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We study various transport-information inequalities under three different notions of Ricci curvature in the
discrete setting: the curvature-dimension condition of Bakry and Émery (In Séminaire de Probabilités, XIX,
1983/84 (1985) 177–206 Springer), the exponential curvature-dimension condition of Bauer et al. (Li-Yau
Inequality on Graphs (2013)) and the coarse Ricci curvature of Ollivier (J. Funct. Anal. 256 (2009) 810–
864). We prove that under a curvature-dimension condition or coarse Ricci curvature condition, an L1
transport-information inequality holds; while under an exponential curvature-dimension condition, some
weak-transport information inequalities hold. As an application, we establish a Bonnet–Myers theorem
under the curvature-dimension condition CD(κ,∞) of Bakry and Émery (In Séminaire de Probabilités,
XIX, 1983/84 (1985) 177–206 Springer).
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1. Introduction

In the analysis of the geometry of Riemannian manifolds, Ricci curvature plays an important
role. In particular, Ricci curvature lower bounds immediately yield powerful functional inequal-
ities, such as the logarithmic Sobolev inequality, which in turn implies transport-entropy and
transport-information inequalities. Each of these inequalities has its own interest and has various
applications, such as concentration bounds and estimates on the speed of convergence to equi-
librium for Markov chains. We refer the reader to [4,20,45] for more about the links between
curvature and functional inequalities, and to [2,27] for applications of functional inequalities.

However, when the space we consider is a graph, those theories are not as clear as in the con-
tinuous settings. The first question one would want to answer is how to define Ricci curvature
lower bounds in discrete settings. The natural approach would be to define it as a discrete ana-
logue of a definition valid in the continuous setting. There are several equivalent definitions one
can try to use (see [1] for those definitions in the continuous settings and for the equivalences
between them). However, in discrete spaces, we lose the chain rule, and these definitions are no
longer equivalent.

Several notions of curvature have been proposed in the last few years. Here we shall consider
three of them: the curvature-dimension condition of [3], the exponential curvature-dimension
condition of [5] and the coarse Ricci curvature of [37]. Other notions that have been developed
(and which we shall not discuss further here) include the entropic Ricci curvature defined in [14]
and [34], which is based on the Lott–Sturm–Villani definition of curvature [30,43], geodesic
convexity along interpolations in [17] and [28], rough curvature bounds in [8]. It is still an open
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problem to compare these various notions of curvature. We refer readers to the forthcoming
survey [11] for a more general introduction.

The aim of this work is to obtain functional inequalities under the above three notions of
curvature conditions and give some applications.

Let us begin with setting the framework of Markov chains on discrete spaces:

Markov chain on graphs and curvature condition

Let X be a finite (or countably infinite) discrete space and K be an irreducible Markov kernel
on X . Assume that for any x ∈ X , we have∑

y

K(x, y) = 1. (1)

This condition is a normalization of the time scale, enforcing that jump attempts occur at rate 1.
We also define J (x) := 1 − K(x,x) and J := supx∈X J (x). J is a measure of the laziness of the
chain, estimating how often jump attempts end with the particle not moving. Since we assume
the kernel is irreducible, 0 < J ≤ 1.

We shall always assume there exists a reversible invariant probability measure π , satisfying
the detailed balance relation

K(x,y)π(x) = K(y,x)π(y) ∀x, y ∈ X .

We denote by L the generator of the continuous-time Markov chain associated to the kernel K ,
which is given by

Lf (x) =
∑
y

(
f (y) − f (x)

)
K(x,y).

Let Pt = etL be the associated semigroup, acting on functions, and P ∗
t its adjoint, acting on

measures. We also define the � operator, given by

�(f,g)(x) := 1

2

∑
y

(
f (y) − f (x)

)(
g(y) − g(x)

)
K(x,y)

and write �(f ) := �(f,f ).
With this � operator, we are able to introduce the Bakry–Émery curvature condition

CD(κ,∞):

Definition 1.1. We define the iterated � operator �2 as

�2(f ) = 1

2
L�(f ) − �(f,Lf ).

We say that the curvature condition CD(κ,∞) is satisfied if, for all functions f , we have

�2(f ) ≥ κ�(f ).
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Since we shall deal with three different types of Ricci curvature lower bounds, in order to
avoid confusions, we always denote κ for the Bakry–Émery curvature condition, κe for the ex-
ponential curvature dimension condition and κc for a lower bound on the Coarse Ricci curvature.
Throughout the paper, κ, κe, κc will always be positive numbers.

The �2 operator and the curvature condition were first introduced in [3], and used to prove
functional inequalities, such as logarithmic Sobolev inequalities and Poincaré inequalities, for
measures on Riemannian spaces satisfying CD(κ,∞) for κ > 0. In the Riemannian setting, the
�2 operator involves the Ricci tensor of the manifold, and the condition CD(κ,∞) is equivalent
to asking for lower bounds on the Ricci curvature, and more generally to the Lott–Sturm–Villani
definition of lower bounds on Ricci curvature (see [30] and [43] for the definition, and [1] for
the equivalence between the two notions). Hence, CD(κ,∞) can be used as a definition of lower
bounds on the Ricci curvature for nonsmooth spaces, and even discrete spaces. This was the
starting point of a very fruitful direction of research on the links between curvature and functional
inequalities. In most cases, the focus was on the continuous setting, and the operator L was
assumed to be a diffusion operator.

In the discrete setting, this curvature condition was first studied in [41] and then in [5,6,10,
29]. It has also been used in [26], where a discrete version of Buser’s inequality was obtained,
as well as curvature bounds for various graphs, such as abelian Cayley graphs and slices of the
hypercube. Note that most of these works are set in the framework of graphs rather than Markov
chains, which generally makes our definitions and theirs differ by a normalization constant, since
we enforce the condition (1).

In the discrete setting, obtaining a lower bound on the Bakry–Émery curvature is somewhat
difficult for concrete models. Klartag et al. [26] studies several examples of Markov chains for
which Bakry–Émery curvature bounds can be proven, such as the random transposition model
and the Bernoulli–Laplace process. Such curvature bounds for birth and death processes have
also been studied by [22]. The situation is better understood in the continuous setting, where it
includes the important case of Langevin samples with uniformly convex potentials.

As we have mentioned, the main differences between the continuous and discrete settings is
the when the operator L is not a diffusion operator, we lose the chain rule. This leads to additional
difficulties, and some results, such as certain forms of the logarithmic Sobolev inequality, do not
seem to hold anymore. On the other hand, one of the main difficulties in the continuous setting
is to exhibit an algebra of smooth functions satisfying certain conditions, while this property
immediately holds in the discrete setting.

