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Rate of convergence for Hilbert space valued
processes
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Consider a stationary, linear Hilbert space valued process. We establish Berry–Esseen type results with
optimal convergence rates under sharp dependence conditions on the underlying coefficient sequence of
the linear operators. The case of non-linear Bernoulli-shift sequences is also considered. If the sequence is
m-dependent, the optimal rate (n/m)1/2 is reached. If the sequence is weakly geometrically dependent, the
rate (n/ logn)1/2 is obtained.
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1. Introduction

Let {Xk}k∈Z be a zero mean process takeing values in a separable Hilbert space H with inner
product 〈·, ·〉 and norm ‖ · ‖H. A fundamental issue in probability theory and statistics is whether
or not the central limit theorem holds for the partial sum Sn(X) =∑n

k=1 Xk , that is, if we have

1√
n
Sn(X)

w−→ Z�, (1.1)

where Z� denotes a centered Gaussian random variable with associated covariance operator

�(·) = E
[〈Z�, ·〉Z�

]
.

Going one step further, we can ask ourselves about a possible rate of convergence in (1.1), that
is, if

lim
n→∞d(PSn(X)/

√
n,PZ�)rn < ∞ for a sequence rn → ∞, (1.2)

where d(·, ·) is a probability metric, and PX denotes the probability measure induced by the ran-
dom variable X. The rate rn can be considered as a measure of reliability for statistical inference
based on Sn(X), and large rates are naturally preferred. In the context of general Hilbert space
valued processes, the notion of “probability of hitting a ball” has turned out to be a convenient
formulation. More precisely, we consider the uniform metric over Balls, that is,

�n(μ) = sup
x∈R

∣∣P (∥∥n−1/2Sn(X) + μ
∥∥
H

≤ x
)− P

(‖Z� + μ‖H ≤ x
)∣∣, μ ∈ H, (1.3)
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where Z� is a zero mean Gaussian random variable with associated covariance operator �. If
{Xk}k∈Z is i.i.d. and real valued (H = R), a huge literature has evolved around (1.2) in the past
decades, see, for instance, [34]. Interestingly, if Xk lies in a general infinite dimensional Hilbert
space H, much less can be found in the literature. To some extent, this can certainly be attributed
to the significantly higher complexity of the problem. While the first optimal results about the
rate of convergence in real valued cases appeared around 1940 (cf. [4,16]), it took more than
another 30 years until analogue results were obtained if H is a general, infinite dimensional
Hilbert space. Notable contributions here among others are [3,19,31,32,42] and [44]. For a more
detailed account on the historic development, see [45]. More recently, weakly dependent Hilbert
space valued process have attracted more attention in the statistical context of functional principal
component analysis, see [24] and [25]. In this note, we are concerned with possibly dependent,
stationary processes that can be represented as

Xk = gk

({εj }j∈Z
)
, k ∈ Z, (1.4)

for measurable functions gk and i.i.d. random variables {εk}k∈Z ∈ S for some measure space S.
Such processes are often also referred to as (non-causal) Bernoulli-shift processes. Special em-
phasis is devoted to non-causal linear processes, that is, we assume that Xk can be represented
as

Xk =
∑
j∈Z

αj (εk+j ), k ∈ Z, (1.5)

where {εk}k∈Z ∈H is a centered i.i.d. sequence with E[‖εk‖2
H
] < ∞. Note that this implies exis-

tence of the associated covariance operator Cε . The sequence {αj }j∈N denotes linear operators,
which we endow with the usual operator norm

‖αj‖H = sup
x∈H:‖x‖H=1

∥∥αj (x)
∥∥
H
.

For notational convenience, we assume here that αj maps from H to H, but also two differ-
ent Hilbert spaces are possible. Linear processes are among the first (possibly weak dependent)
generalizations from the i.i.d. case, but already constitute a relevant class of processes which con-
tains important examples from the time series literature, for instance (functional) autoregressive
processes (cf. [7,24]). The CLT for linear processes in Hilbert spaces was investigated, among
others, in [29], where it was shown that a CLT is valid if and only if∑

j∈Z
‖αj‖H < ∞, (1.6)

see below for some more comments on this result. It seems that the first results about the rate
of convergence for linear processes were considered in [7], where the special case of Hilbert
space valued AR(1) processes was treated, and a rate of

√
n was reached. Some extensions with

possible suboptimal rates are obtained in [8], see also the correction in [9]. In [14], the rate
√

n

was obtained if
∑

j∈Z |j |‖αj‖H < ∞ and the sequence {εk}k∈N has bounded support, that is,
P(‖εk‖H > C) = 0 for some C > 0. More recently, [30] considered random fields in Hilbert
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and Banach spaces. In the special case of real-valued sequences αj ∈ R, Berry–Esseen type
bounds are established if (1.6) holds. However, unlike to the previous results, the approximating
Gaussian measure depends on n in general, which is different from our results.

Regarding non-linear sequences, the problem becomes more difficult. Certain martingale dif-
ference sequences in Banach spaces have been investigated in [1,10]. In [36] and [37] (see
also [6]), m-dependent sequences in Banach spaces are studied, whereas [46] considers ϕ(n)-
mixing sequences with geometric decay. Though some of these results are optimal or close to
optimality in a certain way, they lead to (significantly) inferior rates for Hilbert space valued
sequences, as was pointed out in [41]. [41] is a notable exception, where a convergence rate of
rn = n1/2(logn)−2 is obtained if the sequence {Xk}k∈Z is geometrically ϕ(n)-mixing and satis-
fies some additional regularity assumptions (cf. Section 3).

The aim of this note is twofold. In case of linear processes, we first give a Berry–Esseen re-
sult with optimal rate under sharp moment assumptions (p ∈ (2,3]) and dependence conditions.
We also show that the convergence rate may be arbitrarily slow. For non-linear processes, we
first study one-dependent Bernoulli-shift sequences and establish the optimal rate. Based on this
result, we then consider m-dependent Bernoulli-shift sequences and causal, weakly dependent
Bernoulli-shift sequences with geometric decay in the dependence. In the latter, we obtain a con-
vergence rate of (n/ logn)1/2. For m-dependent processes, we obtain the optimal rate (n/m)1/2.

This note is structured as follows. In Sections 2 and 3, the main results are presented and
discussed. Proofs are given in Section 4. Throughout the remainder, we make the following
convention. For p ≥ 1, denote with ‖ · ‖p the Lp-norm E[| · |p]1/p . We write �, �, (∼) to denote
(two-sided) inequalities involving a multiplicative constant. Given a set A, we denote with Ac

its complement.

2. Main results: Linear processes

Let us first introduce some additional necessary notation. Denote with {ξk}k∈Z ∈ H an i.i.d. se-
quence of centered Gaussian random variables, where we require that the covariance operators
of εk and ξk are equal. We then consider the Gaussian counter part of Xk , namely

Zk =
∑
j∈Z

αj (ξk+j ), k ∈ Z.

For k ∈ Z, we also introduce the following (linear) operators, mapping from H to H.

A =
∑
j∈Z

αj , An,k =
k−1∑

j=−n+k

αj ,

(2.1)
Ac

n,k =
∑

j>n−k

αj +
∑

j<1−k

αj , � = ACεA∗,

where B∗ denotes the adjoint of an operator B. Note that we assign � a more concrete form here,
and indeed one readily verifies that for x ∈ H

ACεA∗(x) = E
[〈Z�, x〉Z�

]
where Z� = A(ξ0).
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One of the fundamental tools when working with linear processes is the elementary and well-
known Beveridge and Nelson decomposition (BND) (cf. [5])

n∑
k=1

Xk =
n∑

k=1

k−1∑
j=−n+k

αj (εk) +
∑
k>n

k−1∑
j=−n+k

αj (εk) +
∑
k<1

k−1∑
j=−n+k

αj (εk)

=
n∑

k=1

A(εk) −
n∑

k=1

Ac
n,k(εk) +

∑
k>n

An,k(εk) +
∑
k<1

An,k(εk).

