)

	(1 + α/α0)
− (−α−1

0

)
	′(1) = 1

α0

(
(α/α0)

−1 − ψ(1 + α/α0) + ψ(1)
)
.

The digamma function satisfies the recurrence relation ψ(x + 1) = ψ(x) + 1
x

. Equation (A.2)
follows. The final statement follows from the fact that the digamma function ψ : (0,∞) → R is
an increasing bijection. �

Proof of Theorem 2.3. By Lemma 2.1, we only have to show the claimed convergence. Define
a random function �n on (0,∞) by

�n(α) = �kn(α | Xn) = �kn(α | Xn/σn), (A.3)

with �k(·|·) as in (2.4). Recall � in (A.2). The hypotheses imply that, for each α ∈ (α−, α+),

�n(α) � �(α), n → ∞.

By Lemma A.1, the limit �(α) is positive, zero, or negative according to whether α is less than,
equal to, or greater than α0. Moreover, the function �n is decreasing and �n(α̂n) = 0; see the
proof of Lemma 2.1.

Let δ > 0 be such that α− < α0 − δ < α0 + δ < α+. Since �n(α0 − δ) � �(α0 − δ) > 0 as
n → ∞, we find

Pr[α̂n ≤ α0 − δ] ≤ Pr
[
�n(α0 − δ) ≤ 0

]→ 0, n → ∞.
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Similarly, Pr[α̂n ≥ α0 + δ] → 0 as n → ∞. We can choose δ > 0 arbitrarily small, thereby
concluding that α̂n � α0 as n → ∞.

Second, Condition 2.2 also implies that, for each α ∈ (α−, α+) and as n → ∞,

1

σn

(
1

kn

kn∑
i=1

X−α
n,i

)−1/α

=
(

1

kn

kn∑
i=1

(Xn,i/σn)
−α

)−1/α

�
(∫ ∞

0
x−αpα0,1(x)dx

)−1/α

= (
	(1 + α/α0)

)−1/α
,

where we used Lemma B.1 for the last identity. Both the left-hand and right-hand sides are
continuous, nonincreasing functions of α. Since α̂n � α0 as n → ∞ and since the right-hand
side evaluates to unity at α = α0, a standard argument then yields

σ̂n

σn

= 1

σn

(
1

kn

kn∑
i=1

X
−α̂n

n,i

)−1/α̂n

� 1, n → ∞.
�

The proof of Theorem 2.5 is decomposed into a sequence of lemmas. Recall �n and � in
(A.3) and (A.2), respectively, and define �̇n(α) = (d/dα)�n(α) and �̇(α) = (d/dα)�(α). By
(A.1),

�̇n(α) = − 1

α2
− Pn[x−α(logx)2]Pnx

−α − (Pnx
−α logx)2

(Pnx−α)2
, (A.4)

where Pn denotes the empirical distribution of the points (Xn,i/σn)
kn

i=1 and where

Pnf = 1

kn

kn∑
i=1

f (Xn,i/σn).

The asymptotic distribution of vn(α̂n − α0) can be derived from the asymptotic behavior of �̇n

and vn�n, which is the subject of the next two lemmas, respectively.

Lemma A.2 (Slope). Let Xn = (Xn,1, . . . ,Xn,kn) be a sequence of random vectors in (0,∞)kn ,
where kn → ∞. Suppose that Equation (2.9) and Condition 2.4(i) are satisfied. If α̃n is a random
sequence in (0,∞) such that α̃n � α0 as n → ∞, then

�̇n(α̃n) � �̇(α0) = − π2

6α2
0

, n → ∞.

Proof. For α ∈ (0,∞) and m ∈ {0,1,2}, define

fm,α(x) = x−α(logx)m, x ∈ (0,∞),
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with (logx)0 = 1 for all x ∈ (0,∞). Suppose that we could show that, for m ∈ {0,1,2} and some
ε > 0,

sup
α:|α−α0|≤ε

∣∣∣∣Pnfm,α −
∫ ∞

0
fm,α(x)pα0(x)dx

∣∣∣∣� 0, n → ∞. (A.5)

Then from weak convergence of α̃n to α0, Slutsky’s lemma (van der Vaart [26], Lemma 2.8) and
Lemma B.1 below, it would follow that

�̇n(α̃n) � − 1

α2
0

− α−2
0 	′′(2)	(2) − (α−1

0 	′(2))2

(	(2))2
, n → ∞.

