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Mixing time and cutoff for a random walk on
the ring of integers mod n
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We analyse a random walk on the ring of integers mod n, which at each time point can make an additive
‘step’ or a multiplicative ‘jump’. When the probability of making a jump tends to zero as an appropriate
power of n, we prove the existence of a total variation pre-cutoff for this walk. In addition, we show that the
process obtained by subsampling our walk at jump times exhibits a true cutoff, with mixing time dependent
on whether the step distribution has zero mean.
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1. Introduction

In this note, we consider a random walk X = X(n) on Zn = Z/nZ (where n is odd) defined as
follows: X0 = 0, and for t ≥ 1,

Xt =
{

Xt−1 + ξ ′
t mod n with probability 1 − pn,

2Xt−1 mod n with probability pn,
(1.1)

where {ξ ′
t } are a set of i.i.d. random variables with finite support B ⊂ Z, whose distribution does

not vary with n. We denote the mean and variance of ξ ′ by μ and σ 2 respectively. We will refer
to an ‘addition’ move as a ‘step’, and to a ‘multiplication’ move as a ‘jump’. To ensure that X

is irreducible, we assume that the group 〈Bn,+〉 is not a proper subgroup of Zn for any odd n,
where Bn = {z mod n : z ∈ B}. Furthermore, since n is odd, multiplication by 2 is an invertible
operation, and thus X is ergodic with uniform equilibrium distribution πn on Zn.

Define the total variation distance from πn of a probability distribution P on Zn by

‖P − πn‖ = max
A⊂Zn

∣∣P(A) − πn(A)
∣∣ = 1

2

∑
s∈Zn

∣∣P(s) − 1/n
∣∣.

The ε-mixing time of X is defined for any ε ∈ [0,1] as

tmix(ε) = min
{
t : ∥∥P(Xt ∈ ·) − πn(·)

∥∥ ≤ ε
}
,

and the value of tmix(1/4) is commonly referred to as the ‘mixing time’ of X.
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A number of authors have previously considered random processes of the form

Xt = atXt−1 + bt mod n;

these processes are similar to schemes used for random number generation, a link which has
naturally motivated interest in bounding their mixing times. A nice introduction to the area can
be found in [16], Chapter 6. The earliest such work appears to be that of [2], in which at = a = 2
and bt is chosen uniformly from {−1,0,1}: they show that O(logn log logn) steps suffice for
this walk to mix, and that O(logn log logn) steps are also necessary for n of the form 2m − 1; on
the other hand, for almost all odd n, 1.02 log2 n steps suffice. This (deterministic) act of doubling
each time causes the process to mix significantly faster than when at = 1 for all t where, if bt is
uniform on a finite set (and assuming that the resulting process is irreducible), the mixing time
is of order n2 [4,13].

Rather more general results have been established in a series of works by Hildebrand. It is
shown in his thesis ([7], Chapter 3), that if at = a for all t , and for fairly general choices of bt

(which do not depend on n), O(logn log logn) steps suffice, and in fact for almost all n, O(logn)

steps suffice. When at is allowed to vary with t , a general upper bound for the mixing time is
proved in [8]: using a recursive relation involving discrete Fourier transforms (of which more
below), he shows that (unless at = 1 always, bt = 0 always, or at and bt can each take on only
one value) O((logn)2) time steps are always sufficient. Other related results can be found in
[9,10].

A particularly interesting feature of these processes is the quantitatively different behaviour
that can be obtained by making small changes to the distribution of at and bt . For example, [2]
remark upon the following curiosity to be found when at = 2 and bt is supported on {−1,0,1}
with P(bt = 1) = P(bt = −1) = q: if q = 1/4 or q = 1/2 then O(logn) steps suffice to make the
total variation distance small; however, if q = 1/3 then O(logn log logn) steps may be required.
Similarly, [7], Chapter 5, considers the situation where bt is uniform on ±1 and at is supported on
{2, (n+ 1)/2}, with P(at = 2) = p ∈ (0,1): the mixing time is shown to be at most O((logn)m),
where m is 2 if p = 1/2, and 1 otherwise. If the distribution of bt is altered to uniform on
{−1,0,1}, then O((logn log logn)m) steps suffice.

The principal difference between these earlier works and the process defined in (1.1) is that
here we allow the probability of a ‘jump’, pn, to depend on n. In particular, we are able to show
that if pn tends to zero as a power of n, then our process exhibits a total variation pre-cutoff.

Definition 1. A sequence of chains {X(n)}n∈N, with ε-mixing times {t (n)
mix(ε)}, is said to exhibit a

pre-cutoff if it satisfies

sup
0<ε<1/2

lim sup
n→∞

t
(n)
mix(ε)

t
(n)
mix(1 − ε)

< ∞.

