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In this paper, we introduce randomized pivots for the means of short and long memory linear processes.
We show that, under the same conditions, these pivots converge in distribution to the same limit as that
of their classical non-randomized counterparts. We also present numerical results that indicate that these
randomized pivots significantly outperform their classical counterparts and as a result they lead to a more
accurate inference about the population mean.
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1. Introduction and background

Recently, Csörgő and Nasari [6] investigated the problem of establishing central limit theorems
(CLTs) with improved rates for randomized versions of the Student t -statistic based on i.i.d. ob-
servations X1,X2 . . . . The resulting improvements yield confidence intervals for the population
mean μ with a smaller magnitude of error than that of the classical CLT for the Student t -pivot
based on an i.i.d. sample of size n, n ≥ 1. The improvements in hand result from incorporating
functionals of multinomially distributed random variables as coefficients for, and independent of,
the data. More precisely, Csörgő and Nasari [6] introduced and, via conditioning on the random
weights, studied the asymptotic distribution of the randomized pivot for the population mean
μ := EX1, that is defined as follows

∑n
i=1 |w(n)

i /mn − 1/n|(Xi − μ)

Sn

√
(w

(n)
i /mn − 1/n)2

, (1.1)

and can be computed via generating, independently from the data, a realization of the multino-
mial random weights (w

(n)
1 , . . . ,w

(n)
n ) with, w

(n)
i ≥ 0,

∑n
i=1 w

(n)
i = mn and associated probabil-

ity vector (1/n, . . . ,1/n); here S2
n is the sample variance.

In Csörgő and Nasari [6], it is shown that, on assuming E|X1|3 < ∞, the magnitude of the
error generated by approximating the sampling distributions of these normalized/Studentized
randomized partial sums of i.i.d. observables, as in (1.1), by the standard normal distribution
function �(·) can be of order O(1/n). The latter rate is achieved when one takes mn = n, and
is to be compared to that of the O(1/

√
n) error rate of the Student t -statistic under the same

moment condition.
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The present work is an extension of the results in the aforementioned paper Csörgő and Nasari
[6] to short and long memory linear processes via creating randomized direct pivots for the mean
μ = EX1 of short and long memory linear processes à la (1.1). Adaptation of the randomized
version of the Student t -statistic as in Csörgő and Nasari [6]

∑n
i=1(w

(n)
i /n − 1/n)Xi

Sn

√∑n
i=1(w

(n)
i /n − 1/n)2

(1.2)

to the same context will also be explored (cf. Section 5).
Just like in Csörgő and Nasari [6], in this paper the method of conditioning on the random

weights w
(n)
i s is used for constructing randomized pivots. Viewing the randomized sums of linear

processes as weighted sums of the original data, here we derive the asymptotic normality of
properly normalized randomized sums of short and long memory linear processes. As will be
seen, our conditional CLTs also imply unconditional CLTs in terms of the joint distribution of
the observables and the random weights.

The material in this paper is organized as follows. In Section 2 the randomized pivots are intro-
duced and conditional and unconditional CLTs are presented for them. In Section 3, asymptotic
confidence intervals of size 1 −α, 0 < α < 1, are constructed for the population mean μ = EX1.
Also in Section 3, confidence bounds are constructed for some functionals of linear processes.
The results in this section are directly applicable to constructing confidence bounds for some
functionals of long memory linear processes whose limiting distribution may not necessarily be
normal. Section 4 is devoted to presenting our simulations and numerical studies. In Section 5,
we study the problem of bootstrapping linear processes and provide a comparison between our
results and those obtained by using the bootstrap. The proofs are given in Section 6.

2. CLT for randomized pivots of the population mean

Throughout this section, we let {Xi; i ≥ 1} be a linear process that, for each i ≥ 1, is defined by

Xi = μ +
∞∑

k=0

akζi−k = μ +
i∑

k=−∞
ai−kζk, (2.1)

where μ is a real number, {ak; k ∈ Z} is a sequence of real numbers such that
∑∞

k=0 a2
k < ∞

and {ζk; k ∈ Z} are i.i.d. innovations with Eζk = 0 and 0 < σ 2
ζ := Var(ζk) < ∞. Consequently,

we have EXi = μ. Moreover, we assume throughout that the Xis, are non-degenerate and have
a finite variance γ0 := Var(Xi), i ≥ 1. We note in passing that for some of the results in this
paper the existence and finiteness of some higher moments of the data will also be assumed (cf.
Theorems 2.2 and 5.2).

For throughout use, we let

γh := Cov(Xs,Xs+h) = E(Xs − μ)(Xs+h − μ), h ≥ 0, s ≥ 1, (2.2)
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be the autocovariance function of the stationary linear process {Xi, i ≥ 1} as in (2.1). More-
over, based on the stationary sample X1, . . . ,Xn, n ≥ 1, on the linear process {Xi, i ≥ 1}, for
throughout use we define

X̄n :=
n∑

i=1

Xi/n,

(2.3)

γ̄i :=
n−i∑
j=1

(Xj − X̄n)(Xj+i − X̄n)/n, 0 ≤ i ≤ n − 1,

respectively the sample mean and sample autocovariance.
For throughout use in this paper, for the linear process Xi , the parameter d , 0 ≤ d < 1/2,

such that limn→∞ n−2d Var( 1√
n

∑n
i=1 Xi) is finite, is referred to as the memory parameter, where

d = 0 corresponds to the case when the linear process is of short memory, that is,
∑∞

k=1 |ak| <

∞. While 0 < d < 1/2 refers to the case when the linear process is of long memory, that is,∑∞
k=1 |ak| = ∞.
We now define the following two randomly weighted versions of the partial sum

∑n
i=1(Xi −

μ), where {Xi, i ≥ 1} is a sequence of linear processes defined in (2.1),

n∑
i=1

(
w

(n)
i

n
− 1

n

)
(Xi − μ), (2.4)

n∑
i=1

∣∣∣∣w
(n)
i

n
− 1

n

∣∣∣∣(Xi − μ), (2.5)

where the random weights in the triangular array {w(n)
1 , . . . ,w

(n)
n }∞n=1 have a multinomial distri-

bution of size n = ∑n
i=1 w

(n)
i with respective probabilities 1/n, that is,

(
w

(n)
1 , . . . ,w(n)

n

) d=multinomial

(
n; 1

n
, . . . ,

1

n

)
,

are independent from the stationary sample {X1, . . . ,Xn}, n ≥ 1, on the process {Xi, i ≥ 1} as
in (2.1).

