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For a multivariate stationary process, we develop explicit representations for the finite predictor coefficient
matrices, the finite prediction error covariance matrices and the partial autocorrelation function (PACF) in
terms of the Fourier coefficients of its phase function in the spectral domain. The derivation is based on a
novel alternating projection technique and the use of the forward and backward innovations corresponding
to predictions based on the infinite past and future, respectively. We show that such representations are ideal
for studying the rates of convergence of the finite predictor coefficients, prediction error covariances, and
the PACF as well as for proving a multivariate version of Baxter’s inequality for a multivariate FARIMA
process with a common fractional differencing order for all components of the process.

Keywords: Baxter’s inequality; long memory; multivariate stationary processes; partial autocorrelation
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1. Introduction

Baxter’s inequality in [2] provides valuable information about the convergence of the finite
predictor coefficients to their infinite past counterparts (autoregressive coefficients) of a short-
memory univariate stationary process. It has been used by [3] in proving the consistency of the
autoregressive model fitting process and the corresponding autoregressive spectral density esti-
mator, and in proving the validity of autoregressive sieve bootstrap for a stationary time series in
[9,10,31]. Due to the widespread applicability of Baxter’s inequality in these areas and others,
there has been a great deal of activities in extending it to the setups of multivariate stationary
processes in [11,17], random fields in [33], and rectangular arrays in [34]. In these extensions,
the boundedness of the spectral density function of the underlying process appears to be an ab-
solutely essential and indispensable part of proving Baxter’s inequality.

In [26], however, Baxter’s inequality was established for univariate long-memory processes
where the boundedness of the spectral density function is clearly violated. Unlike the classi-
cal proofs for short-memory processes involving the orthogonal polynomials or the Durbin–
Levinson algorithm, the key ingredient of the proof in [26] was an explicit representation of the
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finite predictor coefficients in terms of the autoregressive (AR) and moving average (MA) coef-
ficients. The derivation of the representation in turn was based on techniques that use von Neu-
mann’s alternating projections on the infinite past and future. These techniques were first used
by [22] and have been developed to derive the needed representations for the finite prediction
error variances [22–25], the partial autocorrelation functions [7,24,28], and the finite predictor
coefficients [26]. Unfortunately, most of the details of the proofs in the univariate case do not
carry over to the multivariate setup where, for example, all functions and the sequences of AR
and MA coefficients are matrix-valued and hence in general do not commute with each other.

In this paper, for a multivariate stationary process, we prove the desired explicit representa-
tions for the finite predictor coefficients, the finite prediction error covariances and the partial
autocorrelation function (PACF). See Theorems 5.2–5.4 in Section 5. The three new ingredients
that enable us to obtain the results in the multivariate framework are:

(i) Use of the Fourier coefficients of the matrix-valued phase function of the process in the
spectral domain, rather than the AR and MA coefficient matrices (see Section 4).

(ii) Development of an enhanced alternating projection technique tailored to the specific
needs of the problem at hand (see Section 3).

(iii) Use of the forward and backward innovation processes corresponding to the predictions
based on the infinite past and future, respectively (see Sections 2, 4 and 5).

Our representation theorems make it possible to extend Baxter’s inequality and other univari-
ate asymptotic results to the multivariate long-memory processes. Even when specialized to uni-
variate processes, our method and results are more succinct, transparent and improve the known
univariate results in several ways. For example, our representation theorem for the finite predic-
tor coefficients, that is, Theorem 5.4 below, is stated under the minimality condition (see (M) in
Section 5) only, which is weaker than the condition in the corresponding univariate result, i.e.,
Theorem 2.9 in [26].

In this paper, when applying the representation theorems, we restrict our attention to a class
of q-variate long-memory processes, that is, the q-variate FARIMA (fractional autoregressive
integrated moving-average) or vector ARFIMA processes with common fractional differencing
order for all components. A process {Xk} in this class has the spectral density w of the form

w
(
eiθ

)= ∣∣1 − eiθ
∣∣−2d

g
(
eiθ

)
g
(
eiθ

)∗
, (1.1)

where d ∈ (−1/2,1/2) \ {0} and g : T → C
q×q has rational entries satisfying some suitable

conditions; see (F) in Section 6. The process {Xk} is described by the equation

(1 − L)dXk = g(L)ξk, k ∈ Z, (1.2)

where L is the lag operator defined by LXm = Xm−1 and {ξk} is a q-variate white noise, that is, a
q-variate, centered process such that E[ξnξ

∗
m] = δnmIq with Iq being the q × q unit matrix. See,

for example, [12]. We notice that the parameter d in (1.1) is the fractional differencing degree in
(1.2). The q-variate FARIMA processes are multivariate analogues of univariate ones introduced
independently by [16] and [19].

We present the following quick summary of the asymptotic results obtained by applying our
representation theorems to a q-variate FARIMA process {Xk} with (1.1):
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(1) Baxter’s inequality for {Xk} with d ∈ (0,1/2) (see Theorem 6.9 below).
(2) The precise asymptotics for the finite prediction error covariances vn and ṽn of {Xk} with

d ∈ (−1/2,1/2) \ {0} (see Theorem 6.5 below; see also Section 5 for the definitions of vn

and ṽn).
(3) The precise asymptotic behavior for the PACF αn of {Xk} with d ∈ (−1/2,1/2) \ {0} (see

Theorem 6.7 below; see also Section 5 for the definition of αn).

First, Baxter’s inequality for FARIMA processes is of the form

n∑
j=1

‖φn,j − φj‖ ≤ K

∞∑
j=n+1

‖φj‖, n ∈ N, (1.3)

for some positive constant K , where, for a ∈ C
q×q , ‖a‖ denotes the spectral norm of a (see

Section 2), and φj and φn,j denote the forward infinite and finite predictor coefficients, respec-
tively, of {Xk} (see Sections 2 and 5, respectively, for their precise definitions). We also prove
a backward analogue of (1.3); see Corollary 6.10 below. We refer to [26] for the corresponding
result for univariate long-memory processes and [1,36,39] for its application; see also [21] for
other applications of results in [26]. In [11], Baxter’s inequality (1.3) was proved for a class of
multivariate short-memory stationary processes. The original inequality (1.3) of Baxter [2] was
an assertion for univariate short-memory processes. See also [3] and [37], Section 7.6.2.

Next, the asymptotic results in (2) above are of the form

vn = v∞ + d2

n
v∞ + O

(
n−2), n → ∞, (1.4)

ṽn = ṽ∞ + d2

n
ṽ∞ + O

(
n−2), n → ∞, (1.5)

where v∞ (resp., ṽ∞) is the forward (resp., backward) infinite prediction error covariance of
{Xk}; see Section 6.3 for their precise definitions. We refer to [22–25] for the corresponding
results for univariate long-memory processes. See also [15,20] for related work.

Finally, the result in (3) is of the form

αn = d

n
V + O

(
n−2), n → ∞, (1.6)

where V is a unitary matrix in C
q×q which depends only on g (and not d). We refer to [7,22–25]

for the corresponding results for univariate long-memory processes. In the theory of orthogonal
polynomials on the unit circle, the PACF appears as the sequence of Verblunsky coefficients and
plays a central role. See, for example, [5,13,28].

The above q-variate FARIMA process has a common fractional differencing order d for
all components. The question arises of proving analogues of (1)–(3) above for more general
q-variate FARIMA processes which have, in general, different order of differencing in each
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component, that is,

(1 − L)d :=
⎛
⎜⎝

(1 − L)d1 0
. . .

0 (1 − L)dq

⎞
⎟⎠

with d = (d1, . . . , dq), instead of (1 − L)d (see, e.g., [12]). We leave this question open here; the
difficulty stems from the fact that, for such a general q-variate FARIMA process, the matrices
g(L) and (1 − L)d do not commute with each other.

This paper is organized as follows. In Section 2, we give preliminary definitions and basic
facts. In Section 3, we prove the key projection theorem. In Section 4, we describe some basic
facts about the Fourier coefficients of the phase function which is needed in Section 5. In Sec-
tion 5, we prove the main results, i.e., the representation theorems for the finite prediction error
covariances, the PACF and the finite predictor coefficients of multivariate stationary processes. In
Section 6, we apply the main results to multivariate FARIMA processes with common fractional
differencing order for all components, and establish the results (1)–(3) above for them.

2. Preliminaries

Let Cm×n be the set of all complex m × n matrices; we write C
q for Cq×1. We write In for the

n × n unit matrix. For a ∈ C
m×n, aT denotes the transpose of a, and ā and a∗ the complex and

Hermitian conjugates of a, respectively; thus, in particular, a∗ := āT. For a ∈ C
q×q , we write

‖a‖ for the spectral norm of a:

‖a‖ := sup
u∈Cq ,|u|=1

|au|.

Here |u| := (
∑q

i=1 |ui |2)1/2 denotes the Euclidean norm of u = (u1, . . . , uq)T ∈C
q . A Hermitian

matrix a ∈ C
q×q is said to be positive, denoted as a ≥ 0, if (au)∗u ≥ 0 for all u ∈ C

q . When
a ≥ 0, we have ‖a‖ = supu∈Cq ,|u|=1(au)∗u. For Hermitian matrices a, b ∈C

q×q , we write a ≥ b

if a − b ≥ 0. If a ≥ b, then we have ‖a‖ ≥ ‖b‖. For p ∈ [1,∞) and K ⊂ Z, �
q×q
p (K) denotes

the space of Cq×q -valued sequences {ak}k∈K such that
∑

k∈K ‖ak‖p < ∞. We write �
q×q
p+ for

�
q×q
p (N∪ {0}) and �p+ for �1×1

p+ = �1×1
p (N∪ {0}).

Let T := {z ∈C : |z| = 1} be the unit circle in C. We write σ for the normalized Lebesgue mea-
sure dθ/(2π) on ([−π,π),B([−π,π))), where B([−π,π)) is the Borel σ -algebra of [−π,π);
thus we have σ([−π,π)) = 1. For p ∈ [1,∞), we write Lp(T) for the Lebesgue space of mea-
surable functions f : T → C such that ‖f ‖p < ∞, where ‖f ‖p := {∫ π

−π
|f (eiθ )|pσ(dθ)}1/p .

