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We consider the problem of estimating an unknown n1 × n2 matrix θ∗ from noisy observations under the
constraint that θ∗ is nondecreasing in both rows and columns. We consider the least squares estimator
(LSE) in this setting and study its risk properties. We show that the worst case risk of the LSE is n−1/2,
up to multiplicative logarithmic factors, where n = n1n2 and that the LSE is minimax rate optimal (up to
logarithmic factors). We further prove that for some special θ∗, the risk of the LSE could be much smaller
than n−1/2; in fact, it could even be parametric, that is, n−1 up to logarithmic factors. Such parametric
rates occur when the number of “rectangular” blocks of θ∗ is bounded from above by a constant. We also
derive an interesting adaptation property of the LSE which we term variable adaptation – the LSE adapts
to the “intrinsic dimension” of the problem and performs as well as the oracle estimator when estimating
a matrix that is constant along each row/column. Our proofs, which borrow ideas from empirical process
theory, approximation theory and convex geometry, are of independent interest.

Keywords: adaptation; bivariate isotonic regression; metric entropy bounds; minimax lower bound; oracle
inequalities; tangent cone; variable adaptation

1. Introduction

This paper studies the problem of estimating an unknown n1 × n2 matrix θ∗ under the con-
straint that θ∗ is nondecreasing in both rows and columns. In order to put this problem and
our results in proper context, consider first the problem of estimating an unknown nondecreas-
ing sequence under Gaussian measurements. Specifically, consider the problem of estimating
θ∗ = (θ∗

1 , . . . , θ∗
n ) ∈ R

n from observations

yi = θ∗
i + εi for i = 1, . . . , n

under the constraint that the unknown sequence θ∗ satisfies θ∗
1 ≤ · · · ≤ θ∗

n . Here the unobserved
errors ε1, . . . , εn are i.i.d. N(0, σ 2) with σ > 0 unknown. We refer to this as the vector isotonic
estimation problem. This is a special case of univariate isotonic regression and has a long history;
see, for example, Brunk [5], Ayer et al. [1], and van Eeden [21]. The most commonly used
estimator here is the least squares estimator (LSE) defined as

θ̂ := argmin
θ∈Cn

n∑
i=1

(yi − θi)
2 where Cn := {

θ ∈ R
n : θ1 ≤ · · · ≤ θn

}
. (1.1)
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The behavior of θ̂ as an estimator of θ∗ is most naturally studied in terms of the risk:

Rvec
(
θ∗, θ̂

) := 1

n
Eθ∗

∥∥θ̂ − θ∗∥∥2
,

where ‖ · ‖ denotes the usual Euclidean norm. The subscript vec is used to indicate that this
denotes the risk in the vector estimation problem. This risk Rvec(θ

∗, θ̂ ) has been studied by a
number of authors including van de Geer [22,23], Donoho [11], Birgé and Massart [4], Wang
[28], Meyer and Woodroofe [16], Zhang [29] and Chatterjee et al. [8]. Zhang [29], among other
things, showed the existence of a universal positive constant C such that

Rvec
(
θ∗, θ̂

) ≤ C

{(
σ 2√D(θ∗)

n

)2/3

+ σ 2 logn

n

}
. (1.2)

with D(θ∗) := (θ∗
n − θ∗

1 )2. This result shows that the risk of θ̂ is no more than n−2/3 (ignoring
constant factors) provided D(θ∗) is bounded from above by a constant. It can be proved that
n−2/3 is the minimax rate of estimation in this problem (see, e.g., Zhang [29]). Throughout the
paper, C will denote a universal positive constant even though its exact value might change from
place to place.

A complementary upper bound on Rvec(θ
∗, θ̂ ) has been proved recently by Bellec [3] who

showed that

Rvec
(
θ∗, θ̂

) ≤ inf
θ∈Cn

(‖θ∗ − θ‖2

n
+ σ 2k(θ)

n
(log en)

)
, (1.3)

where k(θ) is the cardinality of the set {θ1, . . . , θn}. This result is an improvement of a previous
result by Chatterjee et al. [8] where inequality (1.3) was proved with an additional constant
multiplicative factor.

The two bounds (1.2) and (1.3) provide a holistic understanding of the global accuracy of
the LSE θ̂ in vector isotonic estimation: its risk can never be larger than the minimax rate
(σ 2√D(θ∗)/n)2/3 while it can be the parametric rate σ 2/n, up to logarithmic multiplicative
factors, if θ∗ can be well approximated by θ ∈ Cn with small k(θ). We refer to (1.2) as the worst
case risk bound of the LSE and to (1.3) as the adaptive risk bound (adaptive because it states that
the risk of the LSE is smaller than the worst case rate for certain special θ∗).

The goal of this paper is to extend both these worst case and adaptive risk bounds to the case
of matrix isotonic estimation. Matrix isotonic estimation refers to the problem of estimating an
unknown matrix θ∗ = (θ∗

ij ) ∈R
n1×n2 from observations

yij = θ∗
ij + εij for i = 1, . . . , n1, j = 1, . . . , n2, (1.4)

where θ∗ is constrained to lie in

M := {
θ ∈R

n1×n2 : θ ij ≤ θkl whenever i ≤ k and j ≤ l
}
,

and the random errors εij ’s are i.i.d. N(0, σ 2), with σ 2 > 0 unknown. We refer to any matrix
in M as an isotonic matrix. Throughout, we let n := n1n2 denote the product of n1 and n2. As
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a notational convention, throughout the paper, we denote matrices in boldface and the (i, j)th
entry of a matrix A will simply be denoted by Aij .

Monotonicity restrictions on matrices are increasingly being used as a key component of latent
variable based models for the estimation of matrices and graphs. Two such examples are: (1) the
estimation of graphons under monotonicity constraints (see Chatterjee and Mukherjee [10]), and
(2) the nonparametric Bradley–Terry model (see Chatterjee [7], Shah et al. [20]). In both of these
examples, the unknown matrix satisfies monotonicity constraints similar to the ones studied here.
But the observation model is more complicated because of the presence of latent permutations.
Nevertheless, studying the matrix isotonic estimation problem described above is a first step
towards understanding the estimation properties in these more complicated models. The proof
technique in this paper has been adapted and put to use in [10] and [20].

Specifically, in Chatterjee and Mukherjee [10], the parameter space considered is {�T θ� :
θ ∈ M,� is a permutation matrix} where M is the space of n × n isotonic matrices considered
in this paper. The loss function considered is given by the usual Frobenius norm squared. This
problem actually reduces to the problem studied in this paper when the latent permutation is
known, albeit with Bernoulli noise. The estimator considered in [10] is a two step estimator,
which first estimates the unknown permutation by sorting the row sums of the observed data ma-
trix and then uses the projection operator on the space M. The analysis of the two step estimator
borrows heavily from the techniques used in this paper for the projection step.

The matrix isotonic estimation problem also has a direct connection to bivariate isotonic
regression. Bivariate isotonic regression is the problem of estimating a regression function
f : [0,1]2 → R which is known to be coordinate-wise nondecreasing (i.e., if s1 ≤ t1 and s2 ≤ t2,
where (s1, s2), (t1, t2) ∈ [0,1]2, then f (s1, s2) ≤ f (t1, t2)), from observations

yij = f (i/n1, j/n2) + εij for i = 1, . . . , n1, j = 1, . . . , n2. (1.5)

Identifying f (i/n1, j/n2) ≡ θ∗
ij we see that (1.4) and (1.5) are equivalent problems. Equa-

tion (1.5) is possibly the simplest example of a multivariate shape constrained regression problem
and arises quite often in production planning and inventory control; see, for example, the classical
textbooks Barlow et al. [2] and Robertson et al. [19] on this subject.

Let us now introduce the LSE in matrix isotonic estimation. Let y = (yij ) denote the matrix

(of order n1 × n2) of the observed response. The LSE, θ̂ , is defined as the minimizer of the
squared Frobenius norm, ‖y − θ‖2, over θ ∈ M, that is,

θ̂ := argmin
θ∈M

n1∑
i=1

n2∑
j=1

(yij − θ ij )
2. (1.6)

Because M is a closed convex cone in R
n1×n2 (which is the space of all n1 × n2 matrices), the

LSE θ̂ exists uniquely. Further, it can be computed efficiently by an iterative algorithm (see, e.g.,
Gebhardt [13] and Robertson et al. [19], Chapter 1); this is in spite of the fact that it is defined as
the solution of a quadratic program with O(n2) linear constraints.

It is fair to say that not much is known about the behavior of θ̂ as an estimator of θ∗. The
only result known in this direction is the consistency of θ̂ ; see, for example, Hanson et al. [14],
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Makowski [15] and Robertson and Wright [18]. In this paper, we study the risk of θ̂ as an esti-
mator of θ∗, defined as

R
(
θ∗, θ̂

) := Eθ∗�2(θ∗, θ̂
)

where �2(θ∗, θ
) := 1

n

n1∑
i=1

n2∑
j=1

(
θ∗

ij − θ ij

)2
.

Here Eθ∗ denotes the expectation taken with respect to y having the distribution given by (1.4).
Also, throughout the paper, we take n = n1n2 and each of n1 and n2 to be strictly larger than
one. We similarly define the risk R(θ∗, θ̃) for any other estimator θ̃ of θ∗.