The key chain rule used in the continuous setting is the identity

L
(
�(f )

) = �′(f )Lf + �′′(f )�(f )

which characterizes diffusion operators in the continuous setting, and does not hold in discrete
settings. However, a key observation of [5] is that when �(x) = √

x, the identity

2
√

f L
√

f = Lf − 2�(
√

f )

holds, even in the discrete setting. This observation motivated the introduction of a modified
version of the curvature-dimension condition, designed to exploit this identity.
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Definition 1.2. We define the modified �2 operator �̃2 as

�̃2(f,f ) := �2(f ) − �

(
f,

�(f )

f

)
.

We say that the exponential curvature condition CDE′(κe,∞) is satisfied if, for all nonnegative
functions f and all x ∈X , we have

�̃2(f )(x) ≥ κe�(f )(x).

Remark 1.1. We use the notation CDE′(κe , ∞) to agree with the notations of [5], where they
also consider the case when the condition is only satisfied at points x where Lf (x) < 0.

In [35], it is shown that CDE′(κe,∞) implies CD(κ,∞) with κ = κe . When the operator L is
a diffusion, the conditions CDE′(κe,∞) and CD(κ,∞) are equivalent.

Under this notion of curvature, [5] prove various Li-Yau inequalities on graphs, and then
deduce heat kernel estimates and a Buser inequality for graphs. In [6], it was shown that the
CDE′(κe,∞) condition tensorizes, and that the associated heat kernel satisfies some Gaussian
bounds.

At the time of writing, we do not know many examples for which lower bounds on the modified
Bakry–Émery curvature have been computed. In [5], it is shown that Abelian Caylay graphs (and
more generally the so-called Ricci-flat graphs) satisfy CDE′(0,∞), and we show in Section 6
that the N -dimensional discrete hypercube satisfies CDE′(1/N,∞). It would be interesting to
study this curvature condition for more examples. A starting point could be the examples studied
in [26] for which the weaker CD(κ,∞) condition has been established.

The third notion of curvature we shall now introduce is the coarse Ricci curvature. In order to
define it, we first need to introduce Wasserstein distances.

Let d be a distance on X . The Lp Wasserstein distance is defined as the following.

Definition 1.3 (Lp-Wasserstein distances). Let p ≥ 1. The Lp-Wasserstein distance Wp be-
tween two probability measures μ and ν on a metric space (X , d) is defined as

Wp(μ,ν) :=
(

inf
π

∫
d(x, y)pπ(dx dy)

)1/p

,

where the infimum runs over all couplings π of μ and ν.

Finally, we recall the definition of coarse Ricci curvature, which has been introduced in [37]
for discrete-time Markov chains. Since we shall work in continuous time, we shall give the
appropriate variant, introduced in [24]. Previous works considering contraction rates in transport
distance include [12,36,40]. Applications to error estimates for Markov Chain Monte Carlo were
studied in [25]. The continuous-time version we use here was introduced in [24]. The particular
case of curvature on graphs has been studied in [23].
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Definition 1.4 (Coarse Ricci curvature). The coarse Ricci curvature of the Markov chain is
said to be bounded from below by κc if, for all probability measures μ and ν and any time t ≥ 0,
we have

W1
(
P ∗

t μ,P ∗
t ν

) ≤ exp(−κct)W1(μ, ν),

that is, if it is a contraction in W1 distance, with rate κc .

Note that unlike the CD(κ,∞) condition, this property does not only depend on the Markov
chain, but also on the choice of the distance d .

In this work, as a distance on X we shall use the graph distance associated to the Markov
kernel. If we consider X as the set of vertices of a graph, with edges between all pairs of vertices
(x, y) such that K(x,y) > 0, d shall be the usual graph distance. More formally, it is defined as

d(x, y) := inf
{
n ∈N; ∃x0, . . . , xn|x0 = x, xn = y,K(xi, xi+1) > 0 ∀0 ≤ i ≤ n − 1

}
.

Because of the relationship between coarse Ricci curvature and path coupling [9] (a notion
commonly used for the study of fast mixing of Markov chains), there are many known examples
of Markov chain having positive coarse Ricci curvature. Many of them are surveyed in [38], but
we would like to mention a few with concrete interest, such as birth and death chains, Glauber
dynamics on the Ising model at high temperature and random walks on manifolds with posi-
tive Ricci curvature. See also [31] for applications to concrete models in computer science and
statistical physics.

At the time of writing, it is not known whether there is a direct relationship between Bakry–
Émery curvature and coarse Ricci curvature in the discrete setting.

Functional inequalities

Now we turn to functional inequalities on graphs.

Definition 1.5 (Fisher information). Let f be a nonnegative function defined on X . Define the
Fisher information Iπ of f with respect to π as

Iπ (f ) := 4
∫

�(
√

f )dπ = 2
∑
x∈cX

∑
y∈X

(√
f (y) − √

f (x)
)2

K(x,y)π(x).

The factor 4 in this definition comes from the analogy with the continuous setting, where

4
∫

|∇√
f |2 dπ =

∫
|∇ logf |2f dμ.

In the continuous setting, the Fisher information can be written as
∫ ∇ logf · ∇f dπ , so we can

define a modified Fisher information as

Ĩπ (f ) :=
∫

�(f, logf )dπ, (2)

which corresponds to the entropy production functional of the Markov chain.
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There is a third way to rewrite the Fisher information for the continuous settings as
∫ |∇f |2

f
dμ,

and one can also define another modified Fisher information as

Iπ (f ) :=
∫

�(f )

f
dπ.

Of course, there are many other ways to rewrite the Fisher information in the continuous
setting, each leading to a different definition in the discrete setting. We only stated here the three
versions we shall use in this work.

In the discrete setting, Iπ (f ), Ĩπ (f ) and Iπ (f ) are not equal in general. It is easy to see that
Iπ (f ) ≤ Ĩπ (f ) and Iπ (f ) ≤ Iπ (f ) If f is the density function of a probability measure ν with
respect to π , since (

√
f (y)−√

f (x))2 ≤ f (x)+f (y), and since π is reversible, one can deduce
that

Iπ (f ) ≤ 2
∑
x∈X

∑
y∈X

(
f (x) + f (y)

)
K(x,y)π(x) ≤ 4J.

Here we can see that in discrete settings, the Fisher information is in fact bounded from above,
which is not true in continuous settings.

Let us recall the definition of the relative entropy Entπ as well:

Definition 1.6 (Relative entropy). Assuming that f is a nonnegative function on X , we define
the relative entropy f with respect to π as

Entπ (f ) :=
∑
X

f (x) logf (x)π(x) −
∑
X

f (x)π(x) log

(∑
X

f (x)π(x)

)
.

Note that when f is a probability density with respect to π , the second term takes value 0.