A stronger condition than pre-cutoff is that the sequence of chains exhibits a total variation
cutoff.
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Definition 2. A sequence of Markov chains {X(n)}n∈N is said to exhibit a total variation cutoff
at time Tn with window size wn if wn = o(Tn) and

lim
c→∞ lim inf

n→∞
∥∥P(

X
(n)
Tn−cwn

∈ ·) − πn(·)
∥∥ = 1,

lim
c→∞ lim sup

n→∞
∥∥P(

X
(n)
Tn+cwn

∈ ·) − πn(·)
∥∥ = 0.

Intuitively this says that as n gets large the convergence to equilibrium, measured using total
variation distance, happens in a negligible window of order wn around the cutoff time Tn. We
remark that it is possible for the ‘right’ and ‘left’ window sizes in the above definition to be of
different orders – see [3] for an example. There has been much interest in studying the mixing
times of Markov chains and proving the existence of cutoff phenomena: see [11] and [5] for
recent introductions to the area, or [13] for a more analytical overview. In addition, a number
of natural sequences of Markov chains are known to exhibit pre-cutoff, with the question of
whether they in fact exhibit a cutoff still open; these include card shuffles using cyclic-to-random
transpositions [12] or random-to-random insertions [15], and a Gibbs sampler on the n-simplex
[14].

Throughout the remainder of this paper, we shall simply write X for X(n), with the understand-
ing that we are in reality considering a sequence of processes on state spaces Zn of increasing
size. The main obstruction to analysing X using standard techniques for random walks on groups
is that the distribution of Xk is not given by convolution of k independent increment distributions.
This problem can be overcome by (initially) restricting attention to the process Y which is pro-
duced by subsampling X at jump times. Denote the jump times of X by τ1, τ2, . . . , and let τ0 = 0;
then Yk := Xτk

, with Y0 = X0 = 0. This process clearly satisfies Yk = Y ′
k mod n, where

Y ′
k =

k∑
i=1

2k+1−iS′
i and S′

i =
τi−1∑

t=τi−1+1

ξ ′
t . (1.2)

Here (and throughout) we use the convention that random variables with a prime take values in Z,
while those without take values in Zn. Thus, Si = S′

i mod n is the change in X due to steps taken
between jump times τi−1 and τi . Like X, Y is ergodic with uniform equilibrium distribution.
From (1.2), it is clear that the distribution of Yk is given by convolution of the distributions
corresponding to the independent increments {2k+1−iSi}, and this will prove essential to our
method for establishing an upper bound on the mixing time of both X and Y in Section 3.

In order to state our main results, we first need to establish a little more notation: we shall
write σ 2

S′ = Var(S′
i ) and Tn = log2(n/σS′). Note that the length of time between jumps of X

has a Geometric(pn) distribution, and a straightforward application of the conditional variance
formula shows that

σ 2
S′ = (1 − pn)(μ

2 + pnσ
2)

p2
n

. (1.3)
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Thus if pn → 0,

Tn ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log2

(
n
√

pn

σ

)
if μ = 0,

log2

(
npn

|μ|
)

otherwise.

(1.4)

Our main results are as follows.

Theorem 3. Suppose that pn = 1/(2nα) for some α ∈ (0,2) such that Tn → ∞ as n → ∞.
Then Y exhibits a total variation cutoff at time Tn, with cutoff window of size O(1). Indeed, for
sufficiently large c > 0,

1. lim infn→∞ ‖P(YTn−c ∈ ·) − πn(·)‖ ≥ 1 − 41−c/3;
2. lim supn→∞ ‖P(YTn+c ∈ ·) − πn(·)‖ ≤ O(2−c).

Note that the mixing time of Y is relatively insensitive to the distribution of the step lengths:
as can be seen from (1.4), the cutoff time Tn essentially depends on ξ ′ only through its mean, μ;
in the case of zero drift the mixing time is asymptotically (1 − α/2) log2 n (0 < α < 2), while if
μ �= 0 the mixing is slightly faster, with cutoff at (1 − α) log2 n (0 < α < 1).

Theorem 4. Suppose that pn satisfies the same condition as in Theorem 3. Let T L
n =

(2 ln 2)nαTn, T R
n = 2nαTn, wL

n = 2nα and wR
n = 2nα

√
Tn. Then for sufficiently large c > 0,

1. lim infn→∞ ‖P(XT L
n −cwL

n
∈ ·) − πn(·)‖ ≥ 1 − ae−c/2, for some finite constant a;

2. lim supn→∞ ‖P(XT R
n +cwR

n
∈ ·) − πn(·)‖ ≤ 2/c2.

