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We characterize the symmetric real random variables which satisfy the one dimensional convex infi-
mum convolution inequality of Maurey. We deduce Talagrand’s two-level concentration for random vector
(X1, . . . ,Xn), where Xi ’s are independent real random variables whose tails satisfy certain exponential
type decay condition.
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1. Introduction

In the past few decades, a lot of attention has been devoted to study the concentration of mea-
sure phenomenon, especially the concentration properties of R

n-valued random vectors with
independent coordinates. Through this note, we denote by |x|p the lp norm on R

n, namely
|x|p = (

∑n
i=1 |xi |p)1/p , and let us take Bn

p = {x ∈ R
n : |x|p ≤ 1}. We say that an R

n-valued
random vector X satisfies concentration with a profile αX(t) if for any set A ⊂ R

n with
P(X ∈ A) ≥ 1/2 we have

P
(
X ∈ A + tBn

2

) ≥ 1 − αX(t) for all t ≥ 0.

An equivalent statement is that for any 1-Lipschitz function f on R
n the random vector X satis-

fies the inequality

P
(
f (X) > t + Medf (X)

) ≤ αX(t) for all t ≥ 0,

where Medf (X) is a median of f (X). The above framework includes classical theory of large
deviations for sums of independent random variables. The concentration of measure has appli-
cations in functional analysis [15], theory of empirical processes (see [14], Chapter 7), random
matrix theory and combinatorics (see [14], Chapter 8), and statistical mechanics (see [21]). It
can be also investigated in the context of infinite dimensional diffusion generators (see [5]). For
the study of concentration and isoperimetry under curvature bounds on Riemannian manifolds,
see [18].

A usual way to reach concentration is via certain functional inequalities. For example, if an
R

n-valued random vector X satisfies Poincaré inequality with constant C, that is, for any f ∈
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C1(Rn,R) we have Var(f (X)) ≤ CE|∇f (X)|22, then it has exponential concentration with pro-
file αX(t) = 2 exp(−t/2

√
C). The characterization of random vectors with independent entries

satisfying the above inequality is well known, see [19], [17] and [14], Corollary 5.7. Similar char-
acterization is valid for the so-called log-Sobolev inequality, which implies a stronger concentra-
tion -the Gaussian concentration phenomenon, namely with a profile αX(t) = exp(−t2/2C), see
[9] and [6].

The goal of this article is to investigate concentration properties of a wider class of random
vectors, that is, vectors that may not even satisfy Poincaré inequality. For example, in the case
of random vector whose law is purely atomic, one can easily construct a non-constant function
f with E|∇f (X)|22 = 0. However, one can still hope to get concentration if one restricts set A

to the class of convex sets. It turns out that to reach exponential concentration for convex sets, it
suffices to prove that X satisfies the convex Poincaré inequality, which is stated as below.

Definition 1. We say that a real random variable X satisfies the convex Poincaré inequality with
a constant Cp if for every convex function f : R→R with f ′ bounded we have

Var
(
f (X)

) ≤ CpEf ′(X)2. (1)

Here we adopt the standard convention that for a locally Lipschitz function f : R → R the
gradient f ′ is defined by

f ′(x) = lim sup
h→0

f (x + h) − f (x)

h
. (2)

This definition applies in particular to convex f . If f is differentiable, (2) agrees with the usual
derivative.

Now we consider a class of real random variables with exponentially decaying tails, which
allows random variables with atomic distributions.

Definition 2. Let h > 0 and λ ∈ [0,1). Let M(h,λ) be the class of symmetric real random
variables such that for any X ∈ M(h,λ) it holds that P(X ≥ x + h) ≤ λP(X ≥ x) for x ≥ 0.
Moreover, let M+(h,λ) be the class of R+-valued real random variables, satisfying the same
condition.

The convex Poincaré inequality has been investigated by Bobkov and Götze, see [8], Theo-
rem 4.2. In particular, the authors proved (1) in the class M(h,λ) with a constant Cp depending
only on h and λ. This leads to the exponential concentration for 1-Lipschitz convex functions f

(as well as the exponential concentration for convex sets) via the standard Herbst argument (see,
e.g., [14], Theorem 3.3). In the present article, we show that the class M(h,λ) admits even better
concentration properties, that is, the so-called two level Talagrand concentration. We follow the
approach developed by Maurey in [16]. Let us introduce the following definition.