Definition 1.7. Let π be a probability measure on X and p ≥ 1. We say that π satisfies:

(i) the logarithmic Sobolev inequality with constant C, if for all nonnegative functions f ,
we have

Entπ (f ) ≤ 1

2C
Iπ (f )

(
LSI(C)

);
(ii) the modified logarithmic Sobolev inequality with constant C, which we shall write

mLSI(C), if for all nonnegative functions f , we have

Entπ (f ) ≤ 1

2C

∫
�(f, logf )dπ

(
mLSI(C)

);
(iii) the transport-entropy inequality Tp(C) if for all probability measures ν = f π , we have

Wp(ν,μ)2 ≤ 2

C
Entπ (f )

(
Tp(C)

);
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(iv) the transport-information inequality TpI (C) if for all probability measures ν = f π , we
have

Wp(ν,μ)2 ≤ 1

C2
Iπ (f )

(
TpI (C)

)
.

In the continuous setting, mLSI and LSI are the same inequality, but in the discrete setting
they correspond to distinct properties of the Markov chain, namely hypercontractivity for LSI
and exponential convergence to equilibrium in relative entropy for mLSI. In general, LSI implies
mLSI, but the converse is not true. We refer to [7] for more on the difference between the two
inequalities.

In the discrete setting, when p = 1, the following relations between the inequalities hold, in
the same way as in the continuous setting:

LSI(C) ⇒ T1I (C) ⇒ T1(C).

The T1 inequality is equivalent to Gaussian concentration for π (see, for example, [27] and the
next section), but not dimension-free concentration, and is therefore strictly weaker than T2.
When p = 1, the transport-information inequality is equivalent to Gaussian concentration for
the occupation measure of the Markov chain (see [21]), and is therefore useful to get a priori
bounds on the statistical error for Markov Chain Monte Carlo estimation of averages. Gaussian
concentration bounds typically take the form

P
π
(
f ≥ E[f ] + r

) ≤ Me−cr2

for any 1-Lipschitz function f and any r ≥ 0. Hence, such inequalities allow to bound proba-
bilities of observing significant deviations for Lipschitz observables. Such results can sometimes
be obtained for non-Lipschitz observables via function inequalities using extra assumptions, see,
for example, [19].

The transport-information inequality implies concentration bounds for the occupation measure
of a Markov chain. It was shown in [21] to be equivalent to

P
ν

[
1

t

∫ t

0
g(Xt ) dt ≥ π(g) + r

]
≤

∥∥∥∥ dν

dπ

∥∥∥∥
2

exp
(−tr2/2C

)
for any initial data ν, any 1-Lipschitz observable g and any r > 0. Other consequences (bounds
on Feynmann–Kac semigroups, large deviations) have also been obtained in [21].

One of the most interesting cases in the continuous setting is the transport-entropy inequality
when p = 2, which is also called the Talagrand inequality and was introduced in [44]. It is
equivalent to dimension-free Gaussian concentration for π [15].

One can show the following relationships:

CD(κ,∞) ⇒ LSI(κ) ⇒ T2I (κ) ⇒ T2(κ).

We refer to [39] and [20] for the proofs of these implications. With those inequalities in hand,
one can prove some dimension-free concentration results on a metric-measure space (see [15]).
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However, the results for p = 2 fail to be true in discrete settings, as we will see in next section.
When X is a graph, π never satisfies T2, unless it is a Dirac measure (see for example, [16], or
Section 2). To recover a discrete version of T2, we therefore have to redefine the transport cost.
Erbar and Maas recovered some of those functional inequality results with the notion of entropic
Ricci curvature on graphs, and we refer the reader to [14,32] for more details. Another way to
deal with it is to take the weak transport cost introduced in [33]:

Definition 1.8. Let (X , d) be a polish space and μ,ν two probabilities measures on X , define

T̃2(ν|μ) := inf
π∈�(μ,ν)

{∫ (∫
d(x, y)px(dy)

)2

μ(dx)

}
.

Where �(μ,ν) is the set of all couplings π whose first marginal is μ and second marginal is ν,
px is the probability kernel such that π(dxdy) = px(dy)μ(dx). Using probabilistic notations,
on has

T̃2(ν|μ) = inf
X∼μ,Y∼ν

E
((
E

(
d(X,Y )|X)2))

.

Note that the weak transport cost could be also seen as a weak Wasserstein-like distance.
In order to agree with the notations of Wasserstein distance, we note W̃2(ν|μ)2 := T̃2(ν|μ).
However, it is not a distance, since it is not symmetric. Note that by Jensen’s inequality, both
W̃2(ν|μ) and W̃2(μ, ν) are larger than W1(μ, ν).

Definition 1.9. Adapting the settings of Definition 1.7, we say that π satisfies:

(v) the weak transport-entropy inequality T̃ +
2 (C) if for all probability measures ν = f π ,

we have

W̃2(f π |π)2 ≤ 2

C
Entπ (f );

(vi) the weak transport-entropy inequality T̃ −
2 (C) if for all probability measures ν = f π ,

we have

W̃2(π |f π)2 ≤ 2

C
Entπ (f );

(vii) the weak transport-information inequality T̃ +
2 I (C) if for all probability measures ν =

f π , we have

W̃2(f π |π)2 ≤ 1

C2
Iπ (f );

(viii) the weak transport-information inequality T̃ −
2 I (C) if for all probability measures ν =

f π , we have

W̃2(π |f π)2 ≤ 1

C2
Iπ (f ).
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Here we only consider the case when the cost function is quadratic, for more general result
about weak transport inequalities, we refer to [18] and [42].

The weak transport-entropy inequality T̃ +
2 (C) implies T1, so that it still implies gaussian con-

centration. Moreover, unlike the T1 inequality, it has a tensorization property (see Theorem 4.11
in [18]), although a weaker form than for T2.

Our main results are the following theorems.

Theorem 1.10. Let K be an irreducible Markov kernel on X and π the reversible invariant
probability measure associated to K . Assume that CD(κ,∞) holds with κ > 0. Then π satis-
fies the transport-information inequality T1I with constant κ . More precisely, for all probability
measure ν := f π on X , it holds

W1(f π,π)2 ≤ 2J

κ2
Iπ (f ).

With such a result in hand, we can then follow [20] to prove a transport-entropy inequality T1
holds, so that the Gaussian concentration property follows as well. Another application is that
after a simple computation, one can obtain the following Bonnet–Myers type theorem.

Corollary 1.11. Assume that CD(κ,∞) holds, then

d(x, y)κ ≤ 2
(
J (x) + J (y)

)
.

Recall that under coarse Ricci curvature condition, [37] obtains the same type of inequality:
κcd(x, y) ≤ J (x) + J (y).

Now if we make the stronger assumption CDE′(κe,∞), we get a stronger inequality:

Theorem 1.12. Let (X , d) be a connected graph equipped with graph distance d . Let K be a
irreducible Markov kernel on X and π the reversible invariant probability measure associated
to K . Assume that CDE′(κe,∞) holds with κe > 0. Then π satisfies the transport-information
inequality T̃ +

2 I with constant κe/
√

2. More precisely, for all probability measure ν := f π on X ,
it holds

W̃2(f π |π)2 ≤ 2J

κ2
e

Iπ (f ) ≤ 2

κ2
e

Iπ (f ).