To the best of our knowledge, nothing is known in the literature about the risk R(θ∗, θ̂). The
goal of this paper is to prove analogues of the inequalities (1.2) and (1.3) for R(θ∗, θ̂). The
first result of this paper, Theorem 2.1, is the analogue of (1.2) for matrix isotonic estimation.
Specifically, we prove in Theorem 2.1 that

R
(
θ∗, θ̂

) ≤ C

(√
σ 2D(θ∗)

n
(logn)4 + σ 2

n
(logn)8

)
(1.7)

for a universal positive constant C where D(θ∗) := (θ∗
n1n2

− θ∗
11)

2.
Our second result proves that the minimax risk in this problem is bounded from below by

(σ 2D(θ∗)/n)1/2, up to constant multiplicative factors. Specifically, we prove in Theorem 2.2
that

inf
θ̃

sup
θ∈M:D(θ)≤D

R(θ , θ̃) ≥
√

σ 2D

192n
(1.8)

under some conditions on n1 and n2 (see Theorem 2.2 for the precise statement). The above
infimum is taken over all estimators θ̃ of θ . Combined with (1.7), this proves that θ̂ is minimax,
up to logarithmic multiplicative factors. Therefore, inequality (1.7) is the correct analogue of
(1.2) for matrix isotonic estimation.

Next, we describe our analogue of inequality (1.3) for matrix isotonic estimation. The situation
here is more subtle compared to the vector case. The most natural analogue of (1.3) in the matrix
case is an inequality of the form:

R
(
θ∗, θ̂

) ≤ inf
θ∈M

(‖θ∗ − θ‖2

n
+ σ 2c(θ)p(logn)

n

)
, (1.9)

where p(·) is some polynomial and c(θ) denotes the cardinality of the set {θ ij : 1 ≤ i ≤ n1,1 ≤
j ≤ n2} and ‖ · ‖ refers to the Frobenius norm. Unfortunately, it turns out that this inequality
cannot be true for every θ∗ ∈ M because it contradicts the minimax lower bound (1.8). The
argument for this is provided at the beginning of Section 2.2.

The fact that inequality (1.9) is false means that the LSE θ̂ does not adapt to every θ∗ ∈ M
with small c(θ∗). It turns out that inequality (1.9) can be proved for every θ∗ ∈ M if the quantity
c(θ) is replaced by a larger quantity. This quantity will be denoted by k(θ) (because it is the right
analogue of k(θ) for the matrix case) and it is defined next after introducing some notation.
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A subset A of {1, . . . , n1} × {1, . . . , n2} is called a rectangle if A = {(i, j) : k1 ≤ i ≤ l1, k2 ≤
j ≤ l2} for some 1 ≤ k1 ≤ l1 ≤ n1 and 1 ≤ k2 ≤ l2 ≤ n2. A rectangular partition of {1, . . . , n1} ×
{1, . . . , n2} is a collection of rectangles π = (A1, . . . ,Ak) which are disjoint and whose union
is {1, . . . , n1} × {1, . . . , n2}. The cardinality of such a partition, |π |, is the number of rectangles
in the partition. The collection of all rectangular partitions of {1, . . . , n1} × {1, . . . , n2} will be
denoted by P . For θ ∈ M and π = (A1, . . . ,Ak) ∈ P , we say that θ is constant on π if {θ ij :
(i, j) ∈ Al} is a singleton for each l = 1, . . . , k. We are now ready to define k(θ) for θ ∈ M. It
is defined as the “number of rectangular blocks” of θ , that is, the smallest integer k for which
there exists a partition π ∈ P with |π | = k such that θ is constant on π . It is trivial to see that
k(θ) ≥ c(θ) for every θ ∈ M. As a simple illustration, for θ = 1{i > 1, j > 1}, we have c(θ) = 2
and k(θ) = 3.

Inequality (1.9) becomes true for all θ∗ ∈ M if c(θ) is replaced by k(θ). This is our adaptive
risk bound for matrix isotonic estimation, proved in Theorem 2.4:

R
(
θ∗, θ̂

) ≤ inf
θ∈M

(‖θ∗ − θ‖2

n
+ Cσ 2k(θ)

n
(logn)8

)
, (1.10)

where C is a universal positive constant. As a consequence of this inequality, we obtain that the
risk of the LSE converges to zero at the parametric rate σ 2/n, up to logarithmic multiplicative
factors, provided k(θ∗) is bounded from above by a constant.

We also establish a property of the LSE that we term variable adaptation. Let Cn1 := {θ ∈
R

n1 : θ1 ≤ · · · ≤ θn1}. Suppose θ∗ = (θ∗
ij ) ∈ M has the property that θ∗

ij only depends on i, that
is, there exists θ∗ ∈ Cn1 such that θ∗

ij = θ∗
i for every i and j . If we knew this fact about θ∗, then

the most natural way of estimating it would be to perform vector isotonic estimation based on
the row-averages ȳ := (ȳ1, . . . , ȳn1), where ȳi := ∑n2

j=1 yij /n2, resulting in an estimator θ̆ of θ∗.

Using the vector isotonic risk bounds (1.2) and (1.3), it is easy to see then that the risk of θ̆ has
the following pair of bounds:

R
(
θ∗, θ̆

) ≤ C

{(
σ 2

√
D(θ∗)
n

)2/3

+ σ 2 logn1

n

}
(1.11)

and

R
(
θ∗, θ̆

) ≤ inf
θ∈Cn1

(‖θ∗ − θ‖2

n1
+ σ 2k(θ)

n
logn1

)
. (1.12)

Note that the construction of θ̆ requires the knowledge that all rows of θ∗ are constant. As a
consequence of the adaptive risk bound (1.10), we shall show in Theorem 2.5 that the matrix
isotonic LSE θ̂ achieves the same risk bounds as θ̆ , up to additional logarithmic factors. This is
remarkable because θ̂ uses no special knowledge on θ∗; it automatically adapts to the additional
structure present in θ∗.

Note that in the connection between matrix isotonic estimation and bivariate isotonic regres-
sion, the assumption that θ∗

ij = f (i/n1, j/n2) does not depend on j is equivalent to assuming
that f does not depend on its second variable. Thus, when estimating a bivariate isotonic regres-
sion function that only depends on one variable, the LSE automatically adapts and we get risk
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bounds that correspond to estimating a monotone function of one variable. This is the reason
why we refer to this phenomenon as variable adaptation. To the best of our knowledge, such a
result on automatic variable adaptation in multivariate nonparametric regression is very rare –
most nonparametric regression techniques (e.g., kernel smoothing, splines) do not exhibit such
automatic adaptation properties.

The proof techniques employed in this paper are quite different from the case of vector iso-
tonic estimation. In the vector problem (1.1), the LSE has the closed form expression (see, e.g.,
Robertson et al. [19], Chapter 1):

θ̂i := min
v≥i

max
u≤i

1

v − u + 1

v∑
i=u

yi . (1.13)

This expression, along with some martingale maximal inequalities, are crucially used for the
proofs of inequalities (1.2) and (1.3); see, for example, Zhang [29] and Chatterjee et al. [8]. The
LSE (1.6) in the matrix estimation problem also has a closed form expression similar to (1.13):

θ̂ ij = min
L∈L:(i,j)∈L

max
U∈U :(i,j)∈U

ȳL∩U , (1.14)

where L and U denote the collections of all lower sets and upper sets respectively and ȳA is the
average of {yij : (i, j) ∈ A}; see Robertson et al. [19], Theorem 1.4.4, page 23, for the definitions
of upper and lower sets and for a proof of (1.14). This unfortunately is a much more complicated
expression to directly work with compared to (1.13). It is not clear to us if simple martingale
techniques can be used in conjunction with the expression (1.14) to prove risk bounds for the
LSE.

We therefore abandon the direct approach based on the expression (1.14) and instead resort to
general techniques for LSEs in order to prove our results. Specifically, we use the standard empir-
ical process based approach to prove the worst case bound (1.7). This approach relies on metric
entropy calculations of the space of isotonic matrices. Metric entropy results for classes of iso-
tonic matrices can be derived from those of bivariate coordinate-wise nondecreasing functions.
However existing metric entropy results for classes of bivariate nondecreasing functions (as in
Gao and Wellner [12]) require the functions to be uniformly bounded. Because of this reason,
these results are not directly applicable to our setting. We suitably extend these results in order to
allow for the lack of a uniform bound. On the other hand, for the adaptive risk bound (1.10), we
use connections between the risk of LSEs and size measures of tangent cones. Thus, our proofs
borrow ideas from empirical process theory, approximation theory and convex geometry and are
of independent interest.

The rest of the paper is organized as follows. Our results are described in Section 2: Sec-
tion 2.1 deals with the worst case risk bounds while Section 2.2 focuses on the adaptive bounds.
In Section 3, we provide the necessary background on the general theory of the LSEs, prove our
main metric entropy results and present the proof of our main worst case upper bound. In Sec-
tion 4, we discuss connections between risk of LSEs and appropriate size measures of tangent
cones, and also present the proof of our adaptive risk bounds. Additional discussion is provided
in Section 5. We have also included an Appendix which contains the proofs of certain auxiliary
technical results used in the paper.
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2. Main results

In this section, we give risk bounds on the performance of the isotonic LSE θ̂ , defined in (1.6).
We start with a generalization of (1.2) and then proceed to exhibit the adaptive risk behavior of θ̂ .
We end this section with a result on the variable adaptation property of the LSE which shows
that θ̂ automatically adapts to the intrinsic dimension of the problem.

