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In this work, we investigate statistical properties of change point estimators based on moving sum statistics.
We extend results for testing in a classical situation with multiple deterministic change points by allowing
for random exogenous change points that arise in Hidden Markov or regime switching models among others.
To this end, we consider a multiple mean change model with possible time series errors and prove that the
number and location of change points are estimated consistently by this procedure. Additionally, we derive
rates of convergence for the estimation of the location of the change points and show that these rates are
strict by deriving the limit distribution of properly scaled estimators. Because the small sample behavior
depends crucially on how the asymptotic (long-run) variance of the error sequence is estimated, we propose
to use moving sum type estimators for the (long-run) variance and derive their asymptotic properties. While
they do not estimate the variance consistently at every point in time, they can still be used to consistently
estimate the number and location of the changes. In fact, this inconsistency can even lead to more precise
estimators for the change points. Finally, some simulations illustrate the behavior of the estimators in small
samples showing that its performance is very good compared to existing methods.

Keywords: binary segmentation; change point; hidden Markov model; moving sum statistics; regime
switching model

1. Introduction

There are essentially two approaches to multiple change point problems: Model selection and
hypothesis testing. Model selection was first proposed by [44] who used Schwarz’s criterion [40]
for estimating the number of changes in the mean in an otherwise independent and normally dis-
tributed sequence of random variables. More recently, approaches based on least squares ([45]
in context of mean changes or [31] for multivariate regression models), least absolute devia-
tions ([7] for mean and simultaneous variance changes or [3] for linear regression models) or the
minimum description length (confer [13] for linear autoregressive models) have been proposed.
Since such procedures are usually computationally expensive, there exist many papers concerned
with solving the optimization problem in an efficient manner for example, [23]. A different ap-
proach via an application of the Lasso was proposed by [20] resulting in an algorithm in linear
time. Chen, Gupta and Pan [9] and Pan and Chen [36] refine existing information criteria such
as the Schwarz criterion by making the model complexity not only a function of the number of
change points but also a function of the location of the change points. This was motivated by the
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unnecessary complexity of the model, when structural breaks appear close to each other, at the
beginning or at the end of the data set.

Most papers concerned with hypothesis testing in the context of change point problems pro-
pose tests for a fixed or bounded number of changes (confer [4] for such F -type tests or [32] for
a generalization to M-tests), where a large class of literature is concerned with the at most one
change alternative (confer e.g., the monograph by [11]). Tests designed for at most one change
still have some power for multiple changes, which is the idea behind binary segmentation meth-
ods first proposed by [43], where a change point is estimated if the test is significant and then
the procedure is repeated for each segment until it is no longer significant. While binary seg-
mentation procedures are adaptable to different change point problems and can be coded in a
computational efficient way, it can be difficult to interpret the results in terms of significance
due to the multiple testing involved. Furthermore, the power can suffer greatly under certain
configurations of multiple changes, a drawback that is overcome by introducing an additional
randomization step (to select the segment to be tested) proposed by [19]. Another recent fully
parametric approach [18] minimizes the number of change points over the acceptance region of
a suitable multiscale test. Multiscale tests have also been proposed by [15], which can be used to
test the null hypothesis of stationarity versus possible change point alternatives.

In the context of testing, moving sum (MOSUM) or scan statistics have already been inves-
tigated by [5,10] or [21] as well as [22]. More recently, [39] use moving sum statistics in the
frequency domain to detect changes in the autocovariance structure of multivariate time series.
By construction, these procedures control the overall significance level thus avoiding issues due
to multiple testing.

In this paper, we investigate properties of estimators for the change point location based on
such statistics, an idea proposed but not mathematically analyzed by [2]. This method does not
require to fix an upper bound for the number of changes and is computationally cheap, in fact the
proposed method for i.i.d. errors achieves linear complexity.

The aim of this paper is twofold: First, the theoretic properties of these estimators are derived
showing consistency for the number and location of the change points. Furthermore, rates of
convergence for these estimators are obtained. The corresponding asymptotic distribution in a
special case shows that these rates cannot in general be improved.

The second aim of this paper is to investigate the behavior of these estimators in the presence of
random change points, as they occur for example, in regime switching models (for a recent survey
we refer to [17]), which are used to model structural breaks in time series. In these models, a non-
observable process {Qi : i ∈ N} governs the regime of the time series and a change point occurs
when this non-observable process {Qi} switches to another state. As long as this non-observable
process is independent of the error sequence governing the stationary regimes, the corresponding
samples of such a regime switching model look as if they were from a classical multiple change
point model with deterministic (but unknown) change points. For special cases such as Hidden
Markov Models, one can make use of the structure of the unobservable process to reconstruct
the sequence of states by use of for example, the Viterbi algorithm (confer [8]). Nevertheless,
it is of interest whether asymptotic results for the classical change point setting carry over to
situations with random changes, as they offer a different nonparametric approach – not making
explicit assumptions on the structure of the unobservable process (except that switches are rare) –
to reconstruct the change points and in a second step the states.
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The paper is organized as follows: In the next section, we introduce moving sum statistics
which have already been considered in the literature in the context of testing for deterministic
(but unknown) change points. In the first subsection, we introduce the multiple change model
including possibly random change points that we will be using throughout the paper and compare
it with the classical multiple change situation. In Section 2.2, we give the distribution of the
moving sum statistic if no change points are present and show that the corresponding tests have
asymptotic power one in this more general setting. Because the small sample performance of both
tests and estimators depends crucially on the estimator for the (long-run) variance, we propose to
use a new moving sum estimator in Section 2.3. In Section 3, we explain how the above moving
sum statistics can be used to consistently estimate both the number of change points as well as
their locations, derive rates in Section 3.2 for the estimators of the locations and show that those
rates are strict in Section 3.3. In Section 3.4, some non-asymptotic results for i.i.d. innovations
with known variance are given. In Section 3.5, we discuss the problems of bandwidth choice
inherent to the procedure. Some simulations in Section 4 illustrate the small sample behavior of
these estimators, before the proofs are given in Section 5.

2. MOSUM tests for multiple changes

In this section, the multiple mean change problem is introduced as well as the MOSUM statistic
in the context of testing. Furthermore, we introduce a new moving sum (long-run) variance esti-
mator which increases the power under alternatives and leads to more precise estimators in small
samples.

2.1. Modeling multiple changes

The classical change point model, which allows for multiple changes in the mean, is defined by

Xi =
q+1∑
j=1

μj 1{kj−1,n<i≤kj,n} + εi, i = 1, . . . , n,

where

0 = k0,n < k1,n = �ϑ1n� ≤ · · · ≤ kq,n = �ϑqn� ≤ kq+1,n = n, 0 < ϑ1 ≤ . . . ≤ ϑq ≤ 1.

The number of structural breaks q ∈ N, the change points k1,n, . . . , kq,n as well as the expected
values μ1, . . . ,μq+1 ∈ R with μj �= μj+1, j = 1, . . . , q , are unknown and the centered stationary
error sequence ε1, . . . , εn fulfills conditions stated below.

In this paper, we investigate the theoretic properties of estimators based on moving sum statis-
tics for the number of changes q = qn as well as the locations of the change points kj,n. We will
not only show that they are consistent but also derive the rates of convergence and in the above
special case the joint asymptotic distribution which shows that these rates are strict in general.
While in the above classical model, the distance between change points is proportional to n, we
only require that it is larger than a multiple of the bandwidth (see Assumption A.2).
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The sample paths of this classical change point model coincide with sample paths for many
regime-switching models, where the change points (as well as the number of change points) are
random rather than deterministic. Consequently, one can expect methods for the above classical
change point problem to yield consistent results also for regime-switching models, which could
help to analyze their properties. For this reason, we investigate the properties of our estimation
procedure for the more general situation of random change points which includes the following
regime-switching models:

Xi = μ̃Qi
+ εi, i = 1, . . . , n,

with possible (conditional) expectations μ̃1, . . . , μ̃K ∈ R, where μ̃i �= μ̃j for i, j = 1, . . . ,K ,
i �= j , and errors ε1, . . . , εn fulfilling the conditions below. The conditional expectation of Xi is
determined by a non-observable {1, . . . ,K}-valued stationary process {Qi : 1 ≤ i ≤ n}, K ∈ N,
where we can even allow for an infinite state space. The key features of a regime switching
model for which change point methods are applicable are (a) independence of the changes (i.e.,
of {Qi}) and the error sequence and (b) long duration times of the non-observable process {Qi}.
Consequently, observation switching models (confer [29]) such as threshold models introduced
by [42] or i.i.d. switching models are not covered by our theory in contrast to Hidden Markov
models where {Qi} is independent of the error sequence and with a low tendency to switch. For a
fixed realization the number of time points between two adjacent change points is fixed and finite,
so that those changes become invisible asymptotically if naive asymptotics are used. Similarly
to locally stationary processes [12], we adopt a different approach for asymptotics, assuming an
underlying triangular scheme

X
(n)
i = μ̃

Q
(n)
i

+ ε
(n)
i

with a sequence of non-observable processes {Q(n)
i : 1 ≤ i ≤ n}. Furthermore, we consider both a

setup with a fixed (or at least bounded) number of change points qn = q (qn = O(1)) as well as a
setup with an increasing number of change points qn → ∞, where the distance between adjacent
change points grows at least with the same rate as the bandwidth of the moving sum statistic (see
Assumption A.2 below). In small samples, this translates to a low tendency to switch and only
relatively few change points compared to the sample size.

We will use the following reparametrization of the above regime switching model which em-
phasizes the similarities to the classical multiple change situation (where again k0,n = 0 and
kqn+1,n = n)

Xi =
qn+1∑
j=1

μj,n1{kj−1,n<i≤kj,n} + εi, μj,n ∈ {μ̃1,n, . . . , μ̃Kn,n},

i = 1, . . . , n, where in contrast to the classical multiple change model the number of change
points qn, the change points k1,n, . . . , kqn,n as well as μ1,n, . . . ,μqn+1,n are random variables.
Due to the triangular scheme the classical multiple change model is a special case in this setting.
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In the following, it will also be useful to rewrite the model in terms of mean differences as

Xi = μ1,n +
qn∑

j=1

dj,n1{i>kj,n} + εi, dj,n = μj+1,n − μj,n, (2.1)

where dj,n are the mean changes. In the following, we will suppress the dependence of kj,n, dj,n

and μj,n on n and simply write kj , dj and μj for notational ease.
We are now ready to state the assumptions on the error distribution.

Assumption A.1.

(a) The number and magnitude of changes and their locations {qn, dj,n, kj,n, j = 1, . . . , qn}
are independent of the error sequence {εi}.

