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We provide conditions on the statistical model and the prior probability law to derive contraction rates of
posterior distributions corresponding to data-dependent priors in an empirical Bayes approach for selecting
prior hyper-parameter values. We aim at giving conditions in the same spirit as those in the seminal article
of Ghosal and van der Vaart [Ann. Statist. 35 (2007) 192–223]. We then apply the result to specific statis-
tical settings: density estimation using Dirichlet process mixtures of Gaussian densities with base measure
depending on data-driven chosen hyper-parameter values and intensity function estimation of counting pro-
cesses obeying the Aalen model. In the former setting, we also derive recovery rates for the related inverse
problem of density deconvolution. In the latter, a simulation study for inhomogeneous Poisson processes
illustrates the results.

Keywords: Aalen model; counting processes; Dirichlet process mixtures; empirical Bayes; posterior
contraction rates

1. Introduction

In a Bayesian approach to statistical inference, the prior distribution should, in principle, be
chosen independently of the data; however, it is not always an easy task to elicit the prior hyper-
parameter values and a common practice is to replace them by summaries of the data. The prior
is then data-dependent and the approach falls under the umbrella of empirical Bayes methods, as
opposed to fully Bayes methods. Consider a statistical model (P

(n)
θ : θ ∈ �) on a sample space

X (n), together with a family of prior distributions (π(·|γ ) : γ ∈ �) on a parameter space �.
A Bayesian statistician would either set the hyper-parameter γ to a specific value γ0 or integrate
it out using a probability distribution for it in a hierarchical specification of the prior for θ . Both
approaches would lead to prior distributions for θ that do not depend on the data. However, it is
often the case that knowledge is not a priori available to either fix a value for γ or elicit a prior
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distribution for it, so that a value for γ can be more easily chosen using the data. Throughout
the paper, we will denote by γ̂n a data-driven choice for γ . There are many instances in the liter-
ature where an empirical Bayes choice for the prior hyper-parameters is performed, sometimes
without explicitly mentioning it. Some examples concerning the parametric case can be found in
Ahmed and Reid [2], Berger [6] and Casella [8]. Regarding the nonparametric case, Richardson
and Green [37] propose a default empirical Bayes approach to deal with parametric and nonpara-
metric mixtures of Gaussian densities; McAuliffe et al. [34] propose another empirical Bayes
approach for Dirichlet process mixtures of Gaussian densities, while in Szabó et al. [51] an em-
pirical Bayes procedure is proposed in the context of the Gaussian white noise model to obtain
rate adaptive posterior distributions. There are many other instances of empirical Bayes methods
in the literature, especially in applied problems.

Our aim is not to claim that empirical Bayes methods are somehow better than fully Bayes
methods, rather to provide tools to study frequentist asymptotic properties of empirical Bayes
posterior distributions, given their wide use in practice. Very little is known about the asymptotic
behavior of such empirical Bayes posterior distributions in a general framework. It is a common
belief that if γ̂n asymptotically converges to some value γ ∗, then the empirical Bayes posterior
distribution associated with γ̂n is eventually “close” to the fully Bayes posterior associated with
γ ∗. Results have been obtained in specific statistical settings by Clyde and George [10], Cui and
George [11] for wavelets or variable selection, by Szabó et al. [49–51] for the Gaussian white
noise model, by Scricciolo [44] for conditional density estimation, by Sniekers and van der Vaart
[48], Serra and Krivobokova [45] for Gaussian regression with Gaussian priors. Recently, Petrone
et al. [35] have investigated asymptotic properties of empirical Bayes posterior distributions
obtaining general conditions for consistency and, in the parametric case, for strong merging
between fully Bayes and maximum marginal likelihood empirical Bayes posterior distributions.

In this article, we are interested in studying the frequentist asymptotic behaviour of empirical
Bayes posterior distributions in terms of contraction rates. Let d(·, ·) be a loss function on �, say
a pseudo-metric. For θ0 ∈ � and ε > 0, let Uε := {θ : d(θ, θ0) ≤ ε} be a neighborhood of θ0. The
empirical Bayes posterior distribution is said to concentrate at θ0 with rate εn relative to d , where
εn is a positive sequence converging to zero, if the empirical Bayes posterior probability of the
set Uεn tends to one in P

(n)
θ0

-probability. In the case of fully Bayes procedures, there has been
so far a vast literature on posterior consistency and contraction rates since the seminal articles
of Barron et al. [4] and Ghosal et al. [23]. Following ideas of Schwartz [42], Ghosal et al.
[23] in the case of independent and identically distributed (i.i.d.) observations and Ghosal and
van der Vaart [24] in the case of non-i.i.d. observations have developed an elegant and powerful
methodology to assess posterior contraction rates which boils down to lower bounding the prior
mass of Kullback–Leibler type neighborhoods of P(n)

θ0
and to constructing exponentially powerful

tests for testing H0 : θ = θ0 against H1 : θ ∈ {θ ′ : d(θ ′, θ0) > εn}. However, this approach cannot
be immediately taken to deal with posterior distributions corresponding to data-dependent priors.
In this article, we develop a similar methodology for assessing posterior contraction rates in the
case where the prior distribution depends on the data through a data-driven choice γ̂n for γ .

In Theorem 1, we provide sufficient conditions for deriving contraction rates of empirical
Bayes posterior distributions, in the same spirit as those presented in Theorem 1 of Ghosal and
van der Vaart [24]. To our knowledge, this is the first result on posterior contraction rates for
data-dependent priors which is neither model nor prior specific. The theorem is then applied
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to nonparametric mixture models. Two relevant applications are considered: Dirichlet process
mixtures of Gaussian densities for the problems of density estimation and density deconvolution
in Section 3; Dirichlet process mixtures of uniform densities for estimating intensity functions
of counting processes obeying the Aalen model in Section 4. Theorem 1 has also been applied to
Gaussian process priors and sieve priors in Rousseau and Szabó [39].

Dirichlet process mixtures (DPM) have been introduced by Ferguson [21] and have proved to
be a major tool in Bayesian nonparametrics, see, for instance, Hjort et al. [29]. Rates of con-
vergence for fully Bayes posterior distributions corresponding to DPM of Gaussian densities
have been widely studied: they lead to minimax-optimal, possibly up to a logarithmic factor, es-
timation procedures over a wide collection of density function classes, see Ghosal and van der
Vaart [25,26], Kruijer et al. [32], Scricciolo [43] and Shen et al. [46]. In Section 3.1, we ex-
tend existing results to the case of a Gaussian base measure for the Dirichlet process prior with
data-driven chosen mean and variance, as advocated for instance, in Richardson and Green [37].
Furthermore, in Section 3.2, due to some new inversion inequalities, we get, as a by-product, em-
pirical Bayes posterior recovery rates for the problem of density deconvolution when the error
distribution is either ordinary or super-smooth and the mixing density is modeled as a DPM of
normal densities with a Gaussian base measure having data-driven selected mean and variance.
The problem of Bayesian density deconvolution when the mixing density is modeled as a DPM
of Gaussian densities and the error distribution is super-smooth has been recently studied by
Sarkar et al. [41].

In Section 4, we focus on Aalen multiplicative intensity models which constitute a major class
of counting processes extensively used in the analysis of data arising from various fields like
medicine, biology, finance, insurance and social sciences. General statistical and probabilistic
literature on such processes is very huge and we refer the reader to Andersen et al. [3], Daley
and Vere-Jones [12,13] and Karr [30] for a good introduction. In the Bayesian nonparametric
setting, practical and methodological contributions have been obtained by Lo [33], Adams et al.
[1], Cheng and Yuan [9]. Belitser et al. [5] have been the first ones to investigate the frequentist
asymptotic behaviour of posterior distributions for intensity functions of inhomogeneous Pois-
son processes. In Theorem 3, we derive rates of convergence for empirical Bayes estimation of
monotone non-increasing intensity functions of counting processes satisfying the Aalen multi-
plicative intensity model using DPM of uniform distributions with a truncated gamma base mea-
sure whose scale parameter is data-driven chosen. Numerical illustrations are presented in this
context in Section 4.3. Final remarks are exposed in Section 5. Proofs of the results in Sections 3
and 4 are deferred to the Supplementary Material [15].