The just introduced randomized sums in (2.4) and (2.5), which are randomized versions of∑n
i=1(Xi −μ), can be computed via generating a realization of the multinomial random weights

(w
(n)
1 , . . . ,w

(n)
n ) with

∑n
i=1 w

(n)
i = n with associated probability vector (1/n, . . . ,1/n). In this

context, one way of generating the random weights w
(n)
i s is to resample from the set of indices

{1, . . . , n} of the stationary sample X1, . . . ,Xn in hand, n ≥ 1, with replacement n times with
respective probabilities 1/n so that, for each 1 ≤ i ≤ n, w

(n)
i is the number of times the index i

of Xi is chosen in this resampling process.
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Remark 2.1. In view of
∑n

i=1 w
(n)
i = n, one can readily see that for the randomized sum defined

in (2.4), we have

n∑
i=1

(
w

(n)
i

n
− 1

n

)
(Xi − μ) =

n∑
i=1

(
w

(n)
i

n
− 1

n

)
Xi

=: X̄∗
n − X̄n,

that is, X̄∗
n − X̄n forgets about what the value of the population mean μ = EX1 might be. On the

other hand, the randomization used in the sum (2.5) preserves μ = EX1.

In addition to preserving μ, the randomized sum (2.5) tends to preserve the covariance struc-
ture of the data as well, a property that the sum (2.4) fails to maintain (cf. Remark 5.1).

Properly normalized, (2.5) provides a natural direct pivot for the population mean μ = EX1

(cf. the definition (2.6)).
For throughout use, we introduce the following notations.
Notations. Let (�X,FX,PX) denote the probability space of the random variables X,X1, . . . ,

and (�w,Fw,Pw) be the probability space on which (w
(1)
1 , (w

(2)
1 ,w

(2)
2 ), . . . , (w

(n)
1 , . . . ,w

(n)
n ),

. . .) are defined. In view of the independence of these two sets of random variables, jointly they
live on the direct product probability space (�X × �w,FX ⊗ Fw,PX,w = PX.Pw). For each
n ≥ 1, we also let P·|w(·) stand for the conditional probability given F

(n)
w := σ(w

(n)
1 , . . . ,w

(n)
n )

with corresponding conditional expected value and variance, E·|w(·) and Var·|w(·), respectively.
In a similar fashion to the randomized pivots in the i.i.d. case as in (1.1), in this context we de-

fine the randomized t -type statistics, based on the sample X1, . . . ,Xn, n ≥ 1, of linear processes
defined by (2.1), as follows

Gn :=
∑n

i=1 |w(n)
i /n − 1/n|(Xi − μ)√

Dn

, (2.6)

where γh, 0 ≤ h ≤ n − 1, are defined in (2.2) and

Dn := γ0

n∑
j=1

(
w

(n)
i

n
− 1

n

)2

+ 2
n−1∑
h=1

γh

n−h∑
j=1

∣∣∣∣w
(n)
j

n
− 1

n

∣∣∣∣
∣∣∣∣w

(n)
j+h

n
− 1

n

∣∣∣∣. (2.7)

We note that

Dn = VarX|w

(
n∑

i=1

∣∣∣∣w
(n)
i

n
− 1

n

∣∣∣∣(Xi − μ)

)
.

Noting that the normalizing sequence in Gn depends on the parameters γh, 0 ≤ h ≤ n − 1, we
now define Studentized versions of it.

The following Studentized statistic, in (2.8), is defined for all short memory linear processes
as in (2.1) as well as, for long memory linear processes as defined in (2.1) with ak ∼ ckd−1, for
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some c > 0, as k → ∞, where 0 < d < 1/2. Thus, the Studentized version of Gn as in (2.6) is
defined as follows

Gstu
n (d) :=

∑n
i=1 |w(n)

i /n − 1/n|(Xi − μ)√
Dn,q,d

, (2.8)

where q → ∞ in such a way that as n → ∞, q = O(n1/2), γ̄h is defined in (2.4), 0 ≤ d < 1/2
and

Dn,q,d :=
(

q

n

)−2d

γ̄0

n∑
j=1

(
w

(n)
i

n
− 1

n

)2

+ 2
q∑

h=1

γ̄h

q−h∑
j=1

∣∣∣∣ w
(n)
j

n1−2d
− 1

n1−2d

∣∣∣∣
∣∣∣∣ w

(n)
j+h

q1+2d
− 1

q1+2d

∣∣∣∣.
We note in passing that in the case of long memory linear processes, when an estimator d̂ is

used to replace the memory parameter d (cf. Section 4), then the notation Gstu
n (d̂) stands for the

version of Gstu
n (d), as in (2.8), in which d is replaced by d̂ . Also, in the case of having a short

memory linear process, that is, when d = 0, the notation Gstu
n (0) stands for the version of Gstu

n (d)

in which d is replaced by 0.
It can also be readily seen that, in the case of having a long memory linear process, after

estimating d by a proper estimator d̂ , then Gstu
n (d̂), apart from μ that is to be estimated, is com-

putable based on the data X1, . . . ,Xn and the generated multinomial weights (w
(n)
1 , . . . ,w

(n)
n ).

The same is also true when dealing with short memory linear processes, that is, when d = 0. In
other words, in the case of short memory linear processes, apart from the population mean μ,
which is to be estimated, the other elements of the pivot Gstu

n (0) are computable based on the
data and the generated multinomial weights.

The following two theorems, namely Theorems 2.1 and 2.2, establish conditional (given the
weights) and unconditional CLTs for Gn and Gstu

n (d), respectively. These theorems are valid for
classes of both short and long memory data.

We note that throughout this paper �(·) stands for the standard normal distribution function.

Theorem 2.1. Suppose that {Xi, i ≥ 1} is a stationary linear process as defined in (2.1). As
n → ∞, we have for all t ∈ R,

PX|w(Gn ≤ t) −→ �(t) in probability Pw (2.9)

and, consequently,

PX,w(Gn ≤ t) −→ �(t), t ∈R.

We note in passing that, for each t ∈ R, the convergence (2.9) means that the sequence, in n,
of the random variables PX|w(Gn ≤ t), with respect to Pw , converges in probability to �(t).

Remark 2.2. Theorem 2.1 allows having CLTs, conditionally on the weights, or in terms of
the joint distribution of the data and the random weights, for randomized versions of partial
sums of linear processes for which there are no CLTs with the standard deviation of the partial
sum in hand in its normalizing sequence. Examples of such processes, which are usually the
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results of overdifferencing, are of the form Xt = Yt − Yt−1, where the Yt are white noise, like,
see, for example, the well-known non-invertible moving average MA(1) processes. Randomizing
these processes results in randomly weighted partial sums of the original data whose variance,
unlike the variance of the original partial sums, goes to infinity as the sample size n → ∞. This
phenomenon can be seen to be the result of incorporating the random weights, for then the sum∑n

i=1 |w
(n)
i

n
− 1

n
|Xi no longer forms a telescoping series as the original non-randomized sum∑n

t=1 Xt = Yn − Y0.