Since 	(2) = 1, 	′(2) = 1 − γ and 	′′(2) = (1 − γ )2 + π2/6 − 1, the conclusion would follow.
It remains to show (A.5). We consider the three cases m ∈ {0,1,2} separately. Let ε > 0 be

small enough such that α− < α0 − ε < α0 + ε < α+.
First, let m = 0. The maps α �→ (Pnf0,α)1/α and α �→ (

∫∞
0 f0,αpα0,1)

1/α are monotone by
Lyapounov’s inequality [i.e., ‖f ‖r ≤ ‖f ‖s for 0 < r < s, where ‖f ‖r = (

∫
X |f |r dμ)1/r denotes

the Lr -norm of some real-valued function f on a measurable space (X ,μ)], and the second one
is also continuous by Lemma B.1. Pointwise convergence of monotone functions to a monotone,
continuous limit implies locally uniform convergence (Resnick [23], Section 0.1). This property
easily extends to weak convergence, provided the limit is nonrandom. We obtain

sup
α:|α−α0|≤ε

∣∣∣∣(Pnf0,α)1/α −
(∫ ∞

0
f0,α(x)pα0(x)dx

)1/α∣∣∣∣� 0, n → ∞.

Uniform continuity of the map (y,α) �→ yα on compact subsets of (0,∞)2 then yields (A.5) for
m = 0.

Second, let m = 1. The maps α �→ Pnf1,α and α �→ ∫∞
0 f1,αpα0,1 are continuous and nonin-

creasing (their derivatives are nonpositive). Pointwise weak convergence at each α ∈ (α−, α+)

then yields (A.5) for m = 1.
Finally, let m = 2. With probability tending to one, not all variables Xn,i are equal to σn, and

thus Pn(logx)2 > 0. On the latter event, we have

Pnx
−α(logx)2 = Pn(logx)2

{(
Pnx

−α(logx)2

Pn(logx)2

)1/α}α

.

By Lyapounov’s inequality, the expression in curly braces is nondecreasing in α. For each
α ∈ (α−, α+), it converges weakly to {	′′(1 + α/α0)/	′′(1)}1/α , which is nondecreasing and
continuous in α; see Lemma B.1. It follows that

sup
α:|α−α0|≤ε

∣∣∣∣
(
Pnx

−α(logx)2

Pn(logx)2

)1/α

−
(

	′′(1 + α/α0)

	′′(1)

)1/α∣∣∣∣� 0, n → ∞.

Equation (A.5) for m = 2 follows. �
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Lemma A.3. Assume Condition 2.4. Then, as n → ∞,

vn�n(α0) =Gnx
−α0 log(x) + 1 − γ

α0
Gnx

−α0 −Gn log(x) + op(1). (A.6)

The expression on the right converges weakly to Y ≡ Y1 + 1−γ
α0

Y2 − Y3.

Proof. Recall that

�n(α0) = �kn(α0 | Xn/σn) = 1

α0
+ Pnx

−α0 log(x)

Pnx−α0
− Pn log(x).

Define φ : R× (0,∞) ×R→ R by

φ(y1, y2, y3) = 1

α0
+ y1

y2
− y3.

The previous two displays allow us to write

�n(α0) = φ
(
Pnx

−α0 log(x),Pnx
−α0 ,Pn log(x)

)
.

Recall Lemma B.1 and put

y0 = (−α−1
0 	′(2),	(2),−α−1

0 	′(1)
)= (

α−1
0 (γ − 1),1, α−1

0 γ
)
.

As already noted in the proof of Lemma A.1, we have φ(y0) = α−1
0 + α−1

0 (γ − 1) − α−1
0 γ = 0.

As a consequence,

vn�n(α0) = vn

{
φ
(
Pnx

−α0 log(x),Pnx
−α0 ,Pn log(x)

)− φ(y0)
}
.

In view of Condition 2.4 and the delta method, as n → ∞,

vn�n(α0) = φ̇1(y0)Gnx
−α0 log(x) + φ̇2(y0)Gnx

−α0 + φ̇3(y0)Gn log(x) + op(1),

where φ̇j denotes the first-order partial derivative of φ with respect to yj for j ∈ {1,2,3}. Ele-
mentary calculations yield

φ̇1(y0) = 1, φ̇2(y0) = α−1
0 (1 − γ ), φ̇3(y0) = −1.

The conclusion follows by Slutsky’s lemma. �

Proposition A.4 (Asymptotic expansion for the shape parameter). Assume that the condi-
tions of Theorem 2.5 hold. Then, with Y as defined in Lemma A.3,

vn(α̂n − α0) = 6α2
0

π2
vn�n(α0) + op(1) �

6α2
0

π2
Y, n → ∞. (A.7)
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Proof. Recall that, with probability tending to one, α̂n is the unique zero of the random function
α �→ �n(α). Recall that �̇n in (A.4) is the derivative of �n. With probability tending to one, we
have, by virtue of the mean-value theorem,

0 = �n(α̂n) = (
�n(α̂n) − �n(α0)

)+ �n(α0) = (α̂n − α0)�̇n(α̃n) + �n(α0);
here α̃n is a convex combination of α̂n and α0. Since �̇n(α) ≤ −1/α2 < 0 (argument as in the
proof of Lemma 2.1), we can write

vn(α̂n − α0) = − 1

�̇n(α̃n)
vn�n(α0).