Notation and context. Let (X (n),An, (P
(n)
θ : θ ∈ �)) be a sequence of statistical experiments,

where X (n) and � are Polish spaces endowed with their Borel σ -fields An and B, respectively.
Let X(n) ∈X (n) be the observations. We assume that there exists a σ -finite measure μ(n) on X (n)

dominating all probability measures P(n)
θ for θ ∈ �. For any θ ∈ �, let p

(n)
θ := dP(n)

θ /dμ(n) and

	n(θ) := logp
(n)
θ be the log-likelihood. We denote by E

(n)
θ [·] expected values with respect to

P
(n)
θ . We consider a family of prior distributions (π(·|γ ) : γ ∈ �) on �, where � ⊆ R

d , d ≥ 1.
We denote by π(·|γ,X(n)) the posterior distribution corresponding to the prior law π(·|γ ),

π
(
B|γ,X(n)

) =
∫
B

e	n(θ)π(dθ |γ )∫
�

e	n(θ)π(dθ |γ )
, B ∈ B.
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Given θ1, θ2 ∈ �, let

KL(θ1; θ2) := E
(n)
θ1

[
	n(θ1) − 	n(θ2)

]
be the Kullback–Leibler divergence of P

(n)
θ2

from P
(n)
θ1

. Let Vk(θ1; θ2) be the re-centered kth
absolute moment of the log-likelihood difference associated with θ1 and θ2,

Vk(θ1; θ2) := E
(n)
θ1

[∣∣	n(θ1) − 	n(θ2) −E
(n)
θ1

[
	n(θ1) − 	n(θ2)

]∣∣k], k ≥ 2.

Let θ0 denote the true parameter value. For any sequence of positive real numbers εn → 0 such
that nε2

n → ∞ and any real k ≥ 2, let

B̄k,n := {
θ : KL(θ0; θ) ≤ nε2

n,Vk(θ0; θ) ≤ (
nε2

n

)k/2} (1.1)

be the εn-Kullback–Leibler type neighborhood of θ0. The role played by these sets will be clar-
ified in Remark 2. Throughout the text, for any set B , constant ζ > 0 and pseudo-metric d , we
denote by D(ζ,B,d) the ζ -packing number of B by d-balls of radius ζ , namely, the maximal
number of points in B such that the distance between every pair is at least ζ . The symbols “�”
and “�” are used to indicate inequalities valid up to constants that are fixed throughout.

2. Empirical Bayes posterior contraction rates

The main result of the article is presented in Section 2.1 as Theorem 1: the key ideas are the
identification of a set Kn, whose role is discussed in Section 2.2, such that γ̂n takes values in
it with probability tending to one, and the construction of a parameter transformation which
allows to transfer data-dependence from the prior distribution to the likelihood. Examples of
such transformation are given in Section 2.3.

2.1. Main theorem

Let γ̂n : X (n) → � be a measurable function of the observations and let

π
(·|γ̂n,X

(n)
) := π

(·|γ,X(n)
)|γ=γ̂n

be the associated empirical Bayes posterior distribution. In this section, we present a theorem
providing sufficient conditions to obtain posterior contraction rates for empirical Bayes posteri-
ors. Our aim is to give conditions resembling those usually considered in a fully Bayes approach.
We first define usual mathematical objects. We assume that, with probability tending to one, γ̂n

takes values in a subset Kn of �,

P
(n)
θ0

(
γ̂n ∈ Kc

n

) = o(1). (2.1)

For any sequence of positive reals un → 0, let Nn(un) stand for the un-covering number of
Kn relative to the Euclidean distance denoted by ‖ · ‖, that is, the minimal number of balls of



Empirical Bayes posterior concentration rates 235

radius un needed to cover Kn. For instance, if Kn is included in a ball of Rd of radius Rn, then
Nn(un) = O((Rn/un)

d).
We consider posterior contraction rates relative to a loss function d(·, ·) on � using the fol-

lowing neighborhoods

UJ1εn := {
θ ∈ � : d(θ, θ0) ≤ J1εn

}
,

with J1 a positive constant. We assume that d(·, ·) is a pseudo-metric, although this assumption
can be relaxed, see Remark 3. For every integer j ∈N, we define

Sn,j := {
θ ∈ � : d(θ, θ0) ∈ (

jεn, (j + 1)εn

]}
.

In order to obtain posterior contraction rates with data-dependent priors, we express the impact of
γ̂n on the prior distribution as follows: for all γ, γ ′ ∈ �, we construct a measurable transformation

ψγ,γ ′ : � → �

such that, if θ ∼ π(·|γ ), then ψγ,γ ′(θ) ∼ π(·|γ ′). Let en(·, ·) be another pseudo-metric on �.
We consider the following assumptions.
[A1] There exists a sequence of positive reals un → 0 such that

logNn(un) = o
(
nε2

n

)
. (2.2)

There exists a sequence of sets B̃n ⊆ � such that, for some constant C1 > 0,

sup
γ∈Kn

sup
θ∈B̃n

P
(n)
θ0

(
inf

γ ′:‖γ ′−γ ‖≤un

	n

(
ψγ,γ ′(θ)

) − 	n(θ0) < −C1nε2
n

)
= o

(
Nn(un)

−1). (2.3)

[A2] For every γ ∈ Kn, there exists a sequence of sets �n(γ ) ⊆ � so that

sup
γ∈Kn

∫
�\�n(γ )

Q
(n)
θ,γ

(
X (n)

) π(dθ |γ )

π(B̃n|γ )
= o

(
Nn(un)

−1e−C2nε2
n
)

(2.4)

for some constant C2 > C1, where Q
(n)
θ,γ is the measure having density q

(n)
θ,γ with respect to μ(n):

q
(n)
θ,γ := dQ

(n)
θ,γ

dμ(n)
:= sup

γ ′:‖γ ′−γ ‖≤un

e
	n(ψγ,γ ′ (θ))

.

Also, there exist constants ζ,K > 0 such that

• for all j large enough,

sup
γ∈Kn

π(Sn,j ∩ �n(γ )|γ )

π(B̃n|γ )
≤ eKnj2ε2

n/2, (2.5)
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• for all ε > 0, γ ∈Kn and θ ∈ �n(γ ) with d(θ, θ0) > ε, there exist tests φn(θ) satisfying

E
(n)
θ0

[
φn(θ)

] ≤ e−Knε2
and sup

θ ′:en(θ ′,θ)≤ζε

∫
X (n)

[
1 − φn(θ)

]
dQ

(n)

θ ′,γ ≤ e−Knε2
, (2.6)

• for all j large enough,

logD
(
ζjεn, Sn,j ∩ �n(γ ), en

) ≤ K(j + 1)2nε2
n/2, (2.7)

• there exists a constant M > 0 such that for all γ ∈Kn,

sup
γ ′:‖γ ′−γ ‖≤un

sup
θ∈�n(γ )

d
(
ψγ,γ ′(θ), θ

) ≤ Mεn. (2.8)

We can now state the main theorem.

Theorem 1. Let θ0 ∈ �. Assume that γ̂n satisfies condition (2.1) and that conditions [A1] and
[A2] are verified for a sequence of positive reals εn → 0 such that nε2

n → ∞. Then, for a constant
J1 > 0 large enough,

E
(n)
θ0

[
π

(
Uc

J1εn
|γ̂n,X

(n)
)] = o(1),

where Uc
J1εn

is the complement of UJ1εn in �.