The following result, which is a companion of Theorem 2.1, establishes the asymptotic nor-
mality for the Studentized statistics Gstu

n (d).

Theorem 2.2. (A) Assume that the stationary linear process {Xi, i ≥ 1}, as defined in (2.1), is
of short memory, that is,

∑∞
k=0 |ak| < ∞, and Eζ 4

1 < ∞. Then, as n,q → ∞ such that q =
O(n1/2), we have for all t ∈R,

PX|w
(
Gstu

n (0) ≤ t
) −→ �(t) in probability Pw

and, consequently,

PX,w

(
Gstu

n (0) ≤ t
) −→ �(t), t ∈R.

(B) Let the linear process {Xi, i ≥ 1}, as defined in (2.1), with
∑∞

k=0 a2
k < ∞, be of long memory

such that Eζ 4
1 < ∞ and, as k → ∞, ak ∼ ckd−1, for some c > 0, where 0 < d < 1/2. Then, as

n,q → ∞ such that q = O(n1/2), we have, for all t ∈R,

PX|w
(
Gstu

n (d) ≤ t
) −→ �(t) in probability Pw,

PX|w
(
Gstu

n (d̂) ≤ t
) −→ �(t) in probability Pw,

and, consequently,

PX,w

(
Gstu

n (d) ≤ t
) −→ �(t), t ∈R,

PX,w

(
Gstu

n (d̂) ≤ t
) −→ �(t), t ∈R,

where d̂ is an estimator of the memory parameter d such that d̂ − d = oPX
(1/ logn).

3. Randomized confidence intervals for the population mean μ

In this section, we use Gstu
n (d̂) as a natural randomized pivot for the population mean μ in a

nonparametric way. Based on it, we now spell out asymptotic randomized 1 − α size confidence
intervals for the population mean μ. In what follows, z1−α stands for the solution to �(z1−α) =
1 − α.
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It is important to note that the randomized confidence intervals (one or two-sided) which we
are about to present, henceforth, are valid in terms of the conditional distribution PX|w , as well
as in terms of the joint distribution PX,w .

When the linear process in hand possesses the property of short memory, and if it satisfies
the conditions of part (A) of Theorem 2.2, then the asymptotic two-sided 1 − α size randomized
confidence interval for the population mean μ = EXX1 has the following form:

∑n
i=1 |w(n)

i /n − 1/n|Xi − z1−α/2D
1/2
n,q,0∑n

j=1 |w(n)
j /n − 1/n|

(3.1)

≤ μ ≤
∑n

i=1 |w(n)
i /n − 1/n|Xi + z1−α/2D

1/2
n,q,0∑n

j=1 |w(n)
j /n − 1/n|

.

An asymptotic 1 − α size randomized two-sided confidence interval for the population mean
μ = EXX1 of a long range dependent linear process, as defined in (2.1), when it satisfies the
conditions in part (B) of Theorem 2.2 is constructed as follows:

∑n
i=1 |w(n)

i /n − 1/n|Xi − z1−α/2D
1/2

n,q,d̂∑n
j=1 |w(n)

j /n − 1/n|
(3.2)

≤ μ ≤
∑n

i=1 |w(n)
i /n − 1/n|Xi + z1−α/2D

1/2

n,q,d̂∑n
j=1 |w(n)

j /n − 1/n|
,

where Dn,q,0 and D
n,q,d̂

are as defined in (2.8).

3.1. Confidence bounds for the mean of some functionals of long memory
linear processes

The following result, namely Corollary 3.1, is a consequence of Theorem 2.2 and Jensen’s in-
equality. Corollary 3.1 gives randomized confidence bounds for μG := EXG(Xi), for some mea-
surable functions G, that is, for the mean of certain subordinated functions of the long memory
linear process in hand, and it reads as follows.

Corollary 3.1. Let {Xi, i ≥ 1} be so that it satisfies the conditions in (B) of Theorem 2.2. Assume
that EX|G(Xi)| < ∞. As n,q → ∞ in such a way that q = O(n1/2), the following holds.

(A) If G is increasing and convex, then, an asymptotic 1 − α level lower confidence bound for
μG is

μG ≥ G
(∑n

i=1 |w(n)
i /n − 1/n|Xi − z1−αD

1/2

n,q,d̂∑n
i=1 |w(n)

i /n − 1/n|

)
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(B) If G is decreasing and convex, then, a randomized asymptotic 1 −α level lower confidence
bound for μG is

μG ≥ G
(∑n

i=1 |w(n)
i /n − 1/n|Xi + z1−αD

1/2

n,q,d̂∑n
i=1 |w(n)

i /n − 1/n|

)
.

Remark 3.1. Corollary 3.1 remains valid for functionals of short memory linear processes with
Dn,q,0 replacing D

n,q,d̂
. It is also important to note that the conclusions of (A) and (B) of Corol-

lary 3.1 hold true without making any assumptions about the variance of the subordinated func-
tion G. In other words, Corollary 3.1 is valid even when Var(G) is not finite.

Remark 3.2. In reference to studying the mean of functions of stationary long memory Gaussian
linear processes, Corollary 3.1 helps avoid dealing with the sampling distributions of processes
of functions of stationary long memory Gaussian processes which are known to be relatively
complicated, specially when they exhibit non-normal asymptotic distributions (cf. Taqqu [23]
and Dobrushin and Major [8], for example). We note that a long memory Gaussian process
{ηi; i ≥ 1}, that is, Cov(η1, η1+k) = k−αL(k), where 0 < α < 1 and L(·) is a slowly varying
function at infinity, can be viewed as a long memory linear process (cf. Csáki et al. [5], for ex-
ample) that satisfies the conditions of part (B) of Theorem 2.2. Therefore, Corollary 3.1 is directly
applicable to constructing randomized confidence bounds for means of subordinated functions
of long memory Gaussian processes {ηi; i ≥ 1} without making assumptions concerning their
variance, or referring to their Hermit expansions. It is also worth noting that the technique used
to derive our results for constructing one sided confidence intervals is not limited to the random-
ized data as in our context. In fact, this method can be used for any subordinated long or short
memory Gaussian processes whose subordinated function has a finite mean.