We would like to remark here that although our results give bounds on the risk R(θ∗, θ̂), they
can easily be converted into high probability upper bounds on the loss �2(θ∗, θ̂). The reason for
this is the following: The mapping ε �→ �(θ∗, θ̂) is n−1/2-Lipschitz (under the Frobenius metric
on the space of n1 ×n2 matrices) where n = n1n2 and thus, by the usual concentration inequality
for Lipschitz functions of Gaussian vectors, we have

�
(
θ∗, θ̂

) ≤ E�
(
θ∗, θ̂

)+ σ

√
2t

n

with probability at least 1 − exp(−t). Note that this is a special of a general concentration result
recently proved in van de Geer and Wainwright [24]. The elementary inequality (x + y)2 ≤
x2(1 + a) + y2(1 + 1/a) for every a > 0, then gives

�2(θ∗, θ̂
) ≤ (1 + a)R

(
θ∗, θ̂

)+ 2(1 + 1/a)tσ 2

n

with probability at least 1 − exp(−t). This inequality allows one to deduce high probability
bounds on the loss �2(θ∗, θ̂) from the risk bounds stated in this section.

2.1. Worst case risk bounds

Our first main result establishes inequality (1.7) which gives an upper bound on the worst case
risk of the matrix isotonic LSE θ̂ . We will actually prove a slightly stronger bound than that given
by inequality (1.7). We first need some notation. We define the variance of a matrix θ as

V (θ) := 1

n

n1∑
i=1

n2∑
j=1

(θ ij − θ)2, (2.1)

where θ = ∑n1
i=1

∑n2
j=1 θ ij /n is the mean of the entries of θ . Note that V (θ) ≤ D(θ) for every

θ ∈ M. We also denote the set {1, . . . , l} by [l] for positive integers l.
The following theorem, proved in Section 3.3, gives an upper bound on the risk R(θ∗, θ̂) in

terms of the quantity V (θ∗). Because V (θ∗) ≤ D(θ∗), the conclusion of the theorem is stronger
than inequality (1.7).
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Theorem 2.1. There exists a universal positive constant C such that for every n1, n2 > 1 with
n = n1n2 and θ∗ ∈M,

R
(
θ∗, θ̂

) ≤ C

(
σ 2

n
(logn)8 +

√
σ 2V (θ∗)

n
(logn)4

)
.

Ignoring constants and logarithmic factors, Theorem 2.1 states that the risk of the LSE at θ∗
converges to zero at the rate n−1/2 as long as V (θ∗) is bounded away from zero. In the next result,
proved in Appendix A.4, we argue that n−1/2 is also a minimax lower bound in this problem.
This implies that the rate n−1/2 cannot be improved by any other estimator uniformly over the
class {θ∗ : V (θ∗) ≤ V } for every constant V . The proof of the next result is done via Assouad’s
lemma. Note that it is also possible to prove a lower bound in probability as opposed to the
expectation lower bound by using Fano’s inequality. But we shall only provide the expectation
lower bound for simplicity.

Theorem 2.2. For every positive real number D,

inf
θ̃

sup
θ∈M:D(θ)≤D

R(θ , θ̃) ≥
√

σ 2D

192n
, (2.2)

where the infimum is over all estimators θ̃ of θ , provided the integers n1 ≥ 1, n2 ≥ 1 with n =
n1n2 satisfy n ≥ 9σ 2/D and

min

(
n3

1

n2
,
n3

2

n1

)
≥ D

9σ 2
. (2.3)

Remark 2.1. The condition (2.3) is necessary to ensure that neither n1 or n2 are too small.
Indeed, the inequality (2.2) is not true when, for example, n1 = 1, n2 = n because in this case
the problem reduces to vector isotonic estimation where the minimax risk is of the order n−2/3 <

n−1/2. When n1 = n2 = √
n, the inequality (2.3) is equivalent to n ≥ D/(9σ 2) which is satisfied

for all large n.

Remark 2.2. Recall the quantity V (θ) defined in (2.1). Because V (θ) ≤ D(θ), it follows that
{θ : D(θ) ≤ D} ⊆ {θ : V (θ) ≤ D}. Therefore the bound (2.2) also holds if {θ : D(θ) ≤ D} is
replaced by the larger set {θ : V (θ) ≤ D}.

Note that without loss of generality we can assume n1 ≤ n2. In this case, (2.3) can be rewritten
as n1 ≥ ( nD

9σ 2 )1/4. This raises the natural question about the minimax rate of our problem when

n1 = o(n1/4). The following theorem (proved in Section A.5) answers this question.

Theorem 2.3. For every positive real number D and for all sufficiently large n we have,

inf
θ̃

sup
θ∈M:D(θ)≤D

R(θ , θ̃) ≥ (σ 2
√

D)2/3

64n
2/3
2

,
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where the infimum is over all estimators θ̃ of θ , provided we have

n1 ≤ (nD)1/4

(4σ)1/2
.

Moreover in this case, for any θ∗ such that D(θ∗) ≤ D, there exists an estimator θ̂ such that

R
(
θ̂ , θ∗) ≤ C

(σ 2√D(θ∗))2/3

(n2)2/3
(2.4)

for some universal constant C > 0.

Remark 2.3. Theorem 2.3 along with Theorems 2.1 and 2.2 characterize the minimax rates in
our matrix estimation problem for different growth behaviours of n1 ≤ n2 with n1n2 = n. The
minimax rate of the problem scales like O(1/

√
n) in case n1 ≥ O(n1/4). In case, n1 = o(n1/4)

the minimax rate scales like O(1/(n2)
2/3). Note that when n1 = 1 we have n2 = n and we get

back the standard univariate isotonic regression rate of 1/n2/3. In this way, the minimax rate
increases smoothly from 1/n2/3 to O(1/

√
n) as n1 increases from 1 to n1/4.

In addition to proving that the LSE is minimax optimal up to logarithmic factors, another
interesting aspect of Theorem 2.1 is that when V (θ∗) = 0, the upper bound on R(θ∗, θ̂) becomes
the parametric rate σ 2/n up to a logarithmic factor. This rate is faster than the worst case rate
n−1/2. Thus, the LSE adapts to θ∗ ∈ {θ : V (θ) = 0}. A more detailed description of the adaptation
properties of the LSE is provided in the next theorem.

2.2. Adaptive risk bounds

The adaptation properties of the matrix isotonic LSE are more subtle compared to the vector
case. In the latter case, adaptation of the LSE is described by inequality (1.3). The most natural
analogue of (1.3) in the matrix case is an inequality of the form (1.9). Unfortunately, it turns out
that this inequality cannot be true for every θ∗ ∈ M because it contradicts the minimax lower
bound proved in Theorem 2.2. The reason for this is the following. Fix θ∗ = (θ∗

ij ) ∈ M with

D := D(θ∗) = (θ∗
n1n2

− θ∗
11)

2 > 0. Now fix c ≥ 1 and define θ = (θ ij ) by

θ ij := θ∗
11 +

√
D

c

⌊
c(θ∗

ij − θ∗
11)√

D

⌋
.

It is easy to see that θ ∈ M (because θ ij is a nondecreasing function of θ∗
ij ). Also for every i, j ,

we have θ∗
ij −√

D/c ≤ θ ij ≤ θ∗
ij which implies that ‖θ −θ∗‖2 ≤ nD/c2. Finally, c(θ) ≤ (c+1).

Therefore if inequality (1.9) were true for every θ∗, we would obtain

R
(
θ∗, θ̂

) ≤ p(logn) inf
c≥1

(
D

c2
+ σ 2(c + 1)

n

)
.
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Choosing c = (nD/σ 2)1/3�, we would obtain that R(θ∗, θ̂) converges to zero at the n−2/3 rate.
This obviously contradicts the minimax lower bound proved in Theorem 2.2. Therefore, one
cannot hope to prove an inequality of the form (1.9) for every θ∗ ∈ M.

The fact that inequality (1.9) is false means that the LSE θ̂ does not adapt to every θ∗ ∈ M
with small c(θ∗). However, inequality (1.9) can be proved for every θ∗ ∈M if the quantity c(θ)

is replaced by the larger quantity k(θ) – the number of rectangular blocks – as defined in the
Introduction. We are now ready to state our main adaptive risk bound for the matrix LSE; see
Section 4.2 for its proof.

Theorem 2.4. There exists a universal constant C > 0 such that for every n1 × n2 matrix θ∗ we
have

R
(
θ∗, θ̂

) ≤ inf
θ∈M

{‖θ∗ − θ‖2

n
+ Ck(θ)σ 2

n
(logn)8

}
. (2.5)

Remark 2.4. Note that 1 ≤ k(θ) ≤ n for all θ ∈ M. There exist θ ∈ M for which c(θ) = k(θ).
These are elements θ ∈ M whose level sets (level sets of θ are non-empty sets of the form
{(i, j) : θ ij = a} for some real number a) are all rectangular.

Remark 2.5. A simple consequence of Theorem 2.4 is that R(θ∗, θ̂) is bounded by the paramet-
ric rate (up to logarithmic factors) when k(θ∗) is bounded from above by a constant. To see this,
simply note that we can take θ = θ∗ in (2.5) to obtain

R
(
θ∗, θ̂

) ≤ C(logn)8 k(θ∗)σ 2

n
.