Remark 1. We can replace (2.6) and (2.7) with a condition involving the existence of a global
test φn over Sn,j satisfying requirements similar to those of equation (2.7) in Ghosal and van der
Vaart [24] without modifying the conclusion:

E
(n)
θ0

[φn] = o
(
Nn(un)

−1) and sup
γ∈Kn

sup
θ∈Sn,j

∫
X (n)

(1 − φn)dQ
(n)
θ,γ ≤ e−Knj2ε2

n .

Note also that, when the loss function d(·, ·) is not bounded, it is often the case that getting
exponential control on the error rates in the form e−Knε2

n or e−Knj2ε2
n is not possible for large

values of j . It is then enough to consider a modification d̃(·, ·) of the loss function which affects
only the values of θ for which d(θ, θ0) is large and to verify (2.6) and (2.7) for d̃(θ, θ0) by
defining Sn,j and the covering number D(·) with respect to d̃(·, ·). See the proof of Theorem 3
as an illustration of this remark.

Remark 2. The requirements of assumption [A2] are similar to those proposed by Ghosal and
van der Vaart [24] for deriving contraction rates for fully Bayes posterior distributions, see, for
instance, their Theorem 1 and its proof. We need to strengthen some conditions to take into
account that we only know that γ̂n lies in a compact set Kn with high probability by replacing
the likelihood p

(n)
θ with q

(n)
θ,γ . Note that in the definition of q

(n)
θ,γ we can replace the centering

point γ of a ball with radius un with any fixed point in the ball. This is used, for instance, in
the context of DPM of uniform distributions in Section 4. In the applications of Theorem 1,
condition [A1] is typically verified by resorting to Lemma 10 in Ghosal and van der Vaart [24]
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and by considering a set B̃n ⊆ B̄k,n, with B̄k,n as defined in (1.1). The only difference with
the general theorems of Ghosal and van der Vaart [24] lies in the control of the log-likelihood
difference 	n(ψγ,γ ′(θ))− 	n(θ0) when ‖γ ′ − γ ‖ ≤ un. We thus need that Nn(un) = o((nε2

n)
k/2).

In nonparametric cases where nε2
n is a power of n, the sequence un can be chosen very small, as

long as k can be chosen large enough, so that controlling the above difference uniformly is not
such a drastic condition. In parametric models where at best nε2

n is a power of logn, this becomes
more involved and un needs to be large or Kn needs to be small enough so that Nn(un) can be
chosen of the order O(1). In parametric models, it is typically easier to use a more direct control
of the ratio π(θ |γ )/π(θ |γ ′) of the prior densities with respect to a common dominating measure.
In nonparametric models, this is usually not possible since in most cases no such dominating
measure exists.

Remark 3. In Theorem 1, d(·, ·) can be replaced by any positive loss function. In this case,
condition (2.8) needs to be rephrased: for every J2 > 0, there exists J1 > 0 such that, for all
γ, γ ′ ∈Kn with ‖γ − γ ′‖ ≤ un, for every θ ∈ �n(γ ),

d
(
ψγ,γ ′(θ), θ0

)
> J1εn implies d(θ, θ0) > J2εn. (2.9)

2.2. On the role of the set Kn

To prove Theorem 1, it is enough to show that the posterior contraction rate of the empirical
Bayes posterior associated with γ̂n ∈ Kn is bounded from above by the worst contraction rate
over the class of posterior distributions corresponding to the family of priors (π(·|γ ) : γ ∈Kn):

π
(
Uc

J1εn
|γ̂n,X

(n)
) ≤ sup

γ∈Kn

π
(
Uc

J1εn
|γ,X(n)

)
.

In other terms, the impact of γ̂n is summarized through Kn. Hence, it is important to preliminarily
figure out which set Kn could be. In the examples developed in Sections 3 and 4, the hyper-
parameter γ has no impact on the posterior contraction rate, at least on a large subset of �,
so that, as long as γ̂n stays in this range, the posterior contraction rate of the empirical Bayes
posterior is the same as that of any prior associated with a fixed γ . In those cases where γ has
an influence on posterior contraction rates, determining Kn is crucial. For instance, Rousseau
and Szabó [39] study the asymptotic behaviour of the maximum marginal likelihood estimator
and characterize the set Kn; they then apply Theorem 1 to derive contraction rates for certain
empirical Bayes posterior distributions. Suppose that the posterior π(·|γ,X(n)) converges at rate
εn(γ ) = (n/ logn)−α(γ ), where the mapping γ → α(γ ) is Lipschitzian, and that γ̂n concentrates
on an oracle set Kn = {γ : εn(γ ) ≤ Mnε

∗
n}, where ε∗

n = infγ εn(γ ) and Mn is some sequence
such that Mn → ∞, then, under the conditions of Theorem 1, we can deduce that the empirical
Bayes posterior contraction rate is bounded above by Mnε

∗
n. Proving that the empirical Bayes

posterior distribution has optimal posterior contraction rate then boils down to proving that γ̂n

converges to the oracle set Kn. This is what happens in the context considered by Szabó et al.
[51], as explained in Rousseau and Szabó [39].
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2.3. On the parameter transformation ψγ,γ ′

A key idea of the proof of Theorem 1 is the construction of a parameter transformation ψγ,γ ′
which allows to transfer data-dependence from the prior to the likelihood as in Petrone et al.
[35]. The transformation ψγ,γ ′ can be easily identified in a number of cases. Note that this trans-
formation only depends on the family of prior distributions and not on the sampling model.

For Gaussian process priors in the form

θi
ind∼ N

(
0, τ 2(1 + i)−(2α+1)

)
, i ∈ N,

the following ones

ψτ,τ ′(θi) = τ ′

τ
θi, i ∈N,

ψα,α′(θi) = (1 + i)−(α′−α)θi, α′ ≥ α, i ∈ N,

are possible transformations, see Rousseau and Szabó [39]. Similar ideas can be used for priors
based on splines with independent coefficients.

The transformation ψγ,γ ′ can be constructed also for Polya tree priors based on a specific
family of partitions (Tk)k≥1 with parameters αε = ck2 when ε ∈ {0,1}k . When γ = c,

ψc,c′(θε) = G−1
c′k2,c′k2

(
Gck2,ck2(θε)

)
, ∀ε ∈ {0,1}k, ∀k ≥ 1,

where Ga,b denotes the cumulative distribution function (c.d.f.) of a Beta random variable with
parameters (a, b).

In Sections 3 and 4, we apply Theorem 1 to two types of Dirichlet process mixture models:
DPM of Gaussian distributions used to model smooth densities and DPM of uniform distribu-
tions used to model monotone non-increasing intensity functions in the context of Aalen point
processes. In the case of nonparametric mixture models, there exists a general construction of
the transformation ψγ,γ ′ . Consider a mixture model in the form

f (·) =
K∑

j=1

pjhθj
(·), K ∼ πK, (2.10)

where, conditionally on K , p = (pj )
K
j=1 ∼ πp and θ1, . . . , θK are i.i.d. with cumulative distribu-

tion function Gγ . Dirichlet process mixtures correspond to πK = δ(+∞) and to πp equal to the
Griffiths–Engen–McCloskey (GEM) distribution obtained from the stick-breaking construction
of the mixing weights, cf. Ghosh and Ramamoorthi [27]. Models in the form (2.10) also cover
priors on curves if the (pj )

K
j=1 are not restricted to the simplex. Denote by π(·|γ ) the prior prob-

ability on f induced by (2.10). For all γ, γ ′ ∈ �, if f is represented as in (2.10) and is distributed
according to π(·|γ ), then

f ′(·) =
K∑

j=1

pjhθ ′
j
(·) with θ ′

j = G−1
γ ′

(
Gγ (θj )

)
,
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is distributed according to π(·|γ ′), where G−1
γ ′ denotes the generalized inverse of the c.d.f. Gγ ′ .

If γ = M is the mass hyper-parameter of a Dirichlet process (DP), a possible transformation
from a DP with mass M to a DP with mass M ′ is through the stick-breaking representation of
the weights:

ψM,M ′(Vj ) = G−1
1,M ′

(
G1,M(Vj )

)
where pj = Vj

∏
i<j

(1 − Vi), j ≥ 1.

