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There is a one to one mapping between a p dimensional strictly positive definite covariance matrix � and
its matrix logarithm L. We exploit this relationship to study the structure induced on � through a sparsity
constraint on L. Consider L as a random matrix generated through a basis expansion, with the support of
the basis coefficients taken as a simple random sample of size s = s∗ from the index set [p(p + 1)/2] =
{1, . . . , p(p + 1)/2}. We find that the expected number of non-unit eigenvalues of �, denoted E[|A|], is
approximated with near perfect accuracy by the solution of the equation

4p + p(p − 1)

2(p + 1)

[
log

(
p

p − d

)
− d

2p(p − d)

]
− s∗ = 0.

Furthermore, the corresponding eigenvectors are shown to possess only p − |Ac| non-zero entries. We use
this result to elucidate the precise structure induced on � and �−1. We demonstrate that a positive definite
symmetric matrix whose matrix logarithm is sparse is significantly less sparse in the original domain. This
finding has important implications in high dimensional statistics where it is important to exploit structure
in order to construct consistent estimators in non-trivial norms. An estimator exploiting the structure of the
proposed class is presented.
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1. Introduction

In many scientific disciplines, it is natural to think of observations as n i.i.d. realisations of a p

dimensional random variable V, where p � n. This scenario is especially common in cross-
sectional medical studies. For instance, in a retrospective Genome Wide Association Study
(GWAS) it is natural to suppose the n patients have independent and identically distributed
genome sequences V1, . . . ,Vn. Letting u denote the genomic locus, the uth element of Vi is
the minor allele count or copy number for patient i at site u.

Numerous procedures from classical multivariate analysis (see, e.g., Anderson [1]) rely on an
estimate of the p × p covariance matrix of V, defined as � = E((V − EV)(V − EV)T ). So as
not to cloud the presentation, we henceforth assume EV = 0. Despite receiving considerable at-
tention, the problem of large covariance estimation is a persistent obstacle in numerous applied
works (e.g., Cribben et al. [3], Mathew et al. [8]). It is well understood that when the dimension
p is larger than the sample size n, it is impossible to construct a consistent estimator of � (in
any non-trivial matrix norm) on the basis of the i.i.d. sample V1, . . . ,Vn without exploiting as-
sumed structure. Indeed, noise accumulation that results from naïvely extending low dimensional
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procedures to high dimensional problems frequently results in classifiers that are no better than
random guessing (Fan and Fan [4]) and “optimal” portfolios that are no better than a naïvely
diversified one (Yuan [10]).

Just as in other branches of high dimensional estimation, suitable structural assumptions allow
consistency to be restored. For instance, the assumption that � = (σuv) belongs to the class,

U
(
q, c0(p),M

) =
{

� : σuu ≤ M,

p∑
v=1

|σuv|q ≤ c0(p) for all u

}
for 0 ≤ q ≤ 1, (1.1)

justifies the thresholding procedure of Bickel and Levina [2], which simply sets any element of
the sample covariance matrix Sn = n−1 ∑n

i=1 ViVT
i to zero whose absolute value is below some

prespecified threshold. With reference to the GWAS example above, although the sites are related
by chromosomal distance, the sparsity model of equation (1.1) ignores this relationship. Instead,
the model is invariant with respect to permutation of sites. This invariance may be a good thing or
a bad thing, but is not to be taken for granted. Provided the threshold is chosen appropriately, the
thresholding estimator is consistent in operator norm under the model in equation (1.1), guaran-
teeing consistency of principal components. Besides the potential implausibility of the structural
assumptions imposed by (1.1), thresholding sometimes yields singular covariance estimates.

With the aim of further broadening the range of structures one can fruitfully impose on �

and �−1, we consider the implication on � and �−1 of imposing sparsity in the matrix log-
arithm domain. The matrix logarithm, L, of the p × p covariance matrix, �, is defined by
� = exp{L} = ∑∞

k=0
1
k!L

k . A convenient observation is that the precision matrix, �−1, satis-
fies �−1 = exp{−L}. Thus any structure imposed on L induces the same structure on �−1 as it
induces on �. In concurrent work, we explore the open problem of exploiting various forms of
sparsity in the matrix logarithm domain in order define automatically positive definite estimators
�̂ = exp{L̂} and �̂−1 = exp{−L̂} for � and �−1 on the basis of an estimator L̂ of L. In this
paper, we impose sparsity on L through sparsity of the coefficient vector of an expansion of L in
the natural symmetrised indicator basis.