Let Lm×n
p (T) be the space of Cm×n-valued functions on T whose entries belong to Lp(T).

The Hardy class H2(T) on T is the closed subspace of L2(T) consisting of f ∈ L2(T) such
that

∫ π

−π
eimθf (eiθ )σ (dθ) = 0 for m = 1,2, . . . . Let Hm×n

2 (T) be the space of C
m×n-valued

functions on T whose entries belong to H2(T). Let D := {z ∈ C : |z| < 1} be the open unit
disk in C. We write H2(D) for the Hardy class on D, consisting of holomorphic functions
f on D such that supr∈[0,1)

∫ π

−π
|f (reiθ )|2σ(dθ) < ∞. As usual, we identify each function
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f in H2(D) with its boundary function f (eiθ ) := limr↑1 f (reiθ ), σ -a.e., in H2(T). A func-
tion h in Hn×n

2 (T) is called outer if deth is a C-valued outer function, that is, deth satisfies
log |deth(0)| = ∫ π

−π
log |deth(eiθ )|σ(dθ) (cf. [30], Definition 3.1).

For q ∈ N, let {Xk} = {Xk : k ∈ Z} be a C
q -valued, centered, weakly stationary process, de-

fined on a probability space (
,F,P ), which we shall simply call a q-variate stationary process.
Write Xk = (X1

k , . . . ,X
q
k )T, and let M be the complex Hilbert space spanned by all the entries

{Xj
k : k ∈ Z, j = 1, . . . , q} in L2(
,F,P ), which has inner product (x, y)M := E[xy] and norm

‖x‖M := (x, x)
1/2
M . For K ⊂ Z such as {n}, (−∞, n] := {n,n−1, . . . }, [n,∞) := {n,n+1, . . . },

and [m,n] := {m, . . . , n} with m ≤ n, we define the closed subspace MX
K of M by

MX
K := sp

{
X

j
k : j = 1, . . . , q, k ∈ K

}
.

We write (MX
K)⊥ for the orthogonal complement of MX

K in M . Let PK and P ⊥
K be the orthogonal

projection operators of M onto MX
K and (MX

K)⊥, respectively.
Let Mq be the space of Cq -valued random variables on (
,F,P ) whose entries belong to

M . The norm ‖x‖Mq of x = (x1, . . . , xq)T ∈ Mq is given by ‖x‖Mq := (
∑q

i=1 ‖xi‖2
M)1/2. For

K ⊂ Z and x = (x1, . . . , xq)T ∈ Mq , we write PKx for (PKx1, . . . ,PKxq)T. We define P ⊥
K x in

a similar way. For x = (x1, . . . , xq)T and y = (y1, . . . , yq)T in Mq ,

〈x, y〉 := E
[
xy∗]=

⎛
⎜⎜⎜⎝
(
x1, y1)

M

(
x1, y2)

M
· · · (

x1, yq
)
M(

x2, y1)
M

(
x2, y2)

M
· · · (

x2, yq
)
M

...
...

. . .
...(

xq, y1)
M

(
xq, y2)

M
· · · (

xq, yq
)
M

⎞
⎟⎟⎟⎠ ∈ C

q×q

stands for the Gram matrix of x and y.
Let {Xk} be a q-variate stationary process. If there exists a positive q × q Hermitian matrix-

valued function w on T, satisfying w ∈ L
q×q

1 (T) and

〈Xm,Xn〉 =
∫ π

−π

e−i(m−n)θw
(
eiθ

) dθ

2π
, n,m ∈ Z,

then we call w the spectral density of {Xk}. We say that {Xk} is purely nondeterministic (PND)
if
⋂

n∈Z MX
(−∞,n] = {0}. Every PND process {Xk} has spectral density (cf. Section 4 in [38],

Chapter II). We consider the following condition:

{Xk} has spectral density w such that log detw ∈ L1(T). (A)

A necessary and sufficient condition for (A) is that {Xk} is PND and its spectral density w

satisfies detw(eiθ ) > 0, σ -a.e. (see Theorem 6.1 in [38], Chapter II).
In what follows, we assume (A) for {Xk}. Let {X̃k : k ∈ Z} be the time-reversed process of

{Xk}:
X̃k := X−k, k ∈ Z. (2.1)



Baxter’s inequality 1207

Then, since

〈X̃n, X̃m〉 = 〈X−n,X−m〉 =
∫ π

−π

e−i(n−m)θw
(
e−iθ

) dθ

2π
,

{X̃k} has the spectral density w̃ given by

w̃
(
eiθ

)= w
(
e−iθ

)
. (2.2)

In particular, {X̃k} also satisfies (A). The spectral densities w and w̃ have the decompositions

w
(
eiθ

)= h
(
eiθ

)
h
(
eiθ

)∗
, w̃

(
eiθ

)= h̃
(
eiθ

)
h̃
(
eiθ

)∗
, σ -a.e., (2.3)

respectively, for some outer functions h and h̃ in H
q×q

2 (T), and h and h̃ are unique up to constant
unitary factors (see, e.g., [38], Chapter II, and [18], Theorem 11). We define the outer function
h� in H

q×q

2 (T) by

h�(z) := {
h̃(z)

}∗
. (2.4)

Then, h� satisfies

w
(
eiθ

)= h�

(
eiθ

)∗
h�

(
eiθ

)
, σ -a.e. (2.5)

We may take h� = h for the univariate case q = 1 but there is no such simple relation between h

and h� for q ≥ 2. We call h∗h−1
� the phase function of {Xk}. Since

{
h
(
eiθ

)∗
h�

(
eiθ

)−1}∗
h
(
eiθ

)∗
h�

(
eiθ

)−1 = {
h�

(
eiθ

)∗}−1
w
(
eiθ

)
h�

(
eiθ

)−1 = Iq

holds σ -a.e., it is a unitary matrix valued function on T. See Section 4 and [35], page 428.
Let

Xk =
∫ π

−π

e−ikθ�(dθ), k ∈ Z,

be the spectral representation of {Xk}, where � is the C
q -valued random spectral measure such

that (∫ π

−π

φ
(
eiθ

)
�(dθ),

∫ π

−π

ψ
(
eiθ

)
�(dθ)

)
M

=
∫ π

−π

φ
(
eiθ

)
w
(
eiθ

)
ψ
(
eiθ

)∗ dθ

2π

for φ,ψ ∈ L(w) with L(w) being the class of measurable φ : T → C
1×q satisfying∫ π

−π
φ(eiθ )w(eiθ )φ(eiθ )∗σ(dθ) < ∞ (cf. [38], Chapter I). We define a q-variate stationary pro-

cess {ξk : k ∈ Z}, called the forward innovation process of {Xk}, by

ξk :=
∫ π

−π

e−ikθh
(
eiθ

)−1
�(dθ), k ∈ Z. (2.6)

Then, {ξk} satisfies 〈ξn, ξm〉 = δnmIq and

MX
(−∞,n] = M

ξ

(−∞,n], n ∈ Z (2.7)
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(cf. Section 4 in [38], Chapter II), whence, for n ∈ Z, {ξj
k : j = 1, . . . , q, k ≥ n + 1} becomes a

complete orthonormal basis of (MX
(−∞,n])⊥.

On the other hand, the spectral representation of {X̃k} is given by

X̃k =
∫ π

−π

e−ikθ �̃(dθ), k ∈ Z

with the C
q -valued random measure �̃ defined by

�̃(E) := �(−E), E ∈ B
(
(−π,π)

)
, (2.8)

where −E := {−θ : θ ∈ E}. Let {ξ̃k : k ∈ Z} be the forward innovation process of {X̃k} given by

ξ̃k :=
∫ π

−π

e−ikθ h̃
(
eiθ

)−1
�̃(dθ), k ∈ Z. (2.9)

Then, we easily see that {ξ̃k} satisfies 〈ξ̃n, ξ̃m〉 = δnmIq and

MX
[−n,∞) = M

ξ̃

(−∞,n], n ∈ Z, (2.10)

whence, for n ∈ Z, {ξ̃ j
k : j = 1, . . . , q, k ≥ n + 1} becomes a complete orthonormal basis of

(MX
[−n,∞))

⊥. We also call {ξ̃k} the backward innovation process of {Xk}. Then, {ξk} turns out to

be the backward innovation process of {X̃k}.
We define, respectively, the forward MA and AR coefficients ck and ak of {Xk} by

h(z) =
∞∑

k=0

zkck, −h(z)−1 =
∞∑

k=0

zkak, z ∈ D, (2.11)

and the backward MA and AR coefficients c̃k and ãk of {Xk} by

h̃(z) =
∞∑

k=0

zkc̃k, −h̃(z)−1 =
∞∑

k=0

zkãk, z ∈D. (2.12)

It should be noticed that ck and ak (resp., c̃k and ãk) are the backward (resp., forward) MA and
AR coefficients of the time-reversed process {X̃k}, respectively. All of {ck}, {ak}, {c̃k} and {ãk}
are C

q×q -valued sequences, and we have {ck}, {c̃k} ∈ �
q×q

2+ and c0a0 = c̃0ã0 = −Iq . We have the
following forward and backward MA representations of {Xk}, respectively:

Xn =
n∑

k=−∞
cn−kξk, X−n =

n∑
k=−∞

c̃n−kξ̃k, n ∈ Z (2.13)

(cf. Section 4 in [38], Chapter II). If we further assume

{ak}, {ãk} ∈ �
q×q

1+ , (2.14)
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then the following forward and backward AR representations of {Xk}, respectively, also hold:

n∑
k=−∞

an−kXk + ξn = 0,

n∑
k=−∞

ãn−kX−k + ξ̃n = 0, n ∈ Z (2.15)

(see, e.g., the proof of [22], Theorem 4.4). From (2.15), we obtain the following forward and
backward infinite prediction formulas, respectively, for {Xk}:

P(−∞,−1]X0 =
∞∑

k=1

φkX−k, P[1,∞)X0 =
∞∑

k=1

φ̃kXk.