Definition 3. Define

ϕ0(x) =
{ 1

2x2, |x| ≤ 1,

|x| − 1
2 , |x| > 1.
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We say that a real random variable X satisfies convex exponential property (τ ) with constant Cτ

if for any convex function f : R→R with inff > −∞ we have

(
Eef �ϕ(X)

)(
Ee−f (X)

) ≤ 1, where ϕ(x) = ϕ0(x/Cτ ) (3)

and (f �ϕ)(x) = infy{f (y) + ϕ(x − y)} is the so-called infimum convolution.

In [16], Maurey showed that every real random variable having values in the set of diameter 1
satisfies the inequality Eef �ϕ(X)

Ee−f (X) ≤ 1 for convex f , with ϕ(x) = 1
4 |x|2 (see [16], Theo-

rem 3). Our result, as stated below, extends both the above fact and the exponential concentration
in the class M(h,λ) due to Bobkov and Götze.

Theorem 1.
The following conditions are equivalent

(a) X ∈ M(h,λ).
(b) There is Cp > 0 such that X satisfies the convex Poincaré inequality with constant Cp .
(c) There exists Cτ > 0 such that X satisfies the convex exponential property (τ ) with constant

Cτ .

Moreover, (a) implies (c) with the constant Cτ = 17h/(1 − λ)2, (c) implies (b) with the constant
Cp = 1

2C2
τ and (b) implies (a) with h = √

8Cp and λ = 1/2.

This generalizes Maurey’s theorem due to the fact that any symmetric [−1,1]-valued real
random variable belongs to M(1,0).

It is well known that the convex property (τ ) tensorizes, namely, if the independent real ran-
dom variables X1, . . . ,Xn satisfy convex property (τ ) with cost functions ϕ1, . . . , ϕn respec-
tively, then the vector X = (X1, . . . ,Xn) has convex property (τ ) with ϕ(x) = ∑n

i=1 ϕi(xi), see
[16], Lemma 5. Therefore Theorem 1 implies the following corollary.

Corollary 1. Let X1, . . . ,Xn ∈ M(h,λ) be independent and let us take X = (X1, . . . ,Xn). De-
fine the cost function ϕ(x) = ∑n

i=1 ϕ0(xi/Cτ ), where Cτ = 17h/(1 − λ)2. Then for any convex
function f we have (

Eef �ϕ(X)
)(
Ee−f (X)

) ≤ 1. (4)

As a consequence, we deduce the two-level concentration for convex sets and convex functions
in R

n.

Corollary 2. Let X1, . . . ,Xn ∈ M(h,λ) be independent. Let Cτ = 17h/(1 − λ)2. Take X =
(X1, . . . ,Xn). Then for any convex set A with P(X ∈ A) > 0 we have

P
(
X ∈ A + √

2tCτB
n
2 + 2tCτB

n
1

) ≥ 1 − P(X ∈ A)−1e−t . (5)
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Corollary 3. Let X1, . . . ,Xn ∈ M(h,λ) be independent. Let Cτ = 17h/(1 − λ)2. Take X =
(X1, . . . ,Xn). Then for any convex function f :Rn → R with∣∣f (x) − f (y)

∣∣
2 ≤ a|x − y|2,

∣∣f (x) − f (y)
∣∣
1 ≤ b|x − y|1, x, y ∈ R

n, (6)

we have

P
(
f (X) > Med

(
f (X)

) + Cτ t
) ≤ 2 exp

(
−1

8
min

{
t

b
,

t2

a2

})
, t ≥ 0, (7)

and

P
(
f (X) < Med

(
f (X)

) − Cτ t
) ≤ 2 exp

(
−1

8
min

{
t

b
,

t2

a2

})
, t ≥ 0. (8)

The rest of this article is organized as follows. The next section briefly describes other relevant
results existing in the literature. In Section 3, we prove Theorem 1. In Section 4, we deduce
Corollaries 2 and 3.