(b) There exists a standard Wiener process {W(k) : 1 ≤ k ≤ n} and ν > 0 such that (possibly
after changing the probability space)

n∑
i=1

εi − τW(n) = O
(
n1/(2+ν)

)
a.s.

with an existing and strictly positive long-run variance

τ 2 = σ 2 + 2
∑
h>0

γ (h) > 0, γ (h) = cov(ε0, εh), σ 2 = var(ε1).

(c) For some γ > 2 and some constant C > 0 it holds for any −∞ < � ≤ u < ∞

E

∣∣∣∣∣
u∑

i=�

εi

∣∣∣∣∣
γ

≤ C|u − � + 1|γ /2.

Part (a) is needed to guarantee that the stochastic behavior of (partial) sums of the error se-
quence does not depend on the change points. This guarantees for example that the moving sum
statistic behaves like under the null hypothesis of no change if the next change point is suffi-
ciently far away. Since all the quantities in (a) are deterministic in the classical change point
setting, Assumption A.1 is automatically fulfilled in this case.

Invariance principles as in (b) have first been derived for i.i.d. random variables by [26] and
[27]. Subsequently, many classes of time series have also been considered, for example, mixing
time series (Theorem 4 in [28]) or near-epoch dependent time series [30].

The assumption in (c) is needed to get rates of convergence for the change point estimators.
It holds for example, for independent random variables or linear processes, for which it follows
from the Beveridge–Nelson decomposition (confer [6,37]). It also holds for martingale differ-
ence sequences, certain 	-mixing sequences (confer [41], Theorem 3.7.8) but also for certain
α-mixing sequences (confer [47], Theorem 1).
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2.2. Testing for multiple mean changes using a moving sum statistic

Hušková and Slabý [22] proposed to use moving sum (MOSUM) statistics for testing the classical
multiple change hypothesis in i.i.d. data. While in this paper, the focus lies on the properties of
corresponding estimators for the number and location of changes, the asymptotic null distribution
plays an important role in this analysis. Therefore, we obtain the null asymptotics in this section
for dependent errors fulfilling Assumption A.1(b). Furthermore, we show that the corresponding
test statistic has asymptotic power one not only in the classical setting but also for the more
general random change model above. Consider the following moving sum statistic

Tn(G) = max
G≤k≤n−G

|Tk,n(G)|
τ

,

(2.2)

Tk,n(G) = Tk,n(G;X1, . . . ,Xn) = 1√
2G

(
k+G∑

i=k+1

Xi −
k∑

i=k−G+1

Xi

)
,

with bandwidth G = G(n) fulfilling

n

G
−→ ∞ and

n
2

2+ν logn

G
−→ 0, (2.3)

where ν and τ are as in Assumption A.1(b). The bandwidth assumption guarantees that G con-
verges to infinity but not too fast. We can calculate the above statistic in linear time by using a
simple recursive calculation

√
2GTk+1,n(G) = √

2G
(
Tk,n(G) + Xk−G+1 − 2Xk+1 + Xk+G+1

)
. (2.4)

The statistic in (2.2) compares at every time point G ≤ k ≤ n − G the mean of the subsample
Xk−G+1, . . . ,Xk with the mean of the subsample Xk+1, . . . ,Xk+G, where a large difference
indicates a change at this point. At point k, this is essentially the Wald version of the likelihood
ratio statistic for the sample Xk−G+1, . . . ,Xk+G with a possible change at k [25].

Formally, we test the null hypothesis of no change H0 : qn = 0, or equivalently H0 : Xi =
μ1 + εi , i = 1, . . . , n, versus the alternative that at least one change occurs H1 : qn ≥ 1.

The following theorem gives the null asymptotics of the test statistic quantifying the acceptable
deviation from zero.

Theorem 2.1. Let the null hypothesis hold, that is, Xi = μ1 +εi , i = 1, . . . , n, with {εi} fulfilling
Assumption A.1(b). If the bandwidth G fulfills (2.3), then

a(n/G)Tn(G) − b(n/G)
D−→ �,

where � follows a Gumbel extreme value distribution, that is, P(� ≤ x) = exp(−2 exp(−x)) and

a(x) =√2 logx, b(x) = 2 log(x) + 1

2
log logx + log(3/2) − 1

2
logπ.
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The assertion remains true if τ in Tn(G) is replaced by an estimator τ̂k,n, which can depend on
the position k, and fulfills under the null hypothesis

max
G≤k≤n−G

∣∣τ̂ 2
k,n − τ 2

∣∣= oP

((
log(n/G)

)−1)
. (2.5)

Consequently, we get an asymptotic level α test if the null hypothesis is rejected for Tn(G) >

Dn(G;α) with

Dn(G;α) = b(n/G) + cα

a(n/G)
, cα = − log log

1√
1 − α

. (2.6)

We now turn to the asymptotic behavior of the test statistic under the alternative of at least one
change, where we allow for random changes as in (2.1). The next theorem proves that this test
rejects with asymptotic power one, while subsequent paragraphs derive the asymptotic properties
of corresponding estimators for the location of the change points. To this end, we require the fol-
lowing assumptions on the distance between change points as well as the magnitude of changes.

Assumption A.2. It holds for the distance between two changes

P
(

min
0≤j≤qn

|kj+1 − kj | > cG
)

→ 1

for some c ≥ 2 specified below.

This assumption shows the connection between the distance between changes and the choice
of bandwidth G. It states that the distance between two change points grows at least like G

where empirical evidence suggests that G should be chosen as large as possible but such that
any window of length 2G contains at most one change. On the other hand, the distance between
change points can be of smaller order than n, which is different from the classical change point
problem but of importance for the analysis in situations, where changes tend to be closer together
(as for the regime-switching model).

Assumption A.3. It holds for the magnitude of changes:

(a)
1

min1≤j≤qn d2
j

= oP

(
G

log(n/G)

)
.

(b) P
(

min
1≤j≤qn

|dj | ≥ δn

)
→ 1

for some sequence δn > 0 indicating a non-stochastic lower bound for the occurring mean
changes.

Both assumptions give lower bounds for the mean changes and allow in particular for local
changes (if δn → 0). They will play an important role in the derivation of rates of convergence
for the proposed change point estimators.

The estimator for the long-run variance does not need to be uniformly consistent under alter-
natives (as in (2.5)) but the following restrictions apply.
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Assumption A.4.

(a) The (long-run) variance estimator is strictly positive with probability tending to one,

P
(

min
G≤k≤n−G

τ̂k,n > 0
)

→ 1.

(b) The (long-run) variance estimator fulfills

max
G≤k≤n−G

τ̂ 2
k,n = oP

(
Gmin1≤j≤qn d2

j

log(n/G)

)
.

(c) The (long-run) variance estimator is consistent outside a 2G-neighborhood of change
points with rate log(n/G)−1, i.e.

max
|k−kj |≥G,j=1,...,qn

∣∣τ̂ 2
k,n − τ 2

∣∣= oP

((
log(n/G)

)−1)
.

In the next section, we propose estimators for the long-run variance which fulfill the above
assumptions for an appropriate bandwidth choice.

Some long-run variance estimators such as the below flat-top kernel estimator do not guar-
antee that the corresponding estimate is always positive. Under the null hypothesis this effect
vanishes asymptotically due to consistency of the estimator. However, under alternatives this is
not guaranteed which is why we need to make Assumption A.4(a) to ensure that the estimator is
neither negative nor zero asymptotically. It does not matter for the procedure if τ is very small or
even converges to zero (while being strictly positive for all n) as this only results in a larger value
of the statistic, which increases the chance of detection keeping in mind that Assumption A.4(c)
guarantees consistency of the behavior away from change points. Typically, estimators for the
long-run variance that allow for negative values are modified in a way that ensures Assump-
tion A.4(a) as negative variance estimates cause problems in almost all statistical procedures.
The standard solution for the flat-top kernel estimator is to truncate the estimator from below
by the sample variance divided by the logarithm of the sample size to guarantee positivity, scale
invariance in addition to asymptotic consistency if no changes are present. In this sense Assump-
tion A.4(a) is merely a technicality.

Assumption A.4(b) is a restriction on the rate of divergence for the (long-run) variance estima-
tor under alternatives. It follows from Assumptions A.3(a) and A.4(c) under the null hypothesis
respectively away from changes.

Assumption A.4(c) holds for example, for translation invariant estimators, that is, τ̂ 2
k,n =

τ̂ 2
k,n(Xk−G+1, . . . ,Xk+G) = τ̂ 2

k,n(Xk−G+1 − μ, . . . ,Xk+G − μ) for any μ, if additionally

max
G≤k≤n−G

∣∣τ̂ 2
k,n(εk−G+1, . . . , εk+G) − τ 2

∣∣= oP

((
log(n/G)

)−1)
.

Theorem 2.2. Let X1, . . . ,Xn follow (2.1) and let Assumption A.2 with c = 2 and Assump-
tion A.3(a) hold. Furthermore, let {εt } fulfill Assumption A.1(a) and (b). Then, we get for any
z ∈R

P
(
a(n/G)Tn(G) − b(n/G) ≥ z

)→ 1,
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that is, the test has asymptotic power one. The assertion remains true, if τ is replaced by an
estimator τ̂k,n which can depend on k such that Assumption A.4(a) and (b) hold.

2.3. Estimating the asymptotic variance

The small sample power as well as precision of estimators depends crucially on how the (long-
run) variance τ 2 is estimated. While using a standard estimator based on the full sample yields
best results under the null hypothesis, this estimator is contaminated by the mean changes under
alternatives such that the estimate is too large (confer Figure 1). While the corresponding test has
still asymptotic power one under relatively mild assumptions (confer Theorem 2.2), it will suffer
a great power loss in small samples compared to a test, where the true (long-run) variance is
used. In the at most one change situation, the standard solution for classic CUSUM (cumulative
sum) statistics is to estimate the possible change point k̂n (using the point of maximum of the
statistic) and then to calculate the sample variance after a separate mean correction for both
subsamples

1

n

k̂n∑
i=1

(
Xi − 1

k̂n

k̂n∑
j=1

Xj

)2

+ 1

n

n∑
i=k̂n+1

(
Xi − 1

n − k̂n

n∑
j=k̂n+1

Xj

)2

,

where k̂n is a suitable estimator for the possible change point. Since the number of changes is
unknown in our case, such an approach is no longer feasible. To avoid this problem, we propose
to use a time dependent MOSUM type estimator which treats each time point k as a possible
change point estimating the variance after a separate mean correction for the segment before and

Figure 1. Performance of the variance estimators σ̂ 2
k,n

(black solid line) as in (2.7) and the empirical

variance σ̂ 2
n as in (2.8) (without taking possible change points into account) (dashed line). The true variance

of 1 is indicated by the horizontal red line.
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after k. Precisely, we propose to use the following variance estimator in case of i.i.d. errors:

σ̂ 2
k,n := 1

2G

(
k∑

i=k−G+1

(Xi − �Xk−G+1,k)
2 +

k+G∑
i=k+1

(Xi − �Xk+1,k+G)2

)
,

(2.7)

where �Xl,j = 1

j − l + 1

j∑
i=l

Xi,

which can be calculated in linear time similarly to (2.4). Figure 1 illustrates the behavior of this
estimator in comparison to the sample variance

σ̂ 2
n = 1

n − 1

n∑
i=1

(Xi − �Xn)
2 (2.8)

for the time series in the upper picture which includes one change point (indicated by the vertical
line). The two lower pictures show the sample variance (dashed horizontal line) as well as the
time dependent performance of estimator (2.7) (solid line) for different choices of bandwidths,
where the true variance is 1 (as indicated by the red horizontal line). While the sample variance
clearly overestimates the variance, the time dependent MOSUM estimator is consistent in regions
with no change as well as right at the change point but it overestimates the variance close to a
change but not right at it. While this later feature may first seem unattractive, we will explain in
Section 4 why this is a desirable property that can even help to get more precise estimates for the
location of the change points in small samples.