4. Simulation results

In this section, we examine numerically the performance of Gstu
n (d) and Gstu

n (d̂), in view of the
CLTs in Theorem 2.2, versus those of their classical counterparts T stu

n (d) and T stu
n (d̂), defined as

T stu
n (d) := n1/2−d(X̄n − μ)√

q−2d γ̄0 + 2q−2d
∑q

h=1 γ̄h(1 − h/q)

, (4.1)

T stu
n (d̂) := n1/2−d̂ (X̄n − μ)√

q−2d̂ γ̄0 + 2q−2d̂
∑q

h=1 γ̄h(1 − h/q)

. (4.2)

When the linear process in hand is of short memory, then T stu
n (0) stands for a version of T stu

n (d) in
which d is replaced by 0. Under the conditions of our Theorem 2.2, from Theorem 3.1 of Giraitis
et al. [10] and Theorem 2.2 of Abadir et al. [1], we conclude that the limiting distribution of
T stu

n (0), T stu
n (d) and T stu

n (d̂) is standard normal. Thus, T stu
n (0), T stu

n (d) and T stu
n (d̂) converge
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to the same limiting distribution as that of Gstu
n (0), Gstu

n (d) and Gstu
n (d̂) under the conditions of

Theorem 2.2.
In Tables 1–6, we provide motivating simulation results in preparation for the upcoming in

depth numerical studies in Tables 7–12. In the following Tables 1–6 we use packages “arima.sim”
and “fracdiff.sim” in R to generate observations from short and long memory non-Gaussian pro-
cesses, respectively. Tables 1–6 present empirical probabilities of coverage with the normal cut-
off points ±1.96, that is, the nominal probability coverage is 0.95. The results are based on
1000 replications of the data and the multinomial weights (w

(n)
1 , . . . ,w

(n)
n ). The choice of q is

made based on relation (2.14) of Abadir et al. [1] in each case. More precisely, we let q be
�n1/3�, where �·� stands for the ceiling function, for the examined short memory linear pro-
cesses, and for long memory linear processes with 0 < d < 0.25, we let q be �n1/(3+4d)�, and
for 0.25 < d < 0.5, we let q be �n1/2−d� and, when the data are long memory with parameter d ,
then d̂ stands for the MLE approximation of d , with the Hasslet and Raftery [13] method used to
approximate the likelihood. This estimator of d is provided in the R package “fracdiff” and it is
used in our simulation studies in Tables 4, 6, 10 and 12. We note that there are other commonly
used methods of estimating the memory parameter d , such as the Whittle estimator (cf. Künch
[16] and Robinson [20]), which is available in the R package “longmemo” using the Beran [3]
algorithm. For more on estimators for the memory parameter d and their asymptotic behavior,
we refer, to for example, Robinson [21] and Moulines and Soulier [18] and references therein.
In Tables 1–6, coverageGstu

n (·) and lengthGstu
n (·) stand, respectively, for the empirical coverage

probabilities and the average of the lengths of the randomized confidence intervals for the popu-
lation mean based on the randomized pivots Gstu

n (·), and coverageT stu
n (·) and lengthT stu

n (·) stand
for their non-randomized counterparts constructed based on the classical pivots T stu

n (·).
The numerical studies in the preceding 6 tables indicate better accuracy of the randomized

pivots for both short and long memory linear processes. These tables at the same time address
the trade-off between the accuracy of the confidence intervals and their lengths. Improving upon
the probabilities of coverage comes at the expense of wider confidence intervals. However, the
increase in length of our introduced confidence intervals is a minor drawback when one puts
their significantly better probabilities of coverage into perspective. In other words, the relation
between the length and the accuracy of our randomized confidence intervals can be described as
a balanced one.

We now present a more in depth simulation study for non-Gaussian linear processes. Here,
once again, we use the packages “arima.sim” and “fracdiff.sim” in R to generate observations
from short and long memory linear processes, respectively. In our numerical studies below, as
in Tables 1–12, we use the standardized Lognormal (0,1) distribution, that is, Lognormal with
mean 0 and variance 1, to generate observations from short or long memory linear processes. The
choice of Lognormal (0,1) in our studies is due to the fact it is a heavily skewed distribution.

The following Tables 7–12 are presented to illustrate the significantly better performance of
Gstu

n (d), Gstu
n (d̂) and Gstu

n (0) over their respective classical counterparts T stu
n (d), T stu

n (d̂) and
T stu

n (0), in view of our Theorem 2.2. In Tables 7 and 8 we present numerical comparisons be-
tween the performance of Gstu

n (0) to that of T stu
n (0), both as pivots for the population mean, for

some moving average and autoregressive processes. The numerical performance of Gstu
n (d) to

that of the classical T stu
n (d) for some long memory linear processes are presented in Tables 9

and 11. Tables 10 and 12 are specified to comparing Gstu
n (d̂) to T stu

n (d̂).
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Table 1. MA(1): Xt = Wt − 0.5Wt−1

Distribution n coverageGstu
n (0) lengthGstu

n (0) coverageT stu
n (0) lengthT stu

n (0)

Wt
d= Lognormal(0,1) 10 0.887 2.366 0.852 1.791

40 0.950 1.449 0.936 1.151

Table 2. AR(1): Xt = 0.5Xt−1 + Wt

Distribution n coverageGstu
n (0) lengthGstu

n (0) coverageT stu
n (0) lengthT stu

n (0)

Wt
d= Lognormal(0,1) 12 0.859 2.278 0.817 1.738

48 0.943 1.461 0.918 1.161

Table 3. Long Memory with d = 0.2: Xt = (1 − B)0.2Wt

Distribution n coverageGstu
n (0.2) lengthGstu

n (0.2) coverageT stu
n (0.2) lengthT stu

n (0.2)

Wt
d= Lognormal(0,1) 50 0.916 1.303 0.847 0.211

200 0.942 0.888 0.906 0.086

Table 4. Long Memory with d = 0.2: Xt = (1 − B)0.2Wt ; estimator d̂ used

Distribution n coverageGstu
n (d̂) lengthGstu

n (d̂) coverageT stu
n (d̂) lengthT stu

n (d̂)

Wt
d= Lognormal(0,1) 100 0.863 0.998 0.812 0.190

400 0.947 0.713 0.913 0.063

Table 5. Long Memory with d = 0.4: Xt = (1 − B)0.4Wt

Distribution n coverageGstu
n (0.4) lengthGstu

n (0.4) coverageT stu
n (0.4) lengthT stu

n (0.4)