2. Discussion

Poincaré and log-Sobolev inequalities have formulations in the context of Markov processes via
the notion of Dirichlet forms, see [3,4,14]. For applications to mixing time bounds, see [10].
Also of interest is Wang’s generalized Beckner-type inequality, that interpolates the Poincaré
and log-Sobolev inequalities, see [22]. This extends a result of Latała and Oleszkiewicz [12].

The property (τ ) for general (not necessarily convex) function was introduced by Maurey in
[16] and studied in more details by Latała and Wojtaszczyk (see [13]). An R

n-valued random
vector X is said to satisfy property (τ ) with a nonnegative cost function ϕ if the inequality(

Eef �ϕ(X)
)(
Ee−f (X)

) ≤ 1 (9)

holds for every bounded measurable function f on R
n. Property (τ ) implies concentration with

respect to level-sets of ϕ; namely, for every measurable set A we have (see [16], Lemma 4)

P
(
X /∈ A + {ϕ < t}) ≤ P(X ∈ A)−1e−t .

In [16], Maurey showed that the vector Y = (Y1, . . . , Yn), where Y1, . . . , Yn are indepen-
dent symmetric exponential random variables, satisfies the infimum convolution inequality
with the cost function ϕ(x) = ∑n

i=1 ϕ0(xi), where ϕ0(t) = min{ 1
36 t2, 2

9 (|t | − 2)}. This leads
to a two-level concentration inequality (similar to (5), see [16], Corollary 1), which, as men-
tioned earlier, is stronger than the usual exponential concentration implied by Poincaré inequal-
ity. However, Bobkov, Gentil and Ledoux showed that the property (τ ) with a cost function
ϕa(x) = min{|x|22/a2, |x|2/a} is in fact equivalent to Poincaré inequality for smooth f : Rn →R

(see [7]).
It is worth mentioning that a much stronger condition than being in M(h,λ), namely P(X ≥

x + C/x) ≤ λP(X ≥ x), x ≥ m, where m is a fixed positive number, has been considered. It
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implies log-Sobolev inequalities for log-convex functions and the Gaussian concentration for
convex sets. We refer to the nice study [1] for the details.

Very recently Adamczak and Strzelecki established related results in the context of modified
log-Sobolev inequalities, see [2]. For simplicity, we state their result in the case of symmetric
real random variables. For λ ∈ [0,1), β ∈ [0,1] and h,m > 0 the authors defined the class of
random variables Mβ

AS(h,λ,m) satisfying the condition P(X ≥ x + h/xβ) ≤ λP(X ≥ x) for
x ≥ m. Note that M0

AS(h,λ,0) = M(h,λ). They proved that any vector X = (X1, . . . ,Xn),

where X1, . . . ,Xn ∈Mβ

AS(h,λ,m) are independent, satisfy the inequality

Ent
(
ef (X)

) ≤ CASE
(
ef (X)

∣∣∇f (X)
∣∣2
2 ∨ |∇f |

β+1
β

β+1
β

)
(10)

for any smooth convex function f : Rn → R. Here Ent(f ) = E(f lnf ) − (Ef ) ln(Ef ). As a
consequence, for any convex set A in R

n with P(X ∈ A) ≥ 1/2 we have

P
(
X ∈ A + t

1
2 Bn

2 + t
1

1+β CτB
n
1+β

) ≥ 1 − e−C′
ASt , t ≥ 0.

Here the constants CAS,C′
AS depend only on the parameters β,m,h and λ. They also established

inequality similar to (7), namely for a convex function f with∣∣f (x) − f (y)
∣∣
2 ≤ a|x − y|2,

∣∣f (x) − f (y)
∣∣
1+β

≤ b|x − y|1+β, x, y ∈ R
n,

one gets

P
(
f (X) > Med

(
f (X)

) + 2t
) ≤ 2 exp

(
− 3

16
min

{
t1+β

b1+βC
β

AS

,
t2

a2CAS

})
, t ≥ 0.

However, the authors in [2] were not able to get (8). In fact one can show that for β = 0 our
Theorem 1 is stronger than (10). In particular, the inequality (10) is equivalent to Eef �ϕ(X) ≤
eEf (X), see [2], which easily follows from (4).

While writing this note, we were aware of a work in progress by Gozlan, Roberto, Samson, Shu
and Tetali (private communication), which shows an equivalence between the convex property
(τ ) on the real line and certain mass transportation inequalities (see also [11]).