We now give the proof of Theorem 1.

2.4. Proof of Theorem 1

Because P
(n)
θ0

(γ̂n ∈ Kc
n) = o(1) by assumption, we have

E
(n)
θ0

[
π

(
Uc

J1εn
|γ̂n,X

(n)
)] ≤ E

(n)
θ0

[
sup

γ∈Kn

π
(
Uc

J1εn
|γ,X(n)

)] + o(1).

The proof then essentially boils down to controlling E
(n)
θ0

[supγ∈Kn
π(Uc

J1εn
|γ,X(n))]. We split

Kn into Nn(un) balls of radius un and denote their centers by (γi)i=1,...,Nn(un). We thus have

E
(n)
θ0

[
π

(
Uc

J1εn
|γ̂n,X

(n)
)
1Kn

(γ̂n)
] ≤ Nn(un)max

i
E

(n)
θ0

[
ρn(γi)

]
,

where the index i ranges from 1 to Nn(un) and

ρn(γi) := sup
γ :‖γ−γi‖≤un

π
(
Uc

J1εn
|γ,X(n)

)

= sup
γ :‖γ−γi‖≤un

∫
Uc

J1εn

e	n(θ)−	n(θ0)π(dθ |γ )∫
�

e	n(θ)−	n(θ0)π(dθ |γ )

= sup
γ :‖γ−γi‖≤un

∫
ψ−1

γi ,γ
(Uc

J1εn
)
e	n(ψγi ,γ

(θ))−	n(θ0)π(dθ |γi)∫
�

e	n(ψγi ,γ
(θ))−	n(θ0)π(dθ |γi)

.

So, it is enough to prove that maxi E
(n)
θ0

[ρn(γi)] = o(Nn(un)
−1). We mimic the proof of Lemma 9

of Ghosal and van der Vaart [24]. Let i be fixed. For every j large enough, by condition (2.7),
there exist Lj,n ≤ exp(K(j + 1)2nε2

n/2) balls of centers θj,1, . . . , θj,Lj,n
, with radius ζjεn rel-

ative to the en-distance, that cover Sn,j ∩ �n(γi). We consider tests φn(θj,	), 	 = 1, . . . ,Lj,n,
satisfying (2.6) with ε = jεn. By setting

φn := max
j≥J1

max
	∈{1,...,Lj,n}

φn(θj,	),

by virtue of conditions (2.6), applied with γ = γi , and (2.2), we obtain that, for any K ′ < K ,

E
(n)
θ0

[φn] ≤
∑
j≥J1

Lj,ne
−Kj2nε2

n = O
(
e−K ′J 2

1 nε2
n/2) = o

(
Nn(un)

−1).
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Moreover, for any j ≥ J1, any θ ∈ Sn,j ∩ �n(γi) and any i = 1, . . . ,Nn(un),∫
X (n)

(1 − φn)dQ
(n)
θ,γi

≤ e−Kj2nε2
n . (2.11)

Since for all i we have ρn(γi) ≤ 1, it follows that

E
(n)
θ0

[
ρn(γi)

]
< E

(n)
θ0

[φn] + P
(n)
θ0

(
Ac

n,i

) + eC2nε2
n

π(B̃n|γi)
Cn,i , (2.12)

with

An,i =
{

inf
γ :‖γ−γi‖≤un

∫
�

e	n(ψγi ,γ
(θ))−	n(θ0)π(dθ |γi) > e−C2nε2

nπ(B̃n|γi)

}
(2.13)

and

Cn,i = E
(n)
θ0

[
(1 − φn) sup

γ :‖γ−γi‖≤un

∫
ψ−1

γi ,γ
(Uc

J1εn
)

e	n(ψγi ,γ
(θ))−	n(θ0)π(dθ |γi)

]
.

We now study the last two terms in (2.12). Since

eC1nε2
n inf

γ :‖γ−γi‖≤un

e	n(ψγi ,γ
(θ))−	n(θ0)

≥ 1{infγ :‖γ−γi‖≤un exp (	n(ψγi ,γ
(θ))−	n(θ0))≥e−C1nε2

n },

we have

P
(n)
θ0

(
Ac

n,i

) ≤ P
(n)
θ0

(∫
B̃n

inf
γ :‖γ−γi‖≤un

e	n(ψγi ,γ
(θ))−	n(θ0)

π(dθ |γi)

π(B̃n|γi)
≤ e−C2nε2

n

)

<
(
1 − e−(C2−C1)nε2

n
)−1

×
∫

B̃n

P
(n)
θ0

(
inf

γ :‖γ−γi‖≤un

	n

(
ψγi,γ (θ)

) − 	n(θ0) < −C1nε2
n

) π(dθ |γi)

π(B̃n|γi)
.

Then, by condition (2.3), P(n)
θ0

(Ac
n,i) = o(Nn(un)

−1). For γ such that ‖γ − γi‖ ≤ un, under con-
dition (2.8), for any θ ∈ �n(γi),

d
(
ψγi,γ (θ), θ0

) ≤ d
(
ψγi,γ (θ), θ

) + d(θ, θ0) ≤ Mεn + d(θ, θ0),

then, for every J2 > 0, choosing J1 > J2 + M we have

ψ−1
γi ,γ

(
Uc

J1εn

) ⊂ (
Uc

J2εn
∪ �c

n(γi)
)
.

Note that this corresponds to (2.9). This leads to

Cn,i ≤ E
(n)
θ0

[
(1 − φn)

∫
ψ−1

γi ,γ
(Uc

J1εn
)

sup
γ :‖γ−γi‖≤un

e	n(ψγi ,γ
(θ))−	n(θ0)π(dθ |γi)

]
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≤
∫

Uc
J2εn

∪�c
n(γi )

∫
X (n)

(1 − φn)dQ
(n)
θ,γi

π(dθ |γi)

≤
∫

�c
n(γi )

Q
(n)
θ,γi

(
X (n)

)
π(dθ |γi) +

∑
j≥J2

∫
Sn,j ∩�n(γi )

∫
X (n)

(1 − φn)dQ
(n)
θ,γi

π(dθ |γi).

Using (2.4), (2.5) and (2.11),

Cn,i ≤
∑
j≥J2

e−Kj2nε2
nπ

(
Sn,j ∩ �n(γi)|γi

) + o
(
Nn(un)

−1e−C2nε2
nπ(B̃n|γi)

)

≤
∑
j≥J2

e−Kj2nε2
n/2π(B̃n|γi) + o

(
Nn(un)

−1e−C2nε2
nπ(B̃n|γi)

)
,

whence Cn,i = o(Nn(un)
−1e−C2nε2

nπ(B̃n|γi)). Consequently,

max
i=1,...,Nn(un)

eC2nε2
nCn,i/π(B̃n|γi) = o

(
Nn(un)

−1),
which concludes the proof of Theorem 1. �

We now consider two applications of Theorem 1 to DPM models. They present different fea-
tures: the first one deals with density estimation and considers DPM with smooth (Gaussian)
kernels, the second one deals with intensity estimation in Aalen point processes and considers
DPM with irregular (uniform) kernels. Estimating Aalen intensity functions has strong connec-
tions with density estimation, but it is not identical: as far as the control of data-dependence of
the prior is concerned, the main difference lies in the different regularity of the kernels.