By weak consistency of α̂n, we have α̃n � α0 as n → ∞. Lemma A.2 then gives �̇n(α̃n) �
−π2/(6α2

0) as n → ∞. Apply Lemma A.3 and Slutsky’s lemma to conclude. �

Proof of Theorem 2.5 and Addendum 2.6. Combining Equations (A.7) and (A.6) yields

vn(α̂n − α0) = 6α2
0

π2

(
Gnx

−α0 log(x) + 1 − γ

α0
Gnx

−α0 −Gn log(x)

)
+ op(1)

as n → ∞. This yields the first row in (2.17).
By definition of σ̂n, we have (σ̂n/σn)

−α̂n = Pnx
−α̂n . Consider the decomposition

vn

(
(σ̂n/σn)

−α̂n − 1
)= vn

(
Pnx

−α̂n − Pnx
−α0

)+ vn

(
Pnx

−α0 − 1
)
. (A.8)

By the mean value theorem, there exists a convex combination, α̃n, of α̂n and α0 such that

Pnx
−α̂n − Pnx

−α0 = −(α̂n − α0)Pnx
−α̃n log(x).

By the argument for the case m = 1 in the proof of Lemma A.2, we have

Pnx
−α̃n log(x) � − 1

α0
	′(2) = −1 − γ

α0
, n → ∞.

By Proposition A.4 and Lemma A.3, it follows that, as n → ∞,

vn

(
Pnx

−α̂n − Pnx
−α0

)= vn(α̂n − α0)
1 − γ

α0
+ op(1)

= 6α0(1 − γ )

π2
vn�n(α0) + op(1)

= 6α0(1 − γ )

π2

(
Gnx

−α0 log(x) + 1 − γ

α0
Gnx

−α0 −Gn log(x)

)
+ op(1).

This expression in combination with (A.8) yields, as n → ∞,

vn

(
(σ̂n/σn)

−α̂n − 1
)

= 6α0(1 − γ )

π2

(
Gnx

−α0 log(x) + 1 − γ

α0
Gnx

−α0 −Gn log(x)

)
+Gnx

−α0 + op(1).
(A.9)
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Write Zn = (σ̂n/σn)
−α̂n , which converges weakly to 1 as n → ∞. By the mean value theorem,

vn(σ̂n/σn − 1) = vn

(
Z

−1/α̂n
n − 1

)= vn(Zn − 1)(−1/α̂n)Z̃
−1/α̂n−1
n ,

where Z̃n is a random convex combination of Zn and 1. But then Z̃n � 1 as n → ∞, whence,
by consistency of α̂n and Slutsky’s lemma,

vn(σ̂n/σn − 1) = (−1/α0)vn

(
(σ̂n/σn)

−α̂n − 1
)+ op(1), n → ∞.

Combining this with (A.9), we find

vn(σ̂n/σn − 1) = −6(1 − γ )

π2

(
Gnx

−α0 log(x) + 1 − γ

α0
Gnx

−α0 −Gn log(x)

)

− α−1
0 Gnx

−α0 + op(1)

as n → ∞. This is the second row in (2.17).
The proof of Addendum 2.6 follows from a tedious but straightforward calculation. �

A.2. Proofs for Section 3

Lemma A.5 (Block maxima rarely show ties). Under Conditions 3.1 and 3.3, for every c ∈
(0,∞), we have Pr[Mrn,1 ∨ c = Mrn,3 ∨ c] → 0 as n → ∞.

Proof. By the domain-of-attraction condition combined with the strong mixing property, the
sequence of random vectors ((Mrn,1 ∨ c)/σrn, (Mrn,3 ∨ c)/σrn) converges weakly to the product
of two independent Fréchet(α0,1) random variables. Apply the Portmanteau lemma – the set
{(x, y) ∈ R

2 : x = y} is closed and has zero probability in the limit. �

Lemma A.6 (Moments of block maxima converge). Under Conditions 3.1 and 3.4, we have,
for every c ∈ (0,∞),

lim
n→∞E

[
f
(
(Mn ∨ c)/σn

)]=
∫ ∞

0
f (x)pα0,1(x)dx

for every measurable function f : (0,∞) → R which is continuous almost everywhere and for
which there exist 0 < η < ν such that |f (x)| ≤ gη,α0(x) = {x−α01(x ≤ e) + log(x)1(x > e)}2+η .

Proof. An elementary argument shows that we may replace Mn ∨ 1 by Mn ∨ c in (3.3). Since
c/σn → 0 as n → ∞, the sequence (Mn ∨ c)/σn converges weakly to the Fréchet(α0,1) distri-
bution in view of Condition 3.1. The result follows from Example 2.21 in van der Vaart [26]. �

In order to separate maxima over consecutive blocks by a time lag of at least �, we clip off the
final � − 1 variables within each block:

M
[�]
r,i = max

{
ξt : (i − 1)r + 1 ≤ t ≤ ir − � + 1

}
. (A.10)
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Clearly, Mr,i ≥ M
[�]
r,i . The probability that the maximum over a block of size r is attained by any

of the final � − 1 variables should be small; see Lemma A.8 below.