Since � is a positive definite symmetric matrix, L exists and is unique for � (Lemma 1.1).
Moreover, L is of the form L = �(log�)�T , where log� = diag{logλ1, . . . , logλp}, with
λ1 ≥ · · · ≥ λp the ordered eigenvalues of �, and � is the matrix of corresponding orthonormal
eigenvectors. By its existence and uniqueness, the matrix logarithm defines a bijection between
the cone of p ×p symmetric positive definite matrices to which � belongs, and the vector space
of p × p symmetric matrices,

V(p,R) := {
S ∈ Mp(R) : S = ST

}
, (1.2)

to which L belongs. In equation (1.2), Mp(R) is the space of p × p matrices with elements in
R. In the remainder of this paper, we use [p] to denote the set of indices {1, . . . , p} and |S| to
denote the cardinality of a set S .

Lemma 1.1. Let A be any positive definite symmetric matrix with elements in R. Then the matrix
logarithm of A exists and is unique. Moreover, it is of the form L = �(log�)�T , where log� =
diag{logλ1, . . . , logλp}, with λ1 ≥ · · · ≥ λp the ordered eigenvalues of A, and � the matrix of
corresponding orthonormal eigenvectors.
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In contrast to cones, which need not possess a cone basis, vector spaces always possess a
linear basis. Indeed, there is a natural indicator basis for the vector space R

p2
of general p × p

matrices, and a symmetrised indicator basis for V(p,R). This basis consists of two parts and is
written B = B1 ∪B2, where B1 consists of p diagonal indicator components of the form

B1 = {
B : B = ej eT

j , j ∈ [p]}
for e1, . . . , ep the canonical basis vectors for R

p , and B2 consists of p(p − 1)/2 symmetric
non-diagonal indicator components of the form

B2 = {
B : B = ej eT

k + ekeT
j , j, k ∈ [p], j 	= k

}
.

B is such that V(p,R) = spanR{B1, . . . ,Bp(p+1)/2} and consists of linearly independent ele-
ments of V(p,R), thus satisfying the definition of a basis.

1.1. Problem statement and notation

We consider the implication of sparsity of α in the basis expansion L(α) = ∑|B|
m=1 αmBm on

the ordered eigenvalues λ1(α), . . . , λp(α) of �(α) = exp{L(α)} and corresponding eigenvec-
tors ξ1(α), . . . , ξp(α). The ordering of eigenvalues by size is simply by convention and is
unnecessary apart from its role in Figures 1 and 2. We consider α satisfying ‖α‖0 = s∗ for
‖α‖0 = ∑|B|

m=1 1{αm 	= 0} and introduce the set

S = S
(
s∗(α)

) = {
m ∈ [

p(p + 1)/2
] : αm 	= 0,‖α‖0 = s∗}, (1.3)

which of course satisfies |S(s∗(α))| = s∗. In Section 2.2, we consider the support of α being
drawn randomly from the index set [p(p + 1)/2]. In that case S(s∗(α)) is a random set.

The following additional notation is used throughout. Let �(α) = diag{λ1(α), . . . , λp(α)} de-
note the diagonal matrix of ordered (from largest to smallest) eigenvalues of �(α) = exp{L(α)}
and let �(α) denote the corresponding matrix of eigenvectors. To ease the notational bur-
den, we drop the reference to α whenever it is unnecessary to be explicit. Then � = ���T

and L = ���T , where � = diag{δ1, . . . , δp} and δj = log(λj ). Hence, the unit eigenval-
ues of � correspond to the zero eigenvalues of L. Introduce the sets A := {j ∈ [p] : λj 	= 1},
A := {j ∈ [p] : λj < 1} and A := {j ∈ [p] : λj > 1}, then |A| is the number of non-unit eigen-
values of � and �A denotes the restriction by columns of � to A. Thus,

