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We remove the hypothesis “S is finite” from the BKR inequality for product measures on Sd , which raises
some issues related to descriptive set theory. We also discuss the extension of the BKR operator and in-
equality, from 2 events to 2 or more events, and we remove, in one sense, the hypothesis that d be finite.
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1. The classic BKR inequality

The BKR inequality, named for van den Berg–Kesten–Reimer, was conjectured in [19] and
proved in [18] and [15]; see [5] or [4] for a clear exposition. The setup involves a probability
space of the form Sd , with S finite, and P a product measure, and the inequality takes the form:
for two events A,B ⊂ Sd , with A � B for the event that, informally, “A and B occur for disjoint
reasons,”

P(A � B) ≤ P(A)P(B).

The somewhat convoluted history is summarized as follows: Kesten and van den Berg [19]
defined the operation A � B on subsets of Sd , and proved the (BK) inequality for the special case
where A and B are assumed to be increasing events. Then van den Berg and Fiebig [18] proved
a conditional implication, not involving increasing events: “If the inequality holds for the cases
Sd = {0,1}d and P is the uniform distribution, with all 2d points of Sd equally likely, then the
inequality holds for any finite S and any product measure on Sd .” Finally, Reimer [15] proved the
inequality in {0,1}d , a purely combinatorial fact, so that combined with the earlier conditional
implication from [18], the general inequality was established.

In [2], still in the context of S finite and P a product measure on Sd , we had a Florida-lottery-
crimefighting reason to need an extension of the BKR inequality, from r = 2 events, to the more
general case r = 2,3, . . . . An easy example shows that sometimes (A � B) � C �= A � (B � C),
so we gave a natural definition for the r-fold operator

�r
1 Ai , proved that

�r
1 Ai ⊂ (· · · ((A1 �

A2) � A3) · · · � Ar), and gave the easy induction, from the classic BKR inequality, to conclude
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that

P

(
r�
1

Ai

)
≤

r∏
1

P(Ai).

Although the case S finite was sufficient for our application, it seemed strange to have to quote
the hypothesis “S is finite,” before invoking the inequality. Indeed, the first draft of [2] made the
mistake of omitting this hypothesis – but thankfully was called to the carpet by a referee.

In this paper, we remove the restriction that S be finite, allowing S = N or S = R, along
with an arbitrary product probability measure on Sd , for our main result, Theorem 7. This raises
issues related to descriptive set theory; the BKR combination of Borel sets need not be a Borel
set, and the BKR combination of Lebesgue measurable sets need not be Lebesgue measurable,
see Example 3. We will also, in Section 7, remove the restriction that d be finite, for one of the
two natural ways of generalizing the BKR operator to spaces of the form SN.

Other extensions and complements to the BKR inequality are given in [1,9,11]. In greater
detail, [9] gives a generalization of the BKR operator and inequality which applies to spaces
such as R

d ; however, the combination of sets which [9], formula (5), identifies as “A and B

occur for disjoint reasons” is somewhat different from the original BKR combination A � B , and
depends on the choice of measure and notions of essential infimum. It is easy to see the BKR
combination of events from [9] is a superset of the standard A � B , hence the result from [9],
with the corrections and improvements provided in [10], proves the outer measure assertion in
our Theorems 4 and 7, via a method which finesses all issues of projective sets by an appeal to
Tonelli’s theorem. In contrast to their approach, ours extends the BKR operator and inequality to
infinite spaces in a way that closely follows the original definitions, meaning as a combination
of events, rather than a combination of events and measures.

2. Definition of the BKR operators

The formal definition of A � B , copied from [19], begins with the notation ω = (ω1, . . . ,ωd) or
ω = (ω1, . . . ,ωd) for elements of Sd . For ω ∈ Sd and K ⊂ [d] := {1, . . . , d}, consider the thin
cylinder Cyl(K,ω) := {ω : ωi = ωi, i ∈ K}. For A,B ⊂ Sd define A � B as the set of ω for which
there exists a K ⊂ [d] such that Cyl(K,ω) ⊂ A and Cyl(Kc,ω) ⊂ B , where Kc := [d] \ K is
the complement of K relative to the universe of coordinate indices.