Lemma A.7 (Short blocks are small). Assume Condition 3.1. If �n = o(rn) and if α(�n) =
o(�n/rn) as n → ∞, then for all ε > 0,

Pr[M�n ≥ εσrn] = O(�n/rn), n → ∞. (A.11)

Proof. Let Fr be the cumulative distribution function of Mr . By Bücher and Segers [3],
Lemma 7.1, for every u > 0,

Pr
[
Frn(M�n) ≥ u

]= O(�n/rn), n → ∞. (A.12)

Fix ε > 0. By assumption,

lim
n→∞Frn(εσrn) = exp

(−ε−α0
)
.

For sufficiently large n, we have

Pr[M�n ≥ εσn] ≤ Pr
[
Frn(M�n) ≥ Frn(εσn)

]≤ Pr
[
Frn(M�n) ≥ exp

(−ε−α0
)
/2
]
.

Set u = exp(−ε−α0)/2 in (A.12) to arrive at (A.11). �

Lemma A.8 (Clipping doesn’t hurt). Assume Condition 3.1. If �n = o(rn) and if α(�n) =
o(�n/rn) as n → ∞, then

Pr[Mrn > Mrn−�n] → 0, n → ∞. (A.13)

Proof. Recall Lemma A.7. For every ε > 0 we have, by stationarity,

Pr[Mrn > Mrn−�n] ≤ Pr[Mrn−�n ≤ εσrn] + Pr[M�n > εσrn].
Since σrn−�n/σrn → 1 as a consequence of Condition 3.1 and the fact that �n = o(rn) as n → ∞,
the first term converges to exp(−ε−α0) as n → ∞, whereas the second one converges to 0 by
Lemma A.7. Since ε > 0 was arbitrary, Equation (A.13) follows. �

Proof of Theorem 3.6. We apply Theorem 2.5 and Addendum 2.6 to the array Xn,i = Mrn,i ∨ c

and vn = √
kn, where c ∈ (0,∞) is arbitrary and i ∈ {1, . . . , kn}. By Condition 3.2, we have

limn→∞ Pr[∀i = 1, . . . , kn : Xn,i = Mrn,i] = 1.
The not-all-tied property (2.9) has been established in Lemma A.5.
We need to check Condition 2.4, and in particular that the distribution of the random vector

Y in (2.15) is N3(B,�Y ) with B as in the statement of Theorem 3.6 and �Y as in (2.18).
Essentially, the proof employs the Bernstein big-block-small-block method in combination with
the Lindeberg central limit theorem.

Let �n = max{sn, 
rn√α(sn)�}, where sn = 
√rn�. Clearly,

�n → ∞, �n = o(rn) and α(�n) = o(�n/rn), as n → ∞. (A.14)
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Consider the truncated and rescaled block maxima

Zr,i = (Mrn,i ∨ c)/σr , Z
[�n]
r,i = (

M
[�n]
rn,i ∨ c

)
/σr ,

with M
[�n]
r,i as in (A.10). Consider the following empirical and population probability measures:

Pnf = 1

kn

kn∑
i=1

f (Zrn,i), Pnf = E
[
f (Zrn,i)

]
,

P
[�n]
n f = 1

kn

kn∑
i=1

f
(
Z

[�n]
rn,i

)
, P [�n]

n f = E
[
f
(
Z

[�n]
rn,i

)]
.

Abbreviate the tentative limit distribution by P = Fréchet(α0,1). We will also need the following
empirical processes:

Gn =√
kn(Pn − P) (uncentered),

G̃n =√
kn(Pn − Pn) (centered),

G̃
[�n]
n =√

kn

(
P

[�n]
n − P [�n]

n

)
(centered).

Finally, the bias arising from the finite block size is quantified by the operator

Bn =√
kn(Pn − P).

Proof of Condition 2.4(i). Choose η ∈ (2/ω, ν) and 0 < α− < α0 < α+. Additional constraints
on α+ will be imposed below, while the values of η and α− do not matter. Recall the function
class F2(α−, α+) in (2.12). For every f ∈ F2(α−, α+), we just need to show that

Pnf = Pf + op(1), n → ∞.

The domain-of-attraction property (Condition 3.1) and the asymptotic moment bound (Condi-
tion 3.4) yield

E[Pnf ] = Pnf → Pf, n → ∞,

by uniform integrability, see Lemma A.6 (note that |f | is bounded by a multiple of g0,α0 if α+ is
chosen suitably small: α+ < 2α0 must be satisfied). Further,

Pnf − Pnf = 1√
kn

G̃nf.

Below, see (A.16), we will show that

G̃nf = G̃
[�n]
n f + op(1) = Op(1) + op(1) = Op(1), n → ∞. (A.15)
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It follows that, as required,

Pnf = (Pnf − Pnf ) + Pnf = op(1) + Pf + o(1) = Pf + op(1), n → ∞.

Proof of Condition 2.4(ii). We can decompose the empirical process Gn in a stochastic term
and a bias term:

Gn =√
kn(Pn − Pn) +√

kn(Pn − P) = G̃n + Bn.