� = �A�A�T
A + �Ac�T

Ac =
∑
j∈A

λj ξ j ξ
T
j +

∑
j∈Ac∪A

λj ξ j ξ
T
j . (1.4)

A special case of the second decomposition is the spiked eigenvalue model of Johnstone [6].
To set the scene for the theoretical results appearing in Section 2, Figure 1 illustrates the exis-

tence of a strong relationship between ‖α‖0, λ1(α), . . . , λp(α) and ‖ξ1(α)‖0, . . . , ‖ξp(α)‖0. In
particular, fixing p = 100, Figure 1(A) plots the average (over 100 Monte Carlo experiments) of
‖ξ j (α)‖0 as a function of j ∈ [p] and s∗ = ‖α‖0. Figure 1(B) plots the average of 1{λj (α) = 1}
as a function of j ∈ [p] and s∗ = ‖α‖0.
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(A) (B)

Figure 1. p = 100 and sparsity of α is s∗ ∈ [100]. Panel (A) averaged (over 100 MC replications) number
of non-zero eigenvector entries as a function of s∗ and the corresponding eigenvalue number (ordered from
largest to smallest). Panel (B) average of 1{λj (α) = 1} as a function of eigenvalue number j = 1, . . . ,100
and s∗.

Figure 1 shows that, at high degrees of sparsity, a significant number of central eigenvectors
of �(α) (those corresponding to unit eigenvalues) consist of a single non-zero entry and that the
number of such eigenpairs is decreasing as a function of ‖α‖0. Moreover, for those eigenvectors
possessing multiple non-zero entries, the number of non-zero entries is increasing with ‖α‖0. We
explain the relationship theoretically in Section 2.

2. Theoretical results

Our theoretical results of this section relate the structure in the eigendecomposition of �(α)

to the sparsity structure of L, which we define through sparsity of α in the basis expansion
L(α) = ∑|B|

m=1 αmBm. The first results of this section hold independently of the random sampling
of the support of α. In Section 2.2, we explore the expected number of non-unit eigenvalues of
�(α) = exp{L(α)} when the support of α is a simple random sample of size s = s∗ from the
index set [p(p + 1)/2].

2.1. Some preliminary deterministic results

The first result establishes that, for every α, |A| is equal to the expected number of distinct
column vectors of BS := {Bm ∈ B : m ∈ S(s∗(α))}. We denote the collection of non-zero column
vectors of BS as

L
(
s∗(α)

) := {
b(m)

j : j ∈ [p],b(m)
j 	= 0,m ∈ S

(
s∗(α)

)}
, (2.1)

where b(m)
j for m ∈ S is the j th column of the mth element of BS ⊂ B.
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(A) (B)

(C) (D)

Figure 2. p = 100 and sparsity of α is s∗ ∈ [100]. Panel (A): averaged (over 100 MC replications) eigen-
value of exp{L} as a function of eigenvalue number and s∗. Panel (B): average value of |A| as a function of
s∗. The red line is the theoretical value based on equation (2.4). Panels (C) and (D): average value of ‖ξ1‖0
and ‖ξp‖0 as a function of s∗.

Lemma 2.1. For any α ∈ R
p(p+1)/2, |A| = D∗(α), where D∗(α) is the number of distinct ele-

ments of the collection L(s∗(α)) and A= {j ∈ [p] : λj 	= 1}.

It is immediately clear that D∗(α) ≤ |L(s∗(α))| ≤ 2s∗ because each element of BS contains
at most 2 non-zero columns. However, the exact value of D∗(α) depends on the support of α. In
Section 2.2, we consider drawing the support of α at random from the index set [p(p + 1)/2].
Under simple random sampling, BS has a non-zero probability of containing basis matrices in
B1. More importantly, the probability that columns are repeated is increasing in s∗ implying that
the bound 2s∗ becomes more conservative as s∗ increases. This observation is visually apparent
in Figure 2, where we also display an accurate analytic approximation, derived in Section 2.2.