3. Proof of Theorem 1

We need the following lemma, which is essentially included in Theorem 4.2 of [8]. For reader’s
convenience, we provide a straightforward proof of this fact.

Lemma 1. Let X ∈ M+(h,λ) and let g :R→ [0,∞) be non-decreasing with g(0) = 0. Then

Eg(X)2 ≤ 2(1 + λ)

(1 − λ)2
·E(

g(X) − g(X − h)
)2

.
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Proof. We first prove that λEg(X) ≥ Eg(X − h) for any non-decreasing g : R → [0,∞) such
that g(0) = 0. Both sides of this inequality are linear in g. Therefore, it is enough to consider only
functions of the form g(x) = 1[a,∞)(x) for a ≥ 0, since g can be expressed as a mixture of these
functions. For g(x) = 1[a,∞)(x) the above inequality reduces to λP(X ≥ a) ≥ P(X ≥ a + h),
which is clearly true due to our assumption on X.

The above inequality is equivalent to

(1 − λ)Eg(X) ≤ E
(
g(X) − g(X − h)

)
. (11)

Now, let us use (11) with g2 instead of g. Then,

Eg(X)2 ≤ 1

1 − λ
E

(
g(X)2 − g(X − h)2)

= 1

1 − λ
E

(
g(X) − g(X − h)

)(
g(X) + g(X − h)

)
≤ 1

1 − λ

(
E

(
g(X) − g(X − h)

)2)1/2(
E

(
g(X) + g(X − h)

)2)1/2
.

Moreover, again using (11) for g2, we get

E
(
g(X) + g(X − h)

)2 ≤ 2E
(
g(X)2 + g(X − h)2) ≤ 2(1 + λ)Eg(X)2.

We arrive at

(
Eg(X)2)1/2 ≤

√
2(1 + λ)

1 − λ

(
E

(
g(X) − g(X − h)

)2)1/2
.

Our assertion follows. �

In the rest of this note, we take f : R → R to be convex. Let x0 be a point where f attains
its minimal value. Note that this point may not be unique. However, one can check that what
follows does not depend on the choice of x0. Moreover, if f is increasing (decreasing) we adopt
the notation x0 = −∞ (x0 = ∞). Let us define a discrete version of gradient of f ,

(Df )(x) =
⎧⎨
⎩

f (x) − f (x − h), x > x0 + h,

f (x) − f (x0), x0 − h ≤ x ≤ x0 + h,

f (x) − f (x + h), x < x0 − h.

Lemma 2. Let f :R→ R be a convex function with f (0) = 0 and let X ∈M(h,λ). Then

E
(
ef (X)/2 − e−f (X)/2)2 ≤ 8

(1 − λ)2
E

(
ef (X)

(
Df (X)

)2)
.

Proof. Step 1. We first assume that f is non-negative and non-decreasing. It follows that f (x) =
0 for x ≤ 0. Correspondingly, the function g = ef/2 − e−f/2 is non-negative, non-decreasing and
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g(0) = 0. Note that |X| ∈ M+(h,λ). From Lemma 1, we get

E
(
ef (X)/2 − e−f (X)/2)2 = 1

2
Eg

(|X|)2 ≤ 1 + λ

(1 − λ)2
E

(
g
(|X|) − g

(|X| − h
))2

= 2(1 + λ)

(1 − λ)2
E

(
g(X) − g(X − h)

)2
.

Observe that

g(x) − g(x − h) = e
f (x)

2 − e− f (x)
2 − e

f (x−h)
2 + e− f (x−h)

2

= (
e

f (x)
2 − e

f (x−h)
2

)(
1 + e− f (x)

2 − f (x−h)
2

)
≤ 2

(
e

f (x)
2 − e

f (x−h)
2

) ≤ e
f (x)

2
(
f (x) − f (x − h)

)
,

where the last inequality follows from the mean value theorem. Since λ ≤ 1, we arrive at

E
(
ef (X)/2 − e−f (X)/2)2 ≤ 4

(1 − λ)2
Eef (X)

(
Df (X)

)2
.