It should be mentioned though that related, much more general martingale decompositions have
already appeared earlier in the literature, see, [18] and [22]. For the CLT, Sn(ε) =∑n

k=1 A(εk) is
the relevant part in (4.2), and indeed we have that

n−1/2Sn(ε)
w−→ Z� if

∑
j∈Z

‖αj‖H < ∞,

see, [29]. Unlike to the real-valued case, condition
∑

j∈Z ‖αj‖H < ∞ is sharp in the sense that
if it fails, no CLT can hold, even not under a possibly different normalization [29]. The corre-
sponding counter example itself is set in the Gaussian domain, i.e. εk = ξk , and solely relies on
properties of the constructed sequence of linear operators αj . Thus, to a good proportion, the
question of Berry–Esseen type results for linear processes is intimately connected to distribu-
tional properties of Gaussian random variables in Hilbert spaces.

Here we use results from [42] (cf. Lemma 4.3), and particularly Lemma 4.7 as our main tools
for the linear case. This requires us to impose some conditions on the eigenvalues of �, which
we denote with {λj }j∈N. Throughout, we assume without loss of generality that λj ≥ 0. We then
derive our main results under the following assumptions.

Assumption 2.1. For some 2 < p ≤ 3 it holds that

(i) E[εk] = 0 and E[‖εk‖p

H
] < ∞,

(ii)
∑

j∈Z ‖αj‖H < ∞,
(iii) min1≤j≤13 λj > 0 for � defined in (2.1).

Note that Assumption 2.1(ii) implies that An,k,A and � all exist and are of trace class. Our
main result of this section is given below.

Theorem 2.2. Grant Assumption 2.1 and let μ ∈H with ‖μ‖H < ∞. Then

�n(μ) � n− p
2 +1(1 + ‖μ‖p

H

)
E
[‖ε0‖p

H

]+ n−1
∑
j∈Z

(|j | ∧ n
)‖αj‖HE

[‖ε0‖p

H

]
.

The constant in � only depends on
∑

j∈Z ‖αj‖H and min1≤j≤13 λj .

Remark 2.3. The primary objective of Theorem 2.2 is to provide tight bounds in terms of the
rate, the sequence {αj }j∈N and the underlying moments p ∈ (2,3]. Note however if μ = 0 and
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p > 3 the results in [2] suggest that the rate can be improved. Observe also if Assumption 2.1(iii)
is violated (or in fact if λj = 0 for some finite j ), we are facing a multivariate problem, which has
been the subject of intensive study (cf. [20,39]). Again results dealing with independent random
variables suggest that Assumption 2.1(iii) may be weakened, see, for example, [45] and [35] for
a general overview.

Unlike to the i.i.d. case, the rate of convergence is also governed by the additional component

An = n−1
∑
j∈Z

(|j | ∧ n
)‖αj‖H.

Before discussing the bound An in more detail, we state optimality of the above result.

Theorem 2.4. Grant Assumption 2.1 and let μ ∈ H with ‖μ‖H < ∞. Then the upper bound in
Theorem 2.2 is sharp up to a constant, that is, there exist examples meeting Assumption 2.1 where
the upper bound is reached up to a constant.

Expression An is particularly interesting if it dominates the rate, that is, n− p
2 +1 = O(An) and

hence rn = A−1
n . In order to develop this a little further, let us consider real valued functions f

where

f (x) ≥ 0 is monotone and
∫ ∞

0
f (x)dx < ∞. (2.2)

Put bj = j2f (j) for j ∈ N and let αj = bj −bj−1
j

for j ∈ N \ {0} and αj = 0 otherwise. Then

∑
j∈Z

(|j | ∧ n
)|αj | ≥

n∑
j=1

jαj = bn = n2f (n).

On the other hand, using the monotonicity of f (n), we have f (n)n → 0 as n → ∞, and hence
summation by parts yields

n∑
j=1

αj ≤ bn

n
+
∑
j∈N

bj

j2
≤ O(1) +

∑
j∈N

f (j) < ∞, n ∈ N.

We thus obtain the following corollary.

Corollary 2.5. Let f (x) be a function satisfying (2.2). Then there exist examples satisfying As-
sumption 2.1 where rn ∼ (nf (n))−1.

Corollary 2.5 gives a very simple method to provide upper bounds for the rate rn. For example,
setting

f (x) = (1 + x)−a for a> 1 and x ≥ 0 and f (x) = 1 if x < 0
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gives the upper bound n−a+1. Logarithmic rates are obtained by f (x) = (1 + x)−1(log(1 +
x))−a, a > 1, and this can be continued in the obvious way. Let us mention here that for the real
valued case it is shown already in [15] that the rate of convergence in the CLT can be arbitrarily
slow, where a much more general framework is considered. Let us now address the question
when the rate rn = n

p
2 −1 persists. To this end, put β = p

2 − 1. Since we have the bound∑
j∈Z

(|j | ∧ n
)‖αj‖H ≤ n1−β

∑
j∈Z

|j |β‖αj‖H,

we obtain the following corollary.

Corollary 2.6. Grant Assumption 2.1. If we have in addition∑
j∈Z

|j | p
2 −1‖αj‖H < ∞, p ∈ (2,3],

then

�n(μ) � n− p
2 +1(1 + ‖μ‖p

H

)
E
[‖ε0‖p

H

]
.

3. Main results: Non-linear processes

As mentioned earlier, it appears that the only result which obtains optimal rates up to logarithmic
factors is [41], where {Xk}k∈Z is required to be geometrically ϕ(n)-mixing, Xi,Xj are uncorre-
lated for i = j and

E
[∣∣〈Xk,h〉∣∣3]� ‖h‖HE

[∣∣〈Xk,h〉∣∣2], h ∈H, k ∈ Z.

In this section, we follow a different path and focus on Bernoulli-shift processes. We first consider
the special case of one-dependent sequences. To this end, let {εk}k∈Z be a sequence of i.i.d.
random variables in some measure space S, and g : S→ H be a measurable map such that

Xk = g(εk, εk−1), k ∈ Z. (3.1)

Regarding the method of proof, this special structure will allow us to redirect the problem to
the independent case (subject to a special conditional probability measure), by employing a con-
ditioning argument. Unfortunately, as the proof shows, setting this idea to work leads to some
non-trivial technicalities that need to be dealt with. To overcome these obstacles, we need to
impose slightly stronger moment assumptions on Xk than before.

For our main result, Theorem 3.2 below, we do not need to impose any additional conditions
on S, allowing for a large flexibility. This is demonstrated for instance by the subsequent Corol-
laries 3.3 and 3.4, where more general processes are considered. Our main assumptions are now
the following.

Assumption 3.1. For some p ≥ 9/2 it holds that
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(i) E[εk] = 0 and E[‖Xk‖p

H
] < ∞,

(ii) {Xk}k∈Z satisfies (3.1),
(iii) min1≤j≤13 λj > 0 for �(·) =∑

|k|≤1 E[〈Xk, ·〉X0].

We then have the following result.

Theorem 3.2. Grant Assumption 3.1. Then

�n(μ) � n−1/2(1 + ‖μ‖3
H

)
E
[‖X0‖9/2

H

]
.

The constant in � only depends on min1≤j≤13 λj .

Compared to the linear case, the moment condition p ≥ 9/2 appears to be suboptimal. On the
other hand, for μ = 0, the rate n1/2 is optimal also for p > 3, see [2].

The flexibility in the setup allows us to treat Hilbert space valued m-dependent potential func-
tions (cf. [21] for the real valued analogue). More precisely, for m ∈ N, let

Xk = gm(εk, εk−1, . . . , εk−m+1), k ∈ Z, (3.2)

for measurable functions gm : Sm → H. We explicitly allow that m = mn with m = O(n) may
depend on the sample size n. The crucial condition here is the non-degeneracy assumption

lim inf
n→∞ E

[∥∥Sn(X)
∥∥2
H

]
/(nm) > 0. (3.3)

The underlying covariance operator is then given as

�m(·) = m−2
∑
|l|≤1

E
[〈Bl, ·〉B0

]
, Bl =

lm∑
k=(l−1)m+1

Xk. (3.4)

We now modify Assumption 3.1(iii) to

inf
m

min
1≤j≤13

λj,m > 0 with �m(·) as in (3.4), (3.5)

to obtain the following corollary.