In particular, since T L
n /T R

n = O(1), wL
n = o(T L

n ) and wR
n = o(T R

n ), Theorem 4 shows that X

exhibits a pre-cutoff, with mixing time t
(n)
mix(ε) = �(nα lnn).

Throughout the rest of the paper, we shall work under the assumptions of Theorem 3. In
Section 2, we establish lower bounds on the mixing time of both X and Y (proving part 1 of
Theorems 3 and 4). In Section 3, we prove the corresponding upper bounds. Section 4 contains
some concluding remarks and open questions.

2. Lower bounds

As is typical for many problems of this sort, finding lower bounds for the mixing times of our
two processes is significantly easier than establishing upper bounds. The general approach in
each case is to find a suitably large subset of the state space which our chain has negligible
chance of hitting before the time of interest.
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2.1. Lower bound for Y

An elementary calculation using (1.2) shows that E[Y ′
Tn−c] ∼ sgn(μ)21−cn, where we define

sgn(0) = 0. Furthermore, Var(Y ′
k) = 4(4k − 1)σ 2

S′/3, and so Var(Y ′
Tn−c) ≤ 41−cn2/3 for suffi-

ciently large n. Now consider the interval

An(c) = {
z ∈ Zn : ∣∣z −E

[
Y ′

Tn−c

]∣∣ > dcn
}
,

for some value dc ∈ (0,1/2) which we shall choose later, and where | · | represents the usual
distance between two numbers mod n. Note that πn(An(c)) ≥ 1 − 2dc − 1/n, and that (subject
to this condition) this set has been chosen to be as far away as possible from E[Y ′

Tn−c].
We now use the fact that Y is equal to Y ′ mod n, along with Chebyshev’s inequality, to

bound the probability that YTn−c belongs to our chosen set An(c):

P
(
YTn−c ∈ An(c)

) ≤ P
(∣∣Y ′

Tn−c −E
[
Y ′

Tn−c

]∣∣ > dcn
)

≤ Var(Y ′
Tn−c)

(dcn)2
≤ 41−c

3d2
c

.

Thus, the set An(c) satisfies

πn

(
An(c)

) − P
(
YTn−c ∈ An(c)

) ≥ 1 − 2dc − 1/n − 41−c

3d2
c

.

Finally, taking dc = (41−c/3)1/3 yields the claimed left hand window of the cutoff in part 1 of
Theorem 3:

lim inf
n→∞

∥∥P(YTn−c ∈ ·) − πn(·)
∥∥ ≥ 1 −

(
9

4c−1

)1/3

≥ 1 − 41−c/3.

2.2. Lower bound for X

Let X′ be the random walk on Z defined as follows:

X′
0 = 0; X′

t =
{

X′
t−1 + ξ ′

t with probability 1 − pn,

2X′
t−1 with probability pn.

(2.1)

That is, X = X′ mod n.
A natural approach to lower bound the mixing time for X would be to replicate the above argu-

ment for Y , using Chebyshev’s inequality applied to X′. However, the random number of jumps
by time T L

n − cwL
n causes the variance of X′ at this time to be too large for this to work. Instead,

we proceed by bounding the expectation of |X′
T L

n −cwL
n
| and then using Markov’s inequality to

show that XT L
n −cwL

n
has negligible chance of belonging to a region of the state space situated

‘opposite’ X0 = 0. We begin by proving the following lemma.
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Lemma 5. There exists a constant a < ∞ such that at time T L
n − cwL

n ,

E
[∣∣X′

T L
n −cwL

n

∣∣] ≤ ane−c. (2.2)

Proof. Let Jn(−c) be the number of jumps in X′ by time T L
n −cwL

n . For large n, the distribution
of Jn(−c) is well approximated by a Poisson(mn(−c)) distribution, with

mn(−c) = pn

(
T L

n − cwL
n

) = ln(n/σS′) − c, (2.3)

(using the definition of T L
n in Theorem 4 and the equality pn = 1/(2nα)). Note that under the

assumptions of Theorem 4, mn(−c) → ∞ as n → ∞. Conditional on the event {Jn(−c) = k}
we can express X′

T L
n −cwL

n
as follows:

X′
T L

n −cwL
n
|{Jn(−c) = k

} =
k+1∑
i=1

2k+1−iS′
i
(k)

, (2.4)

where S′
i
(k) d= S′

i |{Jn(−c) = k}. That is, S′
i
(k) is the additive increment in X′ between jump times

τi−1 and τi , with τ0 := 0 < τ1 < · · · < τk ≤ τk+1 := T L
n − cwL

n . It is clear that for i = 1, . . . , k

the random variables S′
i
(k) have a common distribution, and that E[|S′(k)

k+1|] ≤ E[|S′
1
(k)|] (since it

is possible to have τk = τk+1). It follows from (2.4) that for k ≥ 1,

E
[∣∣X′

T L
n −cwL

n

∣∣|Jn(−c) = k
] ≤ 2k+1

E
[∣∣S′

1
(k)∣∣]. (2.5)

We now deal with the cases of zero and non-zero μ separately.