Here

φk := c0ak, φ̃k := c̃0ãk, k ∈N. (2.16)

We call φk (resp., φ̃k) the forward (resp., backward) infinite predictor coefficients of {Xk}. It
should be noticed that φk (resp., φ̃k) are the backward (resp., forward) infinite predictor coeffi-
cients of {X̃k}.

3. A projection theorem

In this section, we present a projection theorem which facilitates finding explicit representations
of the finite predictor coefficients, the finite prediction error covariances and the PACF of a
q-variate stationary process {Xk}, in terms of the Fourier coefficients of the phase function.

Let H be a Hilbert space with inner product (·, ·). Let I : H → H be the identity map. For a
closed subspace A of H , we write PA for the orthogonal projection operator of H onto A and P ⊥

A

for that onto the orthogonal complement A⊥ of A, that is, P ⊥
A = I − PA. For closed subspaces

A and B of H , von Neumann’s Alternating Projection Theorem (cf. [37], Section 9.6.3) states
that (PAPB)n converges to PA∩B as n → ∞ in the strong operator topology. From this, we have
the following projection theorem.

Theorem 3.1 ([22,24]). Let A and B be closed subspaces of H . Then, we have, for x, y ∈ H ,

P ⊥
A∩Bx =

∞∑
k=0

{
P ⊥

B (PAPB)kx + P ⊥
A PB(PAPB)kx

}
, (3.1)

(
P ⊥

A∩Bx,P ⊥
A∩By

) =
∞∑

k=0

{(
P ⊥

B (PAPB)kx,P ⊥
B (PAPB)ky

)
(3.2)

+ (
P ⊥

A PB(PAPB)kx,P ⊥
A PB(PAPB)ky

)}
,

the sum in (3.1) converging strongly.
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The assertion (3.2) (resp., (3.1)) is an abstract form of [22], Theorem 4.1, and [24], Theo-
rem 3.1 (resp., Remarks to [24], Theorem 3.1), and can be proved in a similar way.

For our applications in this paper, we need the next variant.

Theorem 3.2. Let A and B be closed subspaces of H . Then, we have

P ⊥
A∩Ba =

∞∑
k=0

{
P ⊥

B

(
P ⊥

A P ⊥
B

)k
a − (

P ⊥
A P ⊥

B

)k+1
a
}
, a ∈ A, (3.3)

(
P ⊥

A∩Ba1,P
⊥
A∩Ba2

) =
∞∑

k=0

(
P ⊥

B

(
P ⊥

A P ⊥
B

)k
a1, a2

)
, a1, a2 ∈ A, (3.4)

(
P ⊥

A∩Ba,P ⊥
A∩Bb

) = −
∞∑

k=0

((
P ⊥

A P ⊥
B

)k+1
a, b

)
, a ∈ A,b ∈ B, (3.5)

the sum in (3.3) converging strongly.

Proof. If a ∈ A, then

P ⊥
B PAPBa = P ⊥

B

(
I − P ⊥

A

)
PBa = −P ⊥

B P ⊥
A PBa = −P ⊥

B P ⊥
A

(
I − P ⊥

B

)
a

= P ⊥
B P ⊥

A P ⊥
B a.

Hence, we have, for k = 1,2, . . . ,

P ⊥
B (PAPB)ka = P ⊥

B

(
P ⊥

A P ⊥
B

)
(PAPB)k−1a = · · · = P ⊥

B

(
P ⊥

A P ⊥
B

)k
a,

and, for k = 0,1, . . . ,

P ⊥
A PB(PAPB)ka = P ⊥

A

(
I − P ⊥

B

)
(PAPB)ka = −P ⊥

A P ⊥
B (PAPB)ka

= −(
P ⊥

A P ⊥
B

)k+1
a.

Therefore, (3.3) and

(
P ⊥

A∩Ba1,P
⊥
A∩Ba2

) =
∞∑

m=0

{(
P ⊥

B

(
P ⊥

A P ⊥
B

)m
a1,P

⊥
B

(
P ⊥

A P ⊥
B

)m
a2
)

(3.6)
+ ((

P ⊥
A P ⊥

B

)m+1
a1,

(
P ⊥

A P ⊥
B

)m+1
a2
)}

, a1, a2 ∈ A

follow from (3.1) and (3.2), respectively. However, we have, for a1, a2 ∈ A and m = 0,1, . . . ,

(
P ⊥

B

(
P ⊥

A P ⊥
B

)m
a1,P

⊥
B

(
P ⊥

A P ⊥
B

)m
a2
) = (

P ⊥
B

(
P ⊥

A P ⊥
B

)2m
a1, a2

)
,((

P ⊥
A P ⊥

B

)m+1
a1,

(
P ⊥

A P ⊥
B

)m+1
a2
) = (

P ⊥
B

(
P ⊥

A P ⊥
B

)2m+1
a1, a2

)
.
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Thus, (3.4) follows from (3.6).
Let a ∈ A and b ∈ B . Then, (P ⊥

B a,P ⊥
B b) = 0. For m = 1,2, . . . , we have

P ⊥
B (PAPB)mb = P ⊥

B PA(PBPA)m−1b = −(
P ⊥

B P ⊥
A

)m
b,

whence (
P ⊥

B (PAPB)ma,P ⊥
B (PAPB)mb

)= −(
P ⊥

B

(
P ⊥

A P ⊥
B

)m
a,
(
P ⊥

B P ⊥
A

)m
b
)

= −((
P ⊥

A P ⊥
B

)2m
a,b

)
.

Similarly, we have, for m = 0,1, . . . ,

P ⊥
A PB(PAPB)mb = P ⊥

A (PBPA)mb = P ⊥
A

(
P ⊥

B P ⊥
A

)m
b,

whence

(
P ⊥

A PB(PAPB)ma,P ⊥
A PB(PAPB)mb

)= −((
P ⊥

A P ⊥
B

)m+1
a,P ⊥

A

(
P ⊥

B P ⊥
A

)m
b
)

= −((
P ⊥

A P ⊥
B

)2m+1
a, b

)
.

Thus, (3.5) follows from (3.2). �

In the applications of this paper, A and B correspond to the infinite past and future of a multi-
variate stationary process.

4. Fourier coefficients of the phase function

Let {Xk} be a q-variate stationary process satisfying the condition (A), with spectral density w.
Let {X̃k}, h and h� be as in Section 2. We define a sequence {βk}∞k=−∞ as the (minus of the)

Fourier coefficients of the phase function h∗h−1
� :

βk := −
∫ π

−π

e−ikθh
(
eiθ

)∗
h�

(
eiθ

)−1 dθ

2π
, k ∈ Z. (4.1)

Since h∗h−1
� is unitary matrix valued (see Section 2), we see that {βk} ∈ �

q×q

2 (Z). The sequence
{βk} plays a central role in our representation theorems.

Recall the forward and backward innovation processes {ξk} and {ξ̃k}, respectively, of {Xk}
from Section 2.

Lemma 4.1. We assume (A). Then we have

〈ξj , ξ̃k〉 = −βj+k, 〈ξ̃k, ξj 〉 = −β∗
k+j , j, k ∈ Z.
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Proof. From (2.4), (2.8) and (2.9), we see that

ξ̃k :=
∫ π

−π

eikθ
{
h�

(
eiθ

)∗}−1
�(dθ), k ∈ Z.

Combining this with (2.3) and (2.6), we obtain

〈ξj , ξ̃k〉 =
∫ π

−π

e−i(j+k)θh
(
eiθ

)−1
h
(
eiθ

)
h
(
eiθ

)∗
h�

(
eiθ

)−1 dθ

2π

=
∫ π

−π

e−i(j+k)θh
(
eiθ

)∗
h�

(
eiθ

)−1 dθ

2π
= −βj+k,

which also implies the second equality. �

Remark 1. By Lemma 4.1, we have the following mutual representations between {ξk} and {ξ̃k}:

ξj = −
∞∑

k=−∞
βj+kξ̃jk, ξ̃k = −

∞∑
j=−∞

β∗
k+j ξj .

Lemma 4.2. We assume (A). Then, for {sl} ∈ �
q×q

2+ and n ∈ Z, we have

P ⊥[−n,∞)

( ∞∑
l=0

slξl

)
= −

∞∑
j=0

( ∞∑
l=0

slβn+j+l+1

)
ξ̃n+j+1, (4.2)

P ⊥
(−∞,−1]

( ∞∑
l=0

sl ξ̃n+l+1

)
= −

∞∑
j=0

( ∞∑
l=0

slβ
∗
n+j+l+1

)
ξj . (4.3)

In particular, {∑∞
l=0 slβn+j+l+1}∞j=0, {

∑∞
l=0 slβ

∗
n+j+l+1}∞j=0 ∈ �

q×q

2+ .

Proof. By Lemma 4.1, we have 〈∑∞
l=0 slξl, ξ̃n+j+1〉 = −∑∞

l=0 slβn+j+l+1. On the other hand,
{ξ̃ k

n+j+1 : k = 1, . . . , q, j ≥ 0} is a complete orthonormal basis of (MX
[−n,∞))

⊥. Thus (4.2) fol-
lows. We can prove (4.3) in a similar way. �

Remark 2. In Lemma 4.2, the map {sl}∞l=0 �→ {∑∞
l=0 slβn+j+l+1}∞j=0 defines a bounded Hankel

operator �n : �q×q

2+ → �
q×q

2+ with block Hankel matrix

⎛
⎜⎜⎜⎝

βn+1 βn+2 βn+3 · · ·
βn+2 βn+3 βn+4 · · ·
βn+3 βn+4 βn+5 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎠

(cf. [35]), and similarly for {sl}∞l=0 �→ {∑∞
l=0 slβ

∗
n+j+l+1}∞j=0.
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Lemma 4.2 allows one to define, for n ∈ N and k ∈ N ∪ {0}, the sequences {bk
n,j }∞j=0 ∈ �

q×q

2+
by the recursion

b0
n,j = δ0j Iq, b2k+1

n,j =
∞∑
l=0

b2k
n,lβn+j+l+1, b2k+2

n,j =
∞∑
l=0

b2k+1
n,l β∗

n+j+l+1. (4.4)

For n ∈ N, we define the sequence {Wk
n }∞k=0 in Mq by

W 2k
n = P ⊥

(−∞,−1]
(
P ⊥

[−n,∞)P
⊥
(−∞,−1]

)k
X0, k = 0,1, . . . , (4.5)

W 2k+1
n = −(

P ⊥
[−n,∞)P

⊥
(−∞,−1]

)k+1
X0, k = 0,1, . . . . (4.6)

Proposition 4.3. We assume (A). Then, for n ∈N and k ∈N∪ {0}, we have

W 2k
n = c0

∞∑
j=0

b2k
n,j ξj , W 2k+1

n = c0

∞∑
j=0

b2k+1
n,j ξ̃n+j+1 (4.7)

and

〈
W 2k

n ,X0
〉= c0b

2k
n,0c

∗
0,

〈
W 2k+1

n ,X−(n+1)

〉= c0b
2k+1
n,j c̃∗

0 . (4.8)

Proof. Note that, from the definition of Wk
n ,

W 2k+1
n = −P ⊥[−n,∞)W

2k
n , W 2k+2

n = −P ⊥
(−∞,−1]W 2k+1

n .