Again, following the ideas of [20], one can prove a weak-transport entropy inequality T̃ +
2 .

On the other hand, sine the weak-transport cost is stronger than the L1-Wasserstein distance, it
yields immediately T1I holds, which implies T1 and concentration results.

Under coarse Ricci curvature condition, the inequality T1I (κc) holds.

Theorem 1.13. Let X ,π,K define as before. If the global coarse Ricci curvature is bounded
from below by κc > 0, then the following transport inequality holds for all density function f :

W1(f π,π)2 ≤ 1

κ2
c

Iπ (f )

(
J − 1

8
Iπ (f )

)
≤ 1

κ2
c

Iπ (f ).
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As a corollary, this last result implies a T1 inequality for such Markov chain, which has been
previously obtained by [13].

The paper is organized as follows: in first section we will explain why T2 cannot hold in
general, then establish connection of results in [42] and the Fisher information on graph set-
tings. Section 2 gives a few preliminary results about Hamilton–Jacobi equations on graphs.
In the third, fourth and fifth sections we will discuss functional inequalities under CD(κ,∞),
CDE′(κe,∞) and coarse Ricci curvature κc respectively. In the last section we will show some
applications, such as how a transport-information inequality implies a transport-entropy inequal-
ity, concentration results, a discrete analogue of the Bonnet–Meyer theorem, and a study of the
example of the discrete hypercube.

2. Preliminary

In this section, we present some general results in the discrete setting, without assuming any
curvature condition. Our main concern is to present the Hamilton–Jacobi equations on graphs
introduced in [18,42] and their relation with weak transport costs.

As we mentioned in the introduction, in the discrete setting, when π is not a Dirac mass, the
inequality T2(κ) cannot hold true, for any κ > 0. To our knowledge, this was first proved in [16].
We give here a different proof, as a consequence of a more general result.

Lemma 2.1. Let (X , d) be a metric space and μ a probability measure defined on X . Assume
that there exist C1,C2 ⊂X such that

(i) infx∈C1,y∈C2 d(x, y) > 0,
(ii) supp(μ) ⊂ C1 ∪ C2,

(iii) μ(C1) > 0, μ(C2) > 0.

Then μ does not satisfies T2(κ) for any κ > 0.

Proof. For h < min{μ(C1),μ(C2)}, define

νh(dx) :=

⎧⎪⎪⎨⎪⎪⎩
μ(dx)

(
1 + h

μ(C1)

)
, x ∈ C1,

μ(dx)

(
1 − h

μ(C2)

)
, x ∈ C2.

Let d := infx∈C1,y∈C2 d(x, y) > 0. Then we have W2(μ, ν)2 ≥ d2h, and the entropy is(
μ(C1) + h

)
log

(
1 + h/μ(C1)

) + (
μ(C2) − h

)
log

(
1 − h/μ(C2)

)
.

When h goes to 0, the entropy is O(h2). The conclusion follows since W 2
2 have order O(h). �

Thus, if π satisfies T2 on graphs, it means that π is a Dirac mass.
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In this section, we shall describe the links between weak transport inequalities and the Hamil-
ton Jacobi operator that was introduced in [18] and studied in [42].

Following [18], the weak transport cost W̃ 2
2 between two probability measures μ and ν satisfies

the following duality formula:

W̃2(ν|μ)2 = sup
g∈Cb

c

{∫
Q̃1g dν −

∫
g dμ

}
, (3)

where the infimum-convolution operator is defined as

Q̃tϕ(x) := inf
p∈P(X )

{∫
g(y)p(dy) + 1

t

(∫
d(x, y)p(dy)

)2}
.

Later, the second author remarked (see [42]) that the operator Q̃t satisfies a discrete version of
the Hamilton–Jacobi equation: for all t > 0

∂

∂t
Q̃tg + 1

4
|∇̃Q̃tg|2 ≤ 0, (4)

where |∇̃g|(x) := supy∈X
[g(y)−g(x)]−

d(x,y)
. We refer to [4,45] for information about Hamilton–Jacobi

equations in the continuous setting and their link with functional inequalities.
Now let α ∈ C1(R

+), according to (4), one can easily check that for all t > 0, it holds∣∣∣∣α′(t) ∂

∂t
Q̃α(t)g

∣∣∣∣ ≥ 1

4
|∇̃Q̃α(t)g|2. (5)

The evolution with respect to time is controlled by this special “gradient”. We refer readers to
[42] for properties of Q̃ and ∇̃ . Here we shall develop some more.

Proposition 2.2 (Convexity). Let g be a function defined on X , then for all x ∈X , the function
t �→ Q̃tg(x) is convex.

Proof. Fix x ∈ X , define G(t) := Q̃tg(x) Observe that for any λ ∈ [0,1], and p1,p2 ∈ P(X ),
setting p := λp1 + (1 − λ)p2 ∈P(X ) and applying the Cauchy–Schwarz inequality, it holds for
all t, s > 0:(∫

d(x, z)p(dz)

)2

=
(

λ

∫
d(x, z)p1(dz) + (1 − λ)

∫
d(x, z)p2(dz)

)2

≤ (
λt + (1 − λ)s

)(λ(
∫

d(x, z)p1(dz))2

t
(6)

+ (1 − λ)(
∫

d(x, z)p2(dz))2

s

)
.
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As a consequence, we get

λ

(∫
g(z)p1(dz) + 1

t

(∫
d(x, z)p(dz)

)2)
+ (1 − λ)

(∫
g(z)p2(dz) + 1

s

(∫
d(x, z)p2(dz)

)2)
(7)

≥
∫

g(z)p(dz) + 1

(λt + (1 − λ)s)

(∫
d(x, z)p(dz)

)2

≥ G
(
λt + (1 − λ)s

)
.

Taking the infimum over all p1,p2 ∈ P(X ) on left hand side of the inequality, the conclusion
follows. �

The following lemma is a technical result connecting the gradient ∇̃ and �-operator.

Lemma 2.3. Let π be the reversible probability measure for the Markov kernel k. For any
bounded function f and g on X , the following inequalities hold:

(i)
∫

�(f,g)dπ ≤ √
2J

∫ |∇̃g||∇̃f |dπ ,
(ii) | ∫ �(f,g)dπ | ≤ √

2J
∫ |∇̃g|√�(f )dπ .

Moreover, if we suppose that f is non negative, then we have

(iii)
∫

�(f,g)dπ ≤ 2
√

2J
∫ |∇̃g|√f �(

√
f )dπ ,

(iv)
∫

�(
√

f )dπ ≤ J
4

∫ |∇̃ logf |2f dπ .

Proof. The proofs of these four inequalities all follow similar arguments. Denote the positive
part and negative part of a function u as u+ and u−, respectively.