Similarly, we propose to use time dependent MOSUM versions of flat-top kernels as proposed
by [38] for the long-run variance in case of dependent errors

τ̂ 2
k,n := γ̂k(0) + 2

�n∑
h=1

ω(h/�n)γ̂k(h)

with autocovariance estimator

γ̂k(h) := 1

2G

k−h∑
i=k−G+1

(Xi − �Xk−G+1,k)(Xi+h − �Xk−G+1,k)

+ 1

2G

k+G−h∑
i=k+1

(Xi − �Xk+1,k+G)(Xi+h − �Xk+1,k+G),

bandwidth �n and suitable weights ω. For example, Bartlett weights defined by w(x) = (1−x)+
or the following flat-top weights can be used

w(t) =

⎧⎪⎨⎪⎩
1, |t | ≤ 1/2,

2
(
1 − |t |), 1/2 < |t | < 1,

0, |t | ≥ 1.
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Theorem 2.3. Let Xi = μ + εi , i = 1, . . . , n, {εi} fulfill Assumption A.1(b) as well as E |εi |4 <

∞ and

sup
h∈Z

∑
k∈Z

∑
l∈Z

∣∣ν(h, k, l)
∣∣< ∞, (2.9)

where ν(h, r, s) = cov(ε1ε1+h, ε1+rε1+s). Then it holds:

(a) If n/G2 = O(1), we get

max
G≤k≤n−G

∣∣σ̂ 2
k,n − σ 2

∣∣ = OP

(
n1/2

G

)
.

(b) If �2
nn/G2 = O(1) and the weights fulfill 0 ≤ w(x) ≤ C, then

max
G≤k≤n−G

∣∣τ̂ 2
k,n − τ 2

∣∣ = OP

(
�nn

1/2

G
+ rn

)
,

where

rn =
∑
h∈Z

∣∣w(h/�n) − 1
∣∣∣∣γ (h)

∣∣.
Remark 2.1. (a) In (a), we get the weaker rate OP (n2/(2+ν)/G) if only E |εi |2+ν < ∞, 0 < ν <

2, and the stronger rate OP (
√

log(n/G)/G) for ν > 2 (for details we refer to [35], proof of
Theorem 6.14).

(b) The rate rn depends on the choice of weights w(·) in addition to the convergence rate of
γ (h). If

∑
h∈Z hα|γ (h)| < ∞, 0 < α ≤ 1, which is a standard assumption in time series analysis,

then for both the Bartlett as well as flat-top weights rn = O(�−α
n ).

From Theorem 2.3 we get (2.5) for i.i.d. innovations if n1/2 log(n/G)/G → 0 which is implied
by (2.3) if ν ≤ 2. For dependent errors, we obtain (2.5) under additional assumptions on the
bandwidth possibly in addition to the autocovariance structure as indicated by Remark 2.1(b).

If changes are present, the estimators are influenced by these changes as demonstrated in
Figure 1, but we still obtain the following theorem.

Theorem 2.4. Let the error sequence {εi} fulfill Assumption A.1(b), E |ε1|4 < ∞, (2.9). Further-
more let Assumption A.2 hold with c = 2 in addition to max1≤j≤qn |dj,n| = OP (1), i.e. the mean
changes are bounded. Then, we get for the random change point model (2.1) (which includes the
classical model):

(a) If n/G2 → 0,

max
G≤k≤n−G

σ̂ 2
k,n = OP (1).
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(b) If �2
nn/G2 → 0,

max
G≤k≤n−G

τ̂ 2
k,n = OP (�n).

3. MOSUM-based estimators for multiple change points

Additionally to testing for changes, the MOSUM statistic can be used to estimate the number and
location of the change points (in rescaled time). In this section, we will introduce those estimators
and derive their asymptotic consistency. Additionally, we will obtain rates of convergence for the
estimator of the locations of the changes and show that these rates are strict in general.

3.1. Asymptotic consistency

Figure 2 shows a time series with i.i.d. errors and three change points marked by vertical lines
(upper panel) as well as the statistic Tk,n(G)/τ̂k,n as a function of k (lower panel), where the
horizontal line marks the asymptotic critical value at the 5% level and τ̂k,n = σ̂k,n as in (2.7).
Obviously, the test statistic exceeds the critical value in intervals around the true change points
with the local maxima close to the locations of the change points. The calculations of these
estimators can also be done in linear time (given the MOSUM process).

Based on this observation, we define estimators for the number of change points as well as
their locations as follows: Consider all pairs of indices (vj ,wj ) such that

τ̂−1
k,n

∣∣Tk,n(G)
∣∣ ≥ Dn(G;αn) for k = vj , . . . ,wj ,

τ̂−1
k,n

∣∣Tk,n(G)
∣∣ < Dn(G;αn) for k = vj − 1,wj + 1, (3.1)

wj − vj ≥ ηG with 0 < η < 1/2 arbitrary but fixed,

Figure 2. Time series with i.i.d. errors and three change points marked by the vertical lines (upper panel)
as well as σ̂−1

k,n
|Tk,n(G)| (lower panel), where the horizontal line gives the asymptotic critical value at the

5% level.
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where Dn(G;α) is as in (2.6). Then,

q̂n =̂ the number of pairs (vj ,wj ) (3.2)

is an estimator of the number of change points q , while

k̂j := arg max
vj ≤k≤wj

|Tk,n(G)|
τ̂k,n

(3.3)

are estimators for the locations of the change points.
Condition (3.1) is necessary to avoid overestimation by spurious local maxima exceeding the

critical value on the boundary between significant and insignificant areas, that is, when the statis-
tic crosses the critical line.

For these estimators to be consistent we require that the sequence αn converges to 0 but not
too fast, more precisely

αn → 0,
cαn

a(n/G)
= O(1), (3.4)

where a(·) is as in Theorem 2.1 and cαn as in (2.6).
This method has already been proposed but not mathematically analyzed by [2]. A related

but somewhat different approach based on local maxima of a MOSUM likelihood ratio statistic
in addition to a model selection procedure for AR-time series has very recently been considered
by [46]. Furthermore, [33] use a related MOSUM procedure for estimating change points in point
processes.

We are now ready to prove that the number of change points as well as the locations in rescaled
time are estimated consistently. In the next sections, we derive convergence rates of the change
point estimators and show that these rates are strict in general.

Theorem 3.1. Let X1, . . . ,Xn follow (2.1) and let Assumption A.2 with c = 2 and Assump-
tions A.3(a) and A.4 hold. Furthermore, let {εt } fulfill Assumption A.1(a) and (b).

If αn fulfills (3.4), then it holds as n → ∞
(a) P(q̂n = qn) −→ 1.

(b) P
(

max
1≤j≤qn

|k̂j 1{j≤q̂n} − kj | ≥ G
)

−→ 0.

The above assertions are derived by using bounds for the type-I as well as type-II errors of the
corresponding change point tests (see Lemma 5.1).

3.2. Convergence rates

By Assumption A.1(c) we get the following forward as well as backward Hájék–Rényi-type
inequalities.
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Lemma 3.1. Under Assumption A.1(c) it holds for any positive and non-increasing sequence
{ck}, any 1 ≤ � ≤ u, any m ∈ Z and any δ > 0

(a) δγ P

(
max

�≤k≤u
ck

∣∣∣∣∣
m+k∑

j=m+1

εj

∣∣∣∣∣> δ

)
≤ C̃

(
c
γ

� �γ/2 +
u∑

k=�+1

c
γ

k kγ/2−1

)
,

(b) δγ P

(
max

�≤k≤u
ck

∣∣∣∣∣
m∑

j=m−k+1

εj

∣∣∣∣∣> δ

)
≤ C̃

(
c
γ

� �γ/2 +
u∑

k=�+1

c
γ

k kγ/2−1

)
,

where C̃ only depends on C and γ of Assumption A.1(c).

The following theorem gives detailed bounds for the deviation of the estimators of the change
point locations from the true locations. Remark 3.1 simplifies these bounds in a way that yields
standard assertions well known for the one-change-point situation and CUSUM statistics.

Theorem 3.2. Let X1, . . . ,Xn follow (2.1) and let Assumption A.2 with c = 2 and Assump-
tion A.3 hold and τ̂ 2

k,n = τ̂ 2
n fulfill Assumption A.4. Furthermore, let {εt } fulfill Assumption A.1

and αn (3.4).

(a) It holds for any 1 ≤ j ≤ qn as well as 1 ≤ ξn ≤ G

P
(|k̂j 1{j≤q̂n} − kj | > ξn

)= δ
−γ
n ξ

− γ
2

n O(1) + o(1),

where the rates do not depend on j and δn is as in Assumption A.3(b).
(b) If additionally P(qn > γn) → 0, then

P
(

max
1≤j≤qn

|k̂j 1{j≤q̂n} − kj | > ξn

)
= γnδ

−γ
n ξ

− γ
2

n O(1) + o(1).

In both cases the additive term o(1) stems from the fact that the assertions only hold on a
sequence of asymptotic 1-sets (not depending on j ). The bounds for these 1-sets can be made
precise if the type-I and (in some sense) uniform type-II errors are known, similarly the O(1)

terms can be made precise using Lemma 3.1.

Remark 3.1.

(a) If the probability on the left-hand side of (a) is replaced by the conditional probability
(given dj ), then δn on the right-hand side can be replaced by dj .