Step 2. Now let f be non-decreasing but not necessarily non-negative. From convexity of
f and the fact that f (0) = 0, we get |f (−x)| ≤ f (x) for x ≥ 0. This implies the inequality
|ef (−x) − e−f (−x)| ≤ |ef (x) − e−f (x)|, x ≥ 0. From the symmetry of X, one gets

E
(
ef (X)/2 − e−f (X)/2)2 ≤ E

(
ef (|X|)/2 − e−f (|X|)/2)2

.

Let f̃ = f 1[0,∞). From Step 1, one gets

E
(
ef (|X|)/2 − e−f (|X|)/2)2 = 2E

(
ef̃ (X)/2 − e−f̃ (X)/2)2 ≤ 8

(1 − λ)2
Eef̃ (X)

(
Df̃ (X)

)2

≤ 8

(1 − λ)2
Eef (X)

(
Df (X)

)2
.

Step 3. The conclusion of Step 2 is also true in the case of non-increasing functions with
f (0) = 0. This is due to the invariance of our assertion under the symmetry x → −x, which
is an easy consequence of the symmetry of X and the fact that for F(x) = f (−x) we have
(DF)(x) = (Df )(−x).

Step 4. Let us now eliminate of the assumption of monotonicity of f . Suppose that f is not
monotone. Then f has a (not necessarily unique) minimum attained at some point x0 ∈ R. Due
to the remark of Step 3 we can assume that x0 ≤ 0. Since f (0) = 0, we have f (x0) ≤ 0. Take
y0 = inf{y ∈R : f (y) = 0}. Clearly, y0 ≤ x0. We define

f1(x) =
{

f (x), x ≥ x0,

f (x0), x < x0,
f2(x) =

{
0, x ≥ y0,

f (x), x < y0.
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Note that f1 is non-decreasing and f2 is non-increasing. Moreover, f1(0) = f2(0) = 0. There-
fore, from the previous steps applied for f1 and f2 we get

(
ef (x0)/2 − e−f (x0)/2)2

P(X ≤ x0) +E
(
ef (X)/2 − e−f (X)/2)21{X≥x0}

≤ 8

(1 − λ)2
E

(
ef (X)

(
Df (X)

)21{X≥x0}
) (12)

and

E
((

ef (X)/2 − e−f (X)/2)21{X≤y0}
) ≤ 8

(1 − λ)2
E

(
ef (X)

(
Df (X)

)21{X≤y0}
)
. (13)

Moreover, since |f (x)| ≤ |f (x0)| on [y0, x0], we have

E
((

ef (X)/2 − e−f (X)/2)21{y0≤X≤x0}
) ≤ (

ef (x0)/2 − e−f (x0)/2)2
P
(
X ∈ [y0, x0]

)
≤ (

ef (x0)/2 − e−f (x0)/2)2
P(X ≤ x0).

(14)

Combining (12), (13) and (14), we arrive at

E
(
ef (X)/2 − e−f (X)/2)2 ≤ 8

(1 − λ)2
E

(
ef (X)

(
Df (X)

)2)
.

�

The following lemma provides an estimate on the infimum convolution.

Lemma 3. Let C1, h > 0. Define ϕ1(x) = 1
C1

ϕ0(x/h). Assume that a convex function f satisfies
|f ′| ≤ 1/(C1h). Then

(f �ϕ1)(x) ≤ f (x) − C1

2

∣∣(Df )(x)
∣∣2

.

Proof. Let us consider the case when x ≥ x0 + h. We take θ ∈ [0,1] and write y = θ(x − h) +
(1 − θ)x. Note that x − y = hθ . By the convexity of f , we have

(f �ϕ1)(x) ≤ f (y) + ϕ1(x − y) ≤ θf (x − h) + (1 − θ)f (x) + ϕ1(hθ)

= θf (x − h) + (1 − θ)f (x) + 1

2C1
θ2.

Let us now take θ = C1(f (x) − f (x − h)). Note that 0 ≤ f ′ ≤ 1/C1h yields θ ∈ [0,1]. We get

(f �ϕ1)(x) ≤ f (x) − θ
(
f (x) − f (x − h)

) + 1

2C1
θ2 = f (x) − C1

2

(
f (x) − f (x − h)

)2
.