The next lemma shows that the behaviour of the eigenvectors is also explained by D∗(α).
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Lemma 2.2. For any α ∈ R
p(p+1)/2, there exists an orthonormal set of eigenvectors ξ1(α), . . . ,

ξp(α) of �(α) such that for any j ∈ Ac , ξ j is of the form ξ j = ev(j) 	= ξ 
 for ev(j) /∈ L(s∗(α))

and 
 ∈ Ac. Additionally, for all j ∈A, ‖ξ j‖0 = p − |Ac|.
Remark 2.3. The matrix of eigenvectors, � = [�A,�Ac ], is unique up to permutations of the
columns of �Ac .

Lemmata 2.1 and 2.2 together give rise to the covariance model described in Corollary 2.4.

Corollary 2.4. For any α, �(α) is of the form

� =
∑
j∈A

λj ξ j ξ
T
j +

∑
j∈Ac

ev(j)eT
v(j) +

∑
j∈A

λj ξ j ξ
T
j .

Above, |A| = |A∪A| = D∗(α) for D∗(α) is defined in Lemma 2.1 and where, for all j ∈ A,
‖ξ j‖0 = p − |Ac|.

2.2. An analytic approximation to the expected number of non unit
eigenvalues

We use the deterministic results from the previous section to obtain an expression (in terms of p

and s∗) for the expected value of |A| = |A(α)| when the support of α is a simple random sample
of size s = s∗ from the index set [p(p + 1)/2]. Such a formula is unavailable in closed form.
However, based on Lemma 2.1 we provide a very close analytic approximation in terms of p and
s∗ (the red curve in panels (B), (C) and (D) of Figure 2).

Consider an approximation to the expected number of random draws, Nd , from B required
to obtain d distinct elements of L(Nd(α)). Replacing the expected number of draws by s∗ and
solving for d yields, in view of Lemma 2.1, an approximation to the expected number of non
unit eigenvalues of �(α) as a function of p and s∗.

Consider L(s∗) := L(s∗(α)) of equation (2.1) as an element of the nested sequence of random
sets L(1) ⊆ L(2) ⊆ · · · . Let X1 = 1 denote the number of draws from B required to obtain the
first new non-zero column vector in L(1). For i ≥ 2, let Xi be the number of draws required
to obtain the ith new column vector of L(

∑i−1
j=1 Xj) after the (i − 1)th new column has been

obtained. Then the expected number of draws, Nd such that L(Nd) contains d distinct columns
satisfies

E[Nd ] ≈
d∑

i=1

[
2p

p(p + 1)
E[Xi |B1] + p − 1

p + 1
E[Xi |B2]

]
.

(2.2)

= 4p + p(p − 1)

2(p + 1)

d∑
i=1

1

p − (i − 1)
,

where the last line is obtained by noting that Xi is a geometric random variable with parameter
(p − (i − 1))/p regardless of the distribution from which the nonzero values of α1, . . . , α|B| are
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drawn. The left-hand side of equation (2.2) is only approximately equal to the right-hand side
because we approximate sampling without replacement from B by sampling with replacement
from B. This approximation is accurate when p(p + 1)/2 is large relative to s∗. An approximate
expression for the expected number of distinct columns of L(s∗(α)) is thus obtained by setting
the left-hand side of equation (2.2) to s∗ and solving for d , where d appears in the expression
for

∑d
i=1

1
p−(i−1)

. This expression is provided in equation (2.3). Changing variables to j = p −
(i − 1), we have

E[Nd ] ≈ 4p + p(p − 1)

2(p + 1)

p∑
j=p−(d−1)

1

j
= 4p + p(p − 1)

2(p + 1)

[
p∑

j=1

1

j
−

p−d∑
j=1

1

j

]

= 4p + p(p − 1)

2(p + 1)

[
logp + γ + εp − (

log(p − d) + γ + εp−d

)]
(2.3)

= 4p + p(p − 1)

2(p + 1)

[
log

(
p

p − d

)
+ (εp − εp−d)