Wt
d= Lognormal(0,1) 125 0.915 3.042 0.864 0.051

500 0.944 2.926 0.895 0.016

Table 6. Long Memory with d = 0.4: Xt = (1 − B)0.4Wt ; estimator d̂ used

Distribution n coverageGstu
n (d̂) lengthGstu

n (d̂) coverageT stu
n (d̂) lengthT stu

n (d̂)

Wt
d= Lognormal(0,1) 500 0.912 2.689 0.855 0.018

2000 0.935 2.591 0.907 0.005
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Table 7. MA(1): Xt = Wt − 0.5Wt−1

Distribution n PropGstu
n (0) PropT stu

n (0)

Wt
d= Lognormal(0,1) 15 0.132 0.000

30 0.210 0.156

Table 8. AR(1): Xt = 0.5Xt−1 + Wt

Distribution n PropGstu
n (0) PropT stu

n (0)

Wt
d= Lognormal(0,1) 50 0.118 0.022

100 0.640 0.512

Table 9. Long Memory with d = 0.2: Xt = (1 − B)0.2Wt

Distribution n PropGstu
n (0.2) PropT stu

n (0.2)

Wt
d= Lognormal(0,1) 150 0.590 0.004

300 0.614 0.068

Table 10. Long Memory with d = 0.2: Xt = (1 − B)0.2Wt ; estimator d̂ used

Distribution n PropGstu
n (d̂) PropT stu

n (d̂)

Wt
d= Lognormal(0,1) 300 0.120 0.000

600 0.572 0.008

Table 11. Long Memory with d = 0.4: Xt = (1 − B)0.4Wt

Distribution n PropGstu
n (0.4) PropT stu

n (0.4)

Wt
d= Lognormal(0,1) 300 0.214 0.000

600 0.468 0.000

Table 12. Long Memory with d = 0.4: Xt = (1 − B)0.4Wt ; estimator d̂ used

Distribution n PropGstu
n (d̂) PropT stu

n (d̂)

Wt
d= Lognormal(0,1) 1500 0.064 0.000

3000 0.262 0.000
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In Table 7, for the therein underlined MA(1) process, we generate 500 empirical coverage
probabilities of the event that

G(stu)
n ∈ [−1.96,1.96].

Each one of these generated 500 coverage probabilities is based on 500 replications. We then
record the proportion of those coverage probabilities that deviate from the nominal 0.95 by no
more than 0.01. This proportion is denoted by PropG

(stu)
n (0). For the same generated data, the

same proportion, denoted by PropT
(stu)
n (0), is also recorded for T

(stu)
n (0), that is, the classical

counterpart of G
(stu)
n (0).

The same idea is used to compute the proportions PropG
(stu)
n (0), PropG

(stu)
n (d) and

PropG
(stu)
n (d̂) and those of their respective classical counterparts PropT

(stu)
n (0), PropT

(stu)
n (d)

and PropT
(stu)
n (d̂), in Tables 8–12 for the therein indicated short and long memory processes.

Here again, the choice of q is based on relation (2.14) of Abadir et al. [1] in each case. More
precisely, we let q be �n1/3� for the examined short memory linear processes, and for long
memory linear processes with 0 < d < 0.25, we let q be �n1/(3+4d)�, and for 0.25 < d < 0.5, we
let q be �n1/2−d�.

Remark 4.1. It is important to note that, our randomized pivots Gstu
n (0), Gstu

n (d) and Gstu
n (d̂),

for μ = EXX1, significantly outperform their respective classical counterparts T stu
n (0), T stu

n (d)

and T stu
n (d̂) for short and long memory linear processes. This better performance, most likely,

is an indication that the respective sampling distributions of Gstu
n (0), Gstu

n (d) and Gstu
n (d̂) ap-

proach that of standard normal at a faster speed as compared to that of their respective classical
counterparts T stu

n (0), T stu
n (d) and T stu

n (d̂). In other words, approximating the sampling distribu-
tions of Gstu

n (0), Gstu
n (d) and Gstu

n (d̂) by that of standard normal most likely result in smaller
magnitudes of error in terms the number of observations n. The difference in the performance
is even more evident when comparing Gstu

n (d) and Gstu
n (d̂) to T stu

n (d) and T stu
n (d̂), respectively,

for non-Gaussian long memory linear processes (cf. Tables 3–6 and Tables 9–12).

5. On the bootstrap and linear processes

In the classical theory of the bootstrap, constructing an asymptotic bootstrap confidence interval
for the population mean, based on i.i.d. data, is done by using the Student t -statistic, and esti-
mating the underlying percentile of the conditional distribution, given the data, by repeatedly and
independently resampling from the set of data in hand (cf. Efron and Tibshirani [9], for example).

Under certain conditions, the cutoff points of the conditional distribution, given the data, of
the randomized Student t -statistic, as in (1.2) in terms of i.i.d. X1,X2, . . . , are used to estimate
those of the sampling distribution of the traditional pivot. For more on bootstrapping i.i.d. data
we refer to, for example, Davison and Hinkley [7], Hall [11] and Shao and Tu [22]. Considering
that the cutoff points of the randomized t -statistic are unknown, they usually are estimated via
drawing B ≥ 2 independent bootstrap sub-samples. The same approach is also taken when the
data form short or long memory processes. For references on various bootstrapping methods
to mimic the sampling distribution of statistics based on dependent data, and thus, to capture a
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characteristic of the population, we refer to Härdle et al. [12], Kim and Nordman [14], Kreiss
and Paparoditis [15], Nordman and Lahiri [19], Lahiri [17], and references therein.

Extending the i.i.d. based techniques of the bootstrap to fit dependent data by no means can
be described as straightforward. Our investigation of the bootstrap, in this section, sheds light on
some well known issues that arise when the bootstrap is applied to long memory processes.

In this section, we study the problem of bootstrapping linear processes via the same approach
that we used to investigate the asymptotic distribution of Gn, and its Studentized versions Gstu

n (d)

and Gstu
n (d̂), the direct randomized pivots for the population mean μ.

In the classical method of conditioning on the data, a bootstrap sub-sample becomes an i.i.d.
set of observables in terms of the classical empirical distribution even when the original data are
dependent. In comparison, conditioning on the weights enables us to trace the effect of random-
ization by the weights w

(n)
i on the stochastic nature of the original sample.