For f ∈ H = {f1, f2, f3}, the bias term Bnf converges to B(f ) thanks to Condition 3.5. It
remains to treat the stochastic term G̃nf , for all f ∈F2(α−, α+) [in view of the proof of item (i);
see (A.15) above]. We will show that the finite-dimensional distributions of G̃n converge to those
of a P -Brownian bridge, G,that is, a zero-mean, Gaussian stochastic process with covariance
function given by

cov(Gf,Gg) = P
(
(f − Pf )(g − Pg)

)= covP

(
f (X),g(X)

)
, f, g ∈F2(α−, α+).

Decompose the stochastic term in two parts:

G̃n = G̃
[�n]
n + �n. (A.16)

We will show that �n converges to zero in probability and that the finite-dimensional distribu-
tions of G̃[�n]

n converge to those of G.
First, we treat the main term, G̃[�n]

n . By the Cramér–Wold device, it suffices to show that
G̃

[�n]
n g �Gg as n → ∞, where g is an arbitrary linear combination of functions f ∈F2(α−, α+).

Define

φni(t) = exp
[−itk−1/2

n

{
g
(
Z

[�n]
rn,i

)− P [�n]
n g

}]
,

with i the imaginary unit. Note that the characteristic function of G̃[�n]
n g can be written as t �→

E[∏kn

i=1 φni(t)]. Successively applying Lemma 3.9 in Dehling and Philipp [8], we obtain that

∣∣∣∣∣E
[

kn∏
i=1

φni(t)

]
−

kn∏
i=1

E
[
φni(t)

]∣∣∣∣∣≤ 2πkn
kn

max
i=1

α

(
σ
{
φni(t)

}
, σ

{
kn∏

j=i+1

φnj (t)

})
,

where α(A1,A2) denotes the alpha-mixing coefficient between the sigma-fields A1 and A2.
Since the maxima Z

[�n]
r,i over different blocks are based on observations that are at least �n obser-

vations apart, the expression on the right-hand side of the last display is of the order O(knα(�n)),
which converges to 0 as a consequence of Equation (3.2). We can conclude that the weak limit
of G̃[�n]

n g is the same as the one of

H̃
[�n]
n g =√

kn

{
1

kn

kn∑
i=1

g
(
Z̄

[�n]
rn,i

)− P [�n]
n g

}
,
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where Z̄
[�n]
rn,i are independent over i ∈ N and have the same distribution as Z

[�n]
rn,i . By the classical

central limit theorem for row wise independent triangular arrays, the weak limit of H̃[�]
n g is Gg:

first, its variance

Var
(
H̃

[�n]
n g

)= P [�n]
n g2 − (

P [�n]
n g

)2

converges to Var(Gg) by Lemma A.6. Note that the square of any linear combination g of func-
tions f ∈ F2(α−, α+) can be bounded by a multiple of gη,α0 , after possibly decreasing the value
of α+ > α0. Second, the Lyapunov Condition is satisfied: for all δ > 0,

1

k
1+δ/2
n

kn∑
i=1

E
[∣∣g(Z̄[�n]

rn,i

)− P [�n]
n g

∣∣2+δ]

converges to 0 as n → ∞ again as a consequence of Lemma A.6, as |g|2+δ can also be bounded
by a multiple of gη,α0 if δ ∈ (0, η) and α+ > α0 are chosen sufficiently small.

Now, consider the remainder term �n in (A.16). Since G̃nf and G̃
[�n]
n f are centered, so is

�nf , and

E
[
(�nf )2]= var(�nf ) = 1

kn

var

(
kn∑

i=1

�
[�n]
rn,i f

)
,

where �
[�n]
r,i f = f (Zr,i) − f (Z

[�n]
r,i ). By stationarity and the Cauchy–Schwarz inequality,

E
[
(�nf )2]= var

(
�

[�n]
rn,1f

)+ 2

kn

kn−1∑
h=1

(kn − h) cov
(
�

[�n]
rn,1f,�

[�n]
rn,1+hf

)

≤ 3 var
(
�

[�n]
rn,1f

)+ 2
kn−1∑
h=2

∣∣cov
(
�

[�n]
rn,1f,�

[�n]
rn,1+hf

)∣∣.
(A.17)

Please note that we left the term h = 1 out of the sum; whence the factor three in front of the
variance term.