We prove (4.7) by induction. First, from (2.7) and (2.13), we have

W 0
n = P ⊥

(−∞,−1]X0 = c0ξ0 = c0

∞∑
j=0

b0
n,j ξj .

For k = 0,1, . . . , assume that W 2k
n = c0

∑∞
j=0 b2k

n,j ξj . Then, by (4.2),

W 2k+1
n = −P ⊥

[−n,∞)

(
c0

∞∑
j=0

b2k
n,j ξj

)
= c0

∞∑
j=0

( ∞∑
l=0

b2k
n,lβn+j+l+1

)
ξ̃n+j+1

= c0

∞∑
j=0

b2k+1
n,j ξ̃n+j+1,
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and, by (4.3),

W 2k+2
n = −P ⊥

(−∞,−1]

(
c0

∞∑
j=0

b2k+1
n,j ξ̃n+j+1

)

= c0

∞∑
j=0

( ∞∑
l=0

b2k+1
n,l β∗

n+j+l+1

)
ξj = c0

∞∑
j=0

b2k+2
n,j ξj .

Thus (4.7) follows. We obtain the first (resp., second) equality in (4.8) from the first (resp.,
second) equalities in (4.7) and (2.13). �

Lemma 4.2 also allows one to define, for n ∈ N and k ∈ N ∪ {0}, the sequences {b̃k
n,j }∞j=0 ∈

�
q×q

2+ by the recursion

b̃0
n,j = δ0j Iq, b̃2k+1

n,j =
∞∑
l=0

b̃2k
n,lβ

∗
n+j+l+1, b̃2k+2

n,j =
∞∑
l=0

b̃2k+1
n,l βn+j+l+1. (4.9)

Proposition 4.4. We assume (A). Then, for n ∈ N and k ∈N∪{0}, we have b2k
n,0 ≥ 0 and b̃2k

n,0 ≥ 0.

Proof. Let A = MX
[−n,∞) and B = MX

(−∞,−1]. Then, in the same way as the proof of (3.4) in
Theorem 3.2, we have

〈
W 2k

n ,X0
〉=

{〈
P ⊥

B

(
P ⊥

A P ⊥
B

)m
X0,P

⊥
B

(
P ⊥

A P ⊥
B

)m
X0

〉
, k = 2m: even,〈(

P ⊥
A P ⊥

B

)m+1
X0,

(
P ⊥

A P ⊥
B

)m+1
X0

〉
, k = 2m + 1: odd.

This and the first equality in (4.8) give c0b
2k
n,0c

∗
0 ≥ 0 or b2k

n,0 ≥ 0. The second equality follows

from the first one applied to {X̃k}. �

5. Representation theorems

In this section, we develop explicit representations for the finite predictor coefficients, the finite
prediction error covariances and the PACF of a q-variate stationary process {Xk}, in terms of
the sequence {βj } defined in Section 4. We focus on the one-step ahead predictions to keep the
notation simple.

In deriving the representation theorems for the finite predictors of a q-variate stationary pro-
cess {Xk}, the following intersection of past and future property of {Xk} plays a key role:

MX
(−∞,−1] ∩ MX

[−n,∞) = MX[−n,−1], n = 1,2, . . . . (IPF)

A useful sufficient condition for (IPF) is the following minimality condition:

{Xk} has spectral density w satisfying detw
(
eiθ

)
> 0, σ -a.e.,

and w−1 ∈ L
q×q

1 (T).
(M)
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In fact, by [27], Corollary 3.6, (M) implies (IPF). The condition (M) also implies (A) by [32],
Lemma 2.5 and Theorem 2.8, or more directly by

| log detw| = q
∣∣log(detw)1/q

∣∣≤ q
{
(detw)1/q + (detw)−1/q

}
= q

{
(λ1 · · ·λq)1/q + (

λ−1
1 · · ·λ−1

q

)1/q}
≤ q

{
λ1 + · · · + λq

q
+ λ−1

1 + · · · + λ−1
q

q

}
= Trw + Trw−1,

where λ1, . . . , λq denote the eigenvalues of w and we have used the inequality | logy| ≤ y +
(1/y) for y > 0.

The property (IPF) is closely related to the property

MX
(−∞,−1] ∩ MX

[0,∞) = {0} (CND)

called complete nondeterminacy by [40]. In fact, by [27], Theorem 3.5, (IPF) and (CND) are
equivalent under (A). The condition (CND) is also closely related to the rigidity for matrix-
valued Hardy functions (see [29]). It should be noticed that if {Xk} satisfies (IPF), then so does
the time-reversed process {X̃k}, and that the same holds for (M) and (CND).

Recall Wk
n from (4.5) and (4.6). The next proposition is a direct consequence of (3.3) in The-

orem 3.2.

Proposition 5.1. We assume (IPF). Then, for n ∈N, we have

P ⊥[−n,−1]X0 =
∞∑

k=0

Wk
n ,

the sum converging strongly in Mq .

Proof. The equality follows from (IPF) and (3.3) in Theorem 3.2 applied to A = MX
[−n,∞), B =

MX
(−∞,−1] and a = X

j

0 , j = 1, . . . , q . �

Under (A), and for n ∈ N and k = 1, . . . , n, the forward and backward finite predictor coef-
ficients φn,k ∈ C

q×q and φ̃n,k ∈ C
q×q , respectively, of a q-variate stationary process {Xk} are

defined by

P[−n,−1]X0 = φn,1X−1 + · · · + φn,nX−n, (5.1)

P[−n,−1]X−(n+1) = φ̃n,1X−n + · · · + φ̃n,nX−1. (5.2)

Recall c0, c̃0, βj , b2k
n,j and b̃2k

n,j from (2.11), (2.12), (4.1), (4.4) and (4.9), respectively. Here is

the representation theorem for φn,n and φ̃n,n, which are closely related to the PACF of {Xk}.
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Theorem 5.2. We assume (A) and (IPF). Then, for n ∈ N,

φn,n = c0

∞∑
k=0

( ∞∑
j=0

b2k
n,j βn+j

)
c̃−1

0 , φ̃n,n = c̃0

∞∑
k=0

( ∞∑
j=0

b̃2k
n,j β

∗
n+j

)
c−1

0 .

Proof. Since P ⊥[−n,−1]X0 ≡ −φn,nX−n ≡ −φn,nc̃0ξ̃n mod MX[−n+1,∞), we have

〈
P ⊥[−n,−1]X0, ξ̃n

〉= −φn,nc̃0〈ξ̃n, ξ̃n〉 = −φn,nc̃0.

On the other hand, from Propositions 5.1 and 4.3 and Lemma 4.1, we get

〈
P ⊥[−n,−1]X0, ξ̃n

〉= ∞∑
k=0

〈
W 2k

n , ξ̃n

〉= −c0

∞∑
k=0

( ∞∑
j=0

b2k
n,j βn+j

)
.

Thus the first formula follows. We obtain the second formula by applying the first one to the
time-reversed process {X̃k}, �

For n = 0,1, . . . , we define the forward and backward finite prediction error covariances vn

and ṽn, respectively, of a q-variate stationary process {Xk} by v0 = ṽ0 = 〈X0,X0〉 and

vn := 〈
P ⊥[−n,−1]X0,P

⊥[−n,−1]X0
〉
, n = 1,2, . . . , (5.3)

ṽn := 〈
P ⊥[−n,−1]X−(n+1),P

⊥[−n,−1]X−(n+1)

〉
, n = 1,2, . . . . (5.4)

Notice that ṽn (resp., vn) is the forward (resp., backward) finite prediction error covariance of
the time-reversed process {X̃k}. In this paper, under (A), we fix the definition of the partial
autocorrelation function (PACF) αn of {Xk} by

αn :=
{

(v0)
−1/2〈X0,X−1〉(ṽ0)

−1/2, n = 1,

(vn−1)
−1/2〈P ⊥[−n+1,−1]X0,P

⊥[−n+1,−1]X−n

〉
(ṽn−1)

−1/2, n = 2,3, . . .

(cf. [14]).
The next theorem gives explicit representations for vn, ṽn and αn.

Theorem 5.3. We assume (A) and (IPF). Then, for n ∈ N, we have

vn = c0

( ∞∑
k=0

b2k
n,0

)
c∗

0, ṽn = c̃0

( ∞∑
k=0

b̃2k
n,0

)
c̃∗

0, (5.5)

〈
P ⊥[−n+1,−1]X0,P

⊥[−n+1,−1]X−n

〉= c0

( ∞∑
k=0

b2k+1
n,0

)
c̃∗

0 . (5.6)
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Proof. First, by (IPF) and (3.4) in Theorem 3.2 applied to A = MX
[−n,∞), B = MX

(−∞,−1] and

a1 = Xi
0, a2 = X

j

0(i, j = 1, . . . , q), we have vn = ∑∞
k=0〈W 2k

n ,X0〉. This and (4.8) give the first
equality in (5.5). Next, we obtain the second equality in (5.5) by applying the first one to the
time-reversed process {X̃k}. Finally, by (IPF) and (3.5) in Theorem 3.2 applied to A = MX

[−n,∞),

B = MX
(−∞,−1] and a = Xi

0, b = X
j

−(n+1)(i, j = 1, . . . , q), we have

〈
P ⊥[−n,−1]X0,P

⊥[−n,−1]X−(n+1)

〉= ∞∑
k=0

〈
W 2k+1

n ,X−(n+1)

〉
.