Corollary 3.3. Grant Assumption 3.1(i), and assume in addition the validity of (3.2), (3.3) and
(3.5) with m = O(n). Then

sup
x∈R

∣∣P (∥∥(nm)−1/2Sn(X) + μ
∥∥
H

≤ x
)− P

(‖Z�m + μ‖H ≤ x
)∣∣

� (n/m)−1/2(1 + ‖μ‖3
H

)
E
[‖X0‖9/2

H

]
.

Recall that the rate (n/m)1/2 is optimal even for real-valued cases, see, for instance, [11,40]
for analogue univariate and multivariate results (a reparametrization is necessary to obtain this
explicit form of the rate), and [38] for a lower bound.
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A different dependence setup is if {Xk}k∈Z exhibits weak dependence, the latter only coincid-
ing with m-dependency in general if m is finite and independent of n. A huge variety of weak
dependence concepts have been discussed in the literature, see for example [13] and [43]. In our
context, the notion of Bernoulli-shift processes together with coupling coefficients is particularly
useful (cf. [43]). For Hilbert space valued processes, a related concept is Lp −m approximability,
see [24]. To formalise the setup, consider

Xk = g(εk, εk−1, . . .), k ∈ Z, (3.6)

for measurable functions g : S∞ → H. Let {ε′
k}k∈Z be an independent copy of {εk}k∈Z. We then

define the “coupled” random variable X′
k as

X′
k = g

(
εk, . . . , ε1, ε

′
0, ε−1, . . .

)
, k ∈N,

see [43] for more details on this kind of coupling. Dependence measures can now be constructed
by measuring the distance between Xk and X′

k , a popular measure being

θp(k) = E
[∥∥Xk − X′

k

∥∥p

H

]1/p
, p ≥ 1, (3.7)

which we use in the sequel. In the presence of infinite dependence, the underlying covariance
operator is now (formally) defined as

�(·) =
∑
k∈Z

E
[〈Xk, ·〉X0

]
. (3.8)

Existence holds if
∑

k∈N θ2(k) < ∞, see [12]. As before, we modify Assumption 3.1(iii) to

min
1≤j≤13

λj > 0 with �(·) as in (3.8). (3.9)

We then have the following result.

Corollary 3.4. Grant Assumption 3.1(i), and assume the validity of (3.6) and (3.9). If in addition
θ9/2(k) � ρk , 0 < ρ < 1, then

�n(μ) � (n/ logn)−1/2(1 + ‖μ‖3
H

)
E
[‖X0‖9/2

H

]
.

The literature provides a huge variety of important examples of processes displaying a geo-
metric decay in θp(k). A prominent example is the following.

Example 3.5 (ARCH-processes). Let β ∈ L
2([0,1]2) be a non-negative Kernel and {εk}k∈Z ∈

L
2([0,1]) be an i.i.d. sequence with E[εk] = 0. If the function μ ∈ L

2([0,1]) is positive, then we
call the process

Xk = Xk(t) = εk(t)σk−1(t), k ∈ Z, t ∈ [0,1],
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with

σ 2
k (t) = μ(t) +

∫ 1

0
β(t, s)X2

k−1(s) ds, k ∈ Z, t ∈ [0,1],

the functional ARCH(1)-process. To see why Xk fits into our framework (satisfies representa-
tion (3.6)) is by formally iterating the recursion, yielding (with t = t0)

Xk(t0) = εk(t0)

(
μ(t0) +

∞∑
i=1

i∏
j=1

∫ 1

0
β(tj−1, tj )ε

2
k−j (tj )μ̃i(j, tj ) dtj

)1/2

,

where μ̃i(j, ·) = 1 for i = j and μ̃i(i, ·) = μ(·). This formal argument can be made rigorous by
using Proposition 2.3 in [24] (see also [23], Theorem 2.1), provided that E[Kp(ε2

0)] < 1 with
p ≥ 2, where

K2(ε2
0

)=
∫ 1

0

∫ 1

0
β2(s, t)ε4

0(s) ds.

Moreover, Proposition 2.3 in [24] also implies θp(k) � ρk with 0 < ρ < 1 for p ≥ 2. Hence if
p ≥ 9/2 and (3.9) holds, Corollary 3.4 applies.

For additional examples with geometric decay, we refer to [24].

4. Proofs

We first deal with the results concerning linear processes, given in Section 2. This is then followed
by the proofs of Section 3. We first collect and review some required results from the literature
we make repeated use of.

Consider two compact operators K,L with singular value decompositions

K(x) =
∑
j∈N

λK
j 〈x,uj 〉fj , L(x) =

∑
j∈N

λL
j 〈x, vj 〉gj . (4.1)

The following lemma is proven in Section VI.1 of Gohberg et al. [17], see their Corollary 1.6 on
page 99.

Lemma 4.1. Let K and L be compact operators with singular value decompositions as in (4.1).
Then ∣∣λL

j − λK
j

∣∣≤ ‖K − L‖H.

The next lemma appears in some variants in the literature, see, for instance, [3,42] and [44].
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Lemma 4.2. Let Z ∈H be a zero mean Gaussian random variable and CZ its covariance oper-
ator. Let Y ∈H be another, independent random variable. Then

∣∣E[exp
(
it‖Z + Y‖2

H

)]∣∣≤ ∞∏
k=1

(
1 + 4t2(λZ

k

)2)−1/4
,

where λZ
k denotes the eigenvalues of CZ .

For the next lemma, we assume that {Yj }j∈N ∈ H is an independent sequence. For 2 ≤ p ≤ 3,
we introduce the quantities

Mp,j = E
[‖Yj 1‖Yj ‖H>1‖p

H

]
, Mp =

∑
j∈N

Mp,j ,

Lp,j = E
[‖Yj 1‖Yj ‖H≤1‖p

H

]
, Lp =

∑
j∈N

Lp,j .

Let �Y be the covariance operator of S(Y ) = ∑
j∈N Yj . The following result is an adapted ver-

sion of Theorem 1 in [42].

Lemma 4.3. Assume that the first thirteen eigenvalues of �Y are strictly positive. Then for any
2 < p ≤ 3 and a ∈H, we have

sup
x∈R

∣∣P (∥∥S(Y ) − a
∥∥
H

≤ x
)− P

(‖Z − a‖H ≤ x
)∣∣� (

1 + ‖a‖p

H

)
(M2 +Lp),

where Z ∈ H is a Gaussian random variable with covariance operator �Y .

4.1. Proofs of Section 2

We first state and prove the following auxiliary result.

Theorem 4.4. Grant Assumption 2.1 and let μ ∈H with ‖μ‖H < ∞. Then

sup
x∈R

∣∣P (∥∥n−1/2Sn(X) + μ
∥∥
H

≤ x
)− P

(‖Z�n + μ‖H ≤ x
)∣∣

� n− p
2 +1(1 + ‖μ‖p

H

)
E
[‖ε0‖p

H

]
,

for an appropriate covariance operator �n(·). The constant in � only depends on
∑

j∈Z ‖αj‖H
and min1≤j≤13 λj .

Theorem 4.4 gives the optimal rates under sharp dependence condition Assumption 2.1(ii).
Note that here the underlying covariance operator �n depends on n (see the proof for the pre-
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cise construction of �n). Based on this result, we then obtain Theorem 2.2 by the comparison
Lemma 4.7 for Hilbert space valued Gaussian random variables.