A small paraphrase of this definition is based on [A]K defined to be the largest cylinder set1

contained in A and free in the directions indexed by Kc:

for A ⊂ Sd, [A]K := {
ω : Cyl(K,ω) ⊂ A

}
. (1)

1Both Cyl(K,ω) and [A]K are defined relative to Sd . We have several occasions in this paper to work simultaneously
with two different sets in the role of S, and it should be understood that the definition of the BKR operator for sets
A,B ⊂ Sd also involves the choice of S and d . Apart from Section 8, we use the same symbol � for every operator of
this form, and leave it to the reader to understand the appropriate context.
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With this notation,

for A,B ⊂ Sd, A � B :=
⋃

K⊂[d]
[A]K ∩ [B]Kc . (2)

An obvious relation, that J ⊂ K ⊂ [d] implies [A]J ⊂ [A]K , shows that (2) is equivalent to the
following:

for A,B ⊂ Sd, A � B :=
⋃

disjoint J,K⊂[d]
[A]J ∩ [B]K. (3)

The definition of the simultaneous r-fold BKR operator given in [2] is, for A1, . . . ,Ar ⊂ Sd ,

�
1≤i≤r

Ai ≡ A1 � A2 � · · · � Ar :=
⋃

J1,...,Jr

[A1]J1 ∩ [A2]J2 ∩ · · · ∩ [Ar ]Jr , (4)

where the union is taken over disjoint subsets J1, . . . , Jr of {1, . . . , d}. It is clear that for the case
r = 2, definition (4) agrees with (3), and hence with (2).

2.1. Careful notation for cylinders, projections, extensions

We follow the strict convention that, for any sets U,V , the set UV is the set of all functions from
V to U , and an element f ∈ UV carries the information: what is the domain of f , and what is
the range of f . For the case V =∅, there is one point exactly in UV . Since we use the notational
convention, common in combinatorics, that for d = 0,1,2, . . . , [d] := {1,2, . . . , d}, the d-fold
Cartesian product of a set S with itself, Sd , is exactly equal to S[d]. But for 0 ≤ k ≤ d , there are(
d
k

)
subsets K ⊂ [d], with |K| = k, and there are

(
d
k

)
different sets SK ; only one of these is equal

to Sk , namely, the one with K = [k].
It will be convenient to work first with the case S = [0,1], allowing us to specialize to the

uniform distribution.
For K ⊂ [d], the projection

projK : [0,1][d] → [0,1]K

is, naturally, the function f 	→ f |K which restricts a function f ∈ [0,1][d] to have domain K .
There is a single one-to-many relation extd , with domain

⋃
K⊂[d][0,1]K , which serves as the

inverse for all of maps projK , namely, (g, f ) ∈ extd if and only if, for some K ⊂ [d], g ∈ [0,1]K ,
f ∈ [0,1][d], and g = f |K .

For any set D, we write 2D for the power set of D, that is, the set of all subsets of D. We will
be fussy, to distinguish a function from D to D′, and its inverse relation, written with lowercase,
from the induced functions, mapping 2D to 2D′

and back, written with uppercase.
Thus, we have 2d projection functions

ProjK : 2[0,1][d] → 2[0,1]K ,
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and a single extension function,

Extd : 2
⋃

K [0,1]K → 2[0,1][d]
.

In particular, for K ⊂ [d],

for C ⊂ [0,1]K, Extd(C) := {
f ∈ [0,1][d] : f |K ∈ C

} = Proj−1
K (C).

3. Measurability considerations

3.1. Introductory motivation

In 1905, Lebesgue stated, incorrectly, that projections of Borel sets are Borel sets, and Souslin
showed otherwise. Superficially, this is an obstacle to extending the BKR inequality from Sd

with S countable to the case with S = [0,1], since in [0,1]d , even starting with Borel sets A,B ,
we cannot assert that A � B is also a Borel set. In more detail,

A � B :=
⋃

K⊂[d]
[A]K ∩ [B]Kc ,

where [A]K is the maximal cylinder subset of A free in the directions in [d] \ K , equivalently,
using notation from Section 2.1,

[A]K := Extd
([0,1]K \ ProjK

(
Ac

))
. (5)

However, Lusin and Sierpiński showed that projections of Borel sets are nice, in the concrete
sense of having equal inner and outer measure, that is, being measurable in the completion of the
Borel sigma-algebra with respect to Lebesgue measure [6], Theorem 8.4.1. For history, see [7],
page 500, [14], page 232, [12,13].

We write λd for the usual Lebesgue measure on [0,1]d . The
(
d
k

)
different spaces [0,1]K , for

K ⊂ [d] with |K| = k, are all naturally measure isomorphic to [0,1]k . Rather than writing the
explicit isomorphism, or naming the corresponding copies of Lebesgue measure λK , we simply
write λk .

With k = |K|, if C ⊂ [0,1]K is Lebesgue measurable then so is Extd(C), and λk(C) =
λd(Extd(C)).