Since �n = o(rn) as n → ∞ by Condition 3.3, we have σrn−�n+1/σrn → 1 as n → ∞ by
Condition 3.1. The asymptotic moment bound in Condition 3.4 then ensures that we may choose
δ ∈ (2/ω, ν) and α+ > α0 such that, for every f ∈ F2(α−, α+), we have, by Lemma A.6,

lim sup
n→∞

E
[∣∣�[�n]

rn,1f
∣∣2+δ]

< ∞. (A.18)

On the event that Mrn,1 = Mrn−�n+1, we have �
[�n]
rn,1f = 0. The mixing rate in (A.14) together

with Lemma A.8 then imply

�
[�n]
rn,1f = op(1), n → ∞.
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Lyapounov’s inequality and the asymptotic moment bound (A.18) then ensure that

lim
n→∞E

[∣∣�[�n]
rn,1f

∣∣2+δ]= 0, f ∈F2(α−, α+). (A.19)

Recall Lemma 3.11 in Dehling and Philipp [8]: for random variables ξ and η and for numbers
p,q ∈ [1,∞] such that 1/p + 1/q < 1,∣∣cov(ξ, η)

∣∣≤ 10‖ξ‖p‖η‖q

{
α
(
σ(ξ), σ (η)

)}1−1/p−1/q
, (A.20)

where α(A1,A2) denotes the strong mixing coefficient between two σ -fields A1 and A2. Use
inequality (A.20) with p = q = 2 + δ to bound the covariance terms in (A.17):

E
[
(�nf )2]≤ 3

∥∥�[�n]
rn,1f

∥∥2
2 + 20kn

∥∥�[�n]
rn,1f

∥∥2
2+δ

{
α(rn)

}δ/(2+δ)
.

In view of (A.19) and Condition 3.3, the right-hand side converges to zero since ω < 2/δ. �

A.3. Proof of Theorem 4.2

Proof of Theorem 4.2. We apply Theorem 3.6. To this end, we verify its conditions.
Proof of Condition 3.1. The second-order regular variation condition (4.5) implies the first-

order one in (4.2), which is in turn equivalent to weak convergence of partial maxima as in
(4.1). Condition 3.1 follows with scaling sequence σn = an. The latter sequence is regularly
varying (Resnick [23], Proposition 1.11) with index 1/α0, which implies that limn→∞ amn/an =
1 whenever limn→∞ mn/n = 1.

Proof of Condition 3.2. For any real c we have, since logF(c) < 0 and since log(kn) = o(rn)

by (4.12),

Pr
[
min(Mrn,1, . . . ,Mrn,kn) ≤ c

]≤ knF
rn(c) = exp

{
log(kn) + rn logF(c)

}→ 0, n → ∞.

Proof of Condition 3.3. Trivial, since α(�) = 0 for integer � ≥ 1.
Proof of Condition 3.4. This follows from Lemma C.1 in the supplementary material (which

in turn is a variant of Proposition 2.1(i) in Resnick [23]), where we prove that the sufficient
Condition (3.4) is satisfied.

Proof of Condition 3.5. Recall Remark 4.3 and therein the functions L and g(u) = A(u)L(u).
We begin by collecting some non-asymptotic bounds on the function L. Fix δ ∈ (0, α0). Pot-
ter’s theorem (Bingham, Goldie and Teugels [2], Theorem 1.5.6) implies that there exists some
constant x′(δ) > 0 such that, for all u ≥ x′(δ) and x ≥ x′(δ)/u,

L(u)

L(ux)
≤ (1 + δ)max

(
x−δ, xδ

)
. (A.21)

As a consequence of Theorem B.2.18 in de Haan and Ferreira [7], accredited to Drees [10],
there exists some further constant x′′(δ) > 0 such that, for all u ≥ x′′(δ) and x ≥ x′′(δ)/u,∣∣∣∣L(ux) − L(u)

g(u)

∣∣∣∣≤ c(δ)max
(
xρ−δ, xρ+δ

)
, (A.22)



1456 A. Bücher and J. Segers

for some constant c(δ) > 0. Define x(δ) = max{x′(δ), x′′(δ),1}.
We are going to show Condition 3.5 for c = x(δ) and σrn = arn . For i = 1, . . . , kn, define

Xn,i = Mrn,i ∨ x(δ). Let Pn denote the common distribution of the rescaled, truncated block
maxima Xn,i/arn and let P denote the Fréchet(α0,1) distribution. Write Bn = √

kn(Pn −P) and
define the three-by-one vector β by

β = λ

|ρ|α0

⎛
⎜⎜⎜⎜⎜⎜⎝

2 − γ − 	

(
2 + |ρ|

α0

)
− 	′

(
2 + |ρ|

α0

)

α0	

(
2 + |ρ|

α0

)
− α0

1 − 	

(
1 + |ρ|

α0

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(A.23)

if ρ < 0 and by

β = λ

α2
0

⎛
⎝γ − (1 − γ )2 − π2/6

α0(1 − γ )

γ

⎞
⎠

if ρ = 0. We will show that

lim
n→∞

(
Bnx

−α0 logx,Bnx
−α0 ,Bn logx

)T = β. (A.24)

Elementary calculations yield that M(α0)β = λB(α0, ρ) as required in (4.8).
Equation (A.24) can be shown coordinatewise. We begin by some generalities. For any f ∈H

as in (2.13), we can write, for arbitrary x, x0 ∈ (0,∞),

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

f (x0) −
∫ x0

x

f ′(y) dy, if 0 < x ≤ x0,

f (x0) +
∫ x

x0

f ′(y) dy, if x0 < x < ∞.