The right-hand side above is just the parametric rate σ 2/n up to logarithmic factors provided
k(θ∗) is bounded by a constant (or a logarithmic factor of n).

Remark 2.6 (Model misspecification). The proof of Theorem 2.4 reveals that inequality (2.5) is
actually true for every n1 × n2 matrix θ∗ (it is not necessary that θ∗ ∈ M). Therefore, inequality
(2.5) can also be treated as an oracle inequality for misspecification. Please see Bellec [3] for
more background and general theory on such model misspecification oracle inequalities.

Remark 2.7. Inequality (2.5) sometimes gives near parametric bounds for R(θ∗, θ̂) even when
k(θ∗) = n. This happens when θ∗ is well approximated by some θ ∈ M with small k(θ). An
example of this is given below: Assume, for simplicity, that n1 = n2 = √

n = 2k for some positive
integer k. Define θ∗ ∈R

n1×n2 by

θ∗
ij = −(

2−i + 2−j
)

for 1 ≤ i, j ≤ n1.

It should then be clear that θ∗ ∈M and k(θ∗) = n. Also, let us define θ ∈ M by

θ ij = −(
2−(i∧k) + 2−(j∧k)

)
for 1 ≤ i, j ≤ n1,
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where a ∧ b := min(a, b). Observe that k(θ) ≤ (k + 1)2 ≤ C logn. Further

1

n

∥∥θ − θ∗∥∥2 ≤ max
(i,j)

(
θ ij − θ∗

ij

)2 ≤ 2
(
2−2k + 2−2k

) = 4

n
.

Theorem 2.4 therefore gives

R
(
θ∗, θ̂

) ≤ C

{
1

n
+ σ 2

n
(logn)9

}
.

This is the parametric bound up to logarithmic factors in n.

2.3. Variable adaptation

In this sub-section, we describe a very interesting property of the LSE which shows that θ̂ adapts
to the intrinsic dimension of the problem. Suppose that θ∗ ∈ M is such that its value does not
depend on the columns, that is, there exists θ∗ ∈ Cn1 (recall that Cn1 = {θ∗ ∈ R

n1 : θ∗
1 ≤ · · · ≤

θ∗
n1

}) such that θ∗
ij = θ∗

i for every i and j . Note that in connection to bivariate isotonic regression,
the assumption that θ∗

ij := f (i/n1, j/n2) does not depend on j is equivalent to assuming that
f does not depend on its second variable. If we knew this fact about θ∗, then the most natural
way of estimating it would be to perform vector isotonic estimation based on the row-averages
ȳ := (ȳ1, . . . , ȳn1), where ȳi := ∑n2

j=1 yij /n2, resulting in an estimator θ̆ of θ∗. This oracle
estimator has risk bounds given in (1.11) and (1.12).

The following theorem, proved in Section 4.3, shows that the matrix isotonic LSE θ̂ achieves
the same risk bounds as θ̆ , up to additional multiplicative logarithmic factors. This is remarkable
because θ̂ uses no special knowledge on θ∗; it automatically adapts to the additional structure
present in θ∗. Thus, when estimating a bivariate isotonic regression function that only depends on
one variable, the LSE automatically adapts and we get risk bounds that correspond to estimating
a monotone function in one variable. As mentioned in the Introduction, such a result on automatic
variable adaptation in multivariate nonparametric regression is very rare.

Theorem 2.5. Suppose θ∗ = (θ∗
ij ) ∈ M and θ∗ = (θ∗

i ) ∈ Cn1 are such that θ∗
ij = θ∗

i for all
1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. Then the following pair of inequalities hold for a universal positive
constant C:

R
(
θ∗, θ̂

) ≤ inf
θ∈Cn1

{‖θ∗ − θ‖2

n1
+ Ck(θ)σ 2

n
(logn)8

}
(2.6)

and

R
(
θ∗, θ̂

) ≤ C(logn)8
(

σ 2
√

D(θ∗)
n

)2/3

provided nD
(
θ∗) ≥ 2σ 2. (2.7)

Remark 2.8. Although we only consider the case of Gaussian errors (εij ) in Theorem 2.4 and
Theorem 2.5 our results can be easily adapted to work for the case when the errors are bounded
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and have mean zero. This is possible via the use of a standard concentration inequality for Lip-
schitz convex functions of uniformly bounded random variables (see Theorem 6.2 and Proposi-
tion 6.1 in [10]).

3. General theory of LSEs, metric entropy calculations and the
proof of Theorem 2.1

This section is mainly devoted to the proof of Theorem 2.1. The general theory of LSEs under
convex constraints is crucially used to prove Theorem 2.1. Parts of this general theory that are
relevant to the proof of Theorem 2.1 are recalled in the next subsection. Essentially, this general
theory reduces the problem of bounding R(θ∗, θ̂) to certain metric entropy calculations of classes
of isotonic matrices. In Section 3.2, we prove such results by extending appropriately existing
metric entropy results for bivariate coordinate-wise nondecreasing functions due to Gao and
Wellner [12]. Finally, in Section 3.3, we complete the proof of Theorem 2.1 by combining the
metric entropy results with general results on LSEs.

3.1. General theory of LSEs

The following result due to Chatterjee ([6], Corollary 1.2), is a key technical tool for the proof of
Theorem 2.1. It reduces the problem of bounding R(θ∗, θ̂) to controlling the expected supremum
of an appropriate Gaussian process. This result is easier to apply in our setting compared to
older results in empirical process theory described in Van de Geer [25] and Van der Vaart and
Wellner [27].

Theorem 3.1 (Chatterjee). Fix θ∗ ∈M. Let us define the function fθ∗ :R+ → R as

fθ∗(t) := E

(
sup

θ∈M:‖θ∗−θ‖≤t

n1∑
i=1

n2∑
j=1

εij

(
θ ij − θ∗

ij

))− t2

2
, (3.1)

where εij ’s are as in (1.4). Let tθ∗ be the point in [0,∞) where t �→ fθ∗(t) attains its maximum
(existence and uniqueness of tθ∗ are proved in [6], Theorem 1.1). Then there exists a universal
positive constant C such that

R
(
θ∗, θ̂

) ≤ C

n
max

(
t2
θ∗ , σ 2). (3.2)

The above theorem reduces the problem of bounding R(θ∗, θ̂) to that of bounding tθ∗ . For this
latter problem, [6], Proposition 1.3, observed that

tθ∗ ≤ t∗∗ whenever t∗∗ > 0 and fθ∗
(
t∗∗) ≤ 0.

In order to bound tθ∗ , one therefore seeks t∗∗ > 0 such that fθ∗(t∗∗) ≤ 0. This now requires a
bound on the expected supremum of the Gaussian process in the definition of fθ∗(t) in (3.1).
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It will be convenient below to have the following notation. For n1 × n2 matrices M,N ∈
R

n1×n2 , let ‖M − N‖ denote the Frobenius distance between M and N defined by

‖M − N‖2 :=
n1∑
i=1

n2∑
j=1

(M ij − N ij )
2.

For a subset F ⊆ R
n1×n2 and ε > 0, let N(ε,F) denote the ε-covering number of F under the

Frobenius metric ‖ · ‖ (i.e., N(ε,F) is the minimum number of balls of radius ε required to cover
F ). Also, for each θ∗ ∈ M and t > 0, let

B
(
θ∗, t

) := {
θ ∈M : ∥∥θ − θ∗∥∥ ≤ t

}
(3.3)

denote the ball of radius t around θ∗. Observe that the supremum in the definition of (3.1) is over
all θ ∈ B(θ∗, t). Finally let

〈
ε, θ − θ∗〉 := n1∑

i=1

n2∑
j=1

εij

(
θ ij − θ∗

ij

)
.

The following chaining result gives an upper bound on the expected suprema of the above Gaus-
sian process (see, e.g., Van de Geer [25]); see [9] for a proof.

Theorem 3.2 (Chaining). For every θ∗ ∈M and t > 0,

E

[
sup

θ∈B(θ∗,t)

〈
ε, θ − θ∗〉] ≤ σ inf

0<δ≤2t

{
12

∫ 2t

δ

√
logN

(
ε,B

(
θ∗, t

))
dε + 4δ

√
n

}
.

The general results outlined here essentially reduce the problem of bounding R(θ∗, θ̂) to con-
trolling the metric entropy of subsets of M of the form B(θ∗, t). Such a metric entropy bound is
proved in the next subsection. This is the key technical component in the proof of Theorem 2.1.

3.2. Main metric entropy result

Let 0 denote the n1 × n2 matrix all of whose entries are equal to 0. According to the notation
(3.3), we have

B(0,1) = {
θ ∈ M : ‖θ − 0‖ ≤ 1

} =
{

θ ∈M :
n1∑
i=1

n2∑
j=1

θ2
ij ≤ 1

}
. (3.4)

The next theorem gives an upper bound on the ε-covering number of B(0,1) (all covering num-
bers will be with respect to the Frobenius metric ‖ · ‖). It will be crucially used in our proof of
Theorem 2.1.
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Theorem 3.3. There exists a universal positive constant C such that the following inequality
holds for every ε > 0 and integers n1, n2 > 1:

logN
(
ε,B(0,1)

) ≤ C
(logn1)

2(logn2)
2

ε2

[
log

4
√

logn1 logn2

ε

]2

. (3.5)

Moreover for every 0 < δ ≤ 1,

∫ 1

δ

√
logN

(
ε,B(0,1)

)
dε ≤

√
C

2
(logn1)(logn2)

(
log

4
√

logn1 logn2

δ

)2

. (3.6)

In the rest of this section, we shall provide an overview of the proof of Theorem 3.3. We shall
also state the main lemmas that are used in the proof of Theorem 3.3.