• Case 1: μ �= 0.

Suppose that k ≥ 1. Let b be an integer satisfying B ⊆ [−2b,2b], where (recall that) B is the
support of ξ ′. Then

E
[∣∣S′

1
(k)∣∣] ≤ 2b

E
[
τ1 − 1|Jn(−c) = k

]
≤ 2b(T L

n − cwL
n )

k
(2.6)

≤ 2b+1(T L
n − cwL

n )

k + 1
,

where the second inequality follows from the symmetry observation made just before (2.5), and
the last one uses the assumption that k ≥ 1. Combining (2.5) and (2.6), we see that for k ≥ 1,

E
[∣∣X′

T L
n −cwL

n

∣∣|Jn(−c) = k
] ≤ 2b+k+2(T L

n − cwL
n )

k + 1
.

Furthermore, note that this also (trivially) holds when k = 0.
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Now average over the distribution of Jn(−c):

E
[∣∣X′

T L
n −cwL

n

∣∣] ≤ 2b+1(T L
n − cwL

n

) ∞∑
k=0

e−mn(−c)mn(−c)k2k+1

k!(k + 1)

≤ 2b+1(T L
n − cwL

n )

mn(−c)
emn(−c) = 2b+1

pn

ne−c

σS′
∼ 2b+1ne−c|μ|

for large n, thanks to the expression for mn(−c) in (2.3) and the relationship between pn and σS′
in (1.3). Taking a = 2b+1|μ| gives the required result.

• Case 2: μ = 0.

In this case, we know that E[S′
1
(k)] = 0. Furthermore,

Var
(
S′

1
(k)) ≤ E

[
σ 2(τ1 − 1)|Jn(−c) = k

] ≤ 2σ 2T L
n

k + 1
,

using the same reasoning that led to (2.6). Chebyshev’s inequality then yields, for any positive x:

E
[∣∣S′

1
(k)∣∣] ≤ x +

∫ ∞

x

P
(∣∣S′

1
(k)∣∣ > s

)
ds ≤ x + 2σ 2T L

n

(k + 1)x
.

Substituting x = 2σ
√

T L
n /(k + 1) we obtain

E
[∣∣S′

1
(k)∣∣] ≤ 3σ

√
T L

n

k + 1
.

Combining this with (2.4), we see that

E
[∣∣X′

T L
n −cwL

n

∣∣] ≤ 6σ

√
T L

n E

[
2Jn(−c)

√
Jn(−c) + 1

]
. (2.7)

Now consider the final expectation in (2.7). Recalling that, for large n, Jn(−c) is well-
approximated by a Poisson distribution with mean mn(−c), we can bound this as follows:

E

[
2Jn(−c)

√
Jn(−c) + 1

]
≤ emn(−c)

mn(−c)∑
k=0

(2mn(−c))ke−2mn(−c)

k!

+ 1√
mn(−c)

∑
k>mn(−c)

(2mn(−c))ke−mn(−c)

k! (2.8)

≤ emn(−c)

[
P
(
	 < mn(−c)

) + 1√
mn(−c)

]
,
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where 	 ∼ Poisson(2mn(−c)). A final application of Chebyshev’s inequality tells us that
P(	 < mn(−c)) ≤ 2/mn(−c), and since mn(−c) → ∞ as n → ∞ this term in (2.8) is negli-
gible. Combining (2.7) and (2.8), we therefore arrive at our desired result: for large n we can
write

E
[∣∣X′

T L
n −cwL

n

∣∣] ≤ 12σ

√
T L

n

emn(−c)

√
mn(−c)

= 12σ√
pn

ne−c

σS′
∼ 12ne−c

thanks once again to the expressions for mn(−c) and σS′ in (2.3) and (1.3). �

Recall that our aim in this section is to lower bound∥∥P(XT L
n −cwL

n
∈ ·) − πn(·)

∥∥ = sup
A

(
πn(A) − P(XT L

n −cwL
n

∈ A)
)
. (2.9)

Define the set Dn(c) to be those points in Zn whose distance from 0 (measured in the usual way
between two numbers in Zn) is greater than e−c/2n. Note that

πn

(
Dn(c)

) ≥ 1 − 2e−c/2 − 1/n.