]
,

where γ is the Euler–Mascheroni constant and εp ≈ 1/2p and εp−d ≈ 1/2(p − d). It follows
that the expected number of distinct elements of L(s∗(α)) from Lemma 2.1 is well approximated
by the solution, d∗, of

4p + p(p − 1)

2(p + 1)

[
log

(
p

p − d

)
− d

2p(p − d)

]
= s∗,

that is,

d∗ = root

{
4p + p(p − 1)

2(p + 1)

[
log

(
p

p − d

)
− d

2p(p − d)

]
− s∗

}
. (2.4)

We plot this solution for p = 100 in Figure 2, observing that the analytic approximation de-
rived above coincides almost perfectly with the numerical results.

2.3. Implications and discussion

Lemmata 2.1 and 2.2 together with equation (2.4) straightforwardly yield the following result,
which is independent of distributional assumptions on α and only relies on the simple random
sampling of the support of α from the index set [p(p + 1)/2].

Theorem 2.5. A random positive definite symmetric matrix �(α) is logarithmically sparse in
the sense that

�(α) = exp
{
L(α)

}
with L(α) =

M∑
m=1

αmBm and ‖α‖0 = s∗

if and only if �(α) is of the form �(α) = PKP −1 with P a permutation matrix and K a block
diagonal matrix with blocks K1 and Ip−D∗ , E(D∗) = d∗ (cf. equation (2.4)).
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Figure 3. (Left) Non-zero elements of a sparse L, where sparsity of L is measured by the number of
non-zero coefficients of its basis expansion; (centre) non-zero elements of � = exp{L}, where L is that
depicted in the left panel; (right) non-zero elements of � threshold at ν = 1.

One advantage of exploring sparsity in the matrix logarithm domain is that a sparse L po-
tentially gives rise to a � = exp{L} and �−1 = exp{−L} which are significantly less sparse.
Figure 3 illustrates this fact.

In terms of the random vector V itself, sparsity of α implies that V can be decomposed into two
subsets of variables, V1 and V2 such that V1 has covariance structure K1, whilst the elements of
V2 are completely uncorrelated with each other and with the elements of V1. This naturally raises
the question of whether matrix logarithmic sparsity is more or less plausible than model (1.1).
With q = 0, model (1.1) implies all variables are uncorrelated with all but c0(p) of the others,
where c0(p) must be such that (c0(p) logp)/n → 0 for the model in class (1.1) to be statistically
useful. By contrast, a matrix logarithmically sparse model assumes that a large group of variables
are arbitrarily correlated with others in the same group but completely uncorrelated with those in
another group, which in turn are uncorrelated with each other. There are undoubtedly examples
for sparsity on every scale, perhaps having removed common factors as in Fan et al. [5]. The
difficulty in assessing the plausibility of these models a priori highlights the need for further
work in the area. In the context of bandable covariance matrices (Wu and Pourahmadi [9]), Zou
and Li [11] develop an information criterion for selecting the tuning parameters of the banding
estimator. In principal at least, it should be possible to develop information criteria for selecting
between different classes of covariance model.

The structural assumptions on L are naturally exploited through a penalised regression-based
estimator of L. More specifically, letting L̂P denote a elementwise consistent pilot estimator for
L, letting ‖ · ‖F denote the Frobenius norm, and letting P(η) = {α : ‖α‖1 ≤ η}, an estimator of
L is constructed as L̂ = ∑|B|

m=1 α̂mBm where

α̂ = argmin
α∈R|B|∩P(η)

{∥∥∥∥∥L̂P −
|B|∑

m=1

αmBm

∥∥∥∥∥
2

F

}
.

By performing the minimisation over R|B| ∩P(η), we exploit the assumed sparsity in the basis
coefficient vector α. In on-going work, we are investigating this new estimator and will report
the result elsewhere.
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3. Proofs

Proof of Lemma 1.1. We first prove the existence result. Since A is symmetric, it is orthogonally
diagonalisable by the spectral theorem, with an orthonormal eigendecomposition A = ���T

that is unique up to permutations of the columns of � corresponding to the repeated eigenvalues
in � = diag{λ1, . . . , λp}. Let L = �(log�)�T , where log� = diag{logλ1, . . . , logλp}. Then L

is a matrix logarithm of A because

exp{L} =
∞∑

k=0

1

k!L
k = �

( ∞∑
k=0

1

k! (log�)k

)
�T

= �
(
diag

{
exp{logλ1}, . . . , exp{logλp}})�T = A.