This and (4.8) give (5.6). �

We can prove 〈
P ⊥[−n+1,−1]X0,P

⊥[−n+1,−1]X−n

〉= φn,nṽn−1, n = 2,3, . . . ,

in the same way as in the univariate case (cf. Corollary 5.2.1 in [8]). From this, we have

αn = (vn−1)
−1/2φn,n(ṽn−1)

1/2, n = 1,2, . . . , (5.7)

and so Theorem 5.2 with (5.5) in Theorem 5.3 gives another explicit representation of αn.
We turn to the representation of all the finite predictor coefficients φn,j and φ̃n,j . It turns out

that, to deal with this problem, we need to assume the minimality (M) which is more stringent
than (IPF) or (CND). A q-variate stationary process {Xk} satisfying (M) has a dual process
{X′

k : k ∈ Z}, characterized by the biorthogonality relation 〈Xj ,X
′
k〉 = δjkIq ; see [32] for more

information. Recall ak and ãk from (2.11) and (2.12), respectively. The dual process {X′
k} admits

the following two MA representations:

X′
n = −

∞∑
k=0

a∗
k ξn+k, X′−n = −

∞∑
k=0

ã∗
k ξ̃n+k, n ∈ Z. (5.8)

Here notice that (M) implies

{ak}, {ãk} ∈ �
q×q

2+ . (5.9)

By (5.9), we can also define, for n ∈ N and k, j ∈N∪ {0},

φ2k
n,j := c0

∞∑
l=0

b2k
n,laj+l . φ2k+1

n,j := c0

∞∑
l=0

b2k+1
n,l ãj+l ,

φ̃2k
n,j := c̃0

∞∑
l=0

b̃2k
n,l ãj+l , φ̃2k+1

n,j := c̃0

∞∑
l=0

b̃2k+1
n,l aj+l .

Here is the representation theorem for the finite predictor coefficients.



1218 A. Inoue, Y. Kasahara and M. Pourahmadi

Theorem 5.4. We assume (M). Then, for n = 1,2, . . . and j = 1, . . . , n,

φn,j =
∞∑

k=0

{
φ2k

n,j + φ2k+1
n,n−j+1

}
, φ̃n,j =

∞∑
k=0

{
φ̃2k

n,j + φ̃2k+1
n,n−j+1

}
. (5.10)

Proof. From 〈Xk,X
′
j 〉 = δkj Iq , we have 〈P ⊥[−n,−1]X0,X

′−j 〉 = −φn,j for j = 1, . . . , n, and, from
Proposition 5.1, we find that

〈
P ⊥[−n,−1]X0,X

′−j

〉= ∞∑
k=0

{〈
W 2k

n ,X′−j

〉+ 〈
W 2k+1

n ,X′−j

〉}
.

Moreover, from Proposition 4.3 and (5.8) rewritten as

X′−j = −
∞∑

l=−j

a∗
j+lξl, X′−j = −

∞∑
l=−(n−j+1)

ã∗
n−j+l+1ξ̃n+l+1,

we have

〈
W 2k

n ,X′−j

〉= −c0

∞∑
l=0

b2k
n,laj+l = −φ2k

n,j ,

〈
W 2k+1

n ,X′−j

〉= −c0

∞∑
l=0

b2k+1
n,l ãn−j+l+1 = −φ2k+1

n,n−j+1.

Combining, we obtain the first equality in (5.10). Its second equality follows from the first one
applied to the time-reversed process {X̃k}. �

6. Applications to long-memory processes

In this section, we apply the representation theorems in Section 5 to a q-variate FARIMA process
with common fractional differencing order for all components and derive the asymptotics of the
finite prediction error covariances and the PACF as well as that of the finite predictor coefficients,
and establish Baxter’s inequality.

6.1. Univariate FARIMA processes

We start with some properties of univariate FARIMA(0, d,0) processes which we need in
our perturbation technique below. This technique reduces the study of asymptotic proper-
ties of multivariate FARIMA processes to that of the corresponding problems for univariate
FARIMA(0, d,0) processes.
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For d ∈ (−1/2,1/2) \ {0}, let {Yk : k ∈ Z} be a univariate FARIMA(0, d,0) process with
spectral density

wY

(
eiθ

)= ∣∣1 − eiθ
∣∣−2d

, θ ∈ (−π,π) (6.1)

(see [16,19]; see also [8], Section 13.2). Then u0 := E[|Y0|2] is equal to �(1 − 2d)/�(1 − d)2

and the nth finite predictor coefficients ψn,n of {Yk} (see (5.1)) are given by

ψn,n = d

n − d
, n ∈ N. (6.2)

Let un be the finite prediction error variance of {Yk} defined by (5.3) with {Xk} replaced by {Yk},
for which we use the notation un rather than vn. Then the Durbin–Levinson algorithm implies
un = u0

∏n
k=1{1 − (ψk,k)

2}, whence

un = �(n + 1 − 2d)�(n + 1)

�(n + 1 − d)2
, n = 0,1, . . . . (6.3)

For un, we present next its precise asymptotic behavior.

Proposition 6.1. For d ∈ (−1/2,1/2) \ {0}, we have un = 1 + (d2/n) + O(n−2) as n → ∞.

Proof. By Stirling’s formula �(x) = √
2πe−xxx+(1/2){1 + (1/12x) + O(x−2)} as x → ∞ and

(
n + 1 − 2d

n + 1

)−d

= 1 + 2d2

n
+ O

(
n−2), √

(n + 1 − 2d)(n + 1)

(n + 1 − d)
= 1 + O

(
n−2)

as n → ∞, we have, as n → ∞,

un = �(n + 1 − 2d)�(n + 1)

�(n + 1 − d)2

=
(

1 − d

n + 1 − d

)n+1−d(
1 + d

n + 1 − d

)n+1−d{
1 + 2d2

n
+ O

(
n−2)}.

On the other hand, by l’Hopital’s rule, we have, for a ∈ R,

(
1 + a

x

)x

= ea − a2ea

2x
+ O

(
x−2), x → ∞,

whence, as n → ∞,

(
1 − d

n + 1 − d

)n+1−d(
1 + d

n + 1 − d

)n+1−d

=
{

1 − d2

n
+ O

(
n−2)}.

Combining, we obtain the proposition. �
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Since

1 − eiθ =
{∣∣1 − eiθ

∣∣e(i/2)(θ−π) if 0 < θ < π,∣∣1 − eiθ
∣∣e(i/2)(θ+π) if −π < θ < 0,

the phase function



(
eiθ

) := (
1 − eiθ

)−d
/
(
1 − eiθ

)−d

of the univariate FARIMA(0, d,0) process {Yk} above is given by



(
eiθ

)=
{

eid(θ−π) if 0 < θ < π,

eid(θ+π) if −π < θ < 0.
(6.4)

Therefore, the minus of the Fourier coefficients of the phase function 
(eiθ ) for {Yk}, which we
write as ρn rather than βn, are given by

ρn = −
∫ π

−π

e−inθ

(
eiθ

) dθ

2π
= sin(πd)

π(n − d)
, n ∈ Z. (6.5)

One can also obtain (6.5) using [7], Remark 1 and Lemma 4.4.

Lemma 6.2. Let {sk}∞k=−∞ be a complex sequence such that
∑∞

k=−∞ k2|sk| < ∞. Then, we have

lim
n→∞n

(
ρ−1

n

∞∑
k=−∞

ρn−ksk −
∞∑

k=−∞
sk

)
=

∞∑
k=−∞

ksk.

Proof. Since ρn−k/ρn = (n − d)/(n − k − d), we have

n

(
ρ−1

n

∞∑
k=−∞

ρn−ksk −
∞∑

k=−∞
sk

)
=

∞∑
k=−∞

nksk

n − k − d
. (6.6)

For k ∈ Z, the function fk,d : Z → [0,∞) defined by

fk,d(n) :=
∣∣∣∣ nk

n − k − d

∣∣∣∣=
∣∣∣∣k + k(k + d)

n − (k + d)

∣∣∣∣
takes the maximum value at either n = k − 1, k, or k + 1, whence

max
n∈N

fk,d(n) ≤ max

{
k(k − 1)

1 + d
,

k2

|d| ,
k(k + 1)

1 − d

}
≤ ck2

for some c ∈ (0,∞). Therefore, we have dominated convergence, as n → ∞, on the right of
(6.6), and the sum converges to

∑∞
k=−∞ ksk , as desired. �
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6.2. Multivariate FARIMA processes

Let D := {z ∈ C : |z| ≤ 1} be the closed unit disk in C. We consider the following condition for
g : T →C

q×q :

the entries of g(z) are rational functions in z that have

no poles on D, and detg has no zeros on D.
(C)

The condition (C) implies that g is an outer function in H
q×q

2 (T).

Lemma 6.3. For g : T →C
q×q with (C), there exists g̃ : T →C

q×q that satisfies (C) and

g
(
e−iθ

)
g
(
e−iθ

)∗ = g̃
(
eiθ

)
g̃
(
eiθ

)∗
. (6.7)

The function g̃ is uniquely determined from g up to a constant unitary factor.

Proof. Since the entries of g(1/z) are rational, the lemma follows from the proof of Theo-
rem 10.1 in [38], Chapter I. �

Let g and g̃ be as in Lemma 6.3. As in (2.4), we define the outer function g� in H
q×q

2 (T) by

g�(z) := {
g̃(z)

}∗
. (6.8)

Then, g� satisfies both (C) and

g
(
eiθ

)
g
(
eiθ

)∗ = g�

(
eiθ

)∗
g�

(
eiθ

)
, θ ∈ [−π,π). (6.9)

It should be noticed that the proof of Theorem 10.1 in [38], Chapter I, is constructive, whence so
is the above proof of the existence of g̃ and g�.

Example 3. For c ∈ D, let

g(z) =
(

1 0
1/(1 − cz) 1

)
.