3. Adaptive rates for empirical Bayes DPM of Gaussian
densities

Let X(n) = (X1, . . . ,Xn) be n i.i.d. observations from a Lebesgue density p0 on R. Consider the
following prior distribution on the class of Lebesgue densities p on the real line:

p(·) = pF,σ (·) :=
∫ ∞

−∞
φσ (· − θ)dF(θ),

(3.1)
F ∼ DP

(
αRN

(
m,s2)) independent of σ ∼ IG(ν1, ν2), ν1, ν2 > 0,

where αR is a finite positive constant, φσ (·) := σ−1φ(·/σ), with φ(·) the density of a standard
Gaussian distribution, and N (m, s2) denotes a Gaussian distribution with mean m and variance
s2. Set γ = (m, s2) ∈ � ⊆ R × R

∗+, where R
∗+ denotes the set of strictly positive real numbers,

let γ̂n : Rn → � be a measurable function of the observations. Typical choices are γ̂n = (X̄n, S
2
n),

with the sample mean X̄n = ∑n
i=1 Xi/n and the sample variance S2

n = ∑n
i=1(Xi − X̄n)

2/n, or
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γ̂n = (X̄n,Rn), with the range Rn = max1≤i≤n Xi − min1≤i≤n Xi , as in Richardson and Green
[37]. Let Kn ⊂R×R

∗+ be a compact set, independent of the data X(n), such that

P
(n)
p0

(γ̂n ∈Kn) = 1 + o(1), (3.2)

where p0 denotes the true sampling density. Throughout this section, we assume that p0 satisfies
the following tail condition:

p0(x) � e−c0|x|τ for |x| large enough, (3.3)

with finite constants c0, τ > 0. Let Ep0[X1] = m0 ∈ R and Varp0 [X1] = τ 2
0 ∈ R

∗+. If γ̂n =
(X̄n, S

2
n), then condition (3.2) is satisfied for Kn = [m0 − (logn)/

√
n,m0 + (logn)/

√
n]× [τ 2

0 −
(logn)/

√
n, τ 2

0 + (logn)/
√

n], while, if γ̂n = (X̄n,Rn), then Kn = [m0 − (logn)/
√

n,m0 +
(logn)/

√
n] × [rn,2(2c−1

0 logn)1/τ ], with a sequence rn ↓ 0.

3.1. Empirical Bayes density estimation

Mixtures of Gaussian densities have been extensively studied and used in the Bayesian nonpara-
metric literature. Posterior contraction rates have been first investigated by Ghosal and van der
Vaart [25,26]. Subsequently, following an idea of Rousseau [38], Kruijer et al. [32] have shown
that nonparametric location mixtures of Gaussian densities lead to adaptive posterior contraction
rates over the full scale of locally Hölder log-densities on R. This result has been extended to
super-smooth densities by Scricciolo [43] and to the multivariate case by Shen et al. [46]. The
key idea is that, for an ordinary smooth density p0 with regularity level β > 0, given σ > 0 small
enough, there exists a finite mixing distribution F ∗, with at most Nσ = O(σ−1| logσ |ρ2) support
points in [−aσ , aσ ], where aσ = O(| logσ |1/τ ), such that the corresponding Gaussian mixture
density pF ∗,σ satisfies

Pp0 log(p0/pF ∗,σ ) � σ 2β and
(3.4)

Pp0

∣∣log(p0/pF ∗,σ ) − Pp0 log(p0/pF ∗,σ )
∣∣k � σkβ, k ≥ 2,

where we have used the notation Pp0f to abbreviate
∫

f dPp0 ; see, for instance, Lemma 4 in
Kruijer et al. [32]. In all of the above-mentioned articles, only the case where k = 2 has been
considered for the second inequality in (3.4), but the extension to any k > 2 is straightforward.
The regularity assumptions considered in Kruijer et al. [32], Scricciolo [43] and Shen et al. [46]
to meet (3.4) are slightly different. For instance, Kruijer et al. [32] assume that logp0 satisfies
some locally Hölder conditions, while Shen et al. [46] consider Hölder-type conditions on p0 and
Scricciolo [43] Sobolev-type assumptions. To avoid taking into account all these special cases,
in the ordinary smooth case, we state (3.4) as an assumption. Regarding the super-smooth case,
defined for any α ∈ (0,1] and any pair of densities p and p0, the ρα-divergence of p from p0 as

ρα(p0;p) := α−1
Pp0

[
(p0/p)α − 1

]
,
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a counter-part of requirement (3.4) is the following one:

for some fixed α ∈ (0,1], ρα(p0;pF ∗,σ ) � e−cα(1/σ )r , (3.5)

where cα is a positive constant possibly depending on α and F ∗ is a distribution on [−aσ , aσ ],
with aσ = O(σ−r/(τ∧2)), having at most Nσ = O((aσ /σ )2) support points. Because for any pair
of densities p and p0,

Pp0 log(p0/p) = lim
β→0+ ρβ(p0;p) ≤ ρα(p0;p) for every α ∈ (0,1],

inequality (3.5) is stronger than the one on the first line of (3.4) and allows to derive an al-
most sure lower bound on the denominator of the ratio defining the empirical Bayes posterior
probability of the set Uc

J1εn
, see Lemma 2 of Shen and Wasserman [47]. Following the trail of

Lemma 8 in Scricciolo [43], it can be proved that inequality (3.5) holds for any density p0 satis-
fying the monotonicity and tail conditions (b) and (c), respectively, of Section 4.2 in Scricciolo
[43], together with the following integrability condition∫ ∞

−∞
∣∣p̂0(t)

∣∣2
e2(ρ|t |)r dt ≤ 2πL2 for some r ∈ [1,2] and ρ,L > 0, (3.6)

where p̂0(t) = ∫ ∞
−∞ eitxp0(x)dx, t ∈ R, is the characteristic function of p0. Densities satisfying

requirement (3.6) form a large class including relevant statistical examples, like the Gaussian
distribution which corresponds to r = 2, the Cauchy distribution which corresponds to r = 1;
symmetric stable laws with 1 ≤ r ≤ 2, the Student’s-t distribution, distributions with character-
istic functions vanishing outside a compact set as well as their mixtures and convolutions. We
then have the following theorem, where the pseudo-metric d defining the ball UJ1εn centered at
p0, with radius J1εn, can equivalently be the Hellinger or the L1-distance.

Theorem 2. Consider a prior distribution of the form (3.1), with a data-driven choice γ̂n for γ

satisfying condition (3.2), where Kn ⊆ [m1,m2]× [a1, a2(logn)b1] for some constants m1,m2 ∈
R, a1, a2 > 0 and b1 ≥ 0. Suppose that p0 satisfies the tail condition (3.3). Consider either one
of the following cases.

(i) Ordinary smooth case. Suppose that the exponent τ appearing in (3.3) is such that τ ≥ 1.
Assume that, for β > 0, requirement (3.4) holds with k > 8(β + 1). Let

εn = n−β/(2β+1)(logn)a3 for some constant a3 ≥ 1 + [
τ(2 + 1/β)

]−1
.

(ii) Super-smooth case. Assume that (3.6) holds. Suppose that the exponent τ appearing in
(3.3) is such that τ > 1 and (τ − 1)r ≤ τ . Assume further that the monotonicity condition (b) in
Section 4.2 of Scricciolo [43] is satisfied. Let

εn = n−1/2(logn)a4 for some constant a4 ≥ [
1/2 + 1/r + 1/(τ ∧ 2)

]
.

Then, under either case (i) or case (ii), for a sufficiently large constant J1 > 0,

E
(n)
p0

[
π

(
Uc

J1εn
|γ̂n,X

(n)
)] = o(1).
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In Theorem 2, the constant a3 is the same as that appearing in the convergence rate of the
posterior distribution corresponding to a non-data-dependent prior with a fixed γ .