(i): Using the relation (uv)+ ≤ u+v+ + u−v−, we have∫
�(f,g)+ dπ = 1

2

∑
x

[∑
y∼x

(
f (y) − f (x)

)(
g(y) − g(x)

)]
+
K(x,y)π(x)

≤ 1

2

∑
x

∑
y∼x

(
g(y) − g(x)

)
+
(
f (y) − f (x)

)
+K(x,y)π(x)

+ 1

2

∑
x

∑
y∼x

(
g(y) − g(x)

)
−
(
f (y) − f (x)

)
−K(x,y)π(x).

Now by reversibility of the measure π , it holds∑
x

∑
x

(
g(y) − g(x)

)
+
(
f (y) − f (x)

)
+K(x,y)π(x)

=
∑
x

∑
y∼x

(
g(y) − g(x)

)
−
(
f (y) − f (x)

)
−K(x,y)π(x)

≤
∑
x

|∇̃g|(x)
∑
y∼x

(
f (x) − f (y)

)
−K(x,y)π(x).
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Where the latter inequality follows from |∇̃g|(x) ≥ (g(y) − g(x))− for all y ∼ x. Therefore, we
get ∫

�(f,g)+ dπ ≤
∑
x

|∇̃g|
∑
y∼x

(
f (y) − f (x)

)
−K(x,y)π(x). (8)

In (8), using �(f,g) ≤ �(f,g)+ and
∑

y∼x(f (y) − f (x))−K(x,y) ≤ |∇̃f |(x)J (x), we get (i).
(ii): By the Cauchy–Schwarz inequality, it holds(∑

y∼x

(
f (y) − f (x)

)
−K(x,y)

)2

≤ J (x)
∑
y∼x

(
f (y) − f (x)

)2
−K(x,y) ≤ 2J�(f ). (9)

Combining (8) and (9) leads to∫
�(f,g)+ dπ ≤

∫
|∇̃g|√2J�(f )dπ. (10)

Following a similar argument, we have∫
�(f,g)− dπ ≤

∫
|∇̃g|√2J�(f )dπ, (11)

and (ii) follows by (10), (11) and the inequality∣∣∣∣∫ �(f,g) dπ

∣∣∣∣ ≤ max

{∫
�(f,g)+ dπ,

∫
�(f,g)− dπ

}
.

(iii): Since f is nonnegative,
√

f is well defined. Then it holds∫
�(f,g) dπ = 1

2

∑
x

∑
y∼x

(
f (y) − f (x)

)(
g(y) − g(x)

)
K(x,y)π(x)

= 1

2

∑
x

∑
y∼x

(
g(y) − g(x)

)(√
f (y) − √

f (x)
)(√

f (y) + √
f (x)

)
K(x,y)π(x).

Now arguing as in (i) and (ii), by reversibility of π , we get∫
�(f,g) dπ =

∑
x

∑
y∼x

(
g(y) − g(x)

)
−
(√

f (y) − √
f (x)

)
−
(√

f (y) + √
f (x)

)
K(x,y)π(x).

Notice that (
√

f (y) − √
f (x))−(

√
f (y) + √

f (x)) ≤ (
√

f (y) − √
f (x))−2

√
f (x), we have∫

�(f,g) dπ ≤ 2
∑
x

∑
y∼x

(
g(y) − g(x)

)
−
(√

f (y) − √
f (x)

)
−
√

f (x)K(x, y)π(x)

≤ 2
√

2J

∫
|∇̃g|

√
f �(

√
f )dπ,

where the last step we have used (9) with u := √
f .
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(iv): If f is the null function, there is nothing to say. Otherwise, if there exist x, y ∈ X such
that f (x) = 0, f (y) > 0, it is easy to see that |∇̃ logf (y)|2f (y)π(y) = ∞. So we only need to
prove the case f (x) > 0 for all x ∈X .

Since f is a positive function, one can rewrite f = eg , it is enough to prove that∫
�

(
eg/2)dπ ≤ J

4

∫
|∇̃g|2eg dπ

holds for all function g. In fact, by convexity of function x �→ ex , we have for all a > b, (a −
b)ea ≥ ea − eb . Thus,

J

∫
|∇̃g|2eg ≥

∑
x∼y;g(y)≤g(x)

(
g(x) − g(y)

)2
eg(x)K(x, y)π(x)

≥ 4
∑

x∼y;g(y)≤g(x)

(
e

g(x)
2 − e

g(y)
2

)2
K(x,y)π(x)

= 4
∫

�
(
eg/2)dπ. �

2.1. Transport-information inequalities implies transport-entropy
inequalities

We prove here the discrete version of Theorem 2.1 in [20], which states that we can deduce
transport-entropy inequalities from transport-information inequalities. The proof is essentially
unchanged, we give it to justify the validity of the theorem in the discrete setting.

Theorem 2.4. Assume that the transport-information inequality

W1(f π,π)2 ≤ 1

C2
Iπ (f )

holds. Then we have the transport-entropy inequality

W1(f π,π)2 ≤ 2

C
Entπ (f ).

Proof. The transport-entropy inequality T1(C) is equivalent to the estimate∫
eλf dπ ≤ exp

(
λ2

2C

)
for all 1-Lipschitz function f with

∫
f dπ = 0 and all λ ≥ 0. Let f be such a function. Let

Z(λ) := ∫
eλf dπ and μλ := eλf π/Z(λ). We have

d

dλ
logZ(λ) = 1

Z(λ)

∫
f eλf dπ ≤ W1,d (μλ,π) ≤

√
4

C2

∫
�(eλf/2)

Z(λ)
dπ.
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Using the inequality
∫

�(f )dπ ≤ ∫
f 2�(logf )dπ , we deduce

d

dλ
logZ(λ) ≤ λ

C

which integrates into logZ(λ) ≤ λ2/(2C), and this is the bound we were looking for. �

We shall now show that the weak transport-information inequality T̃ +
2 I implies the weak-

transport-entropy inequality T̃ +
2 . The proof is an adaptation of the one for the T2 and T2I in-

equalities in the continuous setting from [20].

Theorem 2.5. Assume that π satisfies the modified weak-transport information inequality
T̃ +

2 I (C), then π satisfies the weak-transport inequality T̃ +
2 (C).

Proof. According to [18], the transport-entropy inequality T̃2 is equivalent to∫
exp

(
2

C
Q̃1f

)
dπ ≤ exp

(
2

C

∫
f dπ

)
∀f : X −→R bounded.

Usually, the class of functions f we must use is the class of bounded continuous functions, but
here, since we work on a discrete space endowed with a graph distance, we only have to work
with bounded functions.

We write F(t) := log
∫

exp(k(t)Q̃tf ) dπ − k(t)
∫

f dπ with k(t) := Ct . Let μt be the proba-
bility measure with density with respect to π proportional to exp(k(t)Q̃tf ).