Proof of Theorem 4.4. For 1 ≤ k ≤ n, put
√

nUk = An,k(εk) and
√

nUk = An,k(εk) +
An,−k+n(ε−k+n) for n + 1 ≤ k ≤ ∞. We then use the abbreviations Tk = Uk for 1 ≤ k ≤ n

and Tn+1 =∑∞
k=n+1 Uk . Moreover, we put Sn

1 (U) =∑n
k=1 Uk and Sn

1 (T ) =∑n
k=1 Tk . Then

n−1/2
n∑

k=1

Xk = Sn+1
1 (T ). (4.2)

In addition, we denote with Sn
1 (Z) the Gaussian counter parts, that is, every εi is replaced with

ξi at the corresponding places. For x ∈ H denote with

�(0)
n (x) = n−1

n∑
k=1

E
[〈Xk,x〉Xk

]
,

�n,k(x) = An,kCεA∗
n,k(x),

�(1)
n (x) = n−1

n∑
k=1

An,kCεA∗
n,k,

and with {λn,j }j∈N the eigenvalues of the covariance operator �
(0)
n . The proof of Theorem 4.4

requires the following lemmas.

Lemma 4.5. Grant Assumption 2.1. Then for any 2 ≤ p ≤ 3 we have

E
[‖Tn+1‖p

H

]= O
(
n− p

2 +1
E
[‖ε0‖p

H

])
and∥∥�(0)

n − �(1)
n

∥∥
H = O(1).

Proof. Due to the triangle inequality, it follows that for n + 1 ≤ i ≤ ∞ and p ≥ 1 we have

E
[‖√nUi‖p

H

] ≤
(

n−i∑
j=1−i

‖αj‖H +
n+i∑

j=1+i

‖αj‖H
)p

E
[‖ε0‖p

H

]
(4.3)

�
(

n+i∑
j=1+i

‖α−j‖H +
n+i∑

j=1+i

‖αj‖H
)p

E
[‖ε0‖p

H

]
.

Denote with a+
n,i = ∑n+i

j=1+i ‖αj‖H and a−
n,i = ∑n+i

j=1+i ‖α−j‖H. Note that since∑
j∈Z ‖αj‖H < ∞ we have

a+
n,i , a

−
n,i → 0 as i → ∞, uniformly in n. (4.4)
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Then by (4.3), it follows that for K ∈ N

∞∑
i=n+1

E
[‖√nUi‖p

H

]
/E

[‖ε0‖p

H

]
�

K∑
i=1

(
a+
n,i + a−

n,i

)p +
∑
i>K

(
a+
n,i + a−

n,i

)p

� 2pK

(∑
i∈Z

‖αi‖H
)p

+
∑

|i|>K

(n ∧ i)‖αi‖H.

Selecting K = Kn → ∞ such that Kn = O(n), we deduce that

∞∑
i=n+1

E
[‖√nUi‖p

H

]= O
(
nE

[‖ε0‖p

H

])
. (4.5)

Using a Rosenthal inequality for Hilbert spaces (cf. [33]), we get for p ≥ 2

E
[‖Tn+1‖p

H

]
� n− p

2

{( ∞∑
i=n+1

E
[‖√nUi‖2

H

]) p
2

+
∞∑

i=n+1

E
[‖√nUi‖p

H

]}
(4.6)

= O
(
n− p

2 +1
E
[‖ε0‖p

H

])
.

This gives the first claim. Next, denote with λ
(T )
j and e

(T )
j the eigenvalues and functions of the

Covariance operator of Tn+1, which exists due to (4.6). Since Tn+1 is independent of {Tj }1≤j≤n

by construction, we get that for any x ∈H

�(0)
n (x) − �(1)

n (x) = E
[〈
Sn

1 (T ), x
〉
Tn+1 + 〈Tn+1, x〉Sn

1 (T ) + 〈Tn+1, x〉Tn+1
]

= E
[〈Tn+1, x〉Tn+1

]
.

It then follows from Cauchy–Schwarz and Parseval’s identity that

∥∥�(0)
n − �(1)

n

∥∥
H ≤ ∥∥E[〈Tn+1, ·〉Tn+1

]∥∥
H ≤

( ∞∑
j=1

(
λ

(T )
j

)2

)1/2

.

By the triangle inequality and from (4.6), we deduce that

( ∞∑
j=1

(
λ

(T )
j

)2

)1/2

≤
∞∑

j=1

λ
(T )
j = E

[‖Tn+1‖2
H

]= O(1),

and hence ∥∥�(0)
n − �(1)

n

∥∥
H = O(1). (4.7)

�
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Lemma 4.6. Assume that Assumption 2.1 holds. Then there exists an n0 ∈N such that for n ≥ n0
we have λn,k > 0 for any fixed k ∈ N where λk > 0.

Proof. Note first that since ‖A‖H,‖Cε‖H,‖An,k‖H < ∞ for all i ∈ Z and n ∈ N, �n,k and �

are bounded operators. By Lemma 4.1, we have

|λk − λn,k| ≤
∥∥� − �(1)

n

∥∥
H,

hence it suffices to consider ‖� − �
(1)
n ‖H. Moreover, by the triangle inequality and Lemma 4.5,

we only need to consider ‖� − �
(1)
n ‖H. Using the linearity of An,k,A,Cε and the fact that

‖B‖H = ‖B∗‖H for an operator B, it follows that

‖�n,k − �‖H ≤ ∥∥An,kCεA∗
n,k − An,kCεA∗∥∥

H + ∥∥ACεA∗ − An,kCεA∗∥∥
H

≤ 2‖A − An,k‖H
∥∥Cε

∥∥
H
(‖A‖H + ‖An,k‖H

)
.

By the triangle inequality, we have ‖A − An,k‖H ≤∑
j>n−k ‖αj‖H +∑

j<1−k ‖αj‖H = O(1)

as k,n → ∞. Since∥∥∥∥∥n−1
n∑

k=1

�n,k − �

∥∥∥∥∥
H

≤ n−1
n−l∑
k=l

‖�n,k − �‖H + 2l/n‖�‖H, (4.8)

the claim follows. �

We are now ready to proceed to the proof of Theorem 4.4. Due to Lemma 4.6, we have

lim inf
n→∞ min

1≤k≤13
λn,k > 0. (4.9)

Hence applying Lemma 4.3, it follows that

�n(μ) ≤ sup
x∈R

∣∣P (∥∥Sn+1
1 (T ) + μ

∥∥
H

≤ x
)− P

(∥∥Sn+1
1 (Z) + μ

∥∥
H

≤ x
)∣∣

�
(
1 + ‖μ‖p

H

)(n+1∑
k=1

∥∥‖Tk‖H1
(‖Tk‖H ≥ 1

)∥∥2
2 +

n+1∑
k=1

∥∥‖Tk‖H
∥∥p

p

)
(4.10)

def= (
1 + ‖μ‖p

H

)
(In + IIn).

We first treat In. For 1 ≤ k ≤ n, we obtain∥∥‖Tk‖H1
(‖Tk‖H ≥ 1

)∥∥2
2 = ∥∥n−1/2

∥∥An,k(εk)
∥∥
H

1
(∥∥An,k(εi)

∥∥
H

≥ n1/2)∥∥2
2

� n−1− p−2
2
∥∥∥∥An,k(εk)

∥∥
H

∥∥p

p
(4.11)

� n− p
2 E

[‖ε0‖p

H

]
.
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Similarly, using Lemma 4.5, we deduce that∥∥‖Tn+1‖H1
(‖Tn+1‖H ≥ 1

)∥∥2
2 � n− p

2 +1
E
[‖ε0‖p

H

]
. (4.12)

Combining (4.11) and (4.12), we obtain

In � n− p
2 +1

E
[‖ε0‖p

H

]
. (4.13)

Next, we deal with IIn. First note that for 1 ≤ k ≤ n, we obtain via the triangle inequality∥∥‖Tk‖H
∥∥

p
� n− 1

2
∑
j∈Z

‖αj‖H
∥∥‖ε0‖H

∥∥
p
� n−1/2

E
[‖ε0‖p

H

]
.