Using Markov’s inequality and Lemma 5, we obtain:

P
(
XT L

n −cwL
n

∈ Dn(c)
) ≤ P

(∣∣X′
T L

n −cwL
n

∣∣ > e−c/2n
) ≤ ae−c/2.

Thus

πn

(
Dn(c)

) − P
(
XT L

n −cwL
n

∈ Dn(c)
) ≥ 1 − (2 + a)e−c/2 − 1/n

and so

lim inf
n→∞

∥∥P(XT L
n −cwL

n
∈ ·) − πn(·)

∥∥ ≥ 1 − (2 + a)e−c/2.

3. Upper bounds

In this section, we prove the second parts of Theorems 3 and 4. Most of the work here is required
to prove the result for the subsampled chain Y . Indeed, the result for X follows quickly from this,
as we now demonstrate.

Let Jn(c) denote the number of jumps in X by time T R
n + cwR

n : for large n this is once again
well approximated by a Poisson random variable, this time with mean mn(c) = Tn + c

√
Tn.

Assuming Theorem 3 to be true, we know that the subsampled chain Y is well mixed after Tn + c

jumps; we proceed by considering whether or not this number of jumps has occurred by our time
of interest, T R

n + cwR
n . For ease of display, in the next few lines we shall write τ = τTn+c for the

(random) time at which X jumps for the (Tn + c)th time.∥∥P(XT R
n +cwR

n
∈ ·) − πn(·)

∥∥ ≤ E
[∥∥P(XT R

n +cwR
n

∈ ·) − πn(·)
∥∥; τ ≤ T R

n + cwR
n

]
(3.1)

+ P
(
τ > T R

n + cwR
n

)
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due to total variation being bounded above by 1. We now use the fact that total variation is
non-increasing over time to bound the expectation term:

E
[∥∥P(XT R

n +cwR
n

∈ ·) − πn(·)
∥∥; τ ≤ T R

n + cwR
n

]

= E

[T R
n +cwR

n∑
k=1

∥∥P(XT R
n +cwR

n
∈ ·) − πn(·)

∥∥1[τ=k]

]

≤ E

[T R
n +cwR

n∑
k=1

∥∥P(Xk ∈ ·) − πn(·)
∥∥1[τ=k]

]
(3.2)

= E
[∥∥P(Xτ ∈ ·) − πn(·)

∥∥; τ ≤ T R
n + cwR

n

]
≤ ∥∥P(Xτ ∈ ·) − πn(·)

∥∥
= ∥∥P(YTn+c ∈ ·) − πn(·)

∥∥.

The first term in (3.1) is thus controlled by part 2 of Theorem 3. Furthermore, using Cheby-
shev’s inequality once again:

P
(
τ > T R

n + cwR
n

) = P
(
Jn(c) < Tn + c

)
≤ P

(∣∣Jn(c) − mn(c)
∣∣ ≥ c(

√
Tn − 1)

)
≤ mn(c)

c2Tn + O(
√

Tn)
→ 1

c2
as n → ∞.

Putting all of the above together, we complete the proof of Theorem 4: for sufficiently large
c > 0,

lim sup
n→∞

∥∥P(XT R
n +cwR

n
∈ ·) − πn(·)

∥∥ ≤ 2

c2
.

3.1. Upper bounds and representation theory

Our basic method for obtaining upper bounds on the mixing times of our processes is to employ
the techniques developed by [6] for analysing random walks on groups. Given a probability Q

on a finite group G, and a representation ρ of G, we can form the Fourier transform Q̂(ρ) of Q

at ρ by setting

Q̂(ρ) :=
∑
g∈G

Q(g)ρ(g).

The following Upper Bound Lemma [4] then allows one to compute an explicit upper bound for
the total variation distance between a probability Q on G and the uniform distribution π .
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Lemma 6. Given a probability Q on a finite group G, we have

‖Q − π‖2 ≤ 1

4

∑
deg(ρ) tr

(
Q̂(ρ)Q̂(ρ)∗

)
,

where A∗ = (aji) denotes the complex conjugate transpose of the matrix A = (aij ), tr denotes
the trace function on square matrices, and the sum is taken over all non-trivial irreducible rep-
resentations ρ of G.

Since the Fourier transform behaves well with respect to convolution, this lemma provides a
practical tool for bounding the mixing time of a random walk on a group. Although Y is not
strictly a random walk on the additive group (Zn,+), the measure giving the distribution of Yk

can be expressed as the convolution of measures. Here the representation theory is particularly
straightforward: the Upper Bound Lemma becomes

‖Q − π‖2 ≤ 1

4

n−1∑
s=1

∣∣Q̂(ρs)
∣∣2

, (3.3)

where the representations ρ0, ρ1, . . . , ρn−1 all have degree 1, and are completely determined by
the following equations:

ρs(1) := ei 2π
n

s for 0 ≤ s ≤ n − 1.