According to part (iv) of Lemma 2.3, we have∫
�

(
e

1
2 (k(t)Q̃t f )

)
dπ ≤

∫ ∣∣∇̃k(t)Q̃tf
∣∣2

dμt .

Hence, for t > 0, we have

F ′(t) ≤ 1∫
exp(k(t)Q̃tf ) dπ

(∫
k′(t)Q̃tf ek(t)Q̃t f dπ −

∫
k(t)|∇̃Q̃tf |2ek(t)Q̃t f dπ

)
− k′(t)

∫
f dπ

≤ k′(t)
t

(∫
Q̃1(tf ) dμt −

∫
tf dπ

)
− k(t)

∫
|∇̃Q̃tf |2 dμt

≤ k′(t)
t

W̃2(μt ,π)2 − k(t)

∫
|∇̃Q̃tf |2 dμt

≤ k′(t)
tC2

∫
�

(
e

1
2 (k(t)Q̃t f )

)
dπ − k(t)

∫
|∇̃Q̃tf |2 dμt

≤
(

k′(t)
tC2

− 1

k(t)

)∫ ∣∣∇̃k(t)Q̃tf
∣∣2

dμt

= 0. �
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3. Transport inequalities for Markov chains satisfying
CD(κ,∞)

In this section, we assume that the Markov chain satisfies the curvature condition CD(κ,∞)

for some κ > 0. One of the main tools we shall use is the following sub-commutation relation
between � and the semigroup Pt , which was obtained in [26].

Lemma 3.1. Assume that CD(κ , ∞) holds. Then for any f :X −→ R, we have

�(Ptf ) ≤ e−2κtPt�(f ).

Another property we shall make repeated use of is that if a function is 1-Lipschitz with respect
to d , then automatically �(f ) ≤ J . This is an immediate consequence of the definitions of � and
of the graph distance d adapted to the Markov kernel K .

Proof of Theorem 1.10. The proof relies on the Kantorovitch–Rubinstein duality formula

W1(π, ν) = sup
g1−lip

∫
g dπ −

∫
gdν.

Let g be a 1-Lipschitz function. It implies that �(g) ≤ J .
First, using the Cauchy–Schwarz inequality, it holds

−
∫

�(Ptg,f ) dπ

= −1

2

∑
x,y

(
Ptg(y) − Ptg(x)

)(
f (y) − f (x)

)
K(x,y)π(x)

= 1

2

∑
x,y

∣∣(Ptg(y) − Ptg(x)
)(√

f (y) − √
f (x)

)(√
f (y) + √

f (x)
)∣∣K(x,y)π(x)

≤
∑
x

π(x)�(
√

f )(x)
1
2

×
(∑

y

(
Ptg(y) − Ptg(x)

)2(√
f (y) + √

f (x)
)2

K(x,y)

) 1
2

.

Now applying the Cauchy–Schwarz inequality again, the latter quantity is less than(∫
�(

√
f )dπ

) 1
2

×
(∑

x,y

(
Ptg(y) − Ptg(x)

)2(√
f (y) + √

f (x)
)2

K(x,y)π(x)
) 1

2
.
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Therefore, we have

−
∫

�(Ptg,f ) dπ

≤
(∫

�(
√

f )dπ

) 1
2 (∑

x,y

(
Ptg(y) − Ptg(x)

)2(√
f (y) + √

f (x)
)2

K(x,y)π(x)
) 1

2

≤ √
2
√
Iπ (f )

√∫
�(Ptg)f dπ,

where the last step we have used the reversibility of the measure π and the fact that(√
f (y) + √

f (x)
)2 ≤ 2

(
f (x) + f (y)

)
(12)

for any nonnegative function f .
Therefore, according to Lemma 3.1, we have∫

g dπ −
∫

gf dπ =
∫ +∞

0

d

dt

∫
(Ptg)f dπ dt

= −
∫ +∞

0

∫
�(Ptg,f ) dπ dt

≤
∫ +∞

0

√
Iπ (f )

√∫
�(Ptg)f dπ dt

≤ √
2
√
Iπ (f )

∫ +∞

0
e−κt

√∫
Pt

(
�(g)

)
f dπ dt

≤
√

2J

κ

√
Iπ (f ).

The result immediately follows by taking the supremum over all 1-Lipschitz functions g. �

Using, similar arguments, we can also prove the following Cheeger-type inequality.

Proposition 3.2. Assume that CD(κ , ∞) holds. Then for any probability density f with respect
to π , we have

W1(f π,π) ≤
√

J

κ

∫ √
�(f )dπ.

We call this a Cheeger-type inequality, by analogy with the classical Cheeger inequality

‖f π − π‖TV ≤ C

∫
|∇f |dπ.
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Here
∫ √

�(f )dπ is an L1 estimate on the gradient of f , while ‖f π − π‖TV is also a distance
of L1 nature.

Proof. Once more, by Kantorovitch duality for W1, and since 1-Lipschitz functions g satisfy
�(g) ≤ J , we have

W1(f π,π) ≤ sup
g;�(g)≤1

∫
gf dπ −

∫
g dπ

= sup
g;�(g)≤J

−
∫ +∞

0

∫
�(Ptg,f ) dπ dt

≤ sup
g;�(g)≤J

∫ +∞

0

∫ √
�(Ptg)

√
�(f )dπ dt

≤ sup
g;�(g)≤J

∫ +∞

0
e−κt

∫ √
Pt�(g)

√
�(f )dπ dt

≤
√

J

κ

∫ √
�(f )dπ. �

4. Transport inequalities for Markov chain satisfying
CDE′(κe,∞)

In this section, we assume that the exponential curvature condition CDE′(κe,∞) holds. We will
prove Theorem 1.12. But first, we shall study some properties of the CDE′(κe,∞) condition.

4.1. Properties of CDE′(κe,∞)

Lemma 4.1. Assume that CDE′(κ,∞) holds. Then for any nonnegative function f : X −→ R

and any t ≥ 0, we have

(i) �(
√

Ptf ) ≤ e−2κetPt�(
√

f ).
(ii) �(Ptf )

Pt f
≤ e−2κetPt (

�(f )
f

).

Remark 4.1. (i) looks like the commutation formula of � and √
. under CD(κ,∞) in continuous

settings. But it is not the same thing, the positivity is very important. Recall that in classical
Bakry–Émery theory, the commutation formula is the following: for all f (smooth enough),√

�(Ptf ) ≤ e−κtPt (
√

�(f )). We have not been able to recover this formula under CDE′(κe,∞)

in graphs settings.