(b) If δ−2
n G−1 → 0, then

|k̂j 1{j<q̂n} − kj | = OP

(
δ−2
n

)
,

where the rate cannot be improved if dj is asymptotically of the same rate as δn (confer
also (a) above).
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(c) If additionally the number of changes is stochastically bounded as in the classical change
point situation, we obtain

max
1≤j≤qn

|k̂j 1{j<q̂n} − kj | = OP

(
δ−2
n

)
,

where again the rate cannot in general be improved.
(d) Concerning the joint rate in a model with an increasing number of change points, we

cannot derive the limit distribution of the maximum as in the next section, however,
those rates cannot be improved in general. To this end, consider i.i.d. errors, dj = d ,
τ̂k,n = τ and qn deterministic change points with kj+1 − kj > 4G. On the set Mn =
{q̂n = qn,max1≤j≤qn |k̂j − kj | < G} the estimators k̂j only depend on the behavior of
Xkj −2G+1, . . . ,Xkj +2G−1, hence (k̂j 1{j<q̂n} − kj ), j = 1, . . . , qn, are independent and
identically distributed (on that set). Because Mn coincides with the asymptotic 1-set in
(5.7) in the above setting (which does not depend on ξn), we get

P
(

max
1≤j≤qn

|k̂j 1{j<q̂n} − kj | > ξn

)
= 1 − (1 − P

(|k̂1 − k1| > ξn

)+ O
(
P
(
MC

n

)))qn + O
(
P
(
MC

n

))
= 1 − exp

[
qn log
(
1 − P
(|k̂1 − k1| > ξn

)+ o(1)
)]+ o(1)

= 1 − exp
[−qn(P

(|k̂1 − k1| > ξn

)+ o
(
P
(|k̂1 − k1| > ξn

))+ o(1)
]+ o(1),

where the Taylor-expansion log(1 − x) = x + o(1) (as x → 0) has been used. Because the
rate of P(|k̂1 − k1| > ξn) cannot be improved in general, neither can the joint rate even
with an increasing number of change points.

Even though only local information is used in the estimation of the change points and the dis-
tance between change points is allowed to increase with a rate smaller than n (Assumption A.2),
the rate of convergence for the change point estimator given in (b) above coincides with the
optimal rates obtained in the at-most-one-change situation using the full sample (confer Theo-
rem 2.8.2 in [11]). It also coincides with the optimal rate obtained in [45] (Theorem 1) in the
classical mean change model with a fixed and known number of changes and independent errors
and is better than the rate of convergence obtained in [20]. Furthermore, the rates are better than
the ones obtained by [19].

Remark 3.2. In general the assertions of Theorem 3.2 do not carry over to situations, where
an estimator τ̂ 2

k,n depending on k is used. For example, Assumptions A.4 do not rule out the

possibility of the estimator τ̂ 2
k,n underestimating the variance (even asymptotically) close to the

change point (but not at the change point), which would result in a distortion of the point of max-
imum away from the true change point. Consequently, a much more detailed analysis needs to be
conducted in this case in order to obtain analogous results. This can be difficult in particular for
estimators in the presence of dependence. A solution is to use the (long-run) variance estimator
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τ̂ 2
k,n only to obtain q̂n as well as the region (vj ,wj ) as in (3.1), but then replace (3.3) by

k̂j = arg max
vj ≤k≤wj

∣∣Tk,n(G)
∣∣.

In this case, the proof of Theorem 3.2 remains correct and the assertions carry over.

On the other hand, the estimator σ̂ 2
k,n as in (2.7) has the nice property of overestimating the

variance close to (but not at) the change point, which should heuristically lead to an improvement
for small samples and at least not to worse results asymptotically. The following corollary shows
that this is in fact true for this particular estimator.

Corollary 3.1. Let the assumptions of Theorem 3.2 be fulfilled for {εt } i.i.d. with E |ε1|4 < ∞
and use the variance estimator σ̂ 2

k,n as in (2.7). If n

G2 → 0, δ−2
n G−1 → 0 and d2

j = OP (1), then
it holds

|k̂j 1{j<q̂n} − kj | = OP

(
δ−2
n

)
.

3.3. Asymptotic distribution

In this section, we derive the asymptotic distribution of the estimators for the locations for local
changes. In particular, this shows that the convergence rates of the estimators are strict in general
(confer also Remark 3.1). For non-local changes, the limit can be derived using analogous meth-
ods but it is no longer pivotal but depends on the underlying error distribution (for details in the
classical at most one change situation for the CUSUM statistic, we refer to [1] as well as [14]).

In order to derive the asymptotic distribution, we need to make some stronger assumptions on
the error sequence.

Assumption A.5. Let the error sequence fulfill either (i) or (ii):

(i) {εi} are i.i.d.
(ii) {εi} are stationary and strong mixing and fulfill the functional central limit theorem in

forward and backward time.

Both assumptions ensure that functionals of the error sequence that are a fraction of G apart
are asymptotically independent, where the mixing assumption can be relaxed if the asymptotic
independence remains true. In particular, under Assumption A.2 with c > 2, the change point
estimators are asymptotically independent. The forward functional central limit theorem is ful-
filled by Assumption A.1(b), which follows for example for exponentially mixing sequences
under moment conditions (confer [28]). Since mixing is a symmetric property, a backward in-
variance principle implying a backward functional central limit theorem holds under the same
assumptions.

Theorem 3.3. Let X1, . . . ,Xn follow (2.1) and let Assumption A.2 with c > 2 and Assump-
tion A.3 hold and let τ̂ 2

k,n = τ̂ 2
n fulfilling Assumption A.4. Furthermore, let {εt } fulfill Assump-

tion A.1 and αn fulfills (3.4).
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(a) If dj
P−→ 0 but d2

j G
P−→ ∞, then it holds for j = 1, . . . , qn as n → ∞

τ−2d2
j (k̂j 1{j≤q̂n} − kj )

D−→ arg max
{
Ws − |s|/√6 : s ∈ R

}
,

where {Ws : s ∈ R} is a standard Wiener process.
(b) If additionally Assumption A.5(i) or (ii) holds, then for a fixed number of changes qn = q

and maxj=1,...,q d2
j

P−→ 0, it holds as n → ∞

τ−2(d2
1 (k̂11{1≤q̂n} − k1), . . . , d

2
q (k̂q1{q≤q̂n} − kq)

) D−→ (S1, . . . , Sq),

where

Si = arg max
{
W(i)

s − |s|/√6 : s ∈ R
}

and {W(i)
s : s ∈ R}, i = 1, . . . , q , are mutually independent standard Wiener processes.

3.4. Some non-asymptotic results for i.i.d. normal innovations

Following [19], we derive some non-asymptotic results in the case where the innovations are
i.i.d. Gaussian with known variance σ 2. Furthermore, we concentrate on the classical setting,
where the number of changes, change points and magnitude of changes are non-random but can
depend on the sample size n.

To keep the arguments simpler, we require the distance between any two change points to
be larger than 2G. We then apply the procedure from Section 3.1 with τ̂ 2

k,n = σ 2 and the crit-
ical value cn instead of Dn(G;αn). The critical value cn is essentially of the same order as
Dn(G;αn) in the previous sections but we use a different notation as the asymptotic interpreta-
tion of Dn(G;αn) no longer makes sense here.

Theorem 3.4. Let {εi} be i.i.d. N(0, σ 2), dj = dj,n, kj = kj,n, qn deterministic with

dj ≥ δn > 0, min
0≤j≤qn

|kj+1 − kj | > 2G

and τ̂k,n = σ . Furthermore, let the critical value cn fulfill

cn >
√

4 logn,
√

2cn ≤ ηδn

√
G −√8 logn. (3.5)

(a) Then, it holds for some constant C > 0

P
(
q̂n = qn, max

1≤j≤qn

|k̂j − kj | < G
)

≥ 1 − C

T
.
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(b) It holds for any 1 ≤ j ≤ qn as well as 1 ≤ ξn ≤ G and any γ > 2

(i) P
(|k̂j 1{j≤q̂n} − kj | > ξn

)≤ C̃δ
−γ
n ξ

− γ
2

n − C

T
,

(ii) P
(

max
1≤j≤qn

|k̂j 1{j≤q̂n} − kj | > ξn

)
≤ C̃qnδ

−γ
n ξ

− γ
2

n − C

T

for some constant C̃ > 0 and C as in (a).

There are several interesting observations about Theorem 3.4. First of all, (3.5) is closely
related to Assumption A.1(a) (for fixed η > 0) as well as Assumption 3.3 in [19] for the wild
binary segmentation procedure since δn in our notation is a lower bound for the magnitude of
changes and 2G is a lower bound for the distance between change points. Similarly, to their
result, we do not require that the number of changes is bounded (except for the assumption on
the distance between change points). Secondly, if the number of changes is bounded, that is,
qn ≤ q < ∞, and the magnitude is bounded from below, that is, δn ≥ δ > 0, then the assertion
in (b)(ii) yields

max
1≤j≤qn

|k̂j 1{j≤q̂n} − kj | = OP (1),

which is slightly stronger than the statements in Theorems 3.1 and 3.2 in [19] for the binary and
wild binary segmentation algorithm.

3.5. Choice of bandwidth and alternative evaluations of MOSUM graphs

In some extreme cases with small bandwidth G and very close changes as in Figures 4 or 5 below
the condition wj − vj ≥ ηG in (3.1) (eta-check) can be too restrictive. In order to get asymptotic
consistency of the change point estimators, it has to be replaced by another condition avoiding the
double estimation of the same change point. One alternative solution checks for each significant
point k̃j whether it is also a local maximum in the sense of

|Tk̃j ,n
(G)|

τ̂
k̃j ,n

= max
|k̃j −k|<�cG�

|Tk,n(G)|
τ̂k,n

(maximum-check),

where c > 0 in a similar spirit as [46]. Significant local maxima in that sense are included in
the list of estimated change points. Similar arguments as in the proof of Theorem 3.4 can be
applied to show that there is only one significant local maximum in each environment of a true
change point with probability approaching one. In practice, this method also detects changes that
are more than cG but less than 2G apart, where the graph may sometimes not fall beneath the
asymptotic critical value between changes (see Figure 5 below).

The main problem with the MOSUM statistic as investigated in this paper is that its perfor-
mance depends crucially on the choice of the bandwidth G. Theoretically, the bandwidth should
be chosen as large as possible with the restriction that there should not be more than one change
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point in any window of size 2G (see also Assumption A.2), that is, G should be half the mini-
mal distance between two change points. The simulations below suggest that a somewhat larger
window results in a good performance as well.

There are two main problems with the bandwidth: First, the distance between change points is
not known. Secondly, while change point tests can principally detect large changes even between
short stationary stretches, longer stationary stretches (at least to one side) are required to detect
smaller changes. For the above MOSUM procedure, this means that performance will suffer in
data sets, where both large changes surrounded by small stationary stretches and small changes
surrounded by large stationary stretches are present, when only one bandwidth is used.

One solution to this problem is to use the method merely as a diagnostic tool that can be run
with several bandwidths. Large changes surrounded by either large or small stationary stretches
will be detected with a small bandwidth, while smaller changes surrounded by longer stationary
stretches will be detected by larger bandwidths. This can be visualized using plots similar to
Figures 3, 4 and 5.