To prove uniqueness, let L′ be another matrix satisfying A = exp{L′} = ∑∞
k=0

1
k! (L

′)k . Since A is
symmetric, so is L′, thus L′ is orthogonally diagonalisable with orthonormal eigendecomposition
L′ = ODOT , which is unique up to permutations of the columns of O corresponding to repeated
eigenvalues in D = diag{d1, . . . , dp}. We have

A = exp
{
L′} = O

( ∞∑
k=0

1

k!D
k

)
OT = O

(
diag

{
exp{d1}, . . . , exp{dp}})OT .

By the uniqueness of � and O up to permutations of the columns corresponding to repeated
eigenvalues, and since the exponential function is an isomorphism, we know that dj = logλj

and � = O , thus L = L′. �

Proof of Lemma 2.1. The first part of the proof is to show that the number of non-zero eigen-
values of L is equal to the dimension of the image of L. To this end, recall the definitions of the
kernel (null space) and the image (column space) of L:

Ker(L) := {
x ∈R

p : Lx = 0
}
, Im(L) := {

y ∈R
p : ∃x ∈R

p for which Lx = y
}
. (3.1)

We first demonstrate that {ξ j : j ∈Ac} is a basis for Ker(L). Since eigenvectors are linearly
independent by their orthogonality, this simply amounts to showing that spanR{ξ j : j ∈ Ac} =
Ker(L), i.e. spanR{ξ j : j ∈Ac} ⊆ Ker(L) and Ker(L) ⊆ spanR{ξ j : j ∈Ac}.

The first containment is trivial. To prove Ker(L) ⊆ spanR{ξ j : j ∈ Ac}, suppose for a con-
tradiction that there exists v ∈ Ker(L) such that v /∈ span{ξ j : j ∈ Ac}. Without loss of general-

ity denote the columns of �Ac by {̃ξ1, . . . , ξ̃ k} so that the columns of �A are {̃ξ k+1, . . . , ξ̃p}
(we have used {̃ξ j : j ∈ [p]} to differentiate the unordered eigenvectors from the ordered ones
{ξ j : j ∈ [p]}). For any vector space V ⊂ R

p , any set of k ≤ p linearly independent vectors is

either a basis for V or can be extended to a basis. Letting {̃ξ1, . . . , ξ̃ k, ξ
′
k+1, . . . , ξ

′
p} denote an

extended basis, we may write

v = β1ξ̃1 + · · · + βk ξ̃ k + βk+1ξ
′
k+1 + · · · + βpξ ′

p
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and by the fact that ξ̃1, . . . , ξ̃ k ∈ Ker(L),

Lv = β1L̃ξ1 + · · · + βkL̃ξ k + βk+1Lξ ′
k+1 + · · · + βpLξ ′

p

= βk+1Lξ ′
k+1 + · · · + βpLξ ′

p.

Since {̃ξ1, . . . , ξ̃ k, ξ
′
k+1, . . . , ξ

′
p} is a basis for V , ξ ′

k+1, . . . , ξ
′
p are linearly independent of

ξ̃1, . . . , ξ̃ k , and by the fact that {̃ξ1, . . . , ξ̃ k, ξ̃ k+1, . . . , ξ̃p} forms a basis for R
p , there exist

γ
(j)

k+1, . . . , γ
(j)
p such that ξ ′

j = ∑p


=k+1 γ
(j)


 ξ̃ 
 for any j ∈ {k + 1, . . . , p}. Hence, using the fact
that v ∈ Ker(L), we have

Lv = βk+1L

(
p∑


=k+1

γ
(k+1)

 ξ̃ 


)
+ · · · + βpL

(
p∑


=k+1

γ
(p)


 ξ̃ 


)
(3.2)

= βk+1

p∑

=k+1

γ
(k+1)

 L̃ξ 
 + · · · + βp

p∑

=k+1

γ
(p)

 L̃ξ 
 = 0.