3.2. Empirical Bayes density deconvolution

We now present some results on adaptive recovery rates, relative to the L2-distance, for empir-
ical Bayes density deconvolution when the error density is either ordinary or super-smooth and
the mixing density is modeled as a DPM of Gaussian kernels with data-driven chosen hyper-
parameter values for the base measure. The problem of deconvolving a density when the mixing
density is modeled as a DPM of Gaussian kernels and the error density is super-smooth has been
recently investigated by Sarkar et al. [41]. In a frequentist approach, rates for density deconvolu-
tion have been studied by Carroll and Hall [7] and Fan [18–20]. Consider the model

X = Y + ε,

where Y and ε are independent random variables. Let pY denote the Lebesgue density on R of
Y and K the Lebesgue density on R of the error measurement ε. The density of X is then the
convolution of K and pY , denoted by pX(·) = (K ∗ pY )(·) = ∫ ∞

−∞ K(· − y)pY (y)dy. The error

density K is assumed to be completely known and its characteristic function K̂ to satisfy either

∣∣K̂(t)
∣∣ � (

1 + t2)−η/2
, t ∈ R (ordinary smooth case) (3.7)

for some η > 0, or ∣∣K̂(t)
∣∣ � e−�|t |r1 , t ∈R (super-smooth case) (3.8)

for some constant � > 0 and exponent r1 > 0. The density pY is modeled as a DPM of Gaussian
kernels as in (3.1), with a data-driven choice γ̂n for γ . Assuming data X(n) = (X1, . . . ,Xn) are
i.i.d. observations from a density p0X = K ∗ p0Y such that the characteristic function p̂0Y of the
true mixing distribution satisfies

∫ ∞

−∞
(
1 + t2)β1

∣∣p̂0Y (t)
∣∣2 dt < ∞ for some β1 > 1/2, (3.9)

we derive adaptive rates for recovering p0Y using empirically selected prior distributions.

Proposition 1. Suppose that K̂ satisfies either condition (3.7) (ordinary smooth case) or condi-
tion (3.8) (super-smooth case) and that p̂0Y satisfies the integrability condition (3.9). Consider a
prior for pY of the form (3.1), with a data-driven choice γ̂n for γ as in Theorem 2. Suppose that
p0X = K ∗p0Y satisfies the conditions of Theorem 2 stated for p0. Then, there exists a sufficiently
large constant J1 > 0 so that

E
(n)
p0X

[
π

(‖pY − p0Y ‖2 > J1vn|γ̂n,X
(n)

)] = o(1),
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where, for some constant κ1 > 0,

vn =
{

n−β1/[2(β1+η)+1](logn)κ1, if K̂ satisfies (3.7),

(logn)−β1/r1, if K̂ satisfies (3.8).

The obtained rates are minimax-optimal, up to a logarithmic factor, in the ordinary smooth case
and minimax-optimal in the super-smooth case. Inspection of the proof of Proposition 1 shows
that, since the result is based on inversion inequalities relating the L2-distance between the true
mixing density and the (random) approximating mixing density in an efficient sieve set Sn to the
L2- or the L1-distance between the corresponding mixed densities, once adaptive rates are known
for the direct problem of fully or empirical Bayes estimation of the true sampling density p0X ,
the same proof yields adaptive recovery rates for both the fully and the empirical Bayes density
deconvolution problems. If compared to the approach followed in Sarkar et al. [41], the present
strategy simplifies the derivation of adaptive recovery rates for Bayesian density deconvolution.
To our knowledge, the ordinary smooth case is treated here for the first time also for the fully
Bayes approach.

4. Application to counting processes with Aalen multiplicative
monotone non-increasing intensities

In this section, we illustrate our results for counting processes with Aalen multiplicative intensi-
ties. Bayesian nonparametric methods have been so far mainly adopted to explore possible prior
distributions on intensity functions with the aim of showing that Bayesian nonparametric infer-
ence for inhomogeneous Poisson processes can give satisfactory results in applications, see, for
example, Kottas and Sansó [31]. Results on frequentist asymptotic properties of posterior distri-
butions, like consistency or rates of convergence, have been first obtained by Belitser et al. [5] for
inhomogeneous Poisson processes. In Donnet et al. [16], a general theorem on posterior concen-
tration rates for Aalen processes is proposed and some families of priors are studied. Section 4.2
extends these results to the empirical Bayes setting and to the case of monotone non-increasing
intensity functions. Section 4.3 illustrates our procedure on artificial data.

4.1. Notation and setup

Let N be a counting process adapted to a filtration (Gt )t with compensator � so that (Nt − �t)t
is a zero-mean (Gt )t -martingale. A counting process satisfies the Aalen multiplicative intensity
model if d�t = λ(t)Yt dt , where λ is a non-negative deterministic function called in the sequel,
with slight abuse, the intensity function, and (Yt )t is an observable non-negative predictable
process. Informally,

E
[
N [t, t + dt]|Gt−

] = λ(t)Yt dt, (4.1)

see Andersen et al. [3], Chapter III. We assume that �t < ∞ almost surely for every t . We also
assume that the processes N and Y both depend on an integer n and we consider estimation of
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λ (not depending on n) in the asymptotic perspective n → ∞, while T is kept fixed. This model
encompasses several particular examples: inhomogeneous Poisson processes, censored data and
Markov processes. See Andersen et al. [3] for a general exposition, Donnet et al. [16], Gaïffas
and Guilloux [22], Hansen et al. [28] and Reynaud-Bouret [36] for specific studies in various
settings.

We denote by λ0 the true intensity function which we assume to be bounded on R+. We
define μn(t) := E

(n)
λ0

[Yt ] and μ̃n(t) := n−1μn(t). We assume the existence of a non-random set
� ⊆ [0, T ] such that there are constants m1,m2 satisfying

m1 ≤ inf
t∈�

μ̃n(t) ≤ sup
t∈�

μ̃n(t) ≤ m2 for every n large enough, (4.2)

and there exists α ∈ (0,1) such that, defined �n := {supt∈� |n−1Yt − μ̃n(t)| ≤ αm1} ∩
{supt∈�c Yt = 0}, where �c is the complement of � in [0, T ], then

lim
n→∞P

(n)
λ0

(�n) = 1. (4.3)

Assumption (4.2) implies that, on �n,

∀t ∈ �, (1 − α)μ̃n(t) ≤ Yt

n
≤ (1 + α)μ̃n(t). (4.4)

Under mild conditions, assumptions (4.2) and (4.3) are easily satisfied for the three examples
mentioned above: inhomogeneous Poisson processes, censored data and Markov processes, see
Donnet et al. [16] for a detailed discussion. Recall that the log-likelihood for Aalen processes is

	n(λ) =
∫ T

0
log

(
λ(t)

)
dNt −

∫ T

0
λ(t)Yt dt.

Since N is empty on �c almost surely, we only consider estimation over �. So, we set F =
{λ : � → R+| ∫

�
λ(t)dt < ∞} endowed with the L1-norm: for all λ,λ′ ∈ F , let ‖λ − λ′‖1 =∫

�
|λ(t) − λ′(t)|dt . We assume that λ0 ∈F and, for every λ ∈F , we write

λ = Mλ × λ̄ with Mλ =
∫

�

λ(t)dt and λ̄ ∈ F1, (4.5)

where F1 = {λ ∈ F : ∫
�

λ(t)dt = 1}. Note that a prior probability measure π on F can be written
as πM ⊗ π1, where πM is a probability distribution on R+ and π1 is a probability distribution on
F1. This representation will be used in the next section.

4.2. Empirical Bayes concentration rates for monotone non-increasing
intensities

In this section, we focus on estimation of monotone non-increasing intensities, which is equiva-
lent to considering λ̄ monotone non-increasing in the parameterization (4.5). To construct a prior
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on the set of monotone non-increasing densities on [0, T ], we use their representation as mix-
tures of uniform densities as provided by Williamson [52] and we consider a Dirichlet process
prior on the mixing distribution:

λ̄(·) =
∫ ∞

0

1(0,θ)(·)
θ

dP(θ), P |A,Gγ ∼ DP(AGγ ), (4.6)

where Gγ is a distribution on [0, T ]. This prior has been studied by Salomond [40] for estimating
monotone non-increasing densities. Here, we extend his results to the case of a monotone non-
increasing intensity function of an Aalen process with a data-driven choice γ̂n for γ .

We study the family of distributions Gγ with Lebesgue density gγ belonging to one of the
following families: for γ > 0 and a > 1,

gγ (θ) = γ aθa−1

G(T γ )
e−γ θ 1{0≤θ≤T } or

(
1

θ
− 1

T

)−1

∼ Gamma(a, γ ), (4.7)

where G is the c.d.f. of a Gamma(a,1) random variable. We then have the following result,
which is an application of Theorem 1. We denote by π(·|γ,N) the posterior distribution given
the observations of the process N .