Another solution is an appropriate merging of change point candidates obtained from different
bandwidths. This is the idea behind the multiscale method proposed by [33] which is based on
their MOSUM statistics for detection of changes in point processes: All change point candidates
obtained from the MOSUM statistics based on the smallest bandwidth are included, then one
proceeds recursively with the next largest bandwidth but only includes candidates if there is

Figure 3. Two sample path and performance of σ̂−1
k,n

Tk,n(G) with bandwidths G = 10, 25, 50, 60 and
η = 0.15 for “Mix”-Signal, where critical values and detected change points for α = 0.1 are indicated by
vertical solid lines and for α = 0.5 by vertical dotted lines. The horizontal lines give the asymptotic critical
values for α = 0.1 (solid) and α = 0.5 (dotted).
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Figure 4. Two sample path and performance of σ̂−1
k,n

Tk,n(G) with bandwidths G = 8, 10, 20 and η = 0.15
for “Teeth”-Signal, where critical values and detected change points for α = 0.1 are indicated by vertical
solid lines and for α = 0.5 by vertical dotted lines. The horizontal lines give the asymptotic critical values
for α = 0.1 (solid) and α = 0.5 (dotted).

no previously detected change point in a suitable environment of the candidate. We will call
this procedure based on the MOSUM method in this paper “Merged MOSUM (bandwidth)”.
One major drawback is that it is not clear how to generalize it to situations when asymmetric

Figure 5. Two sample path and performance of σ̂−1
k,n

Tk,n(G) with bandwidths G = 8, 10, 20 and η = 0.15
for “Stairs”-Signal, where critical values and detected change points for α = 0.1 are indicated by vertical
solid lines and for α = 0.5 by vertical dotted lines. The horizontal lines give the asymptotic critical values
for α = 0.1 (solid) and α = 0.5 (dotted).
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bandwidths, that is, different bandwidth lengths to the right and left, are used. Those would be
useful to detect small changes with only a long stationary stretch to one side.

An alternative merging method (called “Merged MOSUM (p-value)”) proceeds similarly to
[19] where change point candidates are included according to increasing p-values unless a
change point has already been detected in a suitable environment of the candidate. This algo-
rithm can easily be adapted to allow for asymmetric bandwidths. However, care has to be taken
as the p-value only corrects for multiple testing within each set of bandwidth but not across
different sets of bandwidths.

In the simulations below, we implement both merging algorithms above based on symmetric
bandwidths from a given list G = G1, . . . ,Gk , where in both cases the maximum-check with
c = 2/3 is used instead of the eta-check. The algorithms are based on level α = 0.1 resp. p-values
smaller than 0.1. When merging, we check whether the newly detected change point is at least
c = 2/3 of its bandwidth away from the previously accepted change point candidates. In the
future some more finetuning of the method is needed and will be implemented in the R-package
“Mosum”.

Yet another alternative to be investigated in the future is the use of an information criterion
based on possible change points obtained from one or several MOSUM statistics similarly to
[19], who suggests to use an information criterion effectively as a stopping rule for the wild
binary segmentation method. This should take care of a possible overestimation if one includes
very small bandwidths in situations where changes are relatively far apart. It should also deal with
the multiple testing issue present when multiple bandwidths are used. A somewhat different but
related approach is taken by [46], who use the local maxima of a MOSUM statistic with a single
bandwidth as possible change point candidates in order to reduce computational complexity of a
full information criterion based approach.

4. Simulations

In this section, we illustrate the performance of the above change point estimators based on
several toy data sets. Nonparametric estimators for the long-run variance are relatively imprecise
even for larger sample sizes as this is a difficult statistical estimation problem, so that we use
i.i.d. errors in these simulations. Furthermore, all time series are created using the deterministic
change point setting because this allows us to play with the locations of the change points and
see how they influence the estimators. All simulations are based on 1000 repetitions.

We will now show how the procedure works using some examples from [19] with i.i.d. normal
errors. We run the simulations with the other competing procedures that have also been consid-
ered in [19] in precisely the same way, where we use the suggested sSIC-method for wild binary
segmentation. Precisely, the methods are: Segmentor from the Segmentor3IsBack-R-Package,
CumSeg as described in [34], SMUCE as described in [18] as well as PELT as described in [23].
We exclude the Bai and Perron procedure [4] due to its extensive computation time, although
some preliminary results show that it works very well if the parameter h is chosen sufficiently
small (which however increases computation time even further). Furthermore, it should be men-
tioned that PELT [23] yields much better results after the new version has been installed. For the
MOSUM method we include the two described merging algorithms with the same bandwidths
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choices, where results are very similar. The change point estimates in the plots indicated by ver-
tical lines are obtained using the MOSUM method with a single bandwidth choice, where the
eta-criterion with η = 0.15 was used.

We will first look at the “Mix” signal, which has change points at 10, 20, 40, 60, 100, 120, 160,
200, 250, 300, 360, 420, 490 with means 74, −7, 6, −6, 5, −5, . . . . Because the signal includes
large changes surrounded by small stationary stretches as well as small changes surrounded by
large stationary stretches no MOSUM procedure with a single bandwidth can detect all changes.
Figure 3 illustrates how different bandwidths detect different changes. Frequent change points
to be missed are the ones to the very left respectively very right of the time series. As already
indicated by [19], the signal is difficult to detect for all methods. Table 1 gives the results for
the two merged MOSUM procedures and the WBS method only because the other competing
procedures detect the correct number of change points in less than 19% of the cases. The L1-error
is the sum of the absolute differences between true change point and corresponding estimator
hence measures the precision of the estimated locations.

Next, we look at a “Teeth” signal with a mean change every 10th observation switching be-
tween 0 and 1 with i.i.d. normal errors with a standard deviation of 0.4. The changes are relatively
close so that only small bandwidths have a chance of detecting them. Figure 4 shows the results
for different bandwidth choices and α = 0.1 as well as α = 0.5. The bandwidths G = 8 as well as
G = 10 can well detect change points, while G = 20 results in oversmoothing with insignificant
results. In this example, one can clearly see the problems with the eta-criterion (3.1) which have
already been described in Section 3.5. This is the reason why α = 0.1 finds so little change points
although most peaks do cross the line (but only for one data point). A visual inspection, on the
other hand, can clearly distinguish between those scenarios and would usually find all 10 change
points. The maximum-check is much closer to this visual inspection and therefore performs bet-
ter in this example. Table 2 gives the results for the merged MOSUM and WBS only as PELT,
CumSeg and SMUCE detect the correct number of changes in less than 10% of the cases, and
Segmentor detects it in only 52% of the cases. While WBS is slightly better in picking the correct

Table 1. Number of correctly estimated change points and L1-error for WBS and merged MOSUM-
procedure (with bandwidths G = {10,25,50,60}) for the mix signal based on those realizations where
both methods detect the correct number of change points

q̂n − q ≤ 3 = 2 = 1 = 0 = 1 = 2 ≥ 3

Merged MOSUM (bandwidth) 0.006 0.103 0.389 0.418 0.073 0.010 0.001
Merged MOSUM (p-value) 0.006 0.091 0.353 0.432 0.098 0.018 0.002
WBS 0.068 0.301 0.268 0.335 0.022 0.004 0.002

L1-error Median (mean) MAD (SD)

Merged MOSUM (bandwidth) 28 (38.84) 10.38 (47.73)
Merged MOSUM (p-value) 27 (36.64) 8.9 (46.97)
WBS 29 (36.37) 13.34 (39.31)
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Table 2. Number of correctly estimated change points and L1-error for WBS and merged MOSUM-
procedure (with bandwidths G = {10,25,50,60}) for the “Teeth” signal based on those realizations where
both methods detect the correct number of change points

q̂n − q ≤ 3 = 2 = 1 = 0 = 1 = 2 ≥ 3

Merged MOSUM (bandwidth) 0.016 0.075 0.193 0.716 0 0 0
Merged MOSUM (p-value) 0.016 0.075 0.193 0.716 0 0 0
WBS 0.059 0.027 0.016 0.735 0.129 0.020 0.014

L1-error Median (mean) MAD (SD)

Merged MOSUM (bandwidth) 0 (0.55) 0 (0.93)
Merged MOSUM (p-value) 0 (0.55) 0 (0.93)
WBS 4 (4.48) 2.97 (3.12)

number of change points the location of the change point estimators are much more precise for
the merged MOSUM algorithms.

Finally, we look at the “Stairs” signal in [19] with change points at every 10th observation,
mean values of 1,2,3, . . . and i.i.d. normal errors with a standard deviation of 0.3. Again a vi-
sual inspection of Figure 5 gives a clear picture, where the change points are. However, there are
several problems: The eta-check can again result in missing change points, so that the maximum-
check yields better results. Furthermore, it happens (particularly for G = 10) that the graph re-
mains above the critical value at all times. By construction the original algorithm cannot deal
with this, although clearly significant points further apart than 2G cannot be caused by the same
change point, the implemented maximum-check on the other hand does not require the curve to
fall beneath the critical level in between estimated change points resulting in better results. As
already mentioned the maximum-check is closer to the visual check in spirit. Table 3 gives the
results for the merged MOSUM procedures with bandwidths G = 8,10,20,30,50 in addition
to the results of PELT, cumseg and WBS. SMUCE is excluded because it only detects 7.3% of
the changes. In this example detection rate and accuracy of the estimators are very good for the
merged MOSUM procedures.

The simulations for the fms and blocks signal in [19] show that both merging algorithms tend
to overestimate the number of change points with the set of bandwidths we used. A possible
solution could be the use of an information criterion as final pruning step that has been discussed
in Section 3.5.

The following additional simulations can be found in the supplementary material [16]:

• Impact of the moving variance estimator,
• adaptations for mean changes accompanied by a variance change,
• connection between bandwidth, distance between changes and magnitude of changes.
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Table 3. Number of correctly estimated change points and L1-error for WBS and merged MOSUM-
procedure (with bandwidths G = {8,10,20,30,50}) for the “Stairs” signal based on those realizations
where all of those methods detect the correct number of change points

q̂n − q ≤ 3 = 2 = 1 = 0 = 1 = 2 ≥ 3

CumSeg 0.014 0.02 0.093 0.787 0.086 0 0
Merged MOSUM (bandwidth) 0 0.001 0.027 0.972 0 0 0
Merged MOSUM (p-value) 0 0.001 0.028 0.971 0 0 0
PELT 0.002 0.007 0.072 0.916 0.003 0 0
WBS 0 0 0.001 0.603 0.299 0.068 0.029

L1-error Median (mean) MAD (SD)

CumSeg 7 (7.56) 2.97 (2.9)
Merged MOSUM (bandwidth) 2 (1.881) 1.48 (1.52)
Merged MOSUM (p-value) 1 (1.03) 1.48 (1.26)
WBS 2 (2.18) 1.48 (1.75)
PELT 1 (1.68) 1.48 (1.55)

Conclusions: There are several advantages of the MOSUM procedure: First, it provides some
meaningful graphs for visual inspection. Secondly, p-values are attached to change point estima-
tors with the usual interpretation at least for a given bandwidth. Third, the correctly discovered
MOSUM change point estimators are very precise. Finally, we have demonstrated the potential
of merged MOSUM algorithms, where theoretic and practical details are left to be investigated
in future work.