Equation (3.2) implies that either

βk+1 = γ
(k+1)
k+1 = · · · = γ (k+1)

p = · · · = γ
(p)

k+1 = · · · = γ
(p)
p = 0,

contradicting linear independence, or that L̃ξ 
 = 0 for at least one 
 ∈ {k + 1, . . . , p}, contradict-
ing the fact that ξ̃ 
 is a column of �A.

By linear independence, |A| = dim(spanR{̃ξk+1, . . . , ξ̃p}) and by our previous demonstration
we have dim(spanR{̃ξk+1, . . . , ξ̃p}) = dim(Ker(L)). By the Rank Nullity Theorem (Körner [7]),

p = ∣∣A∪Ac
∣∣ = |A| + ∣∣Ac

∣∣ = dim
(
Ker(L)

) + dim
(
Im(L)

)
and therefore |A| = dim(Im(L)). Let a1, . . . ,ap denote the columns of L. Then Lx = x1a1 +
· · · + xpap , but through the sparsity constraint on the basis expansion of L, L = ∑

m∈S αmBm

(cf. equation (1.3)), hence letting b(m)
j denote the j th column of Bm,

Lx = x1

(∑
m∈S

αmb(m)
1

)
+ · · · + xp

(∑
m∈S

αmb(m)
p

)
=

∑
m∈S

p∑
j=1

(αmxj )b
(m)
j

so Im(L) = span{b(m)
j : m ∈ S, j ∈ [p]} and since all b(m)

j ∈ {0, e1, . . . , ep} the dimension of

Im(L) is simply the number of distinct column vectors in the matrix elements BS
1 , . . . ,BS

s∗ of
BS , i.e. D∗. �

Proof of Lemma 2.2. As shown in the proof of Lemma 2.1, ξ j is a column of �Ac if and only if
ξ j ∈ Ker(L). Let V ⊂ [p] denote the set of indices corresponding to the nonzero row coordinates
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of the elements of L(s∗(α)). Then for any j ∈Ac = {j ∈ [p] : λj = 1},

Lξ j = ξ j

(∑
m∈S

αmb(m)
1

)
+ · · · + ξ j

(∑
m∈S

αmb(m)
p

)
= 0. (3.3)

Equation (3.3) is satisfied for any ξ j for which the only nonzero coordinate, say v(j) belongs to
Vc. By Lemma 2.1, there are |A| = p − |Ac| such possible coordinates. All other {ξ 
 : 
 ∈Ac}
are specified similarly, where orthonormality requires that any two ξ j and ξ 
 such that j, 
 ∈Ac

contain a single one at coordinates v(j) and v(
) respectively, where v(j) 	= v(
) and v(j)

and v(
) both belong to Vc. We later demonstrate that a particular eigenvector solution with
{ξ j : j ∈Ac} is unique up to permutations of the columns of �Ac .

By similar calculations to those appearing the proof of Lemma 2.1, Im(L) = spanR{ξ j :
j ∈ A}, where the image (column space) of L is defined in equation (3.1), and dim(Im(L)) =
D∗(α) as derived in the proof of Lemma 2.1. The elements of {ξ j : j ∈ A} form the columns of
�A, and by linear independence of these columns together with Lemma 2.1, the column space
of �A is |A| = D∗(α). Since the column space and the row space of a matrix must coincide,
only p − |Ac| rows of �A are linearly dependent. Eigenvectors {ξj : j ∈A} orthogonal to the
{ξj : j ∈Ac} eigenvectors constructed above can be obtained by setting the p − |Ac| linearly
dependent rows of �A equal to zero. Since, for any symmetric matrix M , there is a unique
orthonormal set of eigenvectors, up to permutations of the columns corresponding to repeated
eigenvalues, we have proved that {ξj : j ∈A} and {ξj : j ∈ Ac} possess the sparsity structure of
Lemma 2.2. �
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