Using Lemma 4.5, we thus deduce that

IIn �
n+1∑
j=1

n− p
2 E

[‖ε0‖p

H

]
� n− p

2 +1
E
[‖ε0‖p

H

]
. (4.14)

Combining (4.13) with (4.14) completes the proof. �

Proof of Theorem 2.2. The proof is based on two main lemmas. The first one describes a com-
parison result for two Gaussian, Hilbert-space valued random variables in terms of perturbed
covariance operators.

Lemma 4.7. Let Y1, Y2 ∈ H be two Gaussian random variables with covariance operators CY1

and CY2 of trace class and finite mean μ. Suppose that for δ > 0

λ
Y1
13 > δ and

∥∥CY1 − CY2
∥∥
H ≤ δ, (4.15)

where {λY1
j }j∈N denotes the eigenvalues of CY1 . Then

sup
x∈R

∣∣P (‖Y1‖H ≤ x
)− P

(‖Y2‖H ≤ x
)∣∣� ∣∣tr(CY1

)− tr
(
CY2

)∣∣,
where tr(B) denotes the trace of an operator B.

Proof. We may argue similarly as in [44]. Due to the Gaussianity of Y1 and Y2

Y1 − μ
d=

n∑
k=1

ξn,k, Y2 − μ
d=

n∑
k=1

ηn,k, (4.16)

where {ξn,k}1≤k≤n and {ηn,k}1≤k≤n are i.i.d. Gaussian sequences with covariance operators
n−1CY1 and n−1CY2 . For n ∈ N, denote with

Wn,k = μ +
k−1∑
j=1

ξn,k +
n∑

j=k+1

ηn,k, 1 ≤ k ≤ n. (4.17)
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Following the proof in [44], a careful inspection reveals (cf. Equation 3.5 in [44]) that it suffices
to reconsider the quantity

Qn,k(t) = |t |∣∣E[exp
(
it‖Wn,k‖2

H

)](
E
[‖ξn,k‖2

H

]−E
[‖ηn,k‖2

H

])∣∣, t ∈ R, (4.18)

and establish that ∫
R

Qn,k(t)

t
dt � 1

n

∣∣tr(CY1
)− tr

(
CY2

)∣∣. (4.19)

Once we have (4.19), the results in [44] imply that

sup
x∈R

∣∣P (‖Y1‖H ≤ x
)− P

(‖Y2‖H ≤ x
)∣∣� 1

n

n∑
k=1

∣∣tr(CY1
)− tr

(
CY2

)∣∣+ 1 + ‖μ‖3
H√

n

�
∣∣tr(CY1

)− tr
(
CY2

)∣∣+ 1 + ‖μ‖3
H√

n
.

Selecting n sufficiently large, the claim follows. We proceed by showing (4.19). To this end, note
that by Lemma 4.2 we have that

∣∣E[exp
(
it‖Wn,k‖2

H

)]∣∣≤ ∞∏
j=1

(
1 + 4t2λ̃2

n,k,j

)−1/4
, (4.20)

where λ̃n,k,j denote the eigenvalues of the covariance operator

C̃n,k(x) = E
[〈Wn,k − μ,x〉(Wn,k − μ)

]
. (4.21)

Exploiting the mutual independence of ξn,k and ηn,k , it follows that

∥∥C̃n,k − CY1
∥∥
H ≤ 1

n

∥∥CY1
∥∥
H+n − k

n

∥∥CY2 − CY1
∥∥
H

≤ δ +O
(
n−1).

Hence an application of Lemma 4.1 yields that for 1 ≤ k ≤ 13

λ̃n,k,j ≥ λ
Y1
k − ∣∣λY1

k − λ̃n,k,j

∣∣
(4.22)

≥ λ
Y1
k − δ −O

(
n−1)> 0

for sufficiently large n. Thus λ̃n,k,j > 0 uniformly, and we conclude from (4.20) that

∫
R

∣∣E[exp
(
it‖Wk‖2

H

)]∣∣dt ≤
∫
R

13∏
j=1

(
1 + 4t2λ̃2

n,k,j

)−1/4
dt < ∞. (4.23)
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Note that here we actually only require λ
Y1
3 > 0. Since we have

E
[‖X‖2

H

]= tr
(
CX

)
for any X ∈ H with covariance operator CX of trace class, the claim follows selecting n large
enough. �

Next, recall

Ac
n,k =

∑
j>n−k

αj +
∑

j<1−k

αj , 1 ≤ k ≤ n,

and that we have the decomposition

n∑
k=1

Zk =
n∑

k=1

A(ξk) −
n∑

k=1

Ac
n,k(ξk) +

∑
k>n

An,k(ξk) +
∑
k<1

An,k(ξk)

(4.24)
def=

n∑
k=1

A(ξk) + IIIn + IVn + Vn.

We now have our second lemma.

Lemma 4.8. Assume that Assumption 2.1 holds. Then∥∥∥∥ACεA∗ − 1

n
E
[〈
Sn+1

1 (Z), x
〉
Sn+1

1 (Z)
]∥∥∥∥

H

� 1

n

∑
j∈Z

(|j | ∧ n
)‖αj‖H.

Proof. Observe that
∑n

k=1 A(ξk) + IIIn, IVn and Vn are all mutually independent. It follows
that for any x ∈ H we have that

E
[〈IVn, x〉Vn

]= E
[〈Vn, x〉IVn

]= 0 (4.25)

(with 0 ∈ H), and this remains valid if we substitute IVn or Vn with
∑n

k=1 A(ξk) + IIIn. Simi-
larly, if i = j one readily derives that for x ∈H

E
[〈

A(ξi), x
〉
Aj (ξj )

] = E
[〈

A(ξi), x
〉
Ac

n,j (ξj )
]

(4.26)
= E

[〈
Ac

n,i(ξi), x
〉
A(ξj )

]= 0

(with 0 ∈ H), exploiting the independence of ξi and ξj and the linearity of the operators A and
Ac

n,j . Denote with ej the eigenfunctions of Cε , and with λε
j its corresponding eigenvalues. If
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i = j , it then follows that

∥∥E[〈A(εi), x
〉
Ac

n,i(εi)
]∥∥

H =
∥∥∥∥∥

∞∑
l=1

λε
l E
[〈

A(el), x
〉
Ac

n,i(el)
]∥∥∥∥∥

H

≤
∞∑
l=1

λε
j‖A‖H‖x‖H

∥∥Ac
n,i

∥∥
H (4.27)

� ‖x‖H
∥∥Ac

n,i

∥∥
H,

where we used Cauchy–Schwarz and
∑∞

j=1 ‖αj‖H < ∞. As before, the same bound also applies
if we exchange Ac

n,i and A. Similarly, we also obtain that

∥∥E[〈An,i(εi), x
〉
An,i(εi)

]∥∥
H � ‖x‖H‖An,i‖H (4.28)

and ∥∥E[〈Ac
n,i(εi), x

〉
Ac

n,i(εi)
]∥∥

H � ‖x‖H
∥∥Ac

n,i

∥∥
H. (4.29)

The treatment of IVn, Vn follows as in Lemma 4.5. For the sake of completeness, we have that

∥∥E[〈IVn, x〉IVn

]∥∥
H ≤

∑
i>n

∑
j>n

∥∥E[〈An,i(ξi), x
〉
An,j (ξj )

]∥∥
H

=
∑
i>n

∥∥E[〈An,i(ξi), x
〉
An,i(ξi)

]∥∥
H

(4.30)
�
∑
i>n

‖An,i‖H‖x‖H

�
∑
j∈Z

(|j | ∧ n
)‖αi‖H‖x‖H.

The same bound applies to Vn, that is, we have

∥∥E[〈Vn, x〉Vn

]∥∥
H �

∑
j∈Z

(|j | ∧ n
)‖αi‖H‖x‖H. (4.31)

By independence, we have

E
[〈
Sn+1

1 (Z), x
〉
Sn+1

1 (Z)
]

= E

[〈
n∑

k=1

A(ξk) + IIIn, x

〉(
n∑

k=1

A(ξk) + IIIn

)]
(4.32)

+E
[〈IVn, x〉IVn

]+E
[〈Vn, x〉Vn

]
.
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Using (4.27) and (4.29), it follows that

∥∥∥∥∥E
[〈

n∑
k=1

A(ξk) + IIIn, x

〉(
n∑

k=1

A(ξk) + IIIn

)]
−

n∑
k=1

E
[〈

A(ξk), x
〉
A(ξk)

]∥∥∥∥∥
H

(4.33)
�
∑
j∈Z

(|j | ∧ n
)‖αj‖H.