The case x ≤ x0 −h follows by similar computation (one has to take y = θ(x +h)+ (1−θ)x).
Also, in the case x ∈ [x0 − h,x0 + h] it is enough to take y = θx0 + (1 − θ)x and use the fact
that |x − y| = |θ(x − x0)| ≤ hθ . �
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Proof of Theorem 1. We begin by showing that (a) implies (c). We do this in three steps.
Step 1. We first show that it is enough to consider only the case when f satisfies |f ′| ≤

1/Cτ . To this end, for any convex f : R → R bounded from below, we consider g(x) =
supy∈R{(f �ϕ)(y) − ϕ(x − y)}. Thus, g(x) = supy∈R infz∈R{f (z) + ϕ(y − z) − ϕ(x − y)}. By
taking z = x, we get g(x) ≤ f (x) for all x ∈ R. Moreover, since f is bounded from below, it
is easy to see that g is also bounded from below. Since f is convex, one can check that the
function f �ϕ is also convex (classical property of infimum convolution). Therefore writing
g(x) = supu∈R{(f �ϕ)(x − u) − ϕ(u)}, the function g turns out to be convex as a supremum
of convex functions. Moreover, since x �→ ϕ(x − y) is (1/Cτ )-Lipschitz for every y, the func-
tion g is also (1/Cτ )-Lipschitz. Finally, we check that g�ϕ = f �ϕ. Indeed, the inequality
g�ϕ ≤ f �, ϕ follows from g ≤ f . The other direction is obtained by writing that

(g�ϕ)(x) = inf
y∈R sup

z∈R
inf
w∈R

{
f (w) + ϕ(z − w) − ϕ(y − z) + ϕ(x − y)

}

and by taking z = x. Using g�ϕ = f �ϕ, g ≤ f and the fact that g is (1/Cτ )-Lipschitz, we
arrive at (

Eef �ϕ(X)
)(
Ee−f (X)

) ≤ (
Eeg�ϕ(X)

)(
Ee−g(X)

) ≤ 1.

Step 2. The inequality (3) stays invariant when we add a constant to the function f . Thus, we
may assume that f (0) = 0. Note that from the elementary inequality 4ab ≤ (a + b)2 we have

4
(
Eef �ϕ(X)

)(
Ee−f (X)

) ≤ (
E

(
ef �ϕ(X) + e−f (X)

))2
.

Thus, it is enough to show that

E
(
ef �ϕ(X) + e−f (X)

) ≤ 2.

Step 3. Take C1 = 17/(1 − λ)2, Cτ = C1h and ϕ(x) = ϕ0(x/Cτ ). Assume that |f ′| ≤ 1/Cτ .
By the convexity of ϕ0 we get ϕ(x) ≤ 1

C1
ϕ0(x/h), since C1 > 1. Thus, by Lemma 3 we get

f �ϕ ≤ f (x) − 1
2C1|(Df )(x)|2. By the mean value theorem |(Df )(x)|/h ≤ 1/Cτ . Therefore,

1
2C1|(Df )(x)|2 ≤ 1

2C1(
h
Cτ

)2 = 1/2C1. Let α(C1) = 2C1(1 − exp(− 1
2C1

)). The convexity of the
exponential function yields e−s ≤ 1 − α(C1)s, s ∈ [0,1/2C1]. Therefore,

E
(
ef �ϕ(X) + e−f (X)

) ≤ E
(
ef (X)− 1

2 C1|Df (X)|2 + e−f (X)
)

≤ E

(
ef (X)

(
1 − 1

2
C1α(C1)

∣∣Df (X)
∣∣2

)
+ e−f (X)

)
.

Therefore, since ef + e−f − 2 = (ef/2 − e−f/2)2, we are to prove that

E
(
ef (X)/2 − e−f (X)/2)2 ≤ C1

2
α(C1)E

(
ef (X)

∣∣Df (X)
∣∣2)

.
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From Lemma 2, this inequality is true whenever 1
2C1α(C1) ≥ 8

(1−λ)2 . It suffices to observe that

1

2
C1α(C1) = C2

1

(
1 − e

− 1
2C1

) ≥ C2
1

(
1 − 1

1 + 1
2C1

)
= C1

2 + 1
C1

≥ C1

2 + 1
8

= 8

(1 − λ)2
.