Then g satisfies (C). From the proof of Lemma 6.3 and (6.8), we obtain

g�(z) = 1√
1 − |c|2 + |c|4

⎛
⎝ 1 − |c|2 1

−1 + 1 − |c|2
1 − cz

−|c|2 + 1

1 − cz

⎞
⎠ .

One can also directly check that g� satisfies both (C) and (6.9).

Let d ∈ (−1/2,1/2) \ {0}, and let {Xk} be a q-variate stationary process which has spectral
density w of the form

w
(
eiθ

)= ∣∣1 − eiθ
∣∣−2d

g
(
eiθ

)
g
(
eiθ

)∗, where g : T → C
q×q satisfies (C). (F)
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We call the process {Xk} a q-variate FARIMA process. We easily find that {Xk} satisfies (M),
whence (A) and (IPF) (see Section 5). Let g̃ and g� be as in Lemma 6.3 and (6.8), respectively.
In what follows, as the outer functions h and h̃ for {Xk} in Section 2, we take

h(z) = (1 − z)−dg(z), h̃ = (1 − z)−d g̃(z). (6.10)

Then, h� defined by (2.4) is given by

h�(z) = (1 − z)−dg�(z). (6.11)

From the second equality in (6.10), we see that the time-reversed process {X̃k} of {Xk} is also a
q-variate FARIMA process satisfying (F) with the same differencing order d and g̃ as g.

Let {cn} and {c̃n} be the forward and backward MA coefficients of {Xk}, respectively (see
(2.11) and (2.12)). Then

c0 = h(0) = g(0), c̃0 = h̃(0) = h�(0)∗ = g�(0)∗ = g̃(0). (6.12)

The sequence {βn} for {Xk}, which is defined by (4.1), is given by

βn = −
∫ π

−π

e−inθ

(
eiθ

)
g
(
eiθ

)∗
g�

(
eiθ

)−1 dθ

2π
, n ∈ Z,

with 
(eiθ ) in (6.4).
We define a q × q unitary matrix U by

U := g(1)∗g�(1)−1. (6.13)

Recall the spectral norm ‖a‖ of a ∈ C
q×q from Section 2. The next proposition may be viewed

as an improvement of Proposition 4.5 in [7].

Proposition 6.4. For d ∈ (−1/2,1/2) \ {0}, let {Xk} be a q-variate FARIMA process with (F).
For n ∈ N, define �n,�

′
n ∈Cq×q by

βn = ρn(Iq + �n)U = ρnU
(
Iq + �′

n

)
,

respectively. Then there exists a positive constant M satisfying the two conditions

‖�n‖ ≤ Mn−1, n ∈ N, (6.14)∥∥�′
n

∥∥≤ Mn−1, n ∈ N. (6.15)

Proof. We put G(z) := {g(1/z)}∗. Then g(eiθ )∗g�(e
iθ )−1 = G(eiθ )g�(e

iθ )−1 holds. By the
property (C) for g and g�, there exists an open annulus A containing the unit circle T such
that both G(z) and g�(z)

−1 are holomorphic in A, whence G(z)g�(z)
−1 has the Laurent series

expansion

G(z)g�(z)
−1 =

∞∑
k=−∞

skz
k, z ∈ A.
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Since A ⊃ T, the entries of sk decay exponentially as k → ±∞. Moreover, since βn =∑∞
k=−∞ ρn−ksk and U =∑∞

k=−∞ sk , we have

�n =
(

ρ−1
n

∞∑
k=−∞

ρn−ksk −
∞∑

k=−∞
sk

)
U−1,

�′
n = U−1

(
ρ−1

n

∞∑
k=−∞

ρn−ksk −
∞∑

k=−∞
sk

)
.

Therefore, the proposition follows from Lemma 6.2. �

6.3. Asymptotics of the finite prediction error covariances

In this section, we derive the precise asymptotics of the finite prediction error covariance matrices
for q-variate FARIMA processes with (F).

For d ∈ (−1/2,1/2) \ {0}, let {Xk} be a q-variate FARIMA process with (F). Let vn and ṽn

be the forward and backward finite prediction error covariances of {Xk} defined by (5.3) and
(5.4), respectively. We define the forward and backward infinite prediction error covariances
v∞ ∈C

q×q and ṽ∞ ∈C
q×q , respectively, of {Xk} by

v∞ := 〈
P ⊥

(−∞,−1]X0,P
⊥
(−∞,−1]X0

〉= c0c
∗
0, (6.16)

ṽ∞ := 〈
P ⊥

[1,∞)X0,P
⊥
[1,∞)X0

〉= c̃0c̃
∗
0, (6.17)

where {cn} and {c̃n} are the forward and backward MA coefficients of {Xk}, respectively (see
(2.11) and (2.12)). It should be noticed that ṽ∞ (resp., v∞) is the forward (resp., backward)
infinite prediction error covariance of the time-reversed process {X̃k}.

Theorem 6.5. For d ∈ (−1/2,1/2)\{0}, let {Xk} be a q-variate FARIMA process with (F). Then
(1.4) and (1.5) hold.

Proof. Let un be as in (6.3); it is the nth finite prediction error variance for a univariate frac-
tional ARIMA(0, d,0) process {Yk} with spectral density (6.1). We prove the assertion (1.4) by
comparing vn with un.

From the representation of vn in (5.5), we have

vn − v∞ = c0

( ∞∑
k=1

b2k
n,0

)
c∗

0 .

Similarly, un can be expressed, in terms of {ρj } in (6.5) only, as

un − 1 =
∞∑

k=1

r2k
n,0,
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where, for n ∈ N and k ∈ N ∪ {0}, {rk
n,j }∞k=0 ∈ �2+ is the analogue of {bk

n,l}∞k=0 for {Yk}, defined
by the recursion

r0
n,j = δ0j , rk+1

n,j =
∞∑
l=0

rk
n,lρn+j+l+1. (6.18)

Let �n and M be as in Proposition 6.4. Recall U from (6.13).
From the definitions, we have

b2
n,0 =

∞∑
l=0

βn+l+1β
∗
n+l+1, r2

n,0 =
∞∑
l=0

ρn+l+1ρn+l+1.

Since U is unitary, we have, for j, k ≥ n,

βjβ
∗
k = ρjρk(Iq + �j)

(
Iq + �∗

k

)
.

By Proposition 6.4 and the inequality (1 + x)2 − 1 ≤ 2x(1 + x)2 for x ≥ 0, we have

∥∥(Iq + �j)
(
Iq + �∗

k

)− Iq

∥∥= ∥∥�j + �∗
k + �j�

∗
k

∥∥
≤ (

1 + ‖�j‖
)(

1 + ‖�k‖
)− 1 ≤ (

1 + Mn−1)2 − 1

≤ 2Mn−1(1 + Mn−1)2

for j, k ≥ n. Thus,

∥∥b2
n,0 − r2

n,0Iq

∥∥≤ 2Mn−1(1 + Mn−1)2
r2
n,0, n ∈N.

In the same way, we have, for k = 1, . . . ,

∥∥b2k
n,0 − r2k

n,0Iq

∥∥≤ 2kMn−1(1 + Mn−1)2k
r2k
n,0, n ∈ N.

Take t > 1 such that t2 sin(π |d|) < 1. Define τ2k ∈ (0,∞) by

(
π−1 arcsinx

)2 =
∞∑

k=1

τ2kx
2k, |x| < 1 (6.19)

(cf. Lemma 3.1 in [26]). Then, as in the proof of Proposition 3.2 in [26], there exists an N ∈ N

such that

1 + Mn−1 ≤ t, r2k
n,0 ≤ n−1{t sin

(
π |d|)}2k

τ2k (k ∈N, n ≥ N).
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Combining, we have, for n ≥ N ,

∥∥n(vn − v∞) − n(un − 1)v∞
∥∥≤ ‖c0‖2

∞∑
k=1

n
∥∥b2k

n,0 − r2k
n,0Iq

∥∥

≤ n−1M‖c0‖2
∞∑

k=1

2kτ2k

{
t2 sin

(
π |d|)}2k

,

whence ‖n(vn − v∞) − n(un − 1)v∞‖ = O(n−1) as n → ∞. This and Proposition 6.1 yield
(1.4). We obtain (1.5) by applying (1.4) to the time-reversed process {X̃k}. �

6.4. Asymptotics of the PACF

In this section, we derive the precise asymptotics of the PACF for a q-variate FARIMA process
{Xk} with (F). Recall U from (6.13). As above, {cn} and {c̃n} denote the forward and backward
MA coefficients of {Xk}, respectively (see (2.11) and (2.12)).

First, we consider the asymptotics of φn,n in (5.1).

Theorem 6.6. Let d ∈ (−1/2,1/2) \ {0}, and let {Xk} be a q-variate FARIMA process with (F).
Then

φn,n = d

n
c0Uc̃−1

0 + O
(
n−2), n → ∞.

Proof. The proof is similar to that of Theorem 6.5. From the representation of φn,n in Theo-
rem 5.2, we have

φn,n = c0

( ∞∑
k=0

φk
n

)
c̃−1

0 with φk
n :=

∞∑
j=0

b2k
n,j βn+j .

Similarly, the scalar coefficient ψn,n for a univariate FARIMA(0, d,0) process {Yk}, which is
given by (6.2), can be expressed, in terms of {ρj } in (6.5) only, as

ψn,n =
∞∑

k=0

ψk
n with ψk

n :=
∞∑

j=0

r2k
n,j ρn+j ,

where rk
n,j are defined by the recursion (6.18). We define ε := d/|d| so that |ρn| = ερn. Let �n

and M be as in Proposition 6.4.
First, since

φ0
n = βn = ρn(Iq + �n)U, ψ0

n = ρn,

it follows from Proposition 6.4 that∥∥φ0
n − ψ0

nU
∥∥≤ Mn−1ερn = Mn−1εψ0

n .
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Next, we have

φ1
n =

∞∑
j=0

( ∞∑
l=0

βn+l+1β
∗
n+j+l+1

)
βn+j ,

ψ1
n =

∞∑
j=0

( ∞∑
l=0

ρn+l+1ρn+j+l+1

)
ρn+j .