3.2. Details for measurability

Lemma 1. Assume that A is a Borel subset of [0,1]d , and that K ⊂ [d]. Then, the cylinder [A]K
is Lebesgue measurable. If A,B are Borel subsets of [0,1]d , then A � B is Lebesgue measurable,
and if A1, . . . ,Ar are Borel subsets of [0,1]d , then

�r
1 Ai is Lebesgue measurable.
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Proof. To start, A is a Borel subset of [0,1]d so Ac := [0,1]d \A is also Borel, and the projection
C := ProjK(Ac) is an analytic subset of [0,1]K . In particular, Cc is universally measurable, and
the pullback [A]K of Cc is measurable with respect to the product measure λd .

The Lebesgue measurability claims for A � B and
�r

1 Ai now follow immediately from the
definitions (2) and (4). �

Lemma 1 remains true if “Borel” is replaced by “co-analytic,” as is clear from the proof.

Remark 2. Similarly, if A is open, then the continuous image C of the compact set Ac is closed,
and therefore [A]K is open. And if A, B are both open, then A � B is open.

The following example shows why, in Corollary 5, with the hypothesis that A and B are
Lebesgue measurable, we could not simply state that λd(A � B) ≤ λd(A)λd(B).

Example 3. The BKR combination of Lebesgue measurable sets need not be Lebesgue mea-
surable, as shown by this example with d = 2. Take a set C ⊂ [0,1] which is not a Lebesgue
measurable subset of [0,1]. Then C2 ⊂ [0,1]2 is not a Lebesgue measurable subset of [0,1]2.
The diagonal in [0,1]2 is

D := {
(x, x) : x ∈ [0,1]} ⊂ [0,1]2,

and this is a Borel subset of [0,1]2, with λ2(D) = 0. Hence the set

E := {
(x, x) : x ∈ ([0,1] \ C

)} ⊂ D ⊂ [0,1]2

is Lebesgue measurable, with λ2(E) = 0. Now, taking complement relative to [0,1]2, let

A := [0,1]2 \ E,

so that A is Lebesgue measurable, with λ2(A) = 1. We have

[A]{1} = C × [0,1], [A]{2} = [0,1] × C,

and with B := A we have

A � B = C2.

4. Approximation, from [0,1] to a finite set

Theorem 4. For Borel subsets A,B in [0,1]d ,

λd(A � B) ≤ λd(A)λd(B).
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4.1. Overview of the argument

We want to prove that, for Borel A,B ⊂ [0,1]d , we have λd(A � B) ≤ λd(A)λd(B), and we
proceed by contradiction. Thus, we assume that we have A,B with

4ε := λd(A � B) − λd(A)λd(B) > 0, (6)

and we work to provide an example, with finite S, in which the classic BKR inequality on Sd is
violated.

In this example, for some large but finite n, we have |S| = 2n, |Sd | = 2nd , corresponding to
the number of atoms in the “observe the first n bits” sigma-algebra F (d)

n on [0,1]d . The product
measure P on Sd will be the uniform distribution, with mass 2−nd at each point of Sd . We will
produce subsets A′′,B ′′ ⊂ Sd for which

P
(
A′′ � B ′′) ≥ λd(A � B) − ε (7)

and

P
(
A′′) ≤ λd(A) + ε, P

(
B ′′) ≤ λd(B) + ε, (8)

so that A′′,B ′′ violate the classic BKR inequality.

4.2. Set approximation, in 1 dimension

To lighten the notational burden, we start with dimension 1, and review a familiar martingale,
from for example [3], Examples 35.3, 35.10. The probability space is [0,1], with the Borel sigma-
algebra, and the probability measure is λ1. For n = 0,1,2, . . . , define Fn to be the sigma-algebra
generated by the 2n disjoint intervals, [0,1/2n), [1/2n,2/2n), . . . , [(n − 2)/2n, (n − 1)/2n),
[1 − 1/2n,1]. Note that the last of these intervals is exceptional, in that it is closed at both ends,
but all 2n intervals I have length λ1(I ) = 1/2n. The sigma-algebra Fn has 2n atoms, and is a
family of 22n

subsets of [0,1]. These sigma-algebras are nested, and σ(
⋃

n≥0 Fn) is the usual
Borel sigma-algebra on [0,1].

Hence for any Borel measurable h : [0,1] → [0,1], Mn := E(h|Fn) is a martingale. Explicitly,
on an atom I of Fn, Mn = 2n

E(h; I ) = 2n
∫
I
h(x) dx. The martingale convergence theorem

implies that Mn converges to h, almost surely and in L1, with the L1 convergence meaning that
E|Mn − h| → 0 as n → ∞.