There is a close connection between metric entropy results for isotonic matrices and those for
bivariate coordinate-wise nondecreasing functions. Indeed, for every isotonic matrix θ , we can
associate a bivariate coordinate-wise nondecreasing function φθ : [0,1]2 → R via

φθ (x1, x2) := min{θ ij : n1x1 ≤ i ≤ n1, n2x2 ≤ j ≤ n2}

for all (x1, x2) ∈ [0,1]2. It can then be directly verified that

‖θ − ν‖2 = n

∫ 1

0

∫ 1

0

(
φθ (x1, x2) − φν(x1, x2)

)2
dx1 dx2

for every pair θ ,ν of isotonic matrices. This means that metric entropy results for classes of
isotonic matrices can be derived from those of bivariate nondecreasing functions. However
existing metric entropy results for classes of bivariate nondecreasing functions (see Gao and
Wellner [12]) require the functions to be uniformly bounded. If the average constraint in the
definition (3.4) of B(0,1) is replaced by a supremum constraint that is, if one considers the
smaller set B∞(0, n−1/2) := {θ ∈ M : sup1≤i≤n1,1≤j≤n2

|θ ij | ≤ n−1/2}, then the metric entropy
of B∞(0, n−1/2) can be easily controlled via the results of Gao and Wellner [12]. This is the
content of the following lemma where we actually consider the classes

B∞(0, t) :=
{
θ ∈M : sup

1≤i≤n1,1≤j≤n2

|θ ij | ≤ t
}

for general t > 0.

Lemma 3.4. There exists a universal positive constant C such that

logN
(
ε,B∞(0, t)

) ≤ C

(
t
√

n

ε

)2[
log

(
t
√

n

ε

)]2

for every t > 0 and ε > 0.
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Lemma 3.4 does not automatically imply Theorem 3.3 simply because the class B(0,1) is
much larger than B∞(0, n−1/2). Nevertheless, it turns out that the entries θ ij of a matrix θ in
B(0,1) are bounded provided min(i − 1, n1 − i) and min(j − 1, n2 − j) are not too small. This
is the content of Lemma 3.5 given below.

Lemma 3.5. The following holds for every θ ∈ B(0,1) and 1 ≤ i ≤ n1,1 ≤ j ≤ n2:

|θ ij | ≤ max

(√
1

ij
,

√
1

(n1 − i + 1)(n2 − j + 1)

)
. (3.7)

Using Lemma 3.5, we employ a peeling-type argument to prove Theorem 3.3 where we parti-
tion the entries of the matrix θ into various subrectangles and use Lemma 3.4 in each subrectan-
gle. The complete proof of Theorem 3.3 along with the proofs of Lemmas 3.4 and 3.5 are given
in the Appendix.

3.3. Proof of Theorem 2.1

We provide the proof of Theorem 2.1 here using the results from the last two subsections.
Fix θ∗ ∈ M and let fθ∗(·) be defined as in (3.1) with tθ∗ being the point in [0,∞) where

t �→ fθ∗(t) attains its maximum.
Let θ∗ denote the constant matrix taking the value

∑n1
i=1

∑n2
j=1 θ∗

ij /n, i.e., θ∗
kl =∑n1

i=1

∑n2
j=1 θ∗

ij /n for all 1 ≤ k ≤ n1 and 1 ≤ l ≤ n2. Writing θ = θ − θ∗ + θ∗, we have

sup
θ∈B(θ∗,t)

〈
ε, θ − θ∗〉 = sup

θ∈B(θ∗,t)

〈
ε, θ − θ∗〉+ 〈

ε, θ∗ − θ∗〉

for every t ≥ 0. Taking expectations on both sides with respect to ε, we obtain

E sup
θ∈B(θ∗,t)

〈
ε, θ − θ∗〉 = E sup

θ∈B(θ∗,t)

〈
ε, θ − θ∗〉. (3.8)

Now by the triangle inequality, it is easy to see that

B
(
θ∗, t

) ⊆ B
(
θ∗, rt

)
where rt := t +

√
nV

(
θ∗).

This and (3.8) together imply that

E sup
θ∈B(θ∗,t)

〈
ε, θ − θ∗〉 ≤ E sup

θ∈B(θ∗,rt )

〈
ε, θ − θ∗〉.

Because θ∗ is a constant matrix, it is easy to see that

sup
θ∈B(θ∗,rt )

〈
ε, θ − θ∗〉 = sup

θ∈B(0,rt )

〈ε, θ〉 = rt sup
θ∈B(0,1)

〈ε, θ〉,
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where 0 denotes the constant matrix with all entries equal to 0.
As a consequence, we have

fθ∗(t) ≤ rtE sup
θ∈B(0,1)

〈ε, θ〉 − t2

2
for all t ≥ 0. (3.9)

We now use Theorem 3.2 with δ = 1/
√

n to obtain

E sup
θ∈B(0,1)

〈ε, θ〉 ≤ 12σ

∫ 2

1/
√

n

√
logN

(
ε,B(0,1)

)
dε + 4σ.

Inequality (3.6) with δ = n−1/2 then gives

E sup
θ∈B(0,1)

〈ε, θ〉 ≤ Cσ
(
A
(
log(B

√
n)
)2 + 1

)

with A := (logn1)(logn2) and B := 4
√

(logn1)(logn2).
Thus, letting g(t) := Crtσ (A(log(B

√
n))2 + 1), we obtain from (3.9) that

fθ∗(t) ≤ g(t) − t2

2
for all t ≥ 0.

It can now be directly verified that

fθ∗
(
t∗∗) ≤ g

(
t∗∗)− 1

2

(
t∗∗)2 ≤ 0 for t∗∗ := 2C

√
γ 2 + γ

(
nV

(
θ∗))1/2

,

where γ := σ(A(log(B
√

n))2 + 1). Inequality (3.2) in Theorem 3.1 therefore gives

R
(
θ̂, θ∗) ≤ C

n
max

((
t∗∗)2

, σ 2). (3.10)

Now (t∗∗)2 = C(γ 2 + γ
√

nV (θ∗)) and using the expressions for A and B , it is easy to see that
(note that n > 1 because n1, n2 > 1)

γ = σ
(
A
(
log(B

√
n)
)2 + 1

) ≤ Cσ(logn)4.

This, along with (3.10), allows us to deduce

R
(
θ̂ , θ∗) ≤ C

(
σ 2

n
(logn)8 +

√
σ 2V (θ∗)

n
(logn)4

)
,

which proves Theorem 2.1.
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4. Risk, tangent cones and the proofs of Theorems 2.4 and 2.5

This section is devoted to the proofs of Theorems 2.4 and 2.5. We use a recent result of Bellec
[3] on the connection between the risk R(θ∗, θ̂) and certain size measures of tangent cones to M
at θ∗. This result is recalled in the next subsection.

4.1. Risk and tangent cones

Fix θ ∈M. The tangent cone of M at θ will be denoted by TM(θ) and is defined as the closure
of the convex cone generated by u − θ as u varies over M that is,

TM(θ) := closure
{
α(u − θ) : α > 0 and u ∈M

}
.

The tangent cone TM(θ) is a closed, convex subset of R
n = R

n1×n2 . Observe that if θ is a
constant matrix (i.e., all entries of θ are the same), then TM(θ) is simply equal to M.

It turns out that the risk R(θ∗, θ̂) can be controlled by appropriate size measures of the tangent
cones TM(θ), θ ∈M. This is formalized in the following lemma. This lemma is similar in spirit
to results in Oymak and Hassibi [17]. More general such results involving model misspecification
have recently appeared in Bellec [3].

Let ε = (εij ) denote the n1 × n2 matrix all of whose entries are independent and normally
distributed with zero mean and variance σ 2. The Euclidean projection of ε onto the tangent cone
TM(θ) is defined in the usual way as

�
(
ε, TM(θ)

) := argmin
u∈TM(θ)

‖ε − u‖2.

Lemma 4.1. For every θ∗ ∈ M, we have

R
(
θ∗, θ̂

) ≤ 1

n
inf

θ∈M
(∥∥θ∗ − θ

∥∥2 +E
∥∥�

(
ε, TM(θ)

)∥∥2)
, (4.1)

where the expectation on the right-hand side is with respect to ε.

Proof. Recall that y = θ∗ + ε and that θ̂ is the projection of the data matrix y onto M. By the
usual KKT conditions, this projection θ̂ satisfies

〈y − θ̂ , θ̂ − θ〉 ≥ 0 for every θ ∈ M,

where 〈A,B〉 = ∑n1
i=1

∑n2
j=1 aij bij for A = (aij ) and B = (bij ). This inequality implies that

‖y − θ‖2 ≥ ‖y − θ̂‖2 + ‖θ̂ − θ‖2 for every θ ∈ M.