Recall from (1.2) that (with Y0 = 0), Yk = ∑k
j=1 2j S′

k+1−j mod n. The measure Pk giving

the distribution of Yk is the convolution of the measures λj given by λj (2j a mod n) = P(S1 =
a) for every j, a, so we begin by calculating the Fourier transforms of the λj . To ease notation,
for each 1 ≤ j ≤ k and 0 ≤ s ≤ n − 1, set

ωs,j = ρs

(
2j

) = ei 2π
n

2j s

and note that for any j, s we have ωn
s,j = 1. Then for each 0 ≤ s ≤ n − 1,

λ̂j (ρs) =
n−1∑
a=0

ωa
s,jP(S1 = a)

=
n−1∑
a=0

ωa
s,j

∑
d∈Z

P
(
S′

1 = a + dn
)

=
∑
d∈Z

n−1∑
a=0

ωa+dn
s,j P

(
S′

1 = a + dn
)

=
∑
a∈Z

ωa
s,jP

(
S′

1 = a
) = GS′(ωs,j ),
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where GS′ is the probability generating function (PGF) of S′. It follows from its definition in
(1.2) as a random sum of random step lengths that this satisfies

GS′(ωs,j ) = pn

1 − (1 − pn)Gξ ′(ωs,j )
, (3.4)

where Gξ ′ is the PGF of ξ ′.
When we substitute into the Upper Bound Lemma 6, we are interested in the modulus squared

of such expressions, by equation (3.3). The modulus of the top line squared is p2
n, and the mod-

ulus of the bottom line squared is

(
1 − (1 − pn)Gξ ′(ωs,j )

)(
1 − (1 − pn)Gξ ′(ωs,j )

)
= 1 − (1 − pn)

(
Gξ ′(ωs,j ) + Gξ ′(ωs,j )

) + (1 − pn)
2Gξ ′(ωs,j )Gξ ′(ωs,j )

= 1 − 2(1 − pn)Re
(
Gξ ′(ωs,j )

) + (1 − pn)
2
∣∣Gξ ′(ωs,j )

∣∣2
.

Combining all of the above leads to the following upper bound for the total variation distance at
time k:

∥∥P(Yk ∈ ·) − πn(·)
∥∥2

(3.5)

≤ 1

4

n−1∑
s=1

k∏
j=1

p2
n

1 − 2(1 − pn)Re(Gξ ′(ωs,j )) + (1 − pn)2|Gξ ′(ωs,j )|2 .

3.2. Strategy for analysing the upper bound

In order to establish a cutoff for Y , we need to control the right-hand side of (3.5) around time
Tn = log2(n/σS′). To that end, we define for c ∈ N a function Un(c) by

Un(c) =
n−1∑
s=1

Tn+c∏
j=1

φn(s, j), (3.6)

where

φn(s, j) := p2
n

1 − 2(1 − pn)Re(Gξ ′(ωs,j )) + (1 − pn)2|Gξ ′(ωs,j )|2 ∈ (0,1], (3.7)

and note that, thanks to (3.5), Theorem 3 will be proved if we can show that (for odd n)
lim supn→∞ Un(c) ≤ O(4−c).

Our strategy for bounding Un(c) involves identifying for each 1 ≤ s ≤ n − 1 enough values j

for which φn(s, j) is sufficiently small to provide a useful upper bound. In order to do this, it is
convenient to first reparametrise, so we let Zn be a random variable uniformly distributed on the
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set {s/n : s = 1, . . . , n − 1} ⊂ [0,1]. Then we may write

Un(c) = E
[
fn(Zn,Tn + c)

]
, where fn(x, t) := (n − 1)

t∏
j=1

φn(nx, j). (3.8)

The second step is to split the analysis of the function fn into two stages by splitting the range
of x into two pieces. In order to do this, let L be an integer satisfying 2αL > 1, and once again
let b be an integer satisfying B ⊆ [−2b,2b]. We define a finite lattice L of points in [0,1] by

L =
{

k

2L+b
: k = 0, . . . ,2L+b

}
.

Now choose some ε ∈ (0,1/(2L+b)), and define the set Lε to be the intersection of [0,1] with

⋃
x∈L

[
x − ε

2
, x + ε

2

]
.

Importantly, Lε depends only on α, B and ε, but not on n. We now proceed to bound fn(x,Tn+c)

by considering in turn the cases where x does and does not belong to the set Lε .