In particular, given a Borel measurable C ⊂ [0,1], we take h to be the indicator function
h = 1C . Explicitly, on an atom I of Fn, Mn = 2nλ1(C ∩ I ). From this martingale, we round
values in [0,1/2] down to 0, and values in (1/2,1] up to 1, to get a deterministic set Cn ∈ Fn.
Explicitly,

Cn := {
ω ∈ [0,1] : Mn(ω) > 1/2

}
.

For a point x to be in the symmetric difference set, C�Cn, the rounding error is at least one half.
This implies that λ1(C�Cn) ≤ 2E|Mn − 1C |.
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4.3. Set approximation, in k dimensions

The above extends to dimension k, for k = 1,2, . . . , with no difficulties, only extra notation.
The probability space is [0,1]k , with λk serving as the probability measure. We define, for n =
0,1,2, . . . , the analogous sigma-algebra F (k)

n with 2nk atoms, and for any Borel measurable set
C ⊂ [0,1]k , the martingale argument gives us determinstic sets Cn, with

λk(C�Cn) → 0, (9)

and Cn is F (k)
n measurable.

4.4. Approximation in [0,1]d to control BKR ingredients

Recall that for A ⊂ [0,1]d and K ⊂ [d], [A]K ⊂ [0,1]d is the (maximal) cylinder subset of A,
in the directions not restricted by K .

We write

[[A]]K := ProjK
([A]K

) = [0,1]K \ ProjK
([

Ac
]
K

) ⊂ [0,1]K (10)

for the base of this cylinder. From the proof of Lemma 1, [[A]]K is Lebesgue measurable, and
there is a Borel subset C ⊂ [0,1]K with

C ⊂ [[A]]K, λk(C) = λk

([[A]]K
)
. (11)

Observe that, with 1 ≤ k = |K| < d ,

[A]K = Extd
([[A]]K

) ⊃ Extd(C)

and

λd

([A]K
) = λk

([[A]]K
) = λk(C) = λd

(
Extd(C)

)
.

Taking A or B , and K ⊂ [d], we have 2d+1 instances of a set C ⊂ [[A]]K or C ⊂ [[B]]K ,
with 0 ≤ k := |K| ≤ d , to serve as the target for an approximation as given by the martingale
argument, summarized by (9). Since

A � B =
⋃
K

[A]K ∩ [B]Kc, (12)

has 2d+1 ingredients, we take

δ := ε/2d+1,

and pick a single value of n so that for each of the instances of C,

λk(C�Cn) < δ. (13)
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When C ⊂ [[A]]K , the dyadic approximation Cn is a subset of [0,1]K , and we write

An,K := Extd(Cn) ⊂ [0,1]d

for the cylinder set whose base is Cn. Thus, with similar notation for B and approximations Bn,K

to [B]K , we have, from (11) and (13), that

λd

([A]K \ An,K

)
< δ, λd

([B]K \ Bn,K

)
< δ, (14)

and since [A]K ⊂ A, [B]K ⊂ B ,

λd(An,K \ A) < δ, λd(Bn,K \ B) < δ. (15)

Note also that An,K,Bn,K ∈F (d)
n . We take

A′ :=
⋃
K

An,K, B ′ :=
⋃
K

Bn,K, (16)

so that

A′,B ′ ∈ F (d)
n ,

and for every K , [A′]K ⊃ An,K , similarly for B , so that by (14),

λd

([A]K \ [
A′]

K

)
< δ, λd

([B]K \ [
B ′]

K

)
< δ. (17)

Using (17),

λd

([
A′]

K
∩ [

B ′]
Kc

)
> λd

([A]K ∩ [B]Kc

) − 2δ,

and hence for the unions, with 2d values for K , using 2d+1δ = ε,

λd

(
A′ � B ′) > λd(A � B) − ε.

To get an inequality in the opposite direction, combining (15) with (16),

λd

(
A′ \ A

)
< 2dδ < ε hence λd

(
A′) < λd(A) + ε,

and similarly λd(B ′) < λd(B) + ε.
Finally, since A′,B ′ ∈F (d)

n , we take equivalence classes modulo the atoms of F (d)
n , to produce

our sets A′′,B ′′ ∈ Sd for S with |S| = 2n, to get the example satisfying (7) and (8). This completes
a proof of Theorem 4.

Corollary 5. For Lebesgue measurable A,B ⊂ [0,1]d , there exists a Borel set C, with

(A � B) ⊂ C and λd(C) ≤ λd(A)λd(B).