By Fubini’s theorem, with Gn and G denoting the cdf-s of Pn and P , respectively,

Pf =
∫

(0,x0]
f (x)dP (x) +

∫
(x0,∞)

f (x) dP (x)

= f (x0) −
∫

x∈(0,x0]

∫ x0

y=x

f ′(y) dy dP (x) +
∫

x∈(x0,∞)

∫ x

y=x0

f ′(y) dy dP (x)

= f (x0) −
∫ x0

y=0

∫
x∈(0,y]

dP (x)f ′(y) dy +
∫ ∞

y=x0

∫
x∈(y,∞)

dP (x)f ′(y) dy

= f (x0) −
∫ x0

0
G(y)f ′(y) dy +

∫ ∞

x0

{
1 − G(y)

}
f ′(y) dy,
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and the same formula holds with P and G replaced by Pn and Gn, respectively. We find that

Bnf =√
kn(Pn − P)f = −

∫ ∞

0

√
kn

{
Gn(y) − G(y)

}
f ′(y) dy.

Note that

G(y) = exp
(−y−α0

)
1(0,∞)(y), Gn(y) = F rn(arny)1[x(δ)/arn ,∞)(y).

From the definition of L in (4.11), we can write, for y ≥ x(δ)/arn ,

Gn(y) = exp

(
−y−α0rn

{− logF(arn)
}L(arny)

L(arn)

)
.

For the sake of brevity, we will only carry out the subsequent parts of the proof in the case where
F is ultimately continuous, so that rn{− logF(arn)} = 1 for all sufficiently large n. In that case,
Bnf = Jn1(f ) + Jn2(f ) where

Jn1(f ) =√
kn

∫ x(δ)/arn

0
exp

(−y−α0
)
f ′(y) dy,

Jn2(f ) = −√kn

∫ ∞

x(δ)/arn

[
exp

(
−y−α0

L(arny)

L(arn)

)
− exp

(−y−α0
)]

f ′(y) dy.

Let us first show that Jn1(f ) converges to 0 for any f ∈ H. For that purpose, note that any
f ∈ H satisfies |f ′(x)| ≤ Kx−α0−ε−1 for any ε < 1 and for some constant K = K(ε) > 0. As a
consequence, by (4.9), for sufficiently large n,

max
f ∈H

∣∣Jn1(f )
∣∣≤ {

λ + o(1)
} K

A(arn)

∫ x(δ)/arn

0
exp

(−y−α0
)
y−α0−ε−1 dy.

Since A(x) is bounded from below by a multiple of xρ−ε for sufficiently large x (by Remark 4.3
and Potter’s theorem), the expression on the right-hand side of the last display can be easily seen
to converge to 0 for n → ∞.

For the treatment of Jn2, note that

J (f,ρ) ≡
∫ ∞

0
hρ(y) exp

(−y−α0
)
y−α0f ′(y) dy

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ ∞

0
hρ(y) exp

(−y−α0
)
y−2α0−1(1 − α0 logy)dy, f (y) = y−α0 logy,∫ ∞

0
hρ(y) exp

(−y−α0
)(−α0y

−2α0−1)dy, f (y) = y−α0 ,∫ ∞

0
hρ(y) exp

(−y−α0
)
y−α0−1 dy, f (y) = logy
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=

⎧⎪⎨
⎪⎩
E
[
hρ(Y )Y−α0

(
α−1

0 − logY
)]

, f (y) = y−α0 logy,

−E
[
hρ(Y )Y−α0

]
, f (y) = y−α0,

α−1
0 E

[
hρ(Y )

]
, f (y) = logy,

where Y denotes a Fréchet(α0,1) random variable. By Lemma B.1 this implies

J
(
x−α0 logx,ρ

)= 1

ρα0

{
	

(
2 + |ρ|

α0

)
+ 	′

(
2 + |ρ|

α0

)
− 1 − 	′(2)

}

= 1

|ρ|α0

{
2 − γ − 	

(
2 + |ρ|

α0

)
− 	′

(
2 + |ρ|

α0

)}
,

J
(
x−α0 , ρ

)= 1

ρ

{
	(2) − 	

(
2 + |ρ|

α0

)}
= 1

||rho

{
	

(
2 + |ρ|

α0

)
− 1

}
,

J (logx,ρ) = 1

ρα0

{
	

(
1 + |ρ|

α0

)
− 1

}
= 1

|ρ|α0

{
1 − 	

(
1 + |ρ|

α0

)}

for ρ < 0 and

J
(
x−α0 logx,0

)= − 1

α2
0

{
	′(2) + 	′′(2)

}= 1

α2
0

{
γ − (1 − γ )2 − π2/6

}
,

J
(
x−α0,0

)= 1

α0
	′(2) = 1 − γ

α0
,

J (logx,0) = − 1

α2
0

	′(1) = γ

α2
0

.