Proof. The proof follows a standard interpolation argument. We begin with (i). Let g := Pt−sf

and define ϕ(s) := e−2κesPs(�(
√

g)). To obtain the result, it is enough to show that ϕ′ ≥ 0. In
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fact,

ϕ′(s) = e−2κesPs

[
L

(
�(

√
g)

) − �

(√
g,

Lg√
g

)
− 2κ�(

√
g)

]
≥ 0,

where we have used the assumption on the curvature, which is equivalent to

1

2
L�(f ) − �

(
f,

L(f 2)

2f

)
≥ κe�(f )

(see (3.11) in [5]).
Similarly, let ψ(s) := e−2κesPs(

�(g)
g

). Again, it is enough to show that ψ ′ ≥ 0. We have

ψ ′(s) = e−κesPs

(
L

(
�(g)

g

)
+ 1

g2

(−2g�(g,Lg) + �(g)Lg
) − 2κ

�(g)

g

)
. (13)

Since g is positive, we only need to show that

g

(
L

(
�(g)

g

)
+ 1

g2

(−2g�(g,Lg) + �(g)Lg
) − 2κe

�(g)

g

)
≥ 0. (14)

Notice that (14) is equivalent to

gL

(
�(g)

g

)
− 2�(g,Lg) + 1

g
�(g)Lg ≥ 2κe�(g),

and we conclude by writing

2κ�(g) ≤ 2�̃2(g) = 2

(
�2(g) − �

(
g,

�(g)

g

))
= gL

(
�(g)

g

)
− 2�(g,Lg) + 1

g
�(g)Lg. �

4.2. Weak transport-information inequalities under CDE′(κe,∞)

Using Lemma 4.1, we can prove some weak transport-information inequalities under
CDE′(κe,∞). First, we will prove Theorem 1.12.

Proof of Theorem 1.12. Let α(t) = e−κet , for any probability density f with respect to π and
any t > 0, applying (5), it holds:∫ ∞

0

d

dt

∫
Q̃α(t)gPtf dπ dt

(15)

≤
∫ ∞

0

∫
−κe

4
e−κet |∇̃Q̃α(t)g|2Ptf + �(Q̃α(t)g,Ptf ) dπ dt.
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According to part (iii) of Lemma 2.3, we have∫
Q̃gf dπ −

∫
g dπ

=
∫ ∞

0

d

dt

∫
Q̃α(t)gPtf dπ dt

≤
∫ ∞

0

∫
−κe

4
e−κet |∇̃Q̃α(t)g

∣∣2
Ptf + 2

√
2J

∣∣∇̃Q̃α(t)g|
√

Ptf �(
√

Ptf )dπ dt

≤
∫ ∞

0

8Jeκet

κe

∫
�(

√
Ptf )dπ dt.

Now we apply Lemma 4.1, and we get∫
Q̃gf dπ −

∫
g dπ ≤

∫ ∞

0

8e−κet

κe

∫
Pt

(
�(

√
f )

)
dπ dt

= 8J

κ2
e

∫
�(

√
f )dπ = 2J

κ2
e

Iπ (f ).

The conclusion then follows from the duality formula (3) by taking μ = π and ν = f π . �

It is easy to see that Iπ (f ) ≤ Iπ (f ) := ∫ �(f )
f

dπ , thus we have the following corollary.

Corollary 4.2. Assume that the exponential curvature condition CDE′(κe,∞) holds, then π

satisfies the following weak-transport information inequalities:

W̃2(f π |π)2 ≤ 2J

κ2
e

Iπ (f ).

Unfortunately, we have not been able to establish the relation of W̃2(π |f π)2 and
∫

�(
√

f )dπ .
However, as in Corollary 4.2, we get a weaker inequality as follows:

Theorem 4.3. Assume that the exponential curvature condition CDE′(κe,∞) holds, then π sat-
isfies the following weak-transport information inequalities:

W̃2(π |f π)2 ≤ 2J

κ2
e

Iπ (f ).

Proof. We prove this theorem in a similar way as the previous one.
Let α(t) := 1 − e−κt Arguing as in the latter theorem, we get∫

Q̃g dπ −
∫

gf dπ =
∫ ∞

0

d

dt

∫
Q̃α(t)gPtf dπ dt

≤
∫ ∞

0

∫
−κ

4
e−κet |∇̃Q̃α(t)g|2Ptf − �(Q̃α(t)g,Ptf ) dπ dt.
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Now applying part (ii) of Lemma 2.3, it follows that∫
Q̃g dπ −

∫
gf dπ

≤
∫ ∞

0

∫
−κe

4
e−κet |∇̃Q̃α(t)g|2Ptf +

∫
|∇̃Q̃α(t)g|√2J�(Ptf ) dπ dt

≤
∫ ∞

0

2Jeκet

κe

∫
�(Ptf )

Ptf
dπ dt ≤

∫ ∞

0

2Je−κet

κe

∫
Pt

(
�(f )

f

)
dπ dt

= 2J

κ2
e

∫
�(f )

f
dπ. �

Remark 4.2. (i) One can get Corollary 4.2 by a similar argument: let α(t) := e−κt

∫
Q̃gf dπ −

∫
g dπ =

∫ ∞

0

d

dt

∫
Q̃α(t)gPtf dπ dt

≤
∫ ∞

0

∫
−κ

2
e−κet |∇̃Q̃α(t)g|2Ptf + √

2J |∇̃Q̃α(t)g|
√∣∣�(Ptf )

∣∣dπ dt

≤
∫ ∞

0

Jeκt

κe

∫
�(Ptf )

Ptf
dπ dt ≤ J

κ2
e

∫
�(f )

f
dπ dt.

(ii) Using the notations of [18], define W̃2(f π,π)2 = 1
2 (W̃ 2

2 (f π |π) + W̃ 2(π |f π)), denote
P2(X ) as the set of the probability measure on X which has a finite second moment. Then
(P2(X ), W̃2(·, ·)) is a metric space, and if X satisfies the exponential curvature condition, we
have an upper bound for W̃2(·,π) in terms of modified Fisher information. Of course, when we
work on a finite space, any probability measure has finite second moment.

5. Transport-information inequality for Markov chains with
positive coarse Ricci curvature

In this section, we assume the Markov chain has coarse Ricci curvature bounded from below by
κc , with respect to the graph distance d .

As a consequence of the bound on the curvature, note that for any 1-Lipschitz function g, Ptg

is e−κct -Lipschitz.
The problem of proving a transport-entropy inequality for Markov chains with positive coarse

Ricci curvature was raised in Problem J in [38]. It was proved by [13]. The transport-information
inequality is a slight improvement of this result. Note that T1 cannot hold in the full generality
of the setting of [37], since it implies Gaussian concentration, which does not hold for some
examples with positive curvature, more details and examples can be found in [37].

The proof of this result will make use of the following lemma.
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Lemma 5.1. If the coarse Ricci curvature is bounded from below by κc > 0, then

W1(f π,π) ≤ 1

κc

∑
x �=y

∣∣f (x) − f (y)
∣∣K(x,y)π(x).