Proof. Take Borel sets A1,B1 ⊂ [0,1]d with A ⊂ A1, B ⊂ B1, and λd(A1) = λd(A), λd(B1) =
λd(B). Obviously A � B ⊂ A1 � B1, and Theorem 4 implies the existence of a Borel set C with
A1 � B1 ⊂ C and λd(C) ≤ λd(A1)λd(B1). �
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5. Extension to 3 or more events

Theorem 6. For Borel subsets A1, . . . ,Ar in [0,1]d ,

λd

(
r�
1

Ai

)
≤

r∏
1

λd(Ai). (18)

For Lebesgue measurable A1, . . . ,Ar in [0,1]d , there exists a Borel set D with
�r

1 Ai ⊂ D and
λd(D) ≤ ∏

λd(Ai).

Proof. Define sets B1,B2, . . . ,Br ⊂ [0,1]d , Lebesgue measurable sets C1,C2, . . . ,Cr ⊂
[0,1]d , and Borel sets D1,D2, . . . ,Dr recursively, with

A1 = B1 = C1 = D1

and for i = 2 to r , using Lemma 1,

Bi = Bi−1 � Ai,

Ci = Di−1 � Ai,

Di is a Borel set with Ci ⊂ Di, λd(Ci) = λd(Di).

The BKR monotonicity relation that B ⊂ D implies B � A ⊂ D � A, and induction, shows
that for all i, Bi ⊂ Ci ⊂ Di . We check that Ci is Lebesgue measurable by noting the it is the
BKR combination of two Borel sets, namely Di−1 and Ai .

Theorem 4 implies that λd(Ci) ≤ λd(Di−1)λd(Ai), and together with the defining property of
Di this yields

λd(Ci) ≤ λd(Ci−1)λd(Ai)

and it follows by induction that λd(Cr) ≤ ∏r
1 λd(Ai).

It is shown in [2] that
�r

1 Ai ⊂ Br .
Combined with Br ⊂ Cr , we have

�r
1 Ai ⊂ Cr . Lemma 1 shows that

�r
1 Ai is Lebesgue mea-

surable, so we have proved (18).
The case with Lebesgue measurable inputs A1, . . . ,Ar now follows from the Borel case, by

the same reasing used to derive Corollary 5 from Theorem 4. �

6. Extension of the BKR inequalities to R
d

Say we are given a product probability measure P on R
d . This is equivalent to saying that P is the

law, with the Borel sigma-algebra on R
d , of X = (X1, . . . ,Xd), with X1,X2, . . . ,Xd mutually

independent, and with some given marginal distributions – given by, say, the cumulative distri-
bution functions Fi , where Fi(t) := P(Xi ≤ t) for −∞ < t < ∞. Let Gi be what is commonly
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called “F−1
i , the inverse cumulative distribution function for Xi ,” or “the quantile function for

the distribution of Xi .” Specifically, we take the domain of Gi to be (0,1), and for 0 < u < 1,

Gi(u) := sup
{
x : P(Xi ≤ x) ≤ u

}
,

this being a choice that makes Gi(·) right-continuous. It is standard to use this in a coupling:
with U uniformly distributed in (0,1), Gi(U) is equal in distribution to Xi .

The net effect of this is to reassure the reader we have no claim to originality, if we define

g : (0,1)d →R
d, u = (u1, . . . , ud) 	→ x := (

G1(u1), . . . ,Gd(ud)
)
. (19)

Also, it is obvious that under the uniform distribution on (0,1)d , g(ω) is equal in distribution to
X, that is, for every Borel set A in R

d , λd(g−1(A)) = P(A).

Theorem 7. For Borel subsets A,B of Rd , under any complete product probability measure P

on R
d ,

P(A � B) ≤ P(A)P(B). (20)

For Borel subsets A1, . . . ,Ar of Rd , under any complete product probability measure P on R
d ,

P

(
r�
1

Ai

)
≤

r∏
1

P(Ai). (21)

Proof. The map g defined by (19) is Borel measurable. Since the ith coordinate of g(u) depends
only on ui , the BKR operators respect g, that is,

for a := g−1(A), b := g−1(B) ⊂ [0,1]d, a � b = g−1(A � B). (22)

Of course, the BKR operator � appearing in a � b in (22) is defined for [0,1]d by (2) and (5),
while the BKR operator � appearing in A � B in (22) is defined for Rd by the appropriate analog
of (5); these are different operators.

Now apply Theorem 4 to get (20). For the r-fold BKR operator, the same g, combined with
Theorem 6, implies (21). �

Corollary 8. Suppose S ⊂ R is Borel measurable. For Borel subsets A, B and A1, . . . ,Ar of
Sd , under any complete product probability measure P on Sd , (20) and (21) hold.