Writing y = θ∗ + ε, expanding out the squares and rearranging terms, we obtain

∥∥θ∗ − θ
∥∥2 + ‖ε‖2 + 2

〈
θ∗ − θ ,ε

〉 ≥ ∥∥θ∗ − θ̂
∥∥2 + ‖ε‖2 + 2

〈
θ∗ − θ̂ ,ε

〉+ ‖θ̂ − θ‖2,



Matrix estimation under monotonicity 1089

i.e.,
∥∥θ̂ − θ∗∥∥2 ≤ 2〈θ̂ − θ ,ε〉 − ‖θ̂ − θ‖2 + ∥∥θ∗ − θ

∥∥2
,

i.e.,
∥∥θ̂ − θ∗∥∥2 ≤ ∥∥θ∗ − θ

∥∥2 + ‖ε‖2 − ∥∥ε − (θ̂ − θ)
∥∥2

.

Because θ̂ ∈M, the matrix θ̂ − θ belongs to the tangent cone TM(θ). We therefore get∥∥θ̂ − θ∗∥∥2 ≤ ∥∥θ∗ − θ
∥∥2 + ‖ε‖2 − inf

u∈TM(θ)
‖ε − u‖2.

The infimum over u above is clearly achieved for u := �(ε, TM(θ)) and hence∥∥θ̂ − θ∗∥∥2 ≤ ∥∥θ∗ − θ
∥∥2 + ‖ε‖2 − ∥∥ε − �

(
ε, TM(θ)

)∥∥2
. (4.2)

Because TM(θ) is a closed convex cone, the projection �(ε, TM(θ)) satisfies (see, for example,
[16], equation (4)): 〈

ε − �
(
ε, TM(θ)

)
,�

(
ε, TM(θ)

)〉 = 0.

The above equality and inequality (4.2) together imply that∥∥θ̂ − θ∗∥∥2 ≤ ∥∥θ∗ − θ
∥∥2 + ∥∥�

(
ε, TM(θ)

)∥∥2
.

The required inequality (4.1) now follows by taking expectations on both sides. �

Inequality (4.1) reduces the problem of bounding the risk to controlling the expected squared
norm of the projection of ε onto the tangent cones TM(θ), θ ∈ M. This will be crucially used in
the proof of Theorem 2.4.

4.2. Proof of Theorem 2.4

We provide the proof of Theorem 2.4 in this subsection. The first step is to characterize the
tangent cone TM(θ) for every θ ∈M. We need some notation here. For a subset S of {(i, j) : 1 ≤
i ≤ n1,1 ≤ j ≤ n2}, let RS denote the class of all real-valued functions from S to R. Elements
of RS will be denoted by (θ ij , (i, j) ∈ S). We say that (θ ij : (i, j) ∈ S) is isotonic if

θ ij ≤ θkl whenever (i, j), (k, l) ∈ S with i ≤ k and j ≤ l.

The set of such isotonic sequences in R
S will be denoted by M(S). Also for every two dimen-

sional array θ = (θ ij : 1 ≤ i ≤ n1,1 ≤ j ≤ n2), let

θ(S) := (
θ ij : (i, j) ∈ S

)
.

Observe that θ(S) ∈M(S) if θ ∈M. The following lemma provides a useful characterization of
TM(θ) for θ ∈ M. Recall that a rectangular partition of [n1] × [n2] is a partition of [n1] × [n2]
into rectangles. The cardinality |π | of a rectangular partition π equals the number of rectangles
in the partition. The collection of all rectangular partitions of [n1]×[n2] is denoted by P . We say
that θ ∈M is constant on π = (A1, . . . ,Ak) ∈ P if {θ ij : (i, j) ∈ Al} is a singleton for each l.
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Lemma 4.2. Fix θ ∈ M and π = (A1, . . . ,Ak) ∈P such that θ is constant on π . Then

TM(θ) ⊆ {
v ∈R

n : v(Ai) ∈ M(Ai) for each i = 1, . . . , k
}
. (4.3)

Proof. Suppose that v = α(t − θ) for some t ∈ M and α > 0. This means that v(Ai) =
α(t(Ai) − θ(Ai)) for each i. Because t(Ai) ∈ M(Ai) and θ(Ai) is a constant (θ is constant
on π ), we now have v(Ai) ∈ M(Ai). As the right-hand side of (4.3) is a closed set, and TM(θ)

is the closure of all such v’s, the desired result follows. �

Remark 4.1. Note that we did not use the fact that A1, . . . ,Ak are rectangular in Lemma 4.2.
We only used the fact that θ is constant on each Ai . This means that (4.3) is true also when
A1, . . . ,Ak are the levels sets of θ i.e., each Al = {(i, j) : θ ij = a} for some real number a. In
fact, when A1, . . . ,Ak are the level sets of θ , we have equality in (4.3). This can be proved as
follows.

Suppose that v(Ai) ∈ M(Ai) for each i. We shall argue then that θ + αv ∈ M for some
α > 0 which, of course, proves that v ∈ TM(θ). Observe first that A1, . . . ,Ak form a partition of
[n1] × [n2]. Let D denote the collection of all pairs ((i, j), (k, l)) such that i ≤ j and k ≤ l and
θ ij �= θkl . Note, in particular, that (i, j) and (k, l) belong to different elements of the partition
A1, . . . ,Ak if ((i, j), (k, l)) ∈ D. Let

α := min

{
θkl − θ ij

vij − vkl

: ((i, j), (k, l)
) ∈ D and vij > vkl

}
.

By monotonicity of θ , it is clear that α > 0. With this choice of α, it is elementary to check that
θ + αv ∈M. This shows that (4.3) is true with equality when A1, . . . ,Ak are the level sets of π .

We now have all the tools to complete the proof of Theorem 2.4.

Proof of Theorem 2.4. The first step is to observe via inequality (4.1) that it is enough to prove
the existence of a universal positive constant C for which

E
∥∥�

(
ε, TM(θ)

)∥∥2 ≤ Ck(θ)σ 2(logn)8 for all θ ∈ M.

From the definition of k(θ), it is enough of prove that

E
∥∥�

(
ε, TM(θ)

)∥∥2 ≤ Ckσ 2(logn)8 (4.4)

for every π = (A1, . . . ,Ak) ∈ P such that θ is constant on π . To prove (4.4), use the characteri-
zation of TM(θ) in Lemma 4.2 to observe that

E
∥∥�

(
ε, TM(θ)

)∥∥2 ≤
k∑

i=1

E
∥∥�

(
ε(Ai),M(Ai)

)∥∥2
. (4.5)

The task then reduces to that of bounding E‖�(ε(Ai),M(Ai))‖2 for i = 1, . . . , k. It is crucial
that each A1, . . . ,Ak is a rectangle. Fix 1 ≤ i ≤ k and without loss of generality assume that
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Ai = [n′
1] × [n′

2] for some 1 ≤ n′
1 ≤ n1 and 1 ≤ n′

2 ≤ n2. It is then easy to see that Theorem 2.1
for θ∗ = 0 and n1 = n′

1, n2 = n′
2 immediately gives

E
∥∥�

(
ε(Ai),M(Ai)

)∥∥2 ≤ Cσ 2(log
(
2n′

1n
′
2

))8 (4.6)

for a universal positive constant C as long as n′
1 > 1 and n′

2 > 1. When n′
1 = n′

2 = 1, it can be
checked that the left-hand side of (4.6) equals σ 2 which means that (4.6) is still true provided
C is changed accordingly. Finally when min(n′

1, n
′
2) = 1 and max(n′

1, n
′
2) > 1, one can use the

result (1.2) from vector isotonic estimation to prove (4.6). We thus have

E
∥∥�

(
ε(Ai),M(Ai)

)∥∥2 ≤ Cσ 2(logn)8

for a universal constant C for all n′
1 ≥ 1 and n′

2 ≥ 1. This inequality together with inequality (4.5)
implies (4.4) which completes the proof of Theorem 2.4. �

4.3. Proof of Theorem 2.5

We now give the proof of Theorem 2.5. Let us first prove inequality (2.6). For θ ∈ Cn1 , let ϒ(θ) ∈
M be defined by ϒ(θ)ij = θi for all 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. Also let ϒ(Cn1) := {ϒ(θ) : θ ∈
Cn1}. Note first that all level sets of ϒ(θ) are rectangular for every θ ∈ Cn1 which implies that
k(ϒ(θ)) = k(θ) for every θ ∈ Cn1 . Therefore, as a consequence of Theorem 2.4, we obtain that
for every θ∗ ∈M,

R
(
θ∗, θ̂

) ≤ inf
θ∈Cn1

(‖θ∗ − ϒ(θ)‖2

n
+ Ck(θ)σ 2

n
(logn)8

)
.

Now if there exists θ∗ ∈ Cn1 such that ϒ(θ∗) = θ∗, then it is obvious that ‖θ∗ − ϒ(θ)‖2 =
n2‖θ∗ − θ‖2 which proves (2.6).

Inequality (2.7) can now be derived from (2.6) by a standard approximation argument. For
every θ∗ ∈ Cn1 with D = D(θ∗) = (θ∗

n1
− θ∗

1 )2 and 0 ≤ δ ≤ √
D, there exists θ ∈ Cn1 with

‖θ − θ∗‖2

n1
≤ δ2 and k(θ) ≤ 2

√
D

δ
.