3.3. Controlling fn for x /∈Lε

For x /∈ Lε we see that 2π2j ax �= 0 mod 2π for any j = 1,2, . . . ,L and a ∈ B . Thus,
cos(2π2j ax) is bounded away from 1 for all such x and j , and we can write

Re
(
Gξ ′

(
ei2π2j x

)) =
2b∑

a=0

P
(∣∣ξ ′∣∣ = a

)
cos

(
2π2j ax

) ≤ 1 − κ(x),

for all j = 1, . . . ,L, where κ(x) is strictly positive.
Substituting this into the expression for φn in (3.7), and lower-bounding the modulus squared

of a complex number by the square of its real part, we obtain:

φn(nx, j) ≤ p2
n

1 − 2(1 − pn)Re(Gξ ′(ei2π2j x)) + (1 − pn)2|Gξ ′(ei2π2j x)|2

≤ p2
n

1 − 2(1 − pn)Re(Gξ ′(ei2π2j x)) + (1 − pn)2 Re(Gξ ′(ei2π2j x))2

=
(

pn

1 − (1 − pn)Re(Gξ ′(ei2π2j x))

)2

≤
(

pn

1 − (1 − pn)(1 − κ(x))

)2

= O
(
p2

n

)
.
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Since φn(nx, j) ∈ (0,1], it follows that for x /∈ Lε and for n sufficiently large that Tn + c ≥ L,

fn(x,Tn + c) = (n − 1)

Tn+c∏
j=1

φn(nx, j) ≤ (n − 1)

L∏
j=1

φn(nx, j) ≤ O
(
n1−2αL

)
.

Thanks to our choice of L > 1/2α we can now use Fatou’s lemma to deduce that

lim sup
n→∞

E
[
fn(Zn,Tn + c);Zn /∈ Lε

] = 0. (3.9)

3.4. Controlling fn for x ∈Lε

It remains to deal with E[fn(Zn,Tn + c);Zn ∈ Lε]. We begin by writing (for any t ∈ N)

E
[
fn(Zn, t);Zn ∈ Lε

] = 1

n − 1

2L+b−1∑
k=1

∑
r≥1

fn

(
r

n
, t

)
1[| k

2L+b − r
n
|≤ ε

2 ]
(3.10)

+ 1

n − 1

∑
r≥1

(
fn

(
r

n
, t

)
+ fn

(
1 − r

n
, t

))
1[ r

n
≤ ε

2 ],

where the last sum deals with the two end intervals in Lε . Consider first of all the double sum
here. Since n is odd, the shortest possible distance between any point r/n and the lattice point
k/2L+b is 1/(n2L+b); as fn is non-negative we can therefore upper bound the inner sum by
summing over a lattice of size 1/(n2L+b) centred around k/2L+b as follows:

∑
r≥1

fn

(
r

n
, t

)
1[| k

2L+b − r
n
|≤ ε

2 ] ≤
∞∑

r=−∞
r �=0

fn

(
k

2L+b
− r

n2L+b
, t

)
. (3.11)

Thus, (3.10) can be bounded as follows:

E
[
fn(Zn, t);Zn ∈ Lε

]
(3.12)

≤ 1

n − 1

2L+b−1∑
k=1

∞∑
r=−∞
r �=0

fn

(
k

2L+b
− r

n2L+b
, t

)
+ 2

n − 1

∞∑
r=1

fn

(
r

n
, t

)
,

where we have used the symmetry of the functions fn at either end of the interval [0,1] to rewrite
the expression for the end intervals. Now replace t by Tn + c, and consider the function fn in the
double sum above:

fn

(
k

2L+b
− r

n2L+b
, Tn + c

)
= (n − 1)

Tn+c∏
j=1

φn

(
nk − r

2L+b
, j

)
(3.13)

≤ (n − 1)φn

(
nk − r

2L+b
, Tn + c

)
.
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Here we have bounded the product by a single term, once again making use of the fact that φn

takes values in (0,1]. Since φn(s, j) involves s and j only through the function Gξ ′(ωs,j ), where
ωs,j = exp(2πi2j s/n), we have (for sufficiently large n) that the bound in (3.13) is a function of

exp

(
2πi

2Tn+c

n

(
nk − r

2L+b

))
= exp

(
−2πi

2Tn+cr

n2L+b

)
= exp

(
−21+c−(L+b)πir

σS′

)
.

The second equality simply uses the definition of Tn, while the first results from shifting the
argument of the exponential function by 2πik2Tn+c−(L+b). (For large enough n, this is an integer
multiple of 2πi, thanks to the finiteness of L and b and the assumption that Tn → ∞.)

Writing

θnrc = 21+c−(L+b)πr

σS′

(where recall that σS′ depends on n) we therefore need to upper bound the function

φn

(
nk − r

2L+b
, Tn + c

)
= p2

n

1 − 2(1 − pn)Re(Gξ ′(e−iθnrc )) + (1 − pn)2|Gξ ′(e−iθnrc )|2 .