To formally state our results on bootstrapping linear processes, we first consider the boot-
strapped sum X̄∗

n − X̄n, where X̄∗
n is the mean of a bootstrap sub-sample X∗

1, . . . ,X∗
n drawn with

replacement from the sample Xi , 1 ≤ i ≤ n, of linear processes as defined in (2.1). Via (2.4),
instead of (2.5) as in (2.6), define

T ∗
n := X̄∗

n − X̄n√
D∗

n,w

=
∑n

i=1(w
(n)
i /n − 1/n)Xi√

D∗
n,w

, (5.1)

where

D∗
n,w := VarX|w

(
X̄∗

n − X̄n

)

= γ0

n∑
j=1

(
w

(n)
i

n
− 1

n

)2

+ 2
n−1∑
h=1

γh

n−h∑
j=1

(
w

(n)
j

n
− 1

n

)(
w

(n)
j+h

n
− 1

n

)

and, as before in (2.4) and (2.5), w
(n)
i , 1 ≤ i ≤ n, are the multinomial random weights of size n

with respective probabilities 1/n, and are independent from the observables in hand.
Despite the seeming similarity of the bootstrapped statistic T ∗

n to Gn as in (2.6), the two
objects are, in fact, very different from each other. Apart from the latter being a direct pivot for the
population mean μ, while the former is not, T ∗

n can only be used up to short memory processes. In
other words, in case of long memory linear processes, it fails to converge in distribution to a non-
degenerate limit (cf. Remark 5.1). This is quite disappointing when bootstrap is used to capture
the sampling distribution of the classical pivot Tn(d) (for μ) of a long memory linear process by
that of its bootstrapped version T ∗

n . It should also be kept in mind that, in view of Remark 5.1,

for T ∗
n the natural normalizing sequence, i.e., VarX|w(X̄∗

n − X̄n) = VarX|w{∑n
i=1(

w
(n)
i

n
− 1

n
)Xi},

fails to provide the same asymptotic distribution as that of the original statistic T stu
n (d), when the

data are of long memory.

Remark 5.1. When dealing with dependent data, T ∗
n does not preserve the covariance structure

of the original data. This can be explained by observing that the expected values of the coef-
ficients of the covariance γh, h ≥ 1, are covw(w

(n)
1 ,w

(n)
2 ) = −1/n. As a result (cf. (6.30) and
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(6.31) in the proofs), as n → ∞, one has

n−1γ0

n∑
j=1

(
w

(n)
j − 1

)2 − γ0 = oPw(1), (5.2)

n−1∑
h=1

γh

n−h∑
j=1

(
w

(n)
j − 1

)(
w

(n)
j+h − 1

) = oPw(n). (5.3)

In view of (5.2) and (5.3), for any linear long memory process, {Xi, i ≥ 1}, as defined in part (B)
of Theorem 2.2, with a finite and positive variance, for any 0 < d < 1/2, as n → ∞, we have

VarX|w
(
n1/2−d

(
X̄∗

n − X̄n

))
= VarX|w

(
n1/2−d

n∑
i=1

(
w

(n)
i

n
− 1

n

)
Xi

)
→ 0 in probability Pw.

The latter conclusion implies that T ∗
n cannot be used for long memory processes. Hence, T ∗

n

works only for short memory processes.

In view of (5.2) and (5.3), for short memory linear processes, T ∗
n can, without asymptotic loss

of information in probability-Pw , also be defined as

T ∗
n :=

∑n
i=1(w

(n)
i /n − 1/n)Xi√

γ0
∑n

j=1(w
(n)
i /n − 1/n)2

. (5.4)

Thus, the two definitions of T ∗
n in (5.1) and (5.4) coincide asymptotically. We note in passing

that the asymptotic equivalence of (5.1) and (5.4) does not mean that for a finite number of data,
they are equally robust. Obviously, (5.1) is more robust, and it should be used, for studying its
behavior for a short memory finite sample of size n.

In the following (5.5), for further study we present the Studentized counterpart of T ∗
n as defined

in (5.4):

T ∗stu

n :=
∑n

i=1(w
(n)
i /n − 1/n)Xi√

γ̄0
∑n

j=1(w
(n)
i /n − 1/n)2

. (5.5)

The following two results are respective counterparts of Theorems 2.1 and 2.2.

Theorem 5.1. Suppose that {Xi, i ≥ 1} is a stationary linear process as defined in (2.1) with∑∞
k=0 |ak| < ∞. Then, as n → ∞, we have for all t ∈ R,

PX|w
(
T ∗

n ≤ t
) −→ �(t) in probability Pw (5.6)

and, consequently,

PX,w

(
T ∗

n ≤ t
) −→ �(t), t ∈R. (5.7)
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Theorem 5.2. Assume that for the stationary linear process {Xi, i ≥ 1}, as defined in (2.1),∑∞
k=0 |ak| < ∞, and Eζ 4

1 < ∞. Then, as n → ∞, we have for all t ∈R,

PX|w
(
T ∗stu

n ≤ t
) −→ �(t) in probability Pw (5.8)

and, consequently,

PX,w

(
T ∗stu

n ≤ t
) −→ �(t). (5.9)

It is also noteworthy that taking the traditional method of conditioning on the data yields the
same conclusion on T ∗

n as the one in Remark 5.1 for long memory linear processes. In fact, in
case of conditioning on the sample, recalling that here without loss of generality μ = 0, one can
see that

Var
(
n1/2−d

(
X̄∗

n − X̄n

)|X1, . . . ,Xn

)
= Var

(
n1/2−d

n∑
i=1

(
w

(n)
i

n
− 1

n

)
Xi |X1, . . . ,Xn

)

= n−2d

(
1 − 1

n

)∑n
i=1 X2

i

n
− n−1−2d

n−1∑
h=1

(
1 − h

n

)
XiXi+h

= oPX
(1), as n → ∞; when 0 < d < 1/2.

The preceding convergence to zero takes place when Xis are of long memory.
In the literature, block-bootstrap methods are usually used to modify the randomized t -statistic

T ∗
n so that it should reflect the dependent structure of the data (cf. Kim and Nordman [14], Kreiss

and Paparoditis [15], Lahiri [17] and references therein) that is concealed by the conditional
independence of the randomized random variables with common distribution Fn(x) := n−1#{k :
1 ≤ k ≤ n,Xk ≤ x}, x ∈ R, given X1, . . . ,Xn. These methods are in contrast to our direct pivot
Gn as in (2.6), and its Studentized version Gstu

n (d) as defined in (2.8), that can be used both for
short and long memory processes without dividing the data into blocks. This is so, since, the
random weights |w(n)

i /n− 1/n| in Gn, and in its Studentized version Gstu
n (d) as defined in (2.8),

project and preserve the covariance structure of the original sample. To further elaborate on the
latter, we note that, as n → ∞, we have nEw|(w(n)

1 /n − 1/n)(w
(n)
2 /n − 1/n)| → 4e−2 (cf. (6.5)

in the proofs). This, in turn, implies that, for 0 ≤ d < 1/2, the term n1−2d
∑n−1

h=1 γh

∑n−h
j=1 |w

(n)
j

n
−

1
n
||w

(n)
j+h

n
− 1

n
| will be neither zero nor infinity in the limit (cf. (6.6) and (6.7) in the proofs).