This fact is easy to prove and a proof can be found, for example, in Chatterjee et al. [8],
Lemma B.1. Using this, it follows directly from (2.6) that

R
(
θ∗, θ̂

) ≤ C inf
0<δ≤√

D

(
δ2 + 2σ 2

√
D

nδ
(logn)8

)
.

The choice δ = (2σ 2
√

D/n)1/3 now leads to inequality (2.7). This choice of δ satisfies δ ≤ √
D

provided nD ≥ 2σ 2. This completes the proof of Theorem 2.5.
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5. Discussion

In this paper, we have studied the risk behavior of the LSE of an unknown matrix θ∗, constrained
to be nondecreasing in both rows and columns, when observed with errors. We prove both worst
case and adaptive risk bounds for the LSE. A highlight of the adaptation properties of the LSE is
that it adapts automatically to the intrinsic dimension of the problem.

Two further research questions are mentioned below.
The logarithmic factors in our risk bounds, for example, in Theorems 2.1 and 2.4, are probably

not optimal. They arise as a consequence of (i) the presence of logarithmic factors in the covering
number result in Gao and Wellner [12] (see the proof of Lemma 3.4), and (ii) the fact that the
entropy integral in (3.6) in Theorem 3.3 diverges to +∞ if δ ↓ 0. It is not clear to us at the
moment how to remove or reduce these logarithmic factors.

In this paper, we deal with the estimation of an isotonic matrix. It is natural to ask how the
results generalize to isotonic tensors of higher order, and more generally to estimating a multi-
variate isotonic regression function under general designs. It would be interesting to see whether
such adaptation results hold in these situations.

Appendix

A.1. Proof of Lemma 3.4

For each θ ∈ B∞(0, t), we associate a bivariate coordinate-wise nondecreasing function φθ :
[0,1]2 →R via

φθ (x1, x2) := min{θ ij : n1x1 ≤ i ≤ n1, n2x2 ≤ j ≤ n2}
for all (x1, x2) ∈ [0,1]2. It can then be directly verified that

‖θ − ν‖2 = n

∫ 1

0

∫ 1

0

(
φθ (x1, x2) − φν(x1, x2)

)2
dx1 dx2

for every pair θ ,ν ∈ B∞(0, t). Moreover, if C([0,1]2, t) denotes the class of all bivariate
coordinate-wise nondecreasing functions that are uniformly bounded by t , then it is straightfor-
ward to verify that φθ ∈ C([0,1]2, t) for every θ ∈ B∞(0, t). These two latter facts immediately
imply that

N
(
ε,B∞(0, t)

) ≤ N
(
n−1/2ε/2,C

([0,1]2, t
)
,L2

)
, (A.1)

where N(ε/2,C([0,1]2, t),L2) denotes the ε/2-covering number of C([0,1]2, t) under the L2
metric L2(f, g) := (

∫
(f − g)2)1/2. This latter covering number has been studied by Gao and

Wellner [12] who proved that

N
(
ε/2,C

([0,1]2, t
)
,L2

) ≤ C

(
t

ε

)2[
log

(
t

ε

)]2

for a universal positive constant C. This and (A.1) together complete the proof of Lemma 3.4.
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A.2. Proof of Lemma 3.5

Fix θ ∈ B(0,1) and 1 ≤ i ≤ n1,1 ≤ j ≤ n2. Our proof of (3.7) involves considering the following
two cases separately:

1. θ ij < 0: Here, by monotonicity of θ , the inequality θkl ≤ θ ij must hold for all 1 ≤ k ≤ i

and 1 ≤ l ≤ j . Therefore, |θkl | ≥ |θ ij | holds for all (k, l) ∈ [1, i] × [1, j ]. Finally because
θ ∈ B(0,1), we have

1 ≥
i∑

k=1

j∑
l=1

θ2
kl ≥ ijθ2

ij .

This proves (3.7) when θ ij < 0.
2. θ ij ≥ 0. Here by monotonicity of θ , the condition θkl ≥ θ ij must hold for all i ≤ k ≤ n1

and j ≤ l ≤ n2. Therefore, by nonnegativity of θ ij and by virtue of θ ∈ B(0,1) we have

1 ≥
n1∑
k=i

n2∑
l=j

θ2
kl ≥ (n1 + 1 − i)(n2 + 1 − j)θ2

ij .

This proves (3.7) when θ ij ≥ 0.

A.3. Proof of Theorem 3.3

The basic idea behind this proof is the following. By Lemma 3.5, it is clear that for every matrix
θ ∈ B(0,1), the entries θ ij are bounded by constants provided min(i − 1, n1 − i) and min(j −
1, n2 − j) are not too small. Further, for bounded isotonic matrices, the metric entropy bounds
can be obtained from Lemma 3.4. We shall therefore employ a peeling-type argument where we
partition the entries of θ into various subrectangles and use Lemma 3.4 in each subrectangle.

Let us introduce some notation. Let B denote the set B(0,1) for simplicity. For a subset S ⊂
{(i, j) : 1 ≤ i ≤ n1,1 ≤ j ≤ n2} with cardinality |S| and θ ∈ M, let θ(S) ∈ R

|S| be defined as

θ(S) := (
θ ij : (i, j) ∈ S

)
.

Further let BS denote the collection of all θ(S) as θ ranges over B . The ε-metric entropy of BS

(under the Euclidean metric on R
|S|) will be denoted by N(ε,BS).

We first prove inequality (3.5). Let I1 := {i : 1 ≤ i ≤ n1/2} and I2 := {i : n1/2 < i ≤ n1}. Also
J1 := {j : 1 ≤ j ≤ n2/2} and J2 := {j : n2/2 < j ≤ n2}. Because

‖θ − α‖2 =
∑

1≤k,l≤2

∥∥θ(Ik × Jl) − α(Ik × Jl)
∥∥2

for all θ and α, it follows that

logN(ε,B) ≤
2∑

k=1

2∑
l=1

logN(ε/2,BIk×Jl
).
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We shall prove below that for every 1 ≤ k, l ≤ 2 and ε > 0,

logN(ε/2,BIk×Jl
) ≤ C

(logn1)
2(logn2)

2

ε2

[
log

4
√

logn1 logn2

ε

]2

(A.2)

for a universal positive constant C. This would then complete the proof of (3.5).
Let k1 and k2 denote the smallest integers for which 2k1 > n1/2 and 2k2 > n2/2. For every

0 ≤ u < k1 and 0 ≤ v < k2, let

N1
u := {

i ∈ I1 : 2u ≤ i ≤ min
(
2u+1 − 1, n1/2

)}
and

N1
v := {

j ∈ J1 : 2v ≤ j ≤ min
(
2v+1 − 1, n2/2

)}
.

Similarly, let

N2
u := {

i ∈ I2 : 2u ≤ n1 + 1 − i ≤ min
(
2u+1 − 1, n1/2

)}
and

N2
v := {

j ∈ J2 : 2v ≤ n2 + 1 − j ≤ min
(
2v+1 − 1, n2/2

)}
.

For each pair 1 ≤ k, l ≤ 2, because

∥∥θ(Ik × Jl) − α(Ik × Jl)
∥∥2 =

k1−1∑
u=0

k2−1∑
v=0

∥∥θ
(
Nk

u × Nl
v

)− α
(
Nk

u × Nl
v

)∥∥2

it follows that

logN(ε/2,BIk×Jl
) ≤

k1−1∑
u=0

k2−1∑
v=0

logN
(
k
−1/2
1 k

−1/2
2 ε/2,BNk

u×Nl
v

)
. (A.3)

Now fix 0 ≤ u < k1,0 ≤ v < k2 and 1 ≤ k, l ≤ 2. We argue below that N(k
−1/2
1 k

−1/2
2 ε/2,

BNk
u×Nl

v
) can be controlled using Lemmas 3.4 and 3.5. Note first that the cardinality of Nk

u × Nl
v

is at most |Nk
u ||Nl

v| ≤ 2u+v . We also claim that

max
i∈Nk

u ,j∈Nl
v

|θ ij | ≤ 2−(u+v)/2 for all θ ∈ B. (A.4)

We will prove the above claim a little later. Assuming for now that it is true, we can use
Lemma 3.4 for BNk

u×Nl
v

to deduce that

logN
(
k
−1/2
1 k

−1/2
2 ε/2,BNk

u×Nl
v

) ≤ C
k1k2

ε2

(
log

4k
1/2
1 k

1/2
2

ε

)2

for a universal positive constant C. Inequality (A.3) then gives

logN(ε/2,BIk×Jl
) ≤ C

k2
1k2

2

ε2

(
log

4k
1/2
1 k

1/2
2

ε

)2

. (A.5)
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Because k1 is the smallest integer for which 2k1 > n1/2, we have 2k1−1 ≤ n1/2 which means that
k1 ≤ logn1. Similarly k2 ≤ logn2. This together with (A.5) implies (A.2) which completes the
proof of (3.5). The only thing that remains now is to prove (A.4).

We first prove (A.4) for k = l = 1. By Lemma 3.5, we get that |θ ij | ≤ (ij)−1/2 for all for θ ∈ B

and (i, j) ∈ I1 ×J1. Clearly mini∈N1
u
i = 2u and minj∈N1

v
i = 2v . This proves (A.4) for k = l = 1.