Hence, β = λ(J (x−α0 logx,ρ), J (x−α0 , ρ), J (logx,ρ))T and it is therefore sufficient to show
that, for any f ∈H,

Jn2(f ) → λJ (f,ρ) (A.25)

as n → ∞. By the mean value theorem, we can write Jn2(f ) as

Jn2(f ) =√
knA(arn)

∫ ∞

x(δ)/arn

L(arny) − L(arn)

A(arn)L(arn)
exp

(−y−α0ξn(y)
)
y−α0f ′(y) dy

for some ξn(y) between L(arny)/L(arn) and 1. For n → ∞, the factor in front of this integral
converges to λ by assumption (4.9), while the integrand in this integral converges to

hρ(y) exp
(−y−α0

)
y−α0f ′(y),

pointwise in y ∈ (0,∞), by Condition 4.1. Hence, the convergence in (A.25) follows from dom-
inated convergence if we show that

fn(y) = 1

(
y >

x(δ)

arn

)∣∣∣∣L(arny) − L(arn)

A(arn)L(arn)

∣∣∣∣ exp
(−y−α0ξn(y)

)
y−α0f ′(y)



Maximum likelihood estimation for the Fréchet distribution 1459

can be bounded by an integrable function on (0,∞). We split the proof into two cases.
First, for any 1 ≥ y ≥ x(δ)/arn ,∣∣∣∣L(arny) − L(arn)

A(arn)L(arn)

∣∣∣∣≤ c(δ)yρ−δ

from (A.22) and

ξn(y) ≥ min

(
1,

L(arny)

L(arn)

)
≥ (1 + δ)−1yδ

from (A.21). Moreover, for any f ∈H, the function f ′(y) is bounded by a multiple of y−α0−δ−1

for y ≤ 1. Therefore, for any y ∈ (0,1),

fn(y) ≤ c′(δ) exp
{−(1 + δ)−1y−α0+δ

}
y−2α0−2δ−1+ρ

and the function on the right is integrable on (0,1) since δ < α0.
Second, for y ∈ [1,∞), we have∣∣∣∣L(arny) − L(arn)

A(arn)L(arn)

∣∣∣∣≤ c(δ)yρ+δ

from (A.22) and

ξn(y) ≥ min

(
1,

L(arny)

L(arn)

)
≥ (1 + δ)−1y−δ

from (A.21). Moreover, f ′(y) is bounded by a multiple of y−1 for any y ≥ 1 and any f ∈ H.
Therefore,

fn(y) ≤ c′′(δ)y−α0−1+ρ+δ

which is easily integrable on [1,∞). �

Appendix B: Auxiliary results

Let 	(x) = ∫∞
0 tx−1e−t dt be the gamma function and let 	′ and 	′′ be its first and second

derivative, respectively. All proofs for this section are given in Section E in the supplementary
material.

Lemma B.1 (Moments). Let P denote the Fréchet distribution with parameter vector (α0,1),
for some α0 ∈ (0,∞). For all α ∈ (−α0,∞),∫ ∞

0
x−α dP(x) = 	(1 + α/α0),
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0
x−α log(x)dP(x) = − 1

α0
	′(1 + α/α0),

∫ ∞

0
x−α

(
log(x)

)2 dP(x) = 1

α2
0

	′′(1 + α/α0).

Lemma B.2 (Covariance matrix). Let X be a random variable whose distribution is Fréchet
with parameter vector (α0,1). The covariance matrix of the random vector Y = (Y1, Y2, Y3)

T =
(X−α0 log(X),X−α0, log(X))T is equal to

cov(Y ) = 1

α2
0

⎛
⎝1 − 4γ + γ 2 + π2/3 α0(γ − 2) π2/6 − γ

α0(γ − 2) α2
0 −α0

π2/6 − γ −α0 π2/6

⎞
⎠ .

Lemma B.3 (Fisher information). Let Pθ denote the Fréchet distribution with parameter θ =
(α,σ ) ∈ (0,∞)2. The Fisher information Iθ = Pθ(�̇θ �̇

T
θ ) is given by

Iθ =
(

ι11 ι12
ι21 ι22

)
=
({

(1 − γ )2 + π2/6
}
/α2 (1 − γ )/σ

(1 − γ )/σ α2/σ 2

)
.

Its inverse is given by

I−1
θ = 6

π2

(
α2 (γ − 1)σ

(γ − 1)σ (σ/α)2
{
(1 − γ )2 + π2/6

}) .
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Supplementary Material

Supplement to “Maximum likelihood estimation for the Fréchet distribution based on block
maxima extracted from a time series” (DOI: 10.3150/16-BEJ903SUPP; .pdf). The supplemen-
tary material Bücher and Segers [5] contains a lemma on moment convergence of block maxima

http://dx.doi.org/10.3150/16-BEJ903SUPP
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used in the proof of Theorem 4.2 (in Section C), the proof of Lemma 5.1 (in Section D) and the
proofs of auxiliary lemmas from Section B (in Section E). Furthermore, we present additional
Monte Carlo simulation results to quantify the finite-sample bias and variance of the maximum
likelihood estimator (in Section F).
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