5. Proofs

In this section, we prove the results of the previous sections. More detailed proofs can be found
in [35].

5.1. Proofs of Section 2

Proof of Theorem 2.1. By the invariance principle in Assumption A.1(b) and (2.3), we get

max
G≤k≤n−G

1√
2Gτ 2

∣∣∣∣∣
k+G∑

i=k+1

εi − (W(k + G) − W(k)
)∣∣∣∣∣= OP

(
n1/(2+ν)

√
2G

)
= oP

(
a(n/G)−1).

Consequently, we can replace Xi/τ in the statistic by i.i.d. standard normal random variables ε̃i

without changing the asymptotics. The assertion then follows from Theorem 2.1 in [22]. This
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implies

max
G≤k≤n−G

∣∣Tk,n(G)
∣∣= OP

(√
log(n/G)

)
(5.1)

showing that we can replace τ by τ̂k,n without changing the asymptotics since by assumption
(2.5) it holds

max
G≤k≤n−G

∣∣∣∣ 1

τ̂k,n

− 1

τ

∣∣∣∣= oP

((
log(n/G)

)−1)
. �

Part (b) of the following lemma is essentially a corollary of Theorem 2.1, showing that the
statistic away from change points behaves exactly as under the null hypothesis, while (a) im-
mediately implies consistency of the test under alternatives. Combined they will be the key to
proving consistency of the estimator for the number of changes in the next section.

Lemma 5.1. Let the assumptions of Theorem 2.2 hold.

(a) If

max
G≤k≤n−G

τ̂ 2
k,n = oP

(
min

j=1,...,qn

d2
j

log(n/G)G

c2
αn

)
(5.2)

for some sequence {αn} with 0 < αn < 1, then for any ε > 0

P

(
min

0≤|k−kj |<(1−ε)G

j=1,...,qn

|Tk,n(G)|
τ̂k,n

< Dn(G;αn)

)
−→ 0,

where cαn,Dn(G;αn) as in (2.6).
(b) If (as in Theorem 3.1)

max
|k−kj |≥G,j=1,...,qn

∣∣τ̂ 2
k,n − τ 2

∣∣= oP

((
log(n/G)

)−1)
,

then it holds uniformly in α

P

(
max|k−kj |≥G

j=1,...,qn

|Tk,n(G)|
τ̂k,n

≥ Dn(G;α)

)
≤ α.

Proof. To obtain (a), note that by assumption it is sufficient to prove the assertion if additionally
min0≤j≤qn |kj+1 − kj | > 2G holds. In this case some calculations (for details, we refer to [35],
proof of Theorem 6.1) give for 0 ≤ |k − kj | ≤ (1 − ε)G

Tk,n(G;X1, . . . ,Xn) = Tk,n(G; ε1, . . . , εn) + dj√
2G

(
G − |k − kj |

)
.
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Hence, by (5.1)

min
0≤|k−kj |<(1−ε)G

∣∣Tk,n(G)
∣∣= min

0≤|k−kj |<(1−ε)G

∣∣∣∣Tk,n(G; ε1, . . . , εn) + dj (G − |k − kj |)√
2G

∣∣∣∣
≥ min1≤j≤qn |dj |√

2
ε
√

G − max
G≤k≤n−G

∣∣Tk,n(G; ε1, . . . , εn)
∣∣

= min1≤j≤qn |dj |√
2

ε
√

G + OP

(√
log(n/G)

)
.

We conclude

P

(
min

0≤|k−kj |<(1−ε)G

|Tk,n(G)|
τ̂k,n

< Dn(G,αn), min
1≤j≤qn

|kj+1 − kj | > 2G, min
G≤k≤n−G

τ̂k,n > 0

)
≤ P

((
min

1≤j≤qn

|dj |
)−1

G−1/2
(

max
G≤k≤n−G

τ̂k,n

cαn + b(n/G)

a(n/G)
+ OP

(√
log(n/G)

))
>

ε√
2

)
→ 0,

proving (a). Assertion (b) follows immediately from Theorem 2.1 on noting that on each segment
away from any kj , the MOSUM statistic as well as the variance estimator behave exactly as under
H0 due to Assumption A.1(a), where the convergence is uniformly in α due to the continuity of
the Gumbel limit distribution. �

Proof of Theorem 2.2. It follows immediately from Lemma 5.1(a) on noting that Assump-
tion A.4(b) implies (5.2) for fixed α resp. cα . �

Proof of Theorem 2.3. First, we obtain

P

(
max

0≤k≤n−G

∣∣∣∣∣ 1G
�n∑
h=0

ω(h/�n)

k+G−h∑
i=k+1

(
εiεi+h − γ (h)

)∣∣∣∣∣> ε

)

≤
n−G∑
k=0

P

(∣∣∣∣∣
�n∑
h=0

ω(h/�n)

k+G−h∑
i=k+1

(
εiεi+h − γ (h)

)∣∣∣∣∣> Gε

)

≤ n

G2ε2

�n∑
h=0

�n∑
b=0

ω(h/�n)ω(b/�n)

G−h∑
i=1

G−b∑
j=1

E
((

εiεi+h − γ (h)
)(

εj εj+b − γ (b)
))

≤ n

G2ε2

�n∑
h=0

�n∑
b=0

G−h∑
i=1

G−b∑
j=1

∣∣ν(h, j − i, j − i + b)
∣∣≤ C

n�2
n

G2ε2
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by assumption (2.9). Consequently,

max
G≤k≤n−G

∣∣∣∣∣ 1G
�n∑
h=0

ω(h/�n)

k−h∑
i=k−G+1

(
εiεi+h − γ (h)

)∣∣∣∣∣= OP

(
n1/2�n

G

)
. (5.3)

From Assumption A.1(b) and a Hájék–Rényi-inequality as in Lemma 3.1 for the Wiener process
we get

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

εi

∣∣∣∣∣= OP (
√

n). (5.4)

Since

max
G≤k≤n−G

∣∣σ̂ 2
k,n − σ 2

∣∣≤ max
0≤k≤n−G

1

G

∣∣∣∣∣
k+G∑

i=k+1

(
ε2
i − σ 2)∣∣∣∣∣+ max

0≤k≤n−G

∣∣∣∣∣ 1G
k+G∑

i=k+1

εi

∣∣∣∣∣
2

assertion (a) follows from (5.3) (with �n < 1) and (5.4).
Similarly,

max
G≤k≤n−G

∣∣τ̂ 2
k,n − τ 2

∣∣
= max

G≤k≤n−G

∣∣∣∣∣σ̂ 2
k,n + 2

�n∑
h=1

ω(h/�n)γ̂k(h) − σ 2 − 2
∑
h>0

γ (h)

∣∣∣∣∣
≤ max

G≤k≤n−G

∣∣σ̂ 2
k,n − σ 2

∣∣
+ max

G≤k≤n−G

∣∣∣∣∣
�n∑
h=1

ω(h/�n)
1

G

k−h∑
i=k−G+1

(εi − ε̄k−G+1,k)(εi+h − ε̄k−G+1,k) −
∑
h>0

γ (h)

∣∣∣∣∣
+ max

G≤k≤n−G

∣∣∣∣∣
�n∑
h=1

ω(h/�n)
1

G

k+G−h∑
i=k+1

(εi − ε̄k+1,k+G)(εi+h − ε̄k+1,k+G) −
∑
h>0

γ (h)

∣∣∣∣∣
≤ OP

(
�nn

1/2

G

)
+
∑
h∈Z

∣∣w(h/�n) − 1
∣∣∣∣γ (h)

∣∣,
where we made repeated use of (5.4). This completes the proof of (b). �

Proof of Theorem 2.4. By assumption, it holds

Xi − �Xk−G+1,k = εi − ε̄k−G+1,k + OP (1), i = k − G + 1, . . . , k, (5.5)

where the rate is uniform in i, k,G. Hence by (a + b)2 ≤ 2a2 + 2b2, we get

sup
G≤k≤n−G

σ̂ 2
k,n ≤ sup

G≤k≤n−G

1

G

(
k∑

i=k−G+1

(εi − ε̄k−G+1,k)
2 +

k+G∑
i=k+1

(εi − ε̄k+1,k+G)2

)
+ OP (1),
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implying (a) by Theorem 2.3. Similarly, by (5.5) and (5.4), we get

1

G

k+G−h∑
i=k+1

(Xi − �Xk+1,k+G)(Xi+h − �Xk+1,k+G)

= 1

G

k+G−h∑
i=k+1

(
εi − ε̄k+1,k+G + OP (1)

)(
εi+h − ε̄k+1,k+G + OP (1)

)

= 1

G

k+G−h∑
i=k+1

(εi − ε̄k+1,k+G)(εi+h − ε̄k+1,k+G) + OP (1) + OP

(√
n

G

)
,

where the rates are uniform in k,h,G. With Theorem 2.3, we get

max
G≤k≤n−G

τ̂ 2
k,n = OP

(
�nn

1/2

G

)
+ OP (�n) = OP (�n)

concluding (b). �

5.2. Proofs of Section 3

Proof of Theorem 3.1. First, note that Assumptions A.4(b) and (3.4) imply (5.2) so that by
Lemma 5.1, it holds P(Sn) → 1 with

Sn =
{

max
|k−kj |≥G,j=1,...,qn

|Tk,n(G)|
τ̂k,n

< Dn(G,αn),

min
0≤|k−kj |<(1−η)G,j=1,...,qn

|Tk,n(G)|
τ̂k,n

≥ Dn(G,αn)

}
.

Since

Sn ⊂ {q̂n = qn}, Sn ⊂
{

max
1≤j≤qn

|k̂j 1{j≤q̂n} − kj | ≤ G
}
,

the assertion follows. �

Proof of Lemma 3.1. By the triangle inequality and the monotony of the {ck}, we get

max
�≤k≤u

ck

∣∣∣∣∣
m+k∑

j=m+1

εj

∣∣∣∣∣≤ c�

∣∣∣∣∣
m+�∑

j=m+1

εj

∣∣∣∣∣+ max
�<k≤u

ck

∣∣∣∣∣
m+k∑

j=m+�+1

εj

∣∣∣∣∣,
hence

P

(
max

�≤k≤u
ck

∣∣∣∣∣
m+k∑

j=m+1

εj

∣∣∣∣∣> δ

)
≤ P

(
c�

∣∣∣∣∣
m+�∑

j=m+1

εj

∣∣∣∣∣> δ/2

)
+ P

(
max

�<k≤u
ck

∣∣∣∣∣
m+k∑

j=m+�+1

εj

∣∣∣∣∣> δ/2

)
.
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An index shift in connection with the Chebyshev inequality and Assumption A.5 yields (a) by
Theorem B.3 in [24]. Analogous arguments show (b) on noting that Assumption A.1(c) also
holds for the process in reversed time {ε−t }. �

The following lemma is needed in the proofs of Theorems 3.2 as well as 3.3.