Proof. Extend A ⊂ Sd to Â ⊂R
d given by Â := A∪(Rd \Sd), likewise extend B or A1, . . . ,Ad ,

and apply Theorem 7. �

7. Infinite products

How should the BKR operator be extended from Sd to S∞ ≡ SN? For A ⊂ SN, and K ⊂ N, the
definition of [A]K extends in the obvious way from (1): [A]K is the maximal cylinder subset of
A, free in all coordinates indexed by N \ K .



Van den Berg–Kesten–Reimer operator and inequality 443

Definition (3) for the BKR operator � on spaces of the form Sd , if modified to apply to SN

merely by replacing [d] by N, yields an operator we shall call �=∞:

A �=∞ B :=
⋃

disjoint J,K⊂N

[A]J ∩ [B]K. (23)

One problem with this operator is that it involves an uncountable union, so in the measura-
bility argument from Lemma 1, the cylinders such as [A]J are Lebesgue measurable, but this
fails to imply that for Borel set A,B , the result A �=∞ B is Lebesgue measurable. A more
severe problem with definition (23) is that it does not seem to yield to any approximation
scheme down to a known version of the BKR inequality, as in the heart of this paper, Sec-
tion 4.1.

Hence, for spaces of the form SN, we adopt the following definitions:

for A,B ⊂ SN, A � B :=
⋃

finite disjoint J,K⊂N

[A]J ∩ [B]K (24)

and for A1, . . . ,Ar ⊂ SN,

�
1≤i≤r

Ai ≡ A1 � · · · � Ar :=
⋃

finite disjoint J1,...,Jr⊂N

r⋂
1

[Ai]Ji
. (25)

It may have been nice to use the customary BKR symbol � in the above definitions, rather than
contrive new notation, perhaps �finite or �∞. It is valid, and would allow a single universal
definition, to replace all of (3), (4), (24), and (25): for countable index set I (such as I = [d] or
I = N), for r ≥ 2 and for A1, . . . ,Ar ⊂ SI , we define the event that A1, . . . ,Ar occur for finite
disjoint sets of reasons,

r�
1

Ai := A1 � · · · � Ar :=
⋃

finite disjoint J1,...,Jr⊂I

r⋂
1

[Ai]Ji
. (26)

However, in light of the natural alternate extension given by (23), users of the symbol � in the
context of infinite products spaces should attach warning prose, as we do in Theorems 10 and 11
below.

Example 9. Consider (�,F,P) with � = [0,1]N, F = the Borel sets, and P = λ, Lebesgue
measure; as usual let Xi := the ith coordinate, Sn := X1 + · · · + Xn. Let A = {lim supSn/n ≥
0.2}. Then A � B = ∅ for every event B , but P(A �=∞ A) = 1, which can be seen by taking
J = the odd positive integers, K = the even positive integers. Consider the r-fold �=∞ operator
defined in the natural way. Take A1 = · · · = Ar = A, Br := A1 �=∞ A2 �=∞ · · · �=∞ Ar , and
Cr := A1 � A2 � · · · � Ar ≡ �r

1 Ai . We have Br =∅ if and only if r > 5, and P(B1) = P(B2) =
1,P(B3) = P(B4) = P(B5) = 0. We have Cr = ∅ for r = 1,2,3, . . . with the case r = 1 serving
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to highlight a difference between the two forms of notation,
�r

1 Ai and A1 � · · · � Ar – does the
latter reduce to A1 when r = 1? Of course not.

The extension of Theorems 4 and 6 from [0,1]d to [0,1]N is relatively easy. We write λ for
Lebesgue measure on the Lebesgue measurable subsets of [0,1]N.

Theorem 10. Consider the BKR combination of events, that they occur for finite disjoint sets
of reasons, as specified by (24) and (25). For Borel subsets A,B in [0,1]N, A � B is Lebesgue
measurable, and

λ(A � B) ≤ λ(A)λ(B).

For Borel subsets A1, . . . ,Ar in [0,1]N, A1 � · · · � Ar is Lebesgue measurable, and

λ

(
r�
1

Ai

)
≤

r∏
1

λ(Ai). (27)

Proof. The Lebesgue measurability of the BKR products is clear from the sentence follow-
ing (23). Define the level-d BKR operator on [0,1]N by

A �d B :=
⋃

disjoint J,K⊂[d]
[A]J ∩ [B]K. (28)

It is obvious that A � B is the countable, nested union of these, hence

A � B =
⋃
d≥0

A �d B and lim
d→∞λ(A �d B) = λ(A � B).