Now note that

Gξ ′
(
e−iθnrc

) = E
[
e−iξ ′θnrc

]
and thus Re

(
Gξ ′

(
e−iθnrc

)) = E
[
cos

(
ξ ′θnrc

)]
.

Similarly, ∣∣Gξ ′
(
e−iθnrc

)∣∣2 = E
[
cos

(
ξ ′θnrc

)]2 +E
[
sin

(
ξ ′θnrc

)]2
.

Since pn → 0 as n → ∞, we see from (1.3) that σS′ → ∞ and so θnrc → 0. Using the Taylor
expansions of cosine and sine the above can be approximated by

E
[
cos

(
ξ ′θnrc

)] = 1 − (μ2 + σ 2)θ2
nrc

2
+ O

(
θ4
nrc

); E
[
sin

(
ξ ′θnrc

)] = μθnrc + O
(
θ3
nrc

)
.

Neglecting terms of O(θ3
nrc), we arrive at

φn

(
nk − r

2L+b
, Tn + c

)

∼ p2
n

1 − (1 − pn)[2 − (μ2 + σ 2)θ2
nrc] + (1 − pn)2[1 − (μ2 + σ 2)θ2

nrc + μ2θ2
nrc]

= p2
n

p2
n + (1 − pn)(μ2 + σ 2pn)θ2

nrc

= 1

1 + 41+c−(L+b)π2r2
.
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We now combine this bound with that in (3.13) and insert into (3.12) (using an identical argu-
ment for the second sum there):

lim sup
n→∞

E
[
fn(Zn, t);Zn ∈ Lε

]

≤
2L+b−1∑

k=1

∞∑
r=−∞
r �=0

1

1 + 41+c−(L+b)π2r2
+ 2

∞∑
r=1

1

1 + 41+c−(L+b)π2r2

(3.14)
= 2L+b

(
2L+b−(1+c) coth

(
2L+b−(1+c)

) − 1
)

∼ 2L+b 4L+b−(1+c)

3
as c → ∞,

where we have made use of the well-known identity ([1], page 334),

coth(x) = 1

x
+ 2x

∞∑
r=1

1

x2 + π2r2
(x > 0).

Combining (3.9) and (3.14) yields the required result

lim sup
n→∞

Un(c) = lim sup
n→∞

E
[
fn(Zn,Tn + c);Zn ∈ Lε

] ≤ O
(
4−c

)
as c → ∞,

and thanks to the comment after (3.7), this completes the proof of part 2 of Theorem 3.

4. Concluding remarks

We have shown that the subsampled process Y exhibits a cutoff when the probability pn of
jumping takes the form pn = 1/(2nα), for a range of α which depends upon the mean of our step
distribution (α ∈ (0,2) when μ = 0, and α ∈ (0,1) otherwise). Furthermore, our original chain
of interest X exhibits a pre-cutoff, with mixing time t

(n)
mix(ε) = �(nα lnn).

We have not yet said much about the mixing time of either process when α takes values on the
boundary of these intervals, however. If α = 0, then part 1 of Theorems 3 and 4 (which do not
rely on pn tending to zero) still hold; however, our argument for upper bounding the mixing time
of Y (and hence of X) breaks down, since a sufficiently fine lattice L does not exist. (An upper
bound of O(lnn ln lnn) can be obtained for the mixing time of X by employing the method of
[2].) On the other hand, if α takes the value at the upper boundary of the relevant interval then
n/σS′ = O(1), and thus Tn is asymptotically independent of n: in this case it is relatively easy to
show that Y mixes in constant time (and so no longer exhibits a cutoff), and that X has mixing
time of �(nα).

It is of course possible to generalise the process considered in this paper in a number of ways.
For example, changing the form of pn to 1/(βnα) for some constant β > 1 has no effect on the
cutoff result for Y . Similarly, changing the transitions of X so that jumps involve multiplying
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by some (fixed) k ≥ 2 (and considering only those n for which the resulting process still has a
uniform equilibrium distribution) presumably has the effect of changing the base of the logarithm
in the cutoff time Tn for Y from 2 to k; Theorem 4 should also still hold, with the factor of ln 2
in T L

n being replaced by (ln k)/(k − 1). More interesting would be an analysis of a process X

for which the multiplication factor is not deterministic, and for which the resulting subsampled
chain Y does not have a distribution given by simple convolution; for example where jumps in
X correspond to multiplication by at (again with probability pn → 0), with at being uniformly
chosen from the set {2, (n + 1)/2}.
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