This means that, unlike T ∗
n , Gn preserves the covariance structure of the data without more ado.

Hence, Gn and its Studentized version Gstu
n (d), as in (2.6) and (2.8) respectively, are natural

choices to make inference about the mean of long memory processes, as well as that of short
memory ones.
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Comparison of our randomization approach to bootstrap

In comparing the use of our direct randomized pivot Gn and its Studentized versions Gstu
n (0) and

Gstu
n (d̂) to the bootstrap method of constructing confidence intervals, our approach has a number

of advantages over the latter. The first advantage is that Gn and its Studentized versions can be
used without any adjustment of the data, such as dividing them into blocks, for example. The
second advantage, that is also a consequence of the first one, is that in Gn and its Studentized
versions, for both long and short memory linear processes, the natural normalization, that is, the
standard deviation of the randomized sums as the normalizing sequence, directly yields the CLT.
On the other hand, the i.i.d. based bootstrap, represented by T ∗

n , as in (5.5), fails to yield a CLT
for the bootstrapped linear process with the standard deviation as the normalizing sequence (cf.
Remark 5.1), and it is to be replaced by modified versions of it that are computed based on blocks
of the original data set as in Kim and Nordman [14]. The third advantage concerns the fact that
the Studentized pivots Gstu

n (0) and Gstu
n (d̂) are direct pivots for the population mean μ. Recall

that T ∗
n fails to remember μ (cf. Remark 2.1). We note as well that our approach to making

inference about the population mean μ, based on the pivot Gn and its Studentized versions, for
both short and long memory linear processes, does not require repeated resampling from the
original data. This is in contrast to the block bootstrap methods, where bootstrap samples are
to be drawn repeatedly from the data after dividing them into blocks (cf. for example, Lahiri
[17]).

Further to the block-bootstrap approach, the sub-sample window approach for long range de-
pendent linear processes as in Nordman and Lahiri [19] is similar in nature to the former. Only,
in the latter, replicated bootstrap blocks samples are replaced by overlapping block sub-samples.
Treating each block as a scaled-down copy of the original time series, the plug-in analog of a
normalized version of Student t -pivot for the mean, that is based on the original n observations,
is defined on each block. The empirical distribution of the latter plug-in analogs is shown to
be near in probability to the sampling distribution of the original pivot. Consequently, the com-
ments made above on comparing our randomization approach to the bootstrap approach, with
the exception of the one concerning repeated resampling, continue to hold true in the sub-sample
window method as well.

6. Proofs

In proving Theorems 2.1 and 5.1, we make use of Theorem 2.2 of Abadir et al. [2] in which the
asymptotic normality of sums of deterministically weighted linear processes are established. In
this context, in Theorems 2.1 and 5.1, we view the sums defined in (2.4) and (2.5) as randomly
weighted sums of the data on X. Conditioning on the weights w

(n)
i s, we show that the conditions

required for the deterministic weights in the aforementioned Theorem 2.2 of Abadir et al. [2] hold
true in probability-Pw in this context. The latter, in view of the characterization of convergence
in probability in terms of almost sure convergence of subsequences, will enable us to conclude
the conditional CLTs, in probability-Pw , in Theorems 2.1 and 5.1. The unconditional CLTs in
terms of the joint distribution PX,w will then follow from the dominated convergence theorem.
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Employing Slutsky type arguments, we conclude Theorems 2.2 and 5.2 from Theorems 2.1 and
5.1, respectively.

Proof of Theorem 2.1

In view of Theorem 2.2 of Abadir et al. [2], the proof of Theorem 2.1 follows if we show that, as
n → ∞, the following two statements, namely (6.1) and (6.2), hold true:

max1≤i≤n |w(n)
j /n − 1/n|√
Dn

= oPw(1), (6.1)

∑n
i=1(w

(n)
j /n − 1/n)2

Dn

= OPw(1), (6.2)

where Dn is as defined in (2.7).
In order to establish (6.1) and (6.2), we first note that it is not difficult to observe that, as

n → ∞,

n

n∑
j=1

(
w

(n)
j

n
− 1

n

)2

−→ 1 in probability Pw . (6.3)

Since, for 0 ≤ d < 1/2, as n → ∞, we have that

0 < lim
n→∞ Var

(
n1/2−dX̄n

) = lim
n→∞n−2d

(
γ0 + 2

n∑
h=1

γh(1 − h/n)

)
< ∞,

we will also have

n1−2d
n∑

h=1

γh

n−h∑
j=1

∣∣∣∣w
(n)
j

n
− 1

n

∣∣∣∣
∣∣∣∣w

(n)
j+h

n
− 1

n

∣∣∣∣ − 4e−2 lim
n→∞n−2d

n∑
h=1

γh(1 − h/n) = oPw(1). (6.4)

In order to prove (6.4), we first note that

Ew

(∣∣∣∣w
(n)
1

n
− 1

n

∣∣∣∣
∣∣∣∣w

(n)
2

n
− 1

n

∣∣∣∣
)

= −1/n3 − 2/n2Ew

(6.5)
× {(

w
(n)
1 − 1

)(
w

(n)
2 − 1

)
1
((

w
(n)
1 − 1

)(
w

(n)
2 − 1

)
< 0

)}
= −1/n3 + 4/n2(1 − 1/n)n

(
1 − 1/(n − 1)

)n
.
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The preceding relation implies that, as n → ∞,

n−2dEw

(
n

n−1∑
h=1

γh

(
n−h∑
j=1

∣∣∣∣w
(n)
j

n
− 1

n

∣∣∣∣
∣∣∣∣w

(n)
j+h

n
− 1

n

∣∣∣∣
))

= n−2d

(
n−1∑
h=1

γh

[−(n − h)

n2
+ 4

(n − h)

n
(1 − 1/n)n

(
1 − 1/(n − 1)

)n
])

(6.6)

−→ 4e−2 lim
n→∞n−2d

n∑
h=1

γh(1 − h/n).