Then, since U is unitary, we have, for j, k, l ≥ n,

βjβ
∗
k βl = ρjρkρl(Iq + �j)

(
Iq + �∗

k

)
(Iq + �l)U.

By Proposition 6.4 and the inequality (1 + x)3 − 1 ≤ 3x(1 + x)3 for x ≥ 0, we have

∥∥(Iq + �j)
(
Iq + �∗

k

)
(Iq + �l) − Iq

∥∥
= ∥∥�j + �∗

k + �l + �j�
∗
k + �j�l + �∗

k�l + �j�
∗
k�l

∥∥
≤ (

1 + ‖�j‖
)(

1 + ‖�k‖
)(

1 + ‖�l‖
)− 1 ≤ (

1 + Mn−1)3 − 1

≤ 3Mn−1(1 + Mn−1)3

for j, k, l ≥ n. Thus,

∥∥φ1
n − ψ1

nU
∥∥≤ 3Mn−1(1 + Mn−1)3

εψ1
n, n ∈ N.

In the same way, we have, for k = 0,1, . . . ,

∥∥φk
n − ψk

nU
∥∥≤ (2k + 1)Mn−1(1 + Mn−1)2k+1

εψk
n, n ∈N.

Take t > 1 such that t2 sin(π |d|) < 1. Define τ2k+1 ∈ (0,∞) by

π−1 arcsinx =
∞∑

k=0

τ2k+1x
2k+1, |x| < 1 (6.20)

(cf. Lemma 3.1 in [26]). Then, as in the proof of Proposition 3.2 in [26], there exists an N ∈ N

such that

1 + Mn−1 ≤ t, εψk
n ≤ n−1{t sin

(
π |d|)}2k+1

τ2k+1
(
k ∈N∪ {0}, n ≥ N

)
.



Baxter’s inequality 1227

Combining, we have, for n ≥ N ,∥∥∥∥nφn,n − n

n − d
dc0Uc̃−1

0

∥∥∥∥
= n

∥∥φn,n − ψn,nc0Uc̃−1
0

∥∥≤ ‖c0‖
∥∥c̃−1

0

∥∥ ∞∑
k=0

n
∥∥φk

n − ψk
nU

∥∥

≤ n−1‖c0‖
∥∥c̃−1

0

∥∥M ∞∑
k=0

(2k + 1)τ2k+1
{
t2 sin

(
π |d|)}2k+1

,

whence ‖nφn,n − dc0Uc̃−1
0 ‖ = O(n−1) as n → ∞. Thus, the theorem follows. �

Recall v∞ and ṽ∞ from (6.16) and (6.17), respectively. Notice that v
−1/2∞ c0 (resp., ṽ

−1/2∞ c̃0) is
the polar part of c0 (resp., c̃0). Recall the PACF αn of {Xk} from Section 5. The above theorem
gives the following rate of convergence for αn as n → ∞.

Theorem 6.7. Let d ∈ (−1/2,1/2) \ {0}, and let {Xk} be a q-variate FARIMA process with (F).
Then (1.6) holds with the unitary matrix V ∈C

q×q given by

V := v
−1/2∞ c0 · U · (ṽ−1/2∞ c̃0

)∗
.

Proof. From the first equality in (5.5) in Theorem 5.3 and Proposition 4.4, we have vn ≥ v∞.
Therefore, we see from Theorem 6.5 and [4], Theorem X.3.7, that ‖v1/2

n − v
1/2∞ ‖ = O(n−1) as

n → ∞. Similarly, we have ṽ
1/2
n = ṽ

1/2∞ + O(n−1) as n → ∞.
From vn ≥ v∞ and [4], Propositions V.1.6 and V.1.8, we have v

−1/2
n ≤ v

−1/2∞ , so that
‖v−1/2

n ‖ ≤ ‖v−1/2∞ ‖. Hence, as n → ∞,∥∥v−1/2
n − v

−1/2∞
∥∥= ∥∥v−1/2

n

(
v

1/2∞ − v
1/2
n

)
v

−1/2∞
∥∥

≤ ∥∥v−1/2∞
∥∥2∥∥v1/2

n − v
1/2∞

∥∥= O
(
n−1).

Combining these with (5.7) and Theorem 6.6, we have

nαn = v
−1/2
n−1 · nφn,n · ṽ1/2

n−1

= {
v

−1/2∞ + O
(
n−1)}{dc0Uc̃−1

0 + O
(
n−1)}{ṽ1/2∞ + O

(
n−1)}

= dv
−1/2∞ c0 · U · (ṽ−1/2∞ c̃0

)∗ + O
(
n−1)

as n → ∞. Thus, the theorem follows. �

Remark 4. If we choose g and g̃ so that both g(0) ≥ 0 and g̃(0) ≥ 0 hold, then we see from

(6.12), (6.16) and (6.17) that c0 = v
1/2∞ and c̃0 = ṽ

1/2∞ , whence V = U .
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6.5. Baxter’s inequality

In this section, we present Baxter’s inequality for multivariate FARIMA processes with 0 < d <

1/2. It extends the corresponding univariate result in [26].
For d ∈ (−1/2,1/2) \ {0}, let {Xk} be a q-variate FARIMA process with (F). Recall the for-

ward and backward AR coefficients an and ãn of {Xk} from (2.11) and (2.12), respectively. They
satisfy ∥∥∥∥n1+dan + 1

�(−d)
g(1)−1

∥∥∥∥= O
(
n−1), n → ∞, (6.21)

∥∥∥∥n1+d ãn + 1

�(−d)

{
g�(1)∗

}−1
∥∥∥∥= O

(
n−1), n → ∞ (6.22)

(cf. [23], Lemma 2.2). In particular, we have

lim
n→∞n1+d‖an‖ = ‖g(1)−1‖

|�(−d)| , (6.23)

lim
n→∞n1+d‖ãn‖ = ‖{g�(1)∗}−1‖

|�(−d)| . (6.24)

We see from (6.23) and (6.24) that (2.14) holds if 0 < d < 1/2.
Recall φn,k and φk from (5.1) and (2.16), respectively.

Theorem 6.8. For d ∈ (0,1/2), let {Xk} be a q-variate FARIMA process with (F). Then the
forward finite and infinite predictor coefficients φn,k and φk , respectively, of {Xk} satisfy

n∑
j=1

‖φn,j − φj‖ = O
(
n−d

)
, n → ∞.

Proof. For k = 0,1, . . . , we show by induction on k that

∥∥bk
n,l

∥∥≤ (
1 + Mn−1)krk

n,l , n ∈N, l ∈N∪ {0}, (6.25)

where M is a positive constant satisfying (6.14) and rk
n,l are defined by (6.18). Indeed, the case

k = 0 is evident by the definitions b0
n,l = δ0lIq and r0

n,l = δ0l . Assuming (6.25) for k ≥ 0, we see
from Proposition 6.4 that

∥∥bk+1
n,l

∥∥≤
∞∑

m=0

∥∥bk
n,m

∥∥‖βn+l+m+1‖

≤ (
1 + Mn−1)k+1

∞∑
m=0

rk
n,mρn+l+m+1 = (

1 + Mn−1)k+1
rk+1
n,l .
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Thus (6.25) also holds for k + 1.
Define τk ∈ (0,∞) by (6.19) and (6.20). Then we see from Proposition 3.2 in [26] that, for

any t > 1, there exits an N ∈N such that

nrk
n,l ≤ τk

{
t sin(πd)

}k
, 1 + Mn−1 ≤ t

(
l ∈N∪ {0}, k ∈ N, n ≥ N

)
.

Here we take t > 1 such that t2 sin(πd) < 1. Then, from (6.25),

n

∞∑
k=1

∥∥bk
n,l

∥∥≤
∞∑

k=1

τk

{
t2 sin(πd)

}k
< ∞, l ∈N∪ {0}, n ≥ N. (6.26)

From φj = c0aj = c0
∑∞

l=0 b0
n,laj+l and Theorem 5.4, we have

φn,j − φj = c0

∞∑
k=1

∞∑
l=0

b2k
n,laj+l + c0

∞∑
k=0

∞∑
l=0

b2k+1
n,l ãn−j+l+1,

whence
n∑

j=1

‖φn,j − φj‖ ≤
n∑

j=1

∞∑
l=0

Rj+l

∞∑
k=1

∥∥bk
n,l

∥∥,
where Rj = max{‖φj‖,‖φ̃j‖}. Since n1+dRn is bounded by (6.23) and (6.24), we have, for
n ∈N,

n−1+d

n∑
j=1

∞∑
l=j

Rl ≤
{

sup
l∈N

l1+dRl

}{
sup
m∈N

m−1+d

m∑
j=1

∞∑
l=j

l−1−d

}
< ∞.

Hence we see from (6.26) that, for n ≥ N ,

nd

n∑
j=1

‖φn,j − φj‖ ≤
{ ∞∑

k=1

τk

{
r2 sin(πd)

}k

}{
sup
m∈N

m−1+d

m∑
j=1

∞∑
l=j

Rl

}
< ∞.

The desired result follows from this. �

Since φn = c0an, we see from (6.21) that∥∥∥∥n1+dφn + 1

�(−d)
c0g(1)−1

∥∥∥∥= O
(
n−1), n → ∞.

In particular,

lim
n→∞n1+d‖φn‖ = ‖c0g(1)−1‖

|�(−d)| .
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From this and [6], Proposition 1.5.8, we obtain the following asymptotic behavior of∑∞
j=n+1 ‖φj‖ as n → ∞:

lim
n→∞nd

∞∑
j=n+1

‖φj‖ = ‖c0g(1)−1‖
�(1 − d)

. (6.27)

Here is Baxter’s inequality for multivariate FARIMA processes with 0 < d < 1/2.

Theorem 6.9. For d ∈ (0,1/2), let {Xk} be a q-variate FARIMA process with (F), and let φn,k

and φn be as in Theorem 6.8. Then, there exists a positive constant K such that (1.3) holds.

Proof. In view of (6.27), Theorem 6.8 gives the desired assertion. �

By applying Theorem 6.9 to the time-reversed process {X̃k}, we immediately obtain the fol-
lowing backward Baxter inequality.