Theorem 3. Let ε̄n = (n/ logn)−1/3. Assume that the prior πM for the mass M is absolutely
continuous with respect to Lebesgue measure, with positive and continuous density on R+, and
has finite Laplace transform in a neighbourhood of 0. Assume that the prior π1(·|γ ) on λ̄ is a
DPM of uniform distributions defined in (4.6), with A > 0 and base measure Gγ defined as in

(4.7). Let γ̂n be a measurable function of the observations satisfying P
(n)
λ0

(γ̂n ∈ K) = 1 + o(1) for
some fixed compact subset K ⊂ (0,∞). Assume also that (4.2) and (4.3) are satisfied and that,
for any k ≥ 2, there exists C1k > 0 such that

E
(n)
λ0

[(∫
�

[
Yt − μn(t)

]2 dt

)k]
≤ C1kn

k. (4.8)

Then, there exists a sufficiently large constant J1 > 0 such that

E
(n)
λ0

[
π

(
λ : ‖λ − λ0‖1 > J1ε̄n|γ̂n,N

)] = o(1)

and

sup
γ∈K

E
(n)
λ0

[
π

(
λ : ‖λ − λ0‖1 > J1ε̄n|γ,N

)] = o(1).

The proof of Theorem 3 consists in verifying conditions [A1] and [A2] of Theorem 1 and is
based on Theorem 3.1 of Donnet et al. [16]. As observed in Donnet et al. [16], condition (4.8)
is quite mild and is satisfied for inhomogeneous Poisson processes, censored data and Markov
processes. Notice that the concentration rate ε̄n of the empirical Bayes posterior distribution is
the same as that obtained by Salomond [40] for the fully Bayes posterior. Up to a (logn)-factor,
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this is the minimax-optimal convergence rate over the class of bounded monotone non-increasing
intensities.

Note that in Theorem 3, Kn is chosen to be fixed and equal to K, which covers a large range
of possible choices for γ̂n. For instance, in the simulation study of Section 4.3, a moment type
estimator has been considered which converges almost surely to a fixed value, so that K is a fixed
interval around such value.

4.3. Numerical illustration

We present an experiment to highlight the impact of an empirical Bayes prior distribution for
finite sample sizes in the case of an inhomogeneous Poisson process. Let (Wi)i=1,...,N(T ) be the
observed points of the process N over [0, T ], where N(T ) is the observed number of jumps. We
assume that Yt ≡ n (n being known). In this case, the compensator � of N is non-random and
the larger n, the larger N(T ).

Estimation of Mλ0 and λ̄0 can be done separately, given the factorization in (4.5). Consid-
ered a gamma prior distribution on Mλ, that is, Mλ ∼ Gamma(aM,bM), we have Mλ|N ∼
Gamma(aM +N(T ), bM +n). Nonparametric Bayesian estimation of λ̄0 is more involved. How-
ever, in the case of DPM of uniform densities as a prior on λ̄, we can use the same algorithms
considered for density estimation. In this section, we restrict ourselves to the case where the
base measure of the Dirichlet process is the second alternative in (4.7), that is, under Gγ , it is
θ ∼ [T −1 +1/Gamma(a, γ )]−1. It satisfies the assumptions of Theorem 3 and presents computa-
tional advantages due to conjugacy. Three hyper-parameters are involved in this prior, namely, the
mass A of the Dirichlet process, a and γ . The hyper-parameter A strongly influences the number
of classes in the posterior distribution of λ̄. In order to mitigate its influence on the posterior dis-
tribution, we propose to consider a hierarchical approach by putting a gamma prior distribution
on A, thus A ∼ Gamma(aA, bA). In absence of additional information, we set aA = bA = 1/10,
which corresponds to a weakly informative prior. Theorem 3 applies to any a > 1. We arbitrar-
ily set a = 2; the influence of a is not studied in this article. We compare three strategies for
determining γ in our simulation study.

Strategy 1: Empirical Bayes. We propose the following estimator:

γ̂n = �−1[WN(T )], WN(T ) = 1

N(T )

N(T )∑
i=1

Wi, (4.9)

where

�(γ ) := E[WN(T )] = γ a

2�(a)

∫ ∞

1/T

e−γ /(ν− 1
T

)

(ν − 1
T

)(a+1)

1

ν
dν,

E[·] denoting expectation under the marginal distribution of N . Hence, γ̂n converges to
�−1(E[WN(T )]) as n goes to infinity and Kn can be chosen as any small, but fixed, compact
neighbourhood of �−1(E[WN(T )]) > 0.
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Strategy 2: Fixed γ . In order to avoid an empirical Bayes prior, one can fix γ = γ0. To study the
impact of a bad choice of γ0 on the behaviour of the posterior distribution, we choose γ0 different
from the calibrated value γ ∗ = �−1(Etheo), with Etheo = ∫ T

0 t λ̄0(t)dt . We thus consider

γ0 = ρ · �−1(Etheo), ρ ∈ {0.01,30,100}.
Strategy 3: Hierarchical Bayes. We consider a prior on γ , that is, γ ∼ Gamma(aγ , bγ ). In

order to make a fair comparison with the empirical Bayes posterior distribution, we center the
prior distribution at γ̂n. Besides, in the simulation study, we consider two different hierarchical
hyper-parameters (aγ , bγ ) corresponding to two prior variances. More precisely, (aγ , bγ ) are
such that the prior expectation is equal to γ̂n and the prior variance is equal to σ 2

γ , the values of
σγ being specified in Table 1.

Samples of size 30 000 (with a warm-up period of 15 000 iterations) are generated from the
posterior distribution of (λ̄,A,γ )|N using a Gibbs algorithm, decomposed into two or three steps
depending on whether or not a fully Bayes strategy is adopted:

[1] λ̄|A,γ,N, [2] A|λ̄, γ,N, [3]† γ |A, λ̄,N.

Step [3]† only exists if a fully Bayes strategy (strategy 3) is adopted. We use the algorithm
developed by Fall and Barat [17]; details can be found in Donnet et al. [14]. The various strategies
for calibrating γ are tested on 3 different intensity functions (non null over [0, T ], with T = 8):

λ0,1(t) = [
41[0,3)(t) + 21[3,8](t)

]
,

λ0,2(t) = e−0.4t ,

λ0,3(t) =
[

cos−1 �(t)1[0,3)(t) −
(

1

6
cos−1 �(3)t − 3

2
cos−1 �(3)

)
1[3,8](t)

]
,

where �(·) is the c.d.f. of the standard normal distribution. For each intensity λ0,1, λ0,2 and λ0,3,
we simulate 3 datasets corresponding to n = 500,1000 and 2000, respectively. In what follows,
we denote by Di

n the dataset associated with n and intensity λ0,i .
To compare the three different strategies used to calibrate γ , several criteria are taken into

account: tuning of the hyper-parameters, quality of the estimation, convergence of the MCMC
and computational time. In terms of tuning effort on γ , the empirical Bayes and the fixed γ

approaches are comparable and significantly simpler than the hierarchical one, which increases
the space to be explored by the MCMC algorithm and consequently slows down its conver-
gence. Moreover, setting an hyper-prior distribution on γ requires to choose the parameters of
this additional distribution, that is, aγ and bγ , and to postpone the problem, even though these
second-order hyper-parameters are presumably less influential. In our simulation study, the com-
putational time, for a fixed number of iterations, here equal to Niter = 30 000, turned out to be
also a key point. Indeed, the simulation of λ̄, conditionally on the other variables, involves an
accept-reject (AR) step (see equation (B3) in Donnet et al. [14]). For small values of γ , we
observe that the acceptance rate of the AR step drops down dramatically, thus inflating the exe-
cution time of the algorithm. The computational times (CpT) are summarized in Table 1, which
also provides the number of points for each of the 9 datasets N(T ), γ̂n being computed using
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Table 1. Computational Time (CpT in seconds), hyper-parameters for the different strategies and datasets