Lemma 5.2. Let the errors fulfill Assumptions A.1(a) and A.1(c). Then it holds for any β > 0,
ξ > 0 on 2G ≤ kj ≤ n − 2G:

(a) P(maxkj −G≤k≤kj −ξ

|Tkj ,n(G;ε1,...,εn)−Tk,n(G;ε1,...,εn)|
kj −k

> β) = O((β2Gξ)−γ /2),

(b) P(maxkj −u≤k≤kj
|Tkj ,n(G; ε1, . . . , εn) − Tk,n(G; ε1, . . . , εn)| > β) = O(β−γ ( u

G
)γ/2),

(c) P(maxkj −G≤k≤kj −ξ |Tkj ,n(G; ε1, . . . , εn) + Tk,n(G; ε1, . . . , εn)| > β) = O(β−γ ),

where the constants only depend on C̃ and γ .

Proof of Lemma 5.2. For G ≤ kj − G ≤ k ≤ kj − ξ some straightforward calculations (confer
[35] (6.13)) give

Tkj ,n(G; ε1, . . . , εn) − Tk,n(G; ε1, . . . , εn)
(5.6)

= 1√
2G

( kj +G∑
i=k+G+1

εi +
kj −G∑

i=k−G+1

εi − 2

kj∑
i=k+1

εi

)
.

Hence,

P

(
max

kj −G≤k≤kj −ξ

|Tkj ,n(G; ε1, . . . , εn) − Tk,n(G; ε1, . . . , εn)|
kj − k

> β

)

≤ P

(
max

kj −G≤k≤kj −ξ

|∑kj +G

i=k+G+1 εi |
kj − k

>
β
√

2G

3

)

+ P

(
max

kj −G≤k≤kj −ξ

|∑kj −G

i=k−G+1 εi |
kj − k

>
β
√

2G

3

)

+ P

(
max

kj −G≤k≤kj −ξ

|∑kj

i=k+1 εi |
kj − k

>
β
√

2G

3

)
.

By Lemma 3.1 and the independence of kj and ε1, . . . , εn it follows for the first summand, where
the others can be dealt with analogously,

P

(
max

kj −G≤k≤kj −ξ

∣∣∣∣
∑kj +G

i=k+G+1 εi

kj − k

∣∣∣∣> β
√

2G

3

)
≤ C̃β−γ G−γ /2

(
ξ−γ /2 +

G∑
k=ξ+1

k−γ /2−1

)

= O
((

β2Gξ
)−γ /2)

,
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where O(1) only depends on C̃ and γ . The proof of (b) is analogous (with ck = 1 in Lemma 3.1).
Since

Tkj ,n(G; ε1, . . . , εn) + Tk,n(G; ε1, . . . , εn)

= (Tk,n(G; ε1, . . . , εn) − Tkj ,n(G; ε1, . . . , εn)
)+ 2Tkj ,n(G; ε1, . . . , εn),

(c) can be proven analogously, where the assertion for the first summand on the right-hand side
follows from (b) and the second summand can be dealt with analogously by an application of the
Chebyshev inequality in addition to Assumption A.1(c). �

Proof of Theorem 3.2. We will prove

P(k̂j > kj + ξn) = O(1)δ
−γ
n

(
ξ

− γ
2

n + G− γ
2
)+ o(1),

P (k̂j < kj − ξn) = O(1)δ
−γ
n

(
ξ

− γ
2

n + G− γ
2
)+ o(1),

where we discuss the second assertion in detail, the first one follows analogously (where an
analogous version of Lemma 5.2 is needed). Consider the set

Mn =
{
q̂n = qn, max

1≤j≤qn

|k̂j − kj | < G, τ̂n > 0
}

(5.7)
∩
{

min
j=1,...,qn

|dj | ≥ δn, min
j=1,...,qn

|kj+1 − kj | > 2G
}
,

which does not depend on j . Define w̃j := min(wj , kj +G− 1) and ṽj := max(vj , kj −G+ 1),
then it holds on Mn for all j = 1, . . . , qn

k̂j = arg max
ṽj ≤k≤w̃j

∣∣Tk,n(G)
∣∣.

Next, note that

arg max
ṽj ≤k≤w̃j

∣∣Tk,n(G)
∣∣= arg max

ṽj ≤k≤w̃j

V
(j)
k,n (G),

V
(j)
k,n (G) = (Tk,n(G)

)2 − (Tkj ,n(G)
)2

.

Hence,

P
(

arg max
ṽj ≤k≤w̃j

V
(j)
k,n (G) < kj − ξn

)
= P
(

max
ṽj ≤k≤kj −ξn

V
(j)
k,n (G) ≥ max

kj −ξn≤k≤w̃j

V
(j)
k,n (G)

)
≤ P
(

max
ṽj ≤k≤kj −ξn

V
(j)
k,n (G) ≥ 0

)
.
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The additional term o(1) in (a) represents P(MC
n ) → 0 by Theorem 3.1 and assumptions. Next,

for kj − G ≤ k ≤ kj − ξn,

V
(j)
k,n (G) = (Tk,n(G)

)2 − (Tkj ,n(G)
)2 = (Tk,n(G) − Tkj ,n(G)

)(
Tk,n(G) + Tkj ,n(G)

)
= −((Tkj ,n(G; ε1, . . . , εn) − Tk,n(G; ε1, . . . , εn)

)+ (2G)−
1
2 (kj − k)dj

)
(5.8)

× ((Tkj ,n(G; ε1, . . . , εn) + Tk,n(G; ε1, . . . , εn)
)+ (2G)−

1
2 (k + 2G − kj )dj

)
=: −(A1(k, n) + D1(k, n)

)(
A2(k, n) + D2(k, n)

)
.

Since on Mn it holds D1(k, n)/dj ≥ (2G)−1/2(kj − k) and D2(k, n)/dj ≥ 2−1/2G1/2, we get
D1(k, n)D2(k, n) ≥ δ2

nξn/2 > 0. Hence

P
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max
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(j)
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∣∣∣∣A1(k, n)

kj − k

∣∣∣∣≥ δn

3
√

2G

)
+ P

(
max

kj −G≤k≤kj −ξn

∣∣A2(k, n)
∣∣≥ δn

√
G

3
√

2

)

+ P

(
max

kj −G≤k≤kj −ξn

∣∣∣∣A1(k, n)

kj − k

∣∣∣∣≥ δn√
6G

)
P

(
max

kj −G≤k≤kj −ξn

∣∣A2(k, n)
∣∣≥ δn

√
G√

6

)
= O(1)δ

−γ
n

(
ξ

− γ
2

n + G− γ
2
)
,

where the last line follows from Lemma 5.2 and O(1) does not depend on j . This concludes the
proof of (a) by ξn ≤ G. Similarly, on the set

M̃n = Mn ∩ {qn ≤ γn} (5.9)
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we get

P
(

max
j=1,...,min(q̂n,qn)

|k̂j − kj | > ξn, M̃n

)
≤

γn∑
j=1

P
(|k̂j 1{j≤min(q̂n,qn)} − kj | > ξn, M̃n

)
= O(1)γnδ

−γ
n

(
ξ

− γ
2

n + G− γ
2
)
,

where the last line follows from the proof of (a). Since P(M̃n) → 1, the proof of (b) is com-
plete. �

Before we can get to the proof of the corollary, we first need to refine the assertions on the
variance estimator σ̂ 2

k,n from Section 2.3:

Lemma 5.3. Let the assumptions of Corollary 3.1 be fulfilled. Then it holds

(a) P
(

min
0≤|k−kj |≤G

σ̂ 2
k,n ≥ C

)
→ 1 for some c > 0.

(b) 2G
σ̂ 2

k,n − σ̂ 2
kj ,n

|kj − k| = d2
j

G − |k − kj |
G

+ Rk(j),

where max
ξn≤|k−kj |≤G

∣∣Rk(j)
∣∣= OP

(
ξ

−1/2
n

)+ oP (1).

Proof. Some calculations show that for k ≤ kj

σ̂ 2
k,n = d2

j

2G
|kj − k|G − |k − kj |

G
+ 1

2G

k+G∑
i=k−G+1

ε2
i − 1

2

(
ε̄2
k−G+1,k + ε̄2

k+1,k+G

)

− dj

1

G

kj∑
i=k+1

εi + dj

kj − k

G
ε̄k+1,k+G.

From this, assertion (a) follows (symmetry arguments give the result for k > kj ). For (b) note
that this implies (for kj − G ≤ k < kj )

2G
σ̂ 2

k,n − σ̂ 2
kj ,n

kj − k
= d2

j

G − |k − kj |
G

+ 1

kj − k

kj∑
i=k−G+1

(
ε2
i − σ 2)− 1

kj − k

kj +G∑
i=k+G+1

(
ε2
i − σ 2)

+ 1

kj − k

( kj −G∑
i=k−G+1

εi −
kj∑

i=k+1

εi

)
(ε̄k−G+1,k + ε̄kj −G+1,kj

)

+ 1

kj − k

( kj∑
i=k+1

εi −
kj +G∑

i=k+G+1

εi

)
(ε̄k+1,k+G + ε̄kj +1,kj +G)

− 2dj

1

kj − k

kj∑
j=k+1

εi + 2dj ε̄k+1,k+G
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= d2
j

|k − kj | + G

G
+ Rk(j,1) + · · · + Rk(j,6).

An application of the Hájek–Rényi inequality yields

max
ξn≤kj −k≤G

∣∣Rk(j, l)
∣∣= OP

(
ξ

−1/2
n

)
for l = 1,2,5

as well as the first factor in Rk(j,3) and Rk(j,4). Furthermore, by another application of the
Hájek–Rényi inequality (or the strong law of large numbers) we get max|k−kj |≤G |ε̄k+1,k+G| =
oP (1) resulting in

max
ξn≤kj −k≤G

∣∣Rk(j, l)
∣∣= oP (1) for l = 6.