We now sketch the proof of the fact that (c) implies (b), which is well known, see Corollary 3
in [16]. Due to the standard approximation argument one can assume that f is a convex C2

smooth function with bounded first and second derivative (note that in the definition of the convex
Poincaré inequality we assumed that f ′ is bounded). Consider the function fε = εf . The infimum
of ψx(y) = ϕ(y) + εf (x − y) is attained at the point y satisfying the equation ψ ′

x(y) = ϕ′(y) −
εf ′(x − y) = 0. Note that ϕ′ is strictly increasing on the interval [−Cτ ,Cτ ]. If ε is sufficiently
small, it follows that the above equation has a unique solution yx and that yx ∈ [−Cτ ,Cτ ]. Thus,
yx = C2

τ εf ′(x − yx). This implies yx = εC2
τ f ′(x)+ o(ε), where the o(ε) dependence is uniform

in x. We get

f �ϕ(x) = ϕ(yx) + εf (x − yx) = 1

2C2
τ

y2
x + εf

(
x − εC2

τ f ′(x)
) + o

(
ε2)

= 1

2
ε2C2

τ f ′(x)2 + εf (x) − ε2C2
τ f ′(x)2 + o

(
ε2)

= εf (x) − 1

2
ε2C2

τ f ′(x)2 + o
(
ε2).

Therefore, from the infimum convolution inequality we get

(
Eeεf (X)− 1

2 ε2C2
τ f ′(X)2+o(ε2)

)(
Ee−εf (X)

) ≤ 1.

Testing (3) with f (x) = |x|/Cτ one gets that

(f �ϕ)(x) ≥ inf
y

( |y|
Cτ

+ |x − y|
Cτ

− 1

2

)
= |x|

Cτ

− 1

2

and thus Ee|X|/Cτ < ∞. Also, there exists a constant c > 0 such that |f (x)| ≤ c(1 + |x|), x ∈R.
As a consequence, one can consider the Taylor expansion of the above quantities in ε = 0. This
gives

E

(
1+ εf (X)− 1

2
ε2C2

τ f ′(X)2 + 1

2
ε2f (X)2 +o

(
ε2))

E

(
1− εf (X)+ 1

2
ε2f (X)2 +o

(
ε2)) ≤ 1.

Comparing the terms in front of ε2 leads to

Ef (X)2 − (
Ef (X)

)2 ≤ 1

2
C2

τEf ′(X)2.

This is exactly the Poincaré inequality with constant 1
2C2

τ .
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We show that (b) implies (a). Suppose that a symmetric real random variable X satisfies the
convex Poincaré inequality with a constant Cp . Consider the function fu(x) = max{x − u,0},
u ≥ 0. We have E|f ′

u(X)|2 = P(X ≥ u). Let Y be an independent copy of X. Since fu(y) = 0
for y ≤ 0 and P(Y ≤ 0) ≥ 1/2, one gets

Var
(
fu(X)

) = 1

2
E

(
fu(X) − fu(Y )

)2 ≥ 1

2
E

((
fu(X) − fu(Y )

)21{Y≤0}
)

≥ 1

4
E

((
fu(X)

)2 ≥ 1

4
E

(
fu(X)

)21{X≥u+√
8Cp}

)
≥ 2CpP(X ≥ u + √

8Cp).

These two observations, together with Poincaré inequality, yield that X ∈M(
√

8Cp,1/2). �

4. Concentration properties

We show that the convex property (τ ) implies concentration for convex sets.

Proposition 1. Suppose that an R
n-valued random vector X satisfies the property (τ ) with a

non-negative cost function ϕ, restricted to the family of convex functions. Let Bϕ(t) = {x ∈ R
n :

ϕ(x) ≤ t}. Then for any convex set A we have

P
(
X ∈ A + Bϕ(t)

) ≥ 1 − P(X ∈ A)−1e−t .

The proof of this proposition is similar to the proof of Proposition 2.4 in [13]. We recall the
argument.