Corollary 6.10. For d ∈ (0,1/2), let {Xk} be a q-variate FARIMA process with (F), and let φ̃n,k

and φ̃k be the backward finite and infinite predictor coefficients, respectively, of {Xk}. Then, there
exists a positive constant K̃ such that

n∑
j=1

‖φ̃n,j − φ̃j‖ ≤ K̃

∞∑
j=n+1

‖φ̃j‖, n ∈N. (6.28)

Acknowledgements

We would like to thank the anonymous referees for their helpful comments. M. Pourahmadi was
supported by the NFS Grant DMS-13-09586.

References

[1] Baillie, R.T. and Kapetanios, G. (2013). Estimation and inference for impulse response functions from
univariate strongly persistent processes. Econom. J. 16 373–399. MR3146771

[2] Baxter, G. (1962). An asymptotic result for the finite predictor. Math. Scand. 10 137–144. MR0149584
[3] Berk, K.N. (1974). Consistent autoregressive spectral estimates. Ann. Statist. 2 489–502. MR0421010
[4] Bhatia, R. (1997). Matrix Analysis. New York: Springer. MR1477662
[5] Bingham, N.H. (2012). Multivariate prediction and matrix Szegö theory. Probab. Surv. 9 325–339.

MR2956574
[6] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1989). Regular Variation. Cambridge: Cambridge

Univ. Press. MR1015093
[7] Bingham, N.H., Inoue, A. and Kasahara, Y. (2012). An explicit representation of Verblunsky coeffi-

cients. Statist. Probab. Lett. 82 403–410. MR2875229
[8] Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods, 2nd ed. New York:

Springer. MR1093459

http://www.ams.org/mathscinet-getitem?mr=3146771
http://www.ams.org/mathscinet-getitem?mr=0149584
http://www.ams.org/mathscinet-getitem?mr=0421010
http://www.ams.org/mathscinet-getitem?mr=1477662
http://www.ams.org/mathscinet-getitem?mr=2956574
http://www.ams.org/mathscinet-getitem?mr=1015093
http://www.ams.org/mathscinet-getitem?mr=2875229
http://www.ams.org/mathscinet-getitem?mr=1093459


Baxter’s inequality 1231

[9] Bühlmann, P. (1995). Moving-average representation of autoregressive approximations. Stochastic
Process. Appl. 60 331–342. MR1376807

[10] Bühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli 3 123–148. MR1466304
[11] Cheng, R. and Pourahmadi, M. (1993). Baxter’s inequality and convergence of finite predictors of

multivariate stochastic processes. Probab. Theory Related Fields 95 115–124. MR1207310
[12] Chung, C.-F. (2001). Calculating and analyzing impulse responses for the vector ARFIMA model.

Econom. Lett. 71 17–25. MR1821722
[13] Damanik, D., Pushnitski, A. and Simon, B. (2008). The analytic theory of matrix orthogonal polyno-

mials. Surv. Approx. Theory 4 1–85. MR2379691
[14] Dègerine, S. (1990). Canonical partial autocorrelation function of a multivariate time series. Ann.

Statist. 18 961–971. MR1056346
[15] Ginovian, M.S. (1999). Asymptotic behavior of the prediction error for stationary random sequences.

Izv. Nats. Akad. Nauk Armenii Mat. 34 18–36. MR1854056
[16] Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-memory time series models and frac-

tional differencing. J. Time Series Anal. 1 15–29. MR0605572
[17] Hannan, E.J. and Deistler, M. (1988). The Statistical Theory of Linear Systems. New York: Wiley.

MR0940698
[18] Helson, H. and Lowdenslager, D. (1961). Prediction theory and Fourier series in several variables. II.

Acta Math. 106 175–213. MR0176287
[19] Hosking, J.R.M. (1981). Fractional differencing. Biometrika 68 165–176. MR0614953
[20] Ibragimov, I.A. and Solev, V.N. (1968). Asymptotic behavoir of the prediction error of a stationary

sequence with a spectral density of special form. Theory Probab. Appl. 13 703–707.
[21] Ing, C.-K., Chiou, H.-T. and Guo, M. (2016). Estimation of inverse autocovariance matrices for long

memory processes. Bernoulli 22 1301–1330. MR3474817
[22] Inoue, A. (2000). Asymptotics for the partial autocorrelation function of a stationary process. J. Anal.

Math. 81 65–109. MR1785278
[23] Inoue, A. (2002). Asymptotic behavior for partial autocorrelation functions of fractional ARIMA

processes. Ann. Appl. Probab. 12 1471–1491. MR1936600
[24] Inoue, A. (2008). AR and MA representation of partial autocorrelation functions, with applications.

Probab. Theory Related Fields 140 523–551. MR2365483
[25] Inoue, A. and Kasahara, Y. (2004). Partial autocorrelation functions of the fractional ARIMA pro-

cesses with negative degree of differencing. J. Multivariate Anal. 89 135–147. MR2041213
[26] Inoue, A. and Kasahara, Y. (2006). Explicit representation of finite predictor coefficients and its ap-

plications. Ann. Statist. 34 973–993. MR2283400
[27] Inoue, A., Kasahara, Y. and Pourahmadi, M. (2016). The intersection of past and future for multivariate

stationary processes. Proc. Amer. Math. Soc. 144 1779–1786. MR3451253
[28] Kasahara, Y. and Bingham, N.H. (2014). Verblunsky coefficients and Nehari sequences. Trans. Amer.

Math. Soc. 366 1363–1378. MR3145734
[29] Kasahara, Y., Inoue, A. and Pourahmadi, M. (2016). Rigidity for matrix-valued Hardy functions.

Integral Equations Operator Theory 84 289–300. MR3456943
[30] Katsnelson, V.E. and Kirstein, B. (1997). On the theory of matrix-valued functions belonging to the

Smirnov class. In Topics in Interpolation Theory (Leipzig, 1994). Oper. Theory Adv. Appl. 95 299–350.
Basel: Birkhäuser. MR1473261

[31] Kreiss, J.-P., Paparoditis, E. and Politis, D.N. (2011). On the range of validity of the autoregressive
sieve bootstrap. Ann. Statist. 39 2103–2130. MR2893863

[32] Masani, P. (1960). The prediction theory of multivariate stochastic processes. III. Unbounded spectral
densities. Acta Math. 104 141–162. MR0121952

http://www.ams.org/mathscinet-getitem?mr=1376807
http://www.ams.org/mathscinet-getitem?mr=1466304
http://www.ams.org/mathscinet-getitem?mr=1207310
http://www.ams.org/mathscinet-getitem?mr=1821722
http://www.ams.org/mathscinet-getitem?mr=2379691
http://www.ams.org/mathscinet-getitem?mr=1056346
http://www.ams.org/mathscinet-getitem?mr=1854056
http://www.ams.org/mathscinet-getitem?mr=0605572
http://www.ams.org/mathscinet-getitem?mr=0940698
http://www.ams.org/mathscinet-getitem?mr=0176287
http://www.ams.org/mathscinet-getitem?mr=0614953
http://www.ams.org/mathscinet-getitem?mr=3474817
http://www.ams.org/mathscinet-getitem?mr=1785278
http://www.ams.org/mathscinet-getitem?mr=1936600
http://www.ams.org/mathscinet-getitem?mr=2365483
http://www.ams.org/mathscinet-getitem?mr=2041213
http://www.ams.org/mathscinet-getitem?mr=2283400
http://www.ams.org/mathscinet-getitem?mr=3451253
http://www.ams.org/mathscinet-getitem?mr=3145734
http://www.ams.org/mathscinet-getitem?mr=3456943
http://www.ams.org/mathscinet-getitem?mr=1473261
http://www.ams.org/mathscinet-getitem?mr=2893863
http://www.ams.org/mathscinet-getitem?mr=0121952


1232 A. Inoue, Y. Kasahara and M. Pourahmadi

[33] Meyer, M., Jentsch, C. and Kreiss, J.-P. (2017). Baxter’s inequality and sieve bootstrap for random
fields. Bernoulli 23 2988–3020. MR3654797

[34] Meyer, M., McMurry, T. and Politis, D. (2015). Baxter’s inequality for triangular arrays. Math. Meth-
ods Statist. 24 135–146. MR3366950

[35] Peller, V.V. (2003). Hankel Operators and Their Applications. New York: Springer. MR1949210
[36] Poskitt, D.S., Grose, S.D. and Martin, G.M. (2015). Higher-order improvements of the sieve bootstrap

for fractionally integrated processes. J. Econometrics 188 94–110. MR3371662
[37] Pourahmadi, M. (2001). Foundations of Time Series Analysis and Prediction Theory. New York: Wi-

ley. MR1849562
[38] Rozanov, Yu.A. (1967). Stationary Random Processes. San Francisco: Holden-Day. MR0214134
[39] Rupasinghe, M. and Samaranayake, V.A. (2012). Asymptotic properties of sieve bootstrap prediction

intervals for FARIMA processes. Statist. Probab. Lett. 82 2108–2114. MR2979746
[40] Sarason, D. (1978). Function Theory on the Unit Circle. Blacksburg, VA: Virginia Polytechnic In-

stitute and State Univ. Notes for lectures given at a Conference at Virginia Polytechnic Institute and
State University, Blacksburg, Va., June 19–23, 1978. MR0521811

Received January 2016 and revised May 2016

http://www.ams.org/mathscinet-getitem?mr=3654797
http://www.ams.org/mathscinet-getitem?mr=3366950
http://www.ams.org/mathscinet-getitem?mr=1949210
http://www.ams.org/mathscinet-getitem?mr=3371662
http://www.ams.org/mathscinet-getitem?mr=1849562
http://www.ams.org/mathscinet-getitem?mr=0214134
http://www.ams.org/mathscinet-getitem?mr=2979746
http://www.ams.org/mathscinet-getitem?mr=0521811

	Introduction
	Preliminaries
	A projection theorem
	Fourier coefﬁcients of the phase function
	Representation theorems
	Applications to long-memory processes
	Univariate FARIMA processes
	Multivariate FARIMA processes
	Asymptotics of the ﬁnite prediction error covariances
	Asymptotics of the PACF
	Baxter's inequality

	Acknowledgements
	References