Proof. By Kantorovitch duality for W1, we have

W1(f π,π) = sup
g1-lip

∫
gf dπ −

∫
g dπ = sup

g1-lip
−

∫ +∞

0

d

dt

∫
Ptgf dπ dt

= −
∫ +∞

0

∑
x,y

(
Ptf (y) − Ptg(x)

)(
f (y) − f (x)

)
K(x,y)π(x)dt

≤
∫ +∞

0
‖Ptg‖lip

∑
x,y

∣∣f (y) − f (x)
∣∣K(x,y)π(x)dt

≤ 1

κc

∑
x �=y

∣∣f (x) − f (y)
∣∣K(x,y)π(x).

�

We can now prove Theorem 1.13.

Proof of Theorem 1.13. Observe that∑
x �=y

(√
f (x) + √

f (y)
)2

K(x,y)π(x)

=
∑
x �=y

(
2f (x) + 2f (y) − (√

f (x) − √
f (y)

)2)
K(x,y)π(x)

≤
∑
x �=y

(
2f (x) + 2f (y)

)
K(x,y)π(x) −

∑
x �=y

(√
f (x) − √

f (y)
)2

K(x,y)π(x)

≤ 4J − 1

2
Iπ (f ).

Now using Lemma 5.1, we have

W1(f π,π) ≤ 1

κc

∑
x �=y

∣∣f (x) − f (y)
∣∣K(x,y)π(x)

= 1

κc

∑
x �=y

∣∣√f (x) − √
f (y)

∣∣(√f (x) + √
f (y)

)
K(x,y)π(x)

≤ 1

κc

√
Iπ (f )

√√√√1

4

∑
x �=y

(√
f (x) + √

f (y)
)2

K(x,y)π(x)

≤ 1

κc

√
Iπ (f )

√
J − 1

8
Iπ (f ). �
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6. Applications

6.1. Transport-information inequalities imply diameter bounds

We now show that transport-information inequalities imply diameter bounds, in the spirit of the
L1 Bonnet–Myers theorem of [37]. The main idea is the observation following proposition.

Proposition 6.1. If ν = f π is a dirac measure, say δz, then it holds

Iπ (f ) = 4J (z).

Proof. Since f is the density function correspond to the Dirac mass ν = δz, f := 1z

π(z)
.∫

�(
√

f )dπ = 1

2

(∑
y∼z

(√
f (z)

)2
k(z, y)π(z) +

∑
y∼z

(√
f (z)

)2
k(y, z)π(y)

)
=

∑
y∼z

(√
f (z)

)2
k(z, y)π(z) = J (z).

�

With this proposition, one deduce immediately the following theorem.

Theorem 6.2 (Diameter estimate). Assume that the transport-information inequality

W1,d (f π,π)2 ≤ 1

C2
Iπ (f )

holds, for some distance d . Then

sup
x,y∈X

d(x, y) ≤ 2

C

(√
J (x) + √

J (y)
)
.

Remark 6.1. Here d can be any distance defined on X .

Proof. Let fx and fy be the density functions of δx and δy with respect to π . According to
Proposition 6.1, it holds for all x, y ∈X ,

d(x, y) = W1(δx, δy) ≤ W1(fxπ,π) + W1(fyπ,π) ≤ 1

C

(√
4J (x) + √

4J (y)
)
. �

Since CD(κ,∞) implies the L1 transport information inequality, combining with the latter
theorem, one can obtain a diameter estimate which is weaker than Corollary 1.11. In order to
obtain Corollary 1.11, we need to revisit the proof of theorem 1.10 and prove the following
lemma.

Proposition 6.3. Assume that CD(κ,∞) holds, then W1(π, δz) ≤ 2J (z)
κ

.
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The proof is essentially the same as the proof of theorem 1.10, the fact that supposing ν = δz

leads to some better constants.

Proof. Denote f the density function of δz with respect to π . Observe that f satisfies(√
f (y) + √

f (x)
)2 ≤ (

f (x) + f (y)
)
. (16)

Then following the lines of the proof of Theorem 1.10, we have for all 1-Lipschitz function g,

−
∫

�(Ptg,f ) dπ

≤
(∫

�(
√

f )dπ

) 1
2 (∑

x,y

(
Ptg(y) − Ptg(x)

)2(√
f (y) + √

f (x)
)2

K(x,y)π(x)
) 1

2

≤ √
Iπ (f )

√∫
�(Ptg)f dπ

= √
Iπ (f )

√
�(Ptg)(z).

Applying Proposition 6.1 and inequality �(Ptg) ≤ e−2κt�(g), one deduce that

−
∫

�(Ptg,f ) dπ ≤ 2
√

J (z)�(Ptg)(z) ≤ 2e−κtJ (z).

Therefore, according to Lemma 3.1, we have∫
g dπ −

∫
gf dπ =

∫ +∞

0

d

dt

∫
(Ptg)f dπ dt

= −
∫ +∞

0

∫
�(Ptg,f ) dπ dt

≤ 2J (z)

κ
.

The proof is completed. �

Now we are ready to prove Corollary 1.11

Proof of Corollary 1.11. According to the latter proposition, we have

d(x, y) = W1(δx, δy) ≤ W1(δx,π) + W1(π, δy) ≤ 2

κ

(
J (x) + J (y)

)
. �

If we look at the example of the discrete hypercube of dimension N (see the next subsection),
with our notations it satisfies CD(1/N,∞). The above theorem gives the correct bound on the
diameter for the graph distance of N .
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6.2. An example: The discrete hypercube

As an example of Markov chain satisfying CDE′(κ,∞), we study the example of the symmetric
random walk on the discrete hypercube. It is a Markov chain on {0,1}N , which at rate 1 se-
lects a coordinate uniformly at random, and flips it with probability 1/2. The transition rates are
K(x,y) = 1/(2N) for x, y such that d(x, y) = 1, and else it is 0.

Theorem 6.4. The symmetric random walk on the discrete hypercube satisfies CDE′(1/N,∞).

Proof. We start with the case N = 1. Since then we only have to consider a Markov chain on a
two-points space, we can easily do explicit computations. Fix f : {0,1} −→ R. We have

�(f )(0) = �(f )(1) = 1

4

(
f (0) − f (1)

)2

and hence �(f,
�(f )

f
) = 0 and

G̃2(f ) = �2(f ) = −�(f,Lf ) = �(f ).

Therefore when N = 1, the Markov chain satisfies CDE′(1,∞).
The general case follows, using a tensorization argument. In the unnormalized case, using

Proposition 3.3 of [6], the graph satisfies CDE′(1,∞) independently of N . Since we consider
the case of a Markov chain and enforce (1), we rescale the generator by a factor 1/N (so that
there is on average one jump by unit of time), and therefore it satisfies CDE′(1/N,∞). �

Remark 6.2. We have shown that for the two-point space, the exponential curvature and the
curvature are the same, and equal to 1. In [26], it is stated that the curvature is 2. The difference
is because, since we enforced the normalization condition (1), the definitions of L in the two
frameworks differ by a factor 2.
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