Proof of Proposition 1. Let f = 0 on A and f = ∞ outside of A. Note that f is convex (to
avoid working with functions having values +∞ one can consider a family of convex functions
fn = ndist(A,x) and take n → ∞). Suppose that (f �ϕ)(x) ≤ t . Then there exists y ∈ R

n such
that f (y) + ϕ(x − y) ≤ t . Thus, y ∈ A and x − y ∈ Bϕ(t). Therefore x ∈ A + Bϕ(t). It follows
that x /∈ A + Bϕ(t) implies (f �ϕ)(x) > t . Applying the infimum convolution inequality, we get

et
(
1 − P

(
X ∈ A + Bϕ(t)

)) · P(X ∈ A) ≤ (
Eef �ϕ(X)

)(
Ee−f (X)

) ≤ 1.

Our assertion follows. �

We are ready to derive the two-level concentration for convex sets.

Proof of Corollary 2. The argument is similar to [16], Corollary 1. Due to Corollary 1, X

satisfies property (τ ) with the cost function ϕ(x) = ∑n
i=1 ϕ0(xi/Cτ ). Suppose that ϕ(x) ≤ t .

Define y, z ∈ R
n in the following way. Take yi = xi if |xi | ≤ Cτ and yi = 0 otherwise. Take

zi = xi if |xi | > Cτ and zi = 0 otherwise. Then x = y + z. Moreover,

n∑
i=1

ϕ(yi/Cτ ) +
n∑

i=1

ϕ(zi/Cτ ) =
n∑

i=1

ϕ(xi/Cτ ) ≤ t.
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In particular |y|22 ≤ 2C2
τ t and t ≥ ∑n

i=1 ϕ0(zi/Cτ ) ≥ 1
2 |z|1/Cτ , since |zi |/Cτ − 1

2 ≥ 1
2 |zi |/Cτ for

|zi | ≥ 1/Cτ . This gives x ∈ √
2tCτB

n
2 + 2tCτB

n
1 . Our assertion follows from Proposition 1. �

Finally, we prove concentration for convex Lipschitz functions.

Proof of Corollary 3. The proof of (7) is similar to the proof of Proposition 4.18 in [14]. Let us
define a convex set A = {f ≤ Medf (X)} and observe that P(X ∈ A) ≥ 1/2. Moreover,

A + Cτ

(√
2tBn

2 + 2tBn
1

) ⊂ {
f ≤ Medf (X) + Cτ (a

√
2t + 2bt)

}
.

Applying Corollary 2, we get

P
(
f (X) > Medf (X) + Cτ (a

√
2t + 2bt)

) ≤ 2e−t , for all t ≥ 0,

where a, b are Lipschitz constants given in (6). Take s = Cτ (a
√

2t +2bt) and r = s/Cτ . Suppose

that r
b

≤ r2

a2 . Then

a
√

2t + 2tb = r ≥ 1

2

√
a2r/b + 1

2
r = a

√
2

r

8b
+ 2b

r

4b
≥ a

√
2

r

8b
+ 2b

r

8b
.

By the monotonicity of x �→ a
√

2x + 2xb, x ≥ 0 it follows that 1
8 min{ r

b
, r2

a2 } = r
8b

≤ t . On the

other hand, if r
b

≥ r2

a2 , then

a
√

2t + 2tb = r ≥ 1

2
r + br2

2a2
= a

√
2

r2

8a2
+ 2b

r2

4a2
≥ a

√
2

r2

8a2
+ 2b

r2

8a2
.

Therefore, 1
8 min{ r

b
, r2

a2 } = r2

8a2 ≤ t . Thus,

P
(
f (X) > Medf (X) + rCτ

) ≤ 2e−t ≤ 2 exp

(
−1

8
min

{
r

b
,
r2

a2

})
, t ≥ 0.

For the proof of (8), we follow [20]. Define a convex set B = {f < Medf (X) − Cτ (a
√

2t +
2bt)} with t ≥ 0. It follows that

B + Cτ

(√
2tBn

2 + 2tBn
1

) ⊂ {
f < Medf (X)

}
and thus Corollary 2 yields

1

2
≥ P

(
X ∈ B + Cτ

(√
2tBn

2 + 2tBn
1

)) ≥ 1 − P(X ∈ B)−1e−t .

Therefore P(X ∈ B) ≤ 2e−t . To finish the proof we proceed as above. �
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