Combining (4.30), (4.31) and (4.33), we finally obtain that

∥∥E[〈Sn+1
1 (Z), x

〉
Sn+1

1 (Z)
]−

n∑
k=1

E
[〈

A(ξk), x
〉
A(ξk)

]∥∥
H �

∑
j∈Z

(|j | ∧ n
)‖αj‖H. (4.34)

Since we have that

E
[〈

A(ξk), x
〉
A(ξk)

]= ACεA∗,

it follows that∥∥∥∥ACεA∗ − 1

n
E
[〈
Sn+1

1 (Z), x
〉
Sn+1

1 (Z)
]∥∥∥∥

H
� 1

n

∑
j∈Z

(|j | ∧ n
)‖αj‖H.

�

We are now ready to proceed to the actual proof. For μ ∈H denote with

Y1 = 1√
n

n∑
k=1

A(ξk) + μ, Y2 = 1√
n

n∑
k=1

Zk + μ,

and the corresponding covariance operators with CY1 , CY2 . Note that CY1 = ACεA∗. The aim is
to invoke Lemma 4.7. To this end, we need to establish the necessary bounds. Since

∑
j∈Z

(|j | ∧ n
)‖αj‖H = O(n)

due to
∑

j∈Z ‖αj‖H < ∞, Lemma 4.8 yields that

∥∥CY1 − CY2
∥∥
H = O(1).

Hence condition (4.15) is valid by assumption. Next, note that by the independence of∑n
k=1 A(ξk) + IIIn, IVn and Vn, we have that

nE
[‖Y1‖2

H

]=
n∑

k=1

E
[∥∥A(ξk) − Ac

n,k(ξk)
∥∥2
H

]+E
[‖IVn‖2

H

]+E
[‖Vn‖2

H

]
. (4.35)



220 M. Jirak

Using the triangle inequality and a2 − b2 = (a − b)(a + b), we get that∣∣E[∥∥A(ξk) − Ac
n,k(ξk)

∥∥2
H

− ∥∥A(ξk)
∥∥2
H

]∣∣≤ E
[∥∥Ac

n,k(ξk)
∥∥
H

(
2
∥∥A(ξk)

∥∥
H

+ ∥∥Ac
n,k(ξk)

∥∥
H

)]
�
∥∥Ac

n,k(ξk)
∥∥
HE

[‖ξ0‖2
H

]
.

Hence, we obtain the estimate∣∣∣∣∣
n∑

k=1

E
[∥∥A(ξk) − Ac

n,k(ξk)
∥∥2
H

]∣∣∣∣∣�
∑
j∈Z

(|j | ∧ n
)‖αj‖H. (4.36)

Similarly, proceeding as in Lemma 4.5, one readily computes that for p ∈ (2,3]∥∥‖IVn‖H
∥∥p

p
,
∥∥‖Vn‖H

∥∥p

p
�
∑
j∈Z

(|j | ∧ n
)‖αj‖H

∥∥‖ε0‖H
∥∥

p
. (4.37)

Combining (4.35) with (4.36) and (4.37), the claim then follows from Lemma 4.7. �

Proof of Theorem 2.4. For the proof, we construct an example where the upper bound is ob-
tained, up to a constant. It suffices to consider the special case where H = R and Xk is “purely”
non-causal, that is, Xk = ∑∞

j=0 αjεk+j , αj ∈ R. Moreover, we assume throughout this section

that E[ε2
k ] = 1, αj ≥ 0 and A = 1 to simplify matters. We first require the following lemma.

Lemma 4.9. Assume that αj ≥ 0 such that
∑

j∈N αj < ∞ and
∑

j∈N(j ∧n)αj → ∞ as n → ∞.
Then

∑
k>n

(An,k)
2 +

∑
k<1

(An,k)
2 = O

(∑
j∈N

(j ∧ n)αj

)
,

n∑
k=1

(
Ac

n,k

)2 = O

(∑
j∈N

(j ∧ n)αj

)
.

Proof. We only show the first claim, the second follows in an analogue manner. Since∑
j>L αj → 0 as L → ∞, there exists δn → 0 and mn → ∞ as n → ∞, such that

∑
k>n

(An,k)
2 =

∑
k>n

(
k−1∑

j=−n+k

αj

)2

=
∞∑
l=1

(
n+l−1∑
j=l

αj

)2

≤
mn∑
l=1

n+l−1∑
j=l

αj + δn

∑
l>mn

n+l−1∑
j=l

αj (4.38)

≤
mn∑
j=1

(j ∧ n)αj + δn

∑
j∈N

(j ∧ n)αj ,
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where we also used
∑

j∈N αj = 1. Since
∑

j∈N(j ∧ n)αj → ∞, we can choose mn such that

mn∑
j=1

(j ∧ n)αj = O

(∑
j∈N

(j ∧ n)αj

)
,

and the claim follows for
∑

k>n(An,k)
2. Regarding expression

∑
k<1(An,k)

2, note that An,k = 0
for k ≤ 0 by assumption, hence the claim. �

It is known in the literature that the rate np/2−1 is optimal (cf. [34]). Hence due to Theorem 4.4,
it suffices to derive a lower bound for

sup
x∈R

∣∣P(Z�n ≤ x) − P(Z� ≤ x)
∣∣.

Moreover, we may assume without loss of generality that∑
j∈N

(j ∧ n)αj → ∞ as n → ∞, (4.39)

since otherwise the claim immediately follows. Denote with σ 2 = ‖Z�‖2
2 and σ 2

n = ‖Z�n‖2
2.

Note that σ 2 = A2, and by (4.35) we have σ 2
n = n−1 ∑

k∈N A2
n,k . The proof relies on the fol-

lowing lower bound. For large enough n, there exists a constant Cα > 0 (which can be chosen
arbitrarily smaller than two) such that

σ 2 − σ 2
n ≥ Cα

n

∑
j∈N

(j ∧ n)αj . (4.40)

We first derive this lower bound, a simple application of the mean value theorem then yields the
claim, see below. By Lemma 4.9, it follows that

σ 2
n = 1

n

n∑
k=1

A2
n,k + 1

n

∑
k>n

A2
n,k + 1

n

∑
k<1

(An,k)
2

= 1

n

n∑
k=1

A2
n,k + O

(∑
j∈N

(j ∧ n)αj

)
.

On the other hand, we also have

A2 −
n∑

k=1

(An,k)
2 =

n∑
k=1

Ac
n,k(A + An,k) =

n∑
k=1

Ac
n,k

(
2A − Ac

n,k

)
(4.41)

= 2
n∑

k=1

Ac
n,k −

n∑
k=1

(
Ac

n,k

)2
.
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Hence another application of Lemma 4.9 yields the claim. We now finalize the proof. Let 0 <

x < ∞ and denote with S = [x/σ 2,2x/σ 2]. Then for large enough n, it follows from the mean
value theorem that

P(Z�n ≤ x) − P(Z� ≤ x) ≥ x

(
1√
σ 2

n

− 1√
σ 2

)
inf
y∈S

φ(y),

where φ(y) denotes the density function of the Gaussian standard distribution. Using the fact
that σ 2 = 1, we further obtain

P(Z�n ≤ x) − P(Z� ≤ x) ≥ Cx

(
σ 2 − σ 2

n

)
for some Cx > 0. Employing the lower bound of (4.40) then yields the desired result. �

4.2. Proofs of Section 3

Proof of Theorem 3.2. The main idea of the proof is based on a conditioning argument, similar
in spirit to the approach in [27]. To this end, we first require some notation. Put n = 2KL for
L ∼ n and 3 ≤ K < ∞, K ∈ N to be specified later. To simplify the exposition, we also assume
that L ∈ N, see the very last comment at the end of the proof on how to remove this assumption.
We make the convention that Xk = 0 for k /∈ {1, . . . , n}. Put Il = {k : (l − 1)K < k ≤ lK},
I∗

l = Il ∪ {(l − 1)K}, F =F (e)
L = σ(εk, k ∈ I∗

2l ,1 ≤ l ≤ L), and introduce the block variables

Vl =
∑
k∈Il

Xk, V l = Vl −E
[
Vl |F (e)

L

]
.