Therefore, it suffices to show that for d < ∞, λ(A �d B) ≤ λ(A)λ(B).
Fix d and let C = A �d B . Extend the notation [[A]]K for the base of the cylinder [A]K ,

from (10) to the situation with A ⊂ [0,1]N, and apply it with K = [d]. Take A′ := [[A]][d] ⊂
[0,1]d , so [A][d] ⊂ A, and λd(A′) = λ([A][d]) ≤ λ(A). Similarly take B ′ := [[B]][d] and C′ :=
[[C]][d]. Note that C is a cylinder, free in the coordinates of index greater than d , so C = [C][d]
and λ(C) = λd(C′). It is “obvious” (and we supply details in the next paragraph) that with the
usual BKR operator on [0,1]d , A′ � B ′ = C′, so Corollary 5 applies, showing that λd(C′) ≤
λd(A′)λd(B ′), and chaining together inequalities completes the proof that λ(A � B) ≤ λ(A)λ(B).

Details for A′ � B ′ = C′: We start with C := A �d B as defined by (28), and apply Proj[d]. The
relation ([A]J )K = [A]J∩K in [0,1]N, used with K = [d], shows that for J ⊂ [d],

([A][d]
)
J

= [A]J and hence, in [0,1]d [
A′]

J
= Proj[d]

([A]J
)
.

The function Proj = Proj[d], which is the set-to-set function induced by proj[d] : [0,1]N →
[0,1]d , distributes over unions. For J,K ⊂ [d], [A′]J = Proj([A]J ) and [B ′]K = Proj([B]K),
also, both [A]J and [B]K are cylinders free in all coordinates of index greater than d , so
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that Proj([A]J ) ∩ Proj([B]K) = Proj([A]J ∩ [B]K). Hence, with all unions taken over disjoint
J,K ⊂ [d],

A′ � B ′ =
⋃[

A′]
J

∩ [
B ′]

K

=
⋃

Proj
([A]J

) ∩ Proj
([B]K

)
= Proj

(⋃
[A]J ∩ [B]K

)

= Proj(A �d B) = Proj(C) = Proj
([C][d]

) = C′.

Finally, the result for the simultaneous r-fold BKR operator follows by a similar argument, start-
ing with an extension of (28) to define a level-d r-fold BKR operator. �

Theorem 11. Consider the BKR combination of events, that they occur for finite disjoint sets of
reasons, as specified by (24) and (25). For Borel subsets A,B of RN, under any complete product
probability measure P on R

N,

P(A � B) ≤ P(A)P(B). (29)

For Borel subsets A1, . . . ,Ar of RN, under any complete product probability measure P on R
N,

P

(
r�
1

Ai

)
≤

r∏
1

P(Ai). (30)

Proof. The result follows immediately from Theorem 10, by adapting (19) and the argument
used to prove Theorem 7, from the context of Rd , to the context of RN. �

8. Relaxing the sample space

In this paper, we consider a sample space SI for I countable and S = [0,1] – with Lebesgue
measure on SI , or S = R, with arbitrary complete product probability measure on SI . However,
all results can be carried over to the superficially more general case � := ∏

i∈I Si for Si a Pol-
ish subspace (equivalently, Gδ subset) of R, each Si is endowed with a probability measure Pi

defined on the Borel subsets, and � has the product measure P= ∏
Pi .

Extend Pi , P to measures P̂i , P̂ on R, RI respectively, by taking them to be 0 on the comple-
ment. The definition of the BKR operation from (4) or (25) rephrases in a natural way to �. One
finds, for Borel sets Aj ⊂ �: (a) �jAj is P-measurable by the argument of Lemma 1, and (b)
writing �̂ for the BKR operation computed with respect to R

I and Âj := Aj ∪ (RI \ �), that

�jAj = (�̂j Âj ) ∩ �.

Therefore, P(�jAj ) = P̂(�̂j Âj ) and
∏

j P̂(Âj ) = ∏
j P(Aj ), and it is clear that Theorems 7 and

11 for RI imply the BKR inequality for
∏

i∈I Si .
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9. From � to �

It is tempting to attempt to extend our results to get something symmetric, where we assume that
the inputs A,B are in a larger family of sets than the Borel sets, and the output A � B , satisfying
λd(A � B) ≤ λd(A)λd(B), is in the same family. Since defining the BKR product requires only
complement, countable union, and projection, the “larger family” should be the class of projec-
tive sets, the smallest extension of the class of Borel sets closed under projection, complement
and countable union, see [12,13]. Then the version of Lemma 1, If A,B are projective, then the
cylinders [A]K and the BKR product A � B are also projective, is immediately true.