An analogous argument applies to the second factor in Rk(j,3) as well as Rk(j,4), yielding
assertion (b), where the assertion for k > kj follows by symmetry arguments. �

Proof of Corollary 3.1. The proof is very close to the proof of Theorem 3.2 on replacing
V

(j)
k,n (G) by

Ṽ
(j)
k,n = T 2

k,n

σ̂ 2
k

−
T 2

kj ,n

σ̂ 2
kj

with the following decomposition (σ̂k = σ̂k,n)

Ṽ
(j)
k,n = −(Ã1(k, n) + D̃1(k, n)

)(
Ã2(k, n) + D̃2(k, n)

)
,

where

Ã1(k, n) = A1(k, n)

σ̂k

+ Ã1,2(k, n),

Ã1,2(k, n) = Tkj ,n(G; ε1, . . . , εn)

(
1

σ̂kj

− 1

σ̂k

)
,

Ã2(k, n) = A2(k, n)

σ̂k

+ Ã1,2(k, n),

D̃1(k, n)/dj = 1√
2G

kj − k

σ̂k

+
√

G

2

(
1

σ̂kj

− 1

σ̂k

)

= D1(k, n)

dj

(
1

σ̂k

+ 1

σ̂kj
σ̂k(σ̂kj

+ σ̂k)
G

σ̂ 2
k − σ̂ 2

kj

kj − k

)
=: D1(k, n)

dj

D̃1,2(k, n),

D̃2(k, n)/dj = 1√
2G

(
G

σ̂kj

+ G + k − kj

σ̂k

)
.
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Consider the set

Sn =
{

min
ξn≤kj −k≤G

D̃1,2(k,m) ≥ c1

}
∩
{

max
k

σ̂k ≤ c2

}
∩
{

min
0≤|kj −k|≤G

σ̂k ≥ c3

}
.

By Lemma 5.3 and Theorem 2.4 it holds P(Sn) → 1 for suitable constants ci > 0, i = 1,2,3,
and ξn ≥ ξ0 for some ξ0 > 0. Furthermore on Sn it holds (where c is a generic constant which
may differ from line to line)

D̃1(k, n)

dj

≥ c
D1(k, n)

dj

,
D̃2(k, n)

dj

≥ c
√

G,

|Aj(k,n)|
σ̂k

≤ |Aj(k,n)|
c

, j = 1,2.

Finally, on Sn it holds

max
ξn≤kj −k≤G

∣∣∣∣ Ã1,2(k, n)

D̃1(k, n)

∣∣∣∣ ≤ c
1√
d2
j G

∣∣Tkj ,n(G; ε1, . . . , εn)
∣∣2G max

ξn≤kj −k≤G

|σ̂ 2
k − σ̂ 2

kj
|

|kj − k|

= OP

(
1√
d2
j G

)
= oP (1)

by an application of Lemma 5.3 and the central limit theorem. Similarly,

max
ξn≤kj −k≤G

∣∣∣∣ Ã1,2(k, n)

D̃2(k, n)

∣∣∣∣= oP (1).

On the set Sn the proof can now be completed as the proof of Theorem 3.2. �

Proof of Theorem 3.3. The decomposition (5.8) yields for k < kj

V
(j)
k,n (G) = −D1(k, n)D2(k, n) − A1(k, n)D2(k, n)

− A2(k, n)D1(k, n) − A1(k, n)A2(k, n).

By Assumption A.1(a) an application of Lemma 5.2 conditionally on dj in addition to an appli-
cation of the dominated convergence theorem to get the unconditional statement yields on the set
Mn as in (5.7) that

max
1≤kj −k≤cτ2d−2

j

∣∣A1(k, n)
∣∣= oP (1),

max
1≤kj −k≤cτ2d−2

j

∣∣A2(k, n)
∣∣= OP (1).
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Since max1≤kj −k≤cτ2d−2
j

|D1(k, n)| = oP (1) we get on Mn uniformly in 1 ≤ kj − k ≤ cτ 2d−2
j

V
(j)
k,n (G) = − 1

2G
|kj − k|(2G − |kj − k|)d2

j

− (Tkj ,n(G; ε1, . . . , εn) − Tk,n(G; ε1, . . . , εn)
)(

2G − |kj − k|) 1√
2G

dj + oP (1)

= −|kj − k|d2
j − dj

( kj +G∑
i=k+G+1

εi +
kj −G∑

i=k−G+1

εi − 2

kj∑
i=k+1

εi

)
+ oP (1).

By stationarity and Assumption A.1(a) we get{
dj

( kj +G∑
i=k+G+1

εi +
kj −G∑

i=k−G+1

εi − 2

kj∑
i=k+1

εi

)
: k = kj − 1, . . . , kj − cτ 2d−2

j

}

D=
{

Un(l) = dj

(
G∑

i=−l+G+1

εi +
−G∑

i=−l−G+1

εi − 2
0∑

i=−l+1

εi

)
: 1 ≤ l ≤ cτ 2d−2

j

}
.

Note that by the assumption on dj and Assumption A.5 the three summands are asymptotically

independent. Hence by dj
P−→ 0 and Assumption A.1(a) the functional central limit theorem

implies {
Un(�sτ 2d−2

j �)
τ 2

: 0 ≤ s ≤ c

}
D[0,1]−→ {√6W(s),0 ≤ s ≤ c

}
,

because {W1(s) + W2(s) − 2W3(s)} D= {−√
6W(s)} for independent standard Wiener processes

{Wj(·)}, j = 1,2,3 and another standard Wiener process {W(·)}. More precisely, we first apply
the functional central limit theorem given dj and then get the unconditional assertion above by
an application of the dominated convergence theorem. Similar arguments hold for kj ≥ k, which
implies by P(Mn) → 1 for −c ≤ x ≤ c

P

(
−c ≤ d2

j

k̂j 1{j≤q̂n} − kj

τ 2
≤ x

)
→ P
(

max−c≤s≤x

(−|s| − √
6W(s)

)≥ max
x<s≤c

(−|s| − √
6W(s)

))
= P
(
−c ≤ arg max−c≤s≤c

(
W(s) − |s|/√6

)≤ x
)
.

By Theorem 3.2 and Remark 3.1(a) we get

P

(
d2
j

|k̂j − kj |
τ 2

≤ c

)
≤ (c−γ /2 + G−γ /2)O(1) + o(1)
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uniformly in n, which becomes arbitrarily small for c large enough. Hence, letting c → ∞ gives
assertion (a). Assertion (b) follows because on

{q̂n = q} ∩
qn⋂

j=1

{
d2
j

|k̂j − kj |
τ 2

≤ c

}

the change point estimators k̂j , j = 1, . . . , n, are asymptotically independent (conditionally on
kj , dj , j = 1, . . . , qn) by Assumption A.5. Because the above convergence also holds condition-
ally, this implies (b) by using the dominated convergence theorem in the very last step. �

Proof of Theorem 3.4. Without loss of generality, we can assume that σ = 1. Let tk,n(G) =
1√
2G

∑qn

j=1(G − |kj − k|)dj 1{|kj −k|<G} be the value of the statistic if only the signal μ1 +∑qn

j=1 dj 1{i>kj } (without noise) is input into the statistic Tk,n(G). Analogously to Lemma A.1 in
[19] it holds

P
(

max
G≤k≤n−G

∣∣Tk,n(G) − tk,n(G)
∣∣≥√4 logn

)
≤

n−G∑
k=G

P
(|Z| ≥√4 logn

)≤ n
ϕZ(

√
4 logn)√

4 logn
≤ C

2n
,

where Z ∼ N(0,1) and ϕZ is its density. From this it follows that

P
(

max
|k−kj |≥G,j=1,...,qn

∣∣Tk,n(G)
∣∣< cn

)
≥ 1 − C

2n

as max|k−kj |≥G,j=1,...,qn |tk,n(G)| = 0 because the distance between two change points is always
greater than 2G and cn >

√
4 logn. Furthermore,

P
(

min
0≤|k−kj |<(1−η)G,j=1,...,qn

∣∣Tk,n(G)
∣∣≥ cn

)
≥ P
(

min
0≤|k−kj |<(1−η)G,j=1,...,qn

∣∣tk,n(G)
∣∣− max

0≤|k−kj |<(1−η)G,j=1,...,qn

∣∣Tk,n(G) − tk,n(G)
∣∣≥ cn

)
≥ 1 − P

(
max

0≤|k−kj |<(1−η)G,j=1,...,qn

∣∣Tk,n(G) − tk,n(G)
∣∣≥√4 logn

)
≥ 1 − C

2n

as min0≤|k−kj |<(1−η)G,j=1,...,qn |tk,n(G)| ≥ η
√

Gδn/
√

2 ≥ cn + √
4 logn.

The proof of (a) can now be concluded as in the proof of Theorem 3.1, while (b) can be
concluded as in the proof of Theorem 3.2. �

Acknowledgements

This work was supported by DFG grant KI 1443/2-1/2. Most of this work was done while the
first author was still at Karlsruhe Institute of Technology (KIT), where her position was financed



562 B. Eichinger and C. Kirch

by the Stifterverband für die Deutsche Wissenschaft by funds of the Claussen-Simon-trust. The
authors would like to thank Alexander Meier for pointing out a mistake in a previous version
of Theorem 3.2, which lead to Corollary 3.1, as well as for writing the R-package “Mosum”,
which has been used in the simulations of the revision. Furthermore, they would like to thank
four anonymous referees for suggesting to consider the non-asymptotic scenario in Section 3.4
as well as for comments that led to a huge improvement in the simulation section.

Supplementary Material
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mators in small samples with an emphasis on how the variance estimator and the bandwidth
influence the performance.

References

[1] Antoch, J. and Hušková, M. (1999). Estimators of changes. In Asymptotics, Nonparametrics, and Time
Series. Statist. Textbooks Monogr. 158 533–577. New York: Dekker. MR1724708

[2] Antoch, J., Hušková, M. and Jarušková, D. (2000). Change Point Detection. 5th ERS IASC Summer
School.

[3] Bai, J. (1997). Estimating multiple breaks one at a time. Econometric Theory 13 315–352.
MR1455175

[4] Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural changes.
Econometrica 66 47–78. MR1616121

[5] Bauer, P. and Hackl, P. (1980). An extension of the MOSUM technique for quality control. Techno-
metrics 22 1–7.

[6] Beveridge, S. and Nelson, C.R. (1981). A new approach to decomposition of economic time series
into permanent and transitory components with particular attention to measurement of the business
cycle. J. Monet. Econ. 7 151–174.

[7] Braun, J.V., Braun, R.K. and Müller, H.-G. (2000). Multiple changepoint fitting via quasilikelihood,
with application to DNA sequence segmentation. Biometrika 87 301–314. MR1782480

[8] Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models. Springer Series
in Statistics. New York: Springer. MR2159833

[9] Chen, J., Gupta, A.K. and Pan, J. (2006). Information criterion and change point problem for regular
models. Sankhyā 68 252–282. MR2303084

[10] Chu, C.-S.J., Hornik, K. and Kuan, C.-M. (1995). MOSUM tests for parameter constancy. Biometrika
82 603–617. MR1366285
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