The fact that I∗
l also contains the left endpoint of the interval (unlike to Il) is important in the

sequel. We denote the corresponding even (e) and odd (o) partial sums with

S
(o)
L (V ) = n−1/2

L∑
l=0

V 2l+1, S
(e)
L (V ) = n−1/2

L∑
l=1

V2l ,

R
(o)
L (V ) = n−1/2

L∑
l=0

E
[
V2l+1|F (e)

L

]
. (4.42)

Hence we have the decomposition

n−1/2Sn(X) = S
(o)
L (V ) + S

(e)
L (V ) + R

(o)
L (V ),

where we used Xk = 0 for k /∈ {1, . . . , n}. Next, consider the conditional probability measure
P|F (·) = P(·|F (e)

L ). Observe that {V 2l+1}0≤l≤L is a sequence of centered, independent random
variables under P|F since K ≥ 3 and due to the inclusion of the left endpoint in I∗

l . Also note

that S
(e)
L (V ) and R

(o)
L (V ) are F (e)

L -measurable. We make heavy use of these properties in the
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sequel. Likewise, under the measure P|F , let Z
(o)

L|F be a zero mean Gaussian random variable
with (conditional) covariance operator

�
(o)

|F (·) = n−1
L∑

l=0

E
[
V 2l+1〈V 2l+1, ·〉|F (e)

L

]
. (4.43)

Similarly, under P , let Z
(o)
L and Z

(e,o)
L be two mutually independent, zero mean Gaussian random

variables, independent of F (e)
L , with covariance operators

�(o)(·) = E
[〈
S

(o)
L (V ), ·〉S(o)

L (V )
]= E

[
�

(o)

|F (·)],
�(e)(·) = E

[〈
S

(e)
L (V ) + R

(o)
L (V ), ·〉(S(e)

L (V ) + R
(o)
L (V )

)]
. (4.44)

The proof relies on the following decomposition

�n(μ) ≤ E

[
sup
x∈R

(
IL(x) + IIL(x)

)]+ sup
x∈R

∣∣E[IIIL(x)
]∣∣+ sup

x∈R
IVL(x), (4.45)

where

IL(x) = ∣∣P|F
(∥∥S(o)

L (V ) + S
(e)
L (V ) + R

(o)
L (V ) + μ

∥∥
H

≤ x
)

− P|F
(∥∥Z(o)

L|F + S
(e)
L (V ) + R

(o)
L (V ) + μ

∥∥
H

≤ x
)∣∣,

IIL(x) = ∣∣P|F
(∥∥Z(o)

L|F + S
(e)
L (V ) + R

(o)
L (V ) + μ

∥∥
H

≤ x
)

− P|F
(∥∥Z(o)

L + S
(e)
L (V ) + R

(o)
L (V ) + μ

∥∥
H

≤ x
)∣∣, (4.46)

IIIL(x) = P|F
(∥∥Z(o)

L + S
(e)
L (V ) + R

(o)
L (V ) + μ

∥∥
H

≤ x
)

− P|F
(∥∥Z(o)

L + Z
(e,o)
L + μ

∥∥
H

≤ x
)
,

IVL(x) = ∣∣P|F
(∥∥Z(o)

L + Z
(e,o)
L + μ

∥∥
H

≤ x
)− P

(‖Z� + μ‖H ≤ x
)∣∣.

Below, we derive separate bounds for all four quantities. The key step is dealing with IIL(x),
where the dependence gets disentangled asymptotically to independence.

Case IL(x): Here we apply Lemma 4.3 under the conditional probability P|F , which makes
all involved quantities random. To ensure applicability, we need to rule out any pathologies in
advance. In particular, we need to control the eigenvalues of the random operator �

(o)

|F . To this

end, let Cδ = {‖�(o)

|F − �‖H ≤ δ}, δ > 0, and put I ′
l = {k : (l − 1)K + 1 < k ≤ (lK − 1)},

1 ≤ l ≤ 2L. Then we have by independence

E
[
Xk|F (e)

L

]= E[Xk], k ∈ I ′
2l+1. (4.47)

Using (4.47), routine calculations reveal that∥∥E[V 2l+1〈V 2l+1, ·〉
]−E

[
V2l+1〈V2l+1, ·〉

]∥∥
H < ∞
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since K < ∞. Applying this bound then leads to

∥∥�(o) − �
∥∥
H �

LE[‖X0‖2
H
]

n
�

E[‖X0‖2
H
]

K
. (4.48)

Selecting K sufficiently large (but finite), we thus obtain

Cc
δ = {∥∥�(o)

|F − �
∥∥
H > δ

}⊆ {∥∥�(o)

|F − �(o)
∥∥
H > δ/2

}
, (4.49)

and hence by Markov’s inequality

P
(
Cc

δ

)≤ (δ/2)−2
E
[∥∥�(o)

|F − �(o)
∥∥2
H
]
.

Denote with ‖ · ‖S the Hilbert–Schmidt norm. Since ‖ · ‖H ≤ ‖ · ‖S and the space of Hilbert–
Schmidt operators forms again a Hilbert space, using a Rosenthal inequality for Hilbert space
valued sequences (cf. [28]), we obtain

nE
[∥∥�(o)

|F − �(o)
∥∥2
H
]

�
L∑

l=0

E
[∥∥E[V 2l+1〈V 2l+1, ·〉|F (e)

L

]−E
[
V 2l+1〈V 2l+1, ·〉

]∥∥2
S
]

�
L∑

l=0

E
[∥∥V 2l+1

∥∥4
H

]
�

L∑
l=0

E

[∥∥∥∥∑
k∈Il

Xk

∥∥∥∥
4

H

]
� LE

[‖X0‖4
H

]
.

This together with the above yields P(Cc
δ ) � (δ2L)−1E[‖X0‖4

H
]. Next, let

Tl = E
[‖V 2l+1‖2

H
1
(‖V 2l+1‖H ≥ n1/2)+ n−1/2‖V 2l+1‖3

H
|F (e)

L

]
,

where routine calculations reveal that

E[Tl] � n−1/2
E
[‖V 2l+1‖3

H

]
� n−1/2

E
[‖X0‖3

H

]
. (4.50)

Note that {Tl}0≤l≤L is a sequence of independent, real valued random variables. Denote with

D =
{∣∣∣∣∣

L∑
l=0

(
Tl −E[Tl]

)∣∣∣∣∣≤ L1/2

}
. (4.51)

Using Burkholders, triangle and Jensens inequality, we get

∥∥∥∥∥
L∑

l=0

(
Tl −E[Tl]

)∥∥∥∥∥
3/2

3/2

�
L∑

l=0

∥∥Tl −E[Tl]
∥∥3/2

3/2 � Ln−3/4
E
[‖X0‖9/2

H

]
.
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Hence we conclude via Markovs inequality

P
(
Dc

)
� L1−3/4n−3/4

E
[‖X0‖9/2

H

]
� L−1/2

E
[‖X0‖9/2

H

]
. (4.52)

We are now in position to derive the actual bound. Observe that

E

[
sup
x∈R

IL(x)
]

≤ 2P
(
Cc

δ

)+ 2P
(
Dc

)+E

[
sup
x∈R

IL(x)1Cδ∩D
]
. (4.53)

Since S
(e)
L (V ),R

(o)
L (V ) ∈ F (e)

L and {V l}0≤l≤L is a sequence of independent zero mean random
variables under P|F , applying Lemma 4.3 leads to

sup
x∈R

IL(x)1Cδ∩D ≤ C|F1Cδ∩D
(
1 + ∥∥S(e)

L (V ) + R
(o)
L (V ) + μ

∥∥3
H

)
n−1

L∑
l=0

Tl. (4.54)

Since λ13 > 0, selecting δ > 0 sufficiently small (and K = Kδ sufficiently large) and using
Lemma 4.1, we may bound C|F1Cδ

≤ Cλ, where Cλ only depends on λ13. In addition, by con-
struction of the set D, we have

E

[
1D

(
1 + ∥∥S(e)

L (V ) + R
(o)
L (V ) + μ

∥∥3
H

)
n−1

L∑
l=0

Tl

]

� E
[
1 + ∥∥S(e)

L (V ) + R
(o)
L (V ) + μ

∥∥3
H

](
n−1

L∑
l=0

E[Tl] + L−1/2

)
.