A similar argument will also work for k = l = 2. For the case when k = 1, l = 2, note that

max
N1

u×N2
v

θ ij ≤ max
N2

u×N2
v

θ ij ≤ 2−(u+v)/2,

which follows from the monotonicity of θ and (A.4) for k = l = 2. Similarly,

min
N1

u×N2
v

θ ij ≥ min
N1

u×N1
v

θ ij ≥ −2−(u+v)/2.

Putting these together, we obtain (A.4) for k = 1, l = 2. A similar argument will work for k =
2, l = 1. This completes the proof of (3.5).

For (3.6), simply observe that by (3.5),

∫ 1

δ

√
logN

(
ε,B(0,1)

)
dε ≤ √

C
√

A

∫ 1

δ

1

ε

(
log

B

ε

)
dε

=
√

C
√

A

2

[(
log

B

δ

)2

− (logB)2
]

≤
√

C
√

A

2

(
log

B

δ

)2

.

This completes the proof of Theorem 3.3.

A.4. Proof of Theorem 2.2

We shall use Assouad’s lemma to prove Theorem 2.2. The following version of Assouad’s lemma
is a consequence of Lemma 24.3 of van der Vaart [26], page 347.

Lemma A.1 (Assouad). Fix D > 0 and a positive integer d . Suppose that, for each τ ∈ {−1,1}d ,
there is an associated gτ in M with D(gτ ) ≤ D. Then

inf
θ̃

sup
θ∈M:D(θ)≤D

R(θ , θ̃) ≥ d

8
min
τ �=τ ′

�2(gτ ,gτ ′
)

ϒ(τ, τ ′)
min

ϒ(τ,τ ′)=1

(
1 − ‖Pgτ − Pgτ ′ ‖TV

)
,

where ϒ(τ, τ ′) := ∑d
i=1 I {τi �= τ ′

i } denotes the Hamming distance between τ and τ ′ and ‖ · ‖TV

denotes the total variation distance. The notation Pg for g ∈ M refers to the joint distribution of
yij = gij + εij , for i ∈ [n1], j ∈ [n2] when (εij ) are independent normally distributed random
variables with mean zero and variance σ 2.

We are now ready to prove Theorem 2.2.



1096 S. Chatterjee, A. Guntuboyina and B. Sen

Fix D > 0 and an integer k with 1 ≤ k ≤ min(n1, n2). Let m1 and m2 be defined so that
k = n1/m1� = n2/m2�. Let d = k2. We denote elements of {−1,1}d by (τuv : u,v ∈ [k]×[k]).
For each such τ ∈ {−1,1}d , we define gτ ∈ M in the following way. For i ∈ [n1] and j ∈ [n2],
if there exist u,v ∈ [k] for which (u − 1)m1 < i ≤ um1 and (v − 1)m2 < j ≤ vm2, we take

gτ
ij = √

D

(
u + v − 2

2k
+ τuv

6k

)
.

Otherwise we take gτ
ij = √

D. One can check that gτ ∈ M and D(gτ ) ≤ D for every τ ∈
{−1,1}d .

We shall now use Lemma A.1 with d = k2 and this collection {gτ : τ ∈ {−1,1}d}. Note first
that

�2(gτ ,gτ ′) = 1

n

n1∑
i=1

n2∑
j=1

(
gτ

ij − gτ ′
ij

)2

= 1

n

∑
u,v∈[k]

∑
i:(u−1)m1<i≤um1

∑
j :(v−1)m2<j≤vm2

(
gτ

ij − gτ ′
ij

)2

= D

n

∑
u,v∈[k]

m1m2

36k2

(
τuv − τ ′

uv

)2 = m1m2D

9nk2
ϒ
(
τ, τ ′).

Therefore, this implies that

min
τ �=τ ′

�2(gτ ,gτ ′
)

ϒ(τ, τ ′)
= m1m2D

9nk2
.

To bound ‖Pgτ −Pgτ ′ ‖TV, we use Pinsker’s inequality because the Kullback–Leibler divergence

D(Pgτ ‖Pgτ ′ ) has a simple expression in terms of �2(gτ ,gτ ′
):

‖Pgτ − Pgτ ′ ‖2
TV ≤ 1

2
D(Pgτ ‖Pgτ ′ ) = n

4σ 2
�2(gτ ,gτ ′) = m1m2D

36σ 2k2
ϒ
(
τ, τ ′).

This gives

min
ϒ(τ,τ ′)=1

(
1 − ‖Pgτ − Pgτ ′ ‖TV

) ≥
(

1 −
√

m1m2D

6kσ

)
.

Lemma A.1 then gives the lower bound for � := infθ̃ supθ∈M:D(θ)≤D R(θ , θ̃) as given below:

� ≥ m1m2D

72n

(
1 −

√
m1m2D

6kσ

)
.

Because k = ni/mi� for i = 1,2, it follows that ni/(k + 1) ≤ mi ≤ ni/k for i = 1,2. This gives

� ≥ D

72(k + 1)2

(
1 −

√
nD

6σk2

)
≥ D

288k2

(
1 −

√
nD

6σk2

)
,
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where we have also used that k + 1 ≤ 2k. The choice k = (nD/(9σ 2))1/4 now leads to � ≥
σ
√

D/(192
√

n). This gives what we wanted to prove provided our choice of k satisfies 1 ≤ k ≤
min(n1, n2). For this, it suffices to simply note that n ≥ 9σ 2/D implies that k ≥ 1 and (2.3)
implies k ≤ min(n1, n2). This completes the proof of Theorem 2.2.

A.5. Proof of Theorem 2.3

Proof. Fix D > 0. Also fix integers 1 ≤ k1 ≤ n1 and 1 ≤ k2 ≤ n2. Let m1 and m2 be defined
so that k1 = n1/m1� and k2 = n2/m2�. Let d = k1k2. We denote elements of {0,1}d by (τuv :
u,v ∈ [k1] × [k2]). For each such τ ∈ {0,1}d , we define gτ ∈ M in the following way. For
i ∈ [n1] and j ∈ [n2], if there exist u,v ∈ [k1] × [k2] for which (u − 1)m1 < i ≤ um1 and (v −
1)m2 < j ≤ vm2, we take

gτ
ij = √

D

(
u − 1

k1
+ v − 1

k2
+ ατuv

)
,

where α = max{ 1
k1

, 1
k2

}. Otherwise we take gτ
ij = √

D. One can check that gτ ∈M and D(gτ ) ≤
D for every τ ∈ {0,1}d .

We shall now use Lemma A.1 with d = k1k2 and this collection {gτ : τ ∈ {−1,1}d}. Note first
that

�2(gτ ,gτ ′) = 1

n

n1∑
i=1

n2∑
j=1

(
gτ

ij − gτ ′
ij

)2

= 1

n

∑
u,v∈[k]

∑
i:(u−1)m1<i≤um1

∑
j :(v−1)m2<j≤vm2

(
gτ

ij − gτ ′
ij

)2

= m1m2D

n
α2ϒ

(
τ, τ ′).

Therefore, this implies that

min
τ �=τ ′

�2(gτ ,gτ ′
)

ϒ(τ, τ ′)
= m1m2Dα2

n
.

To bound ‖Pgτ − Pgτ ′ ‖TV, we again use Pinsker’s inequality to obtain

‖Pgτ − Pgτ ′ ‖2
TV ≤ 1

2
D(Pgτ ‖Pgτ ′ ) = n

4σ 2
�2(gτ ,gτ ′) = m1m2Dα2

4σ 2
ϒ
(
τ, τ ′).

This gives

min
ϒ(τ,τ ′)=1

(
1 − ‖Pgτ − Pgτ ′ ‖TV

) ≥
(

1 − α

√
m1m2D

2σ

)
.
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Lemma A.1 then gives the lower bound for � := infθ̃ supθ∈M:D(θ)≤D R(θ , θ̃) as given below:

� ≥ k1k2m1m2α
2D

8n

(
1 − α

√
m1m2D

2σ

)
.

Because ki = ni/mi� for i = 1,2, it follows that mi ≤ ni/ki for i = 1,2. This gives

� ≥ k1k2m1m2α
2D

8n

(
1 − α

√
n1n2D

2σ
√

k1k2

)
.

Now we set k1 = n1 and k2 = �( D

16σ 2 )1/3n
1/3
2 �. Note that for sufficiently large n, we will have

(m2k2)/n2 ≥ 1/2 and hence we will have

� ≥ α2D

16n

(
1 − α

√
n1n2D

2σ
√

k1k2

)
.

One can check that in the regime n1 ≤ (nD)1/4

(4σ)1/2 the choice of k1, k2 satisfies the inequality

k2 ≥ k1. Recall that α = 1/max{k1, k2} and hence in this regime we have α = 1
k2

. Then the
choice of k1, k2 implies the following minimax lower bound

� ≥ D1/3σ 4/3

64n
2/3
2

.

This completes the demonstration of the minimax lower bound. Now consider the estimator
which just performs vector isotonic regression in each row. Since this estimator need not satisfy
the matrix monotonicity constraints, we then project this estimator onto M to obtain the final
estimator θ̂ . Clearly the projection step can only decrease the squared frobenius distance to θ∗ ∈
M by the Pythagorus identity for projections onto cones. Therefore, an upper bound to the risk
of this estimator can be obtained by an application of (1.2) which finally gives us (2.4). This
completes the proof of Theorem 2.3. �
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