Probabilists may be familiar with the construction of the family of Borel sets, starting from
the family of open sets, take complements and countable unions, to get a larger family, then
iterate – see [3], pages 30–32. The construction of projective sets is similar; start with the Borel
sets, take projections, countable unions, and complements, to get a larger family, then iterate. But
there is a difference: the construction of Borel sets requires iteration out to the first uncountable
ordinal, usually denoted �, while the construction of projective sets is finished at the first infinite
ordinal ω.

In view of Corollary 5, to get BKR inequalities, we need only show that Lebesgue measure
extends to projective sets. Here the situation is somewhat complex. It is consistent with ZFC
to assume that such extension is false, in fact that there are nonmeasurable projective sets only
one level in the projective hierarchy above analytic sets [8]. On the other hand, the existence of
an inaccessible cardinal would imply that all projective sets are measurable [17]. Though such
existence cannot be proved to be consistent with ZFC, it is widely assumed that this (consistency)
is true – and often such existence is accepted as a useful extra axiom.

10. Open problems

Problem 12. For the BKR operator �=∞ defined by (23), prove or give a counterexample: For
Borel subsets A,B in [0,1]N, there exists a Borel set C, with A � B ⊂ C and λ(C) ≤ λ(A)λ(B).

It is not hard to determine, for the special case d = 2, when the BKR inequality holds with
equality: for Borel sets A,B ⊂ [0,1]2, λ2(A � B) = λ2(A)λ2(B) if and only if if and only if
(0) λ1(A)λ2(B) = 0, or (1) A or B is all of [0,1]2, or (2) A and B are each unions of a “cylinder”
and a measure zero set, with the two cylinders being “orthogonal,” that is, in different directions.

Problem 13. Give a simple necessary and sufficient condition for A,B ⊂ [0,1]d , to satisfy
λd(A � B) = λd(A)λd(B).

As background for Problems 14 and 15: in [2], Proposition 3, for arbitrary S and A1, . . . ,Ar ⊂
Sd , we showed that

�r
1 Ai ⊂ ((· · · ((A1 � A2) � A3) · · · � Ar−1) � Ar). For brevity, we omit the

symbol for binary BKR operator, and write simply
�r

1 Ai ⊂ ((· · · ((A1A2)A3) · · ·Ar−1)Ar). For
a binary operator, the number of ways to associate a product with r factors is given by the Catalan
number Cr−1, and the same argument shows that the simultaneous r-fold BKR product,

�r
1 Ai ,

is a subset of each of the binary-associated products.
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Problem 14. Prove or disprove: for r = 3,4, . . . , there exist S and d , and A1, . . . ,Ar ⊂ Sd , such
that the Cr−1 binary-associated products for A1A2 · · ·Ar are all distinct.

Problem 15. For r = 3,4, . . . , for any S and d , and for any A1, . . . ,Ar ⊂ Sd , we already know
that

�r
1 Ai is a subset of the intersection of the Cr−1 binary-associated products for A1A2 · · ·Ar .

Prove or disprove: for r = 3,4, . . . , there exists an example where the containment of
�r

1 Ai is
strict.

Now consider cases where all r factors are the same set A. Commutativity of the binary BKR
product implies that (A � A) � A = A � (A � A). The next example resolves the situation for
r = 4.

Example 16 (((AA)A)A �= (AA)(AA) can occur). In {0,1}6, let A be the union of the following
2-cylinders, each of which is a set of size 16:

11****, **11**, 1**0**, *11***,
**00**, ****00, **1**0, ***00*.

Note that the first two 2-cylinders combine to show that 1111** ⊂ AA, the next two show that
1110** ⊂ AA. Hence the first four 2-cylinders show that 111*** ⊂ AA. Similarly, the last four
2-cylinders show that ***000 ⊂ AA. Combining, we see that 111000 ∈ (AA)(AA). Computer-
exhaustive checking shows that ((AA)A)A =∅, hence ((AA)A)A �= (AA)(AA).

In honor of Wedderburn [20], [16], Sequence A001190, write Wn for the number of ways to
binary-associate a product of the form An, up to equivalence modulo the commutative property
of the binary relation; for example, W2,W3, . . . ,W7 = 1,1,1,2,3,6,11.

Problem 17. (a) For r = 5,6, . . . , does there exist an example with a single set A, such that all
Wr equivalence classes of association yield different results?

(b) As above, with the additional restriction that A ⊂ {0,1}d for some d depending on r .
(c) If, for a given r , there is an example with A ⊂ {0,1}d such that all Wr equivalence classes

of association yield different results, write Dr for the smallest such d , following the notation
Ramsey numbers. Example 16 shows that D4 ≤ 6. Can you prove that D4 > 5? Can you deter-
mine D5? Or give nontrivial upper or lower bounds for Dr for general r?
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