Using (4.50) and Rosenthals inequality, the above is further bounded by L−1/2(1 + ‖μ‖3
H
) ×

E[‖X0‖3
H
], and hence we obtain

E

[
1D

(
1 + ∥∥S(e)

L (V ) + R
(o)
L (V ) + μ

∥∥3
H

)
n−1

L∑
l=0

Tl

]
� L−1/2(1 + ‖μ‖3

H

)
E
[‖X0‖3

H

]
. (4.55)

We thus conclude from (4.52)

E

[
sup
x∈R

IL(x)
]
� L−1/2(1 + ‖μ‖3

H

)
E
[‖X0‖9/2

H

]
. (4.56)

Case IIL(x): Under the measure P|F , let {ξk|F }1≤k≤n be a sequence of independent, zero mean

Gaussian random variables, where each ξk|F has covariance operator �
(o)

|F (instead of sample
size n we could also select N > n, but n is sufficient). Similarly, let {ξk}1≤k≤n be i.i.d. Gaussian
sequences independent of F (e)

L , with covariance operator �(o). Next, introduce the mixed partial
sums

√
nWk|F =

k−1∑
j=1

ξk|F +
n∑

j=k+1

ξk, 1 ≤ k ≤ n, (4.57)
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and the corresponding conditional covariance operators

�̃k|F (·) = E
[〈Wk|F , ·〉Wk|F |F (e)

L

]
(4.58)

= k − 1

n
�

(o)

|F (·) + n − k

n
�(o)(·),

with eigenvalues λ̃k,j |F , j ∈ N. Since these are random, we need to control them as in the previ-
ous case IL(x). To this end, define the set

C̃δ =
{

max
1≤k≤n

‖�̃k|F − �‖H ≥ δ
}
. (4.59)

Using (4.47) and (4.48), yields

max
1≤k≤n

∥∥E[�̃k|F ] − �
∥∥
H ≤ ∥∥�(o) − �

∥∥
H + ‖�‖H/n �

LE[‖X0‖2
H
]

n
= E[‖X0‖2

H
]

K
.

Proceeding similarly as in the treatment of Cc
δ and using Burkholders inequality for Hilbert-space

valued martingales (cf. [28]), it follows that for large enough K

P
(
C̃c

δ

)
�
(
δ2L

)−1
E
[‖X0‖4

H

]
, δ > 0 sufficiently small. (4.60)

Next, following the same approach as in Lemma 4.7 and using similar arguments as in the previ-
ous case IL(x), we obtain from (4.60) that

E

[
sup
x∈R

IIL(x)
]

≤ 2P
(
C̃c

δ

)+E

[
sup
x∈R

IIL(x)1C̃δ

]
(4.61)

� L−1/2(1 + ‖μ‖3
H

)
E
[‖X0‖4

H

]+E

[
n∑

k=1

∫
R

Qk|F (t)

t
dt1C̃δ

]
,

where

Qk|F (t) = |t |∣∣E[exp
(
it‖Wk|F‖2

H

)|F (e)
L

](
E
[‖ξk|F‖2

H
|F (e)

L

]−E
[‖ξk‖2

H
|F (e)

L

])∣∣, t ∈R.

By Lemma 4.2, we have the bound

∣∣E[exp
(
it‖Wk|F‖2

H

)|F (e)
L

]∣∣1C̃δ
≤

∞∏
j=1

(
1 + 4t2λ̃2

k,j |F
)−1/41C̃δ

, (4.62)

where we recall that λ̃k,j |F denote the eigenvalues of the covariance operator �̃k|F . In particular,
they are bounded away from zero uniformly on the set C̃δ for δ > 0 sufficiently small due to
Lemma 4.1. Observe next that by independence of {ξk}k∈Z from F (e)

L

∣∣E[‖ξk|F‖2
H
|F (e)

L

]−E
[‖ξk‖2

H
|F (e)

L

]∣∣= n−1

∣∣∣∣∣
L∑

l=0

(
E
[‖V 2l+1‖2

H
|F (e)

L

]−E
[‖V 2l+1‖2

H

])∣∣∣∣∣.
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Since {E[‖V 2l+1‖2
H
|F (e)

L ]}0≤l≤L is a sequence of independent, real-valued random variables,
Jensens and Rosenthals inequality yield

E
[∣∣E[‖ξk|F‖2

H
|F (e)

L

]−E
[‖ξk‖2

H
|F (e)

L

]∣∣]� L−1/2
E
[‖X0‖4

H

]1/2
. (4.63)

Combining (4.62) with (4.63), we thus obtain

E

[
n∑

k=1

∫
R

Qk|F (t)

t
dt1C̃δ

]
� L−1/2

E
[‖X0‖4

H

]
. (4.64)

Together with (4.61), this yields the final bound

E

[
sup
x∈R

IIL(x)
]
� L−1/2

E
[‖X0‖4

H

]
. (4.65)

Case IIIL(x): By independence, we have

E
[
IIIL(x)

]= P
(∥∥Z(o)

L + S
(e)
L (V ) + R

(o)
L (V ) + μ

∥∥
H

≤ x
)

− P
(∥∥Z(o)

L + Z
(e,o)
L + μ

∥∥
H

≤ x
)
,

hence we may directly appeal to Lemma 4.3. Routine calculations then reveal

sup
x∈R

∣∣E[IIIL(x)
]∣∣� L−1/2(1 + ‖μ‖3

H

)
E
[‖X0‖3

H

]
. (4.66)

Case IVL(x): One readily verifies∣∣tr(�) − tr
(
�(o) + �(e)

)∣∣� L−1
E
[‖X0‖2

H

]
.

Since we have by independence

P|F
(∥∥Z(o)

L + Z
(e,o)
L + μ

∥∥
H

≤ x
)= P

(∥∥Z(o)
L + Z

(e,o)
L + μ

∥∥
H

≤ x
)
,

an application of Lemma 4.7 then yields

sup
x∈R

IVL(x) � L−1
E
[‖X0‖2

H

]
. (4.67)

Since n∼ L, combining all four bounds completes the proof. As a final remark, let us elaborate
on the case where L /∈ N. In this case, we may have a slightly smaller additional remainder term
R̃L+1 in the decomposition

n−1/2Sn(X) = S
(o)
L (V ) + S

(e)
L (V ) + R

(o)
L (V ) + R̃L+1, (4.68)

which we can always add to the last summand, be it even or odd. This just results in more
complicated notation, but the proof remains the same. �
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Proof of Corollary 3.3. If L = n/m ∈ N, writing

(nm)−1/2Sn(X) = (n/m)−1/2
L∑

l=1

Bl/m, Bl =
lm∑

k=(l−1)m+1

Xk,

we may directly apply Theorem 3.2. If L /∈ N, we have an additional remainder part, which
however does not require any particular different treatment, see also the remark around (4.68). �

Proof of Corollary 3.4. By virtue of Theorem 3.2, we may almost identically repeat the proof
of Theorem 2.1 together with Corollary 2.2 in [26]. �
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