Empirical γ fixed Hierarchical Hierarchical 2

N(T ) γ̂n CpT ρ�−1(Etheo) CpT σγ CpT σγ CpT

λ0,1 D1
500 499 0.0386 523.57 0.01 × 0.0323 2085.03 0.005 12 051.22 0.001 447.75

D1
1000 1036 0.0372 783.53 1009.58 791.28 773.33

D1
2000 2007 0.0372 1457.40 1561.64 1477.50 1456.03

λ0,2 D2
500 505 0.6605 1021.73 100 × 0.6667 1022.59 0.1 663.54 0.01 1047.42

D2
1000 978 0.6857 1873.05 1416.40 1207.07 2018.89

D2
2000 2034 0.6827 4849.80 2236.02 2533.62 4644.55

λ0,3 D3
500 483 0.4094 782.19 30 × 0.4302 822.12 0.1 788.14 0.01 788.00

D3
1000 1058 0.4398 1610.47 2012.96 1559.17 1494.75

D3
2000 2055 0.4677 3546.57 9256.71 3179.96 2770.83

(4.9), γ ∗ = �−1(Etheo), the perturbation factor ρ used in the fixed γ strategy and the standard
deviation σγ of the prior distribution of γ (the prior mean being γ̂n) used in the two hierarchical
approaches. The second hierarchical prior distribution (last column of Table 1) corresponds to
a prior distribution more concentrated around γ̂n. We use the algorithm developed by Fall and
Barat [17]; details can be found in Donnet et al. [14]. Note that, as described in Donnet et al. [14]
(formula B.5 at the end of the paper), the distribution of γ |A, λ̄,N is a gamma whose parameters
are easily calculated. As a consequence, this supplementary step in the MCMC algorithm has a
negligible computational cost and does not decrease the acceptance rate of the chain.

On Figures 1, 2 and 3, for each strategy and each dataset we plot the posterior median of
λ̄1, λ̄2 and λ̄3, respectively, together with a pointwise credible interval using the 10% and 90%
empirical quantiles obtained from the posterior simulation. Table 2 gives the distances between

the normalized intensity estimates ˆ̄λi and the true λ̄i for each dataset and each prior specification.
The estimates and the credible intervals for the second hierarchical distribution were very similar
to the ones obtained with the empirical strategy and so were not plotted.

For the function λ0,1, the 4 strategies lead to the same quality of estimation in terms of
loss/distance between the functions of interest. In this case, it is thus interesting to have a look at
the computational time in Table 1. We notice that for a small γ0 or for a diffuse prior distribution
on γ , possibly generating small values of γ , the computational time explodes. This phenomenon
can be so critical that the user may have to stop the execution and re-launch the algorithm. More-
over, the posterior mean of the number of non-empty components in the mixture computed over
the last 10 000 iterations is equal to 4.21 for n = 500 in the empirical strategy, to 11.42 when γ

is arbitrarily fixed, to 6.98 under the hierarchical diffuse prior and to 3.77 with the hierarchical
concentrated prior. In this case, choosing a small value of γ leads to a posterior distribution on
mixtures with too many non-empty components. These phenomena tend to disappear when n

increases. For λ0,2 and λ0,3, a bad choice of γ – here γ too large in strategy 2 – or a not enough
informative prior on γ , namely, a hierarchical prior with large variance, has a significant negative
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Figure 1. Estimation of λ̄1 from D1
500 (first column), D1

1000 (second column) and D1
2000 (third column)

using different strategies: empirical prior (row 1), fixed γ (row 2), hierarchical empirical prior (row 3). True
density (plain line), estimate (dashed line) and confidence band (dotted lines).

impact on the behaviour of the posterior distribution. Contrariwise, the medians of the empirical
and informative hierarchical posterior distributions of λ have similar losses, as seen in Table 2.

5. Final remarks

In this article, we stated sufficient conditions for assessing contraction rates of posterior dis-
tributions corresponding to data-dependent priors. The proof of Theorem 1 relies on two main
ideas:

(a) replacing the empirical Bayes posterior probability of the set Uc
J1εn

by the supremum (with
respect to γ ) of the posterior probability of Uc

J1εn
over a set Kn;

(b) shifting data-dependence from the prior to the likelihood using a suitable parameter trans-
formation ψγ,γ ′ .

We do not claim that all nonparametric data-dependent priors can be handled using Theorem 1,
yet, we believe it can be applied to many relevant situations. In Section 2, we have described
possible parameter transformations for some families of prior distributions. To apply Theorem 1
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Figure 2. Estimation of λ̄2 from D2
500 (first column), D2

1000 (second column) and D2
2000 (third column)

using different strategies: empirical prior (row 1), fixed γ (row 2), hierarchical empirical prior (row 3). True
density (plain line), estimate (dashed line) and confidence band (dotted lines).

in these cases, it is then necessary to control

inf
γ ′:‖γ ′−γ ‖≤un

	n

(
ψγ,γ ′(θ)

) − 	n(θ0) and sup
γ ′:‖γ ′−γ ‖≤un

	n

(
ψγ,γ ′(θ)

) − 	n(θ0).

This is typically achieved by bounding above the supremum on the right-hand side of the last
display by a well-behaved function of the data, say mθ,γ :

sup
γ ′:‖γ ′−γ ‖≤un

	n

(
ψγ,γ ′(θ)

) − 	n(θ0) ≤ unmθ,γ

(
X(n)

)
.

Similarly for the infimum. This has been illustrated in the examples of Sections 3 and 4.
An important feature of the proposed approach is the identification of a set Kn satisfying con-

dition (2.1). When γ̂n corresponds to a moment estimator, the set Kn is easily identified; this is
the case in the examples herein considered. When γ̂n is implicitly defined, as it is the case for the
maximum marginal likelihood estimator, it is more difficult to characterize Kn and a preliminary
study is needed to be able to apply Theorem 1. This is the approach taken in Rousseau and Szabó
[39], where posterior contraction rates are provided for the maximum marginal likelihood estima-
tor following this scheme. The authors provide some examples where minimax-optimal posterior
contraction rates are attained and some others where sub-optimal rates are found. This mainly
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Figure 3. Estimation of λ̄3 from D3
500 (first column), D3

1000 (second column) and D3
2000 (third column)

using different strategies: empirical prior (row 1), fixed γ (row 2), hierarchical empirical prior (row 3). True
density (plain line), estimate (dashed line) and confidence band (dotted lines).

depends on the family of prior distributions. In particular, sub-optimal posterior contraction rates
are obtained for Gaussian priors in the form

θi
ind∼ N

(
0, γ i−(2α+1)

)
, i ∈ N,

when the true parameter belongs to a Sobolev ball with smoothness β > α + 1/2.
Although data-dependent prior distributions are commonly used in practice, theoretical prop-

erties have been so far considered only for maximum marginal likelihood empirical Bayes pro-

Table 2. L1-distances between the estimates and the true densities for all datasets and strategies

λ0,1 λ0,2 λ0,3

D1
500 D1

1000 D1
2000 D2

500 D2
1000 D2

2000 D3
500 D3

1000 D3
2000

dL1 Empir 0.0246 0.0238 0.0207 0.0921 0.0817 0.0549 0.1382 0.0596 0.0606
Fixed 0.0161 0.0219 0.0211 0.5381 0.7221 0.6356 0.3114 0.2852 0.2885
Hierar 0.0132 0.0233 0.0317 0.1082 0.1280 0.0969 0.2154 0.1378 0.1405
Hierar 2 0.0191 0.0240 0.0208 0.0925 0.0815 0.0552 0.1383 0.0607 0.0724
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cedures when an explicit expression of the marginal likelihood is available. The present contri-
bution is an attempt at filling this gap.
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