By virtue of the preceding result, in order to prove (6.4), we need to show that, as n → ∞,

n1−2d

n−1∑
h=1

γh

(
n−h∑
j=1

∣∣∣∣w
(n)
j

n
− 1

n

∣∣∣∣
∣∣∣∣w

(n)
j+h

n
− 1

n

∣∣∣∣ − bn,h

)
= oPw(1), (6.7)

where

bn,h := −(n − h)

n2
+ 4(n − h)

n

(
1 − 1

n

)n(
1 − 1

n − 1

)n

. (6.8)

In order to show the validity of (6.7), for ε > 0, we write

Pw

(∣∣∣∣∣n1−2d

n−1∑
h=1

γh

n−h∑
j=1

∣∣∣∣w
(n)
j

n
− 1

n

∣∣∣∣
∣∣∣∣w

(n)
j+h

n
− 1

n

∣∣∣∣ − bn,h

∣∣∣∣∣ > ε

)

(6.9)

≤ ε−1n−2d
n−1∑
h=1

|γh|E1/2
w

(
n

n−h∑
j=1

∣∣∣∣w
(n)
j

n
− 1

n

∣∣∣∣
∣∣∣∣w

(n)
j+h

n
− 1

n

∣∣∣∣ − bn,h

)2

.

We are now to show that Ew(n
∑n−h

j=1 |w
(n)
j

n
− 1

n
||w

(n)
j+h

n
− 1

n
|−bn,h)

2 approaches zero uniformly
in 1 ≤ h ≤ n − 1, as n → ∞.

Some basic, yet not quite trivial, calculations that also include the use of the moment generat-
ing function of the multinomial distribution show that

Ew

((
w

(n)
1

n
− 1

n

)(
w

(n)
2

n
− 1

n

))2

= O
(
n−4) (6.10)

and

Ew

(∣∣∣∣
(

w
(n)
1

n
− 1

n

)(
w

(n)
2

n
− 1

n

)(
w

(n)
3

n
− 1

n

)(
w

(n)
4

n
− 1

n

)∣∣∣∣
)

= 3/n6 − 6/n7 + 8/n4(1 − 3/n)n
(
1 − 1/(n − 3)

)n (6.11)

+ 8/n4(1 − 1/n)n
{(

n(n − 2)
)
/(n − 1)2 − 1 + (

1 − 3/(n − 1)
)n}

.
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By virtue of (6.10) and (6.11), we have that

Ew

(
n

n−h∑
j=1

∣∣∣∣w
(n)
j

n
− 1

n

∣∣∣∣
∣∣∣∣w

(n)
j+h

n
− 1

n

∣∣∣∣ − bn,h

)2

= Ew

(
n

n−h∑
j=1

∣∣∣∣w
(n)
j

n
− 1

n

∣∣∣∣
∣∣∣∣w

(n)
j+h

n
− 1

n

∣∣∣∣
)2

− b2
n,h

= n2(n − h)O
(
n−4)

+ n2(n − h)(n − h − 1)
(
3/n6 − 6/n7 + 8/n4(1 − 3/n)n

(
1 − 1/(n − 3)

)n

+ 8/n4(1 − 1/n)n
{(

n(n − 2)
)
/(n − 1)2 − 1 + (

1 − 3/(n − 1)
)n}) − b2

n,h.

Some further algebra shows that the right-hand side of the preceding relation can be bounded
above by

n3O
(
n−4) + 3n−2 + 8/n(1 − 1/n)n

(
1 − 1/(n − 1)

)n → 0 as n → ∞.

It is important to note that the left-hand side of the preceding convergence dose not depend on h.
Incorporating now the preceding relation into (6.9) yields (6.7).
In conclusion, for both short and long memory data, (6.1) results from (6.28) below, (6.3) and

(6.4). The relation (6.2) follows from (6.3) and (6.4). Now the proof of Theorem 2.1 is complete.
Prior to establishing the proof of Theorem 2.2, we first define

s2
X := lim

n→∞ VarX
(
n1/2−dX̄n

) = lim
n→∞n−2d

{
γ0 + 2

n−1∑
h=1

γh(1 − h/n)

}
, (6.12)

and note that under regular moment conditions, such as those assumed in Theorem 2.2, the con-
clusion 0 < s2

X < ∞ is valid for 0 ≤ d < 1/2.

Proof of Theorem 2.2

Considering that in this theorem the data are linear processes that can be of short memory, or
posses the property of long range dependence, here, the proofs are given in a general setup that
includes both cases.

Prior to stating the details of the proof of Theorem 2.2, we note that, when the Xis form a long
memory process, in view of the in probability-PX asymptotic equivalence of the estimator d̂ to
d as stated in the assumptions of this theorem, we present our proofs for Gstu

n (d) rather than for
Gstu

n (d̂).
The proof of both parts of this theorem will follow if, under their respective conditions, one

shows that for 0 ≤ d < 1/2, as n,q → ∞ such that q = O(n1/2), the following two statements
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hold true:

n1−2dγ0
∑n

j=1(
w

(n)
j

n
− 1

n
)2 + 2n1−2d

∑n−1
h=1 γh

∑n−h
j=1 |(w

(n)
j

n
− 1

n
)(

w
(n)
j+h

n
− 1

n
)|

n−2dγ0(1 − 1
n
) + 2n1−2d

∑n−1
h=1 γh{−(n−h)

n3 + 4(n−h)

n2 (1 − 1
n
)n(1 − 1

n−1 )n}
(6.13)

−→ 1 in probability Pw,

PX|w
{∣∣∣∣

nγ̄0
∑n

j=1(
w

(n)
j
n

− 1
n
)2

q2d + 2q−1−2d
∑q

h=1 γ̄h

∑q−h

j=1 |(w(n)
j − 1)(w

(n)
j+h − 1)|

γ̄0(1−1/n)

q2d + 2q−2d
∑q

h=1 γ̄h(1 − h
q
){−1

n
+ 4(1 − 1

n
)n(1 − 1

n−1 )n} − 1

∣∣∣∣ > ε

}
(6.14)

= oPw(1),

where, ε is an arbitrary positive number.
Due to the following two conclusions, namely (6.15) and (6.16), (6.13) and (6.14) will, in turn,

imply Theorem 2.2. We have, as n → ∞,

n−2d

{
γ0 + 2

n−1∑
h=1

γh(1 − h/n)

}
→ s2

X, (6.15)

and, as n,q → ∞ such that q = O(n1/2),

q−2d

{
γ̄0 + 2

q∑
h=1

γ̄h(1 − h/q)

}
→ s2

X in probability PX , (6.16)

where, s2
X is as defined in (6.12). In the context of Theorem 2.2, the conclusion (6.16) results

from Theorem 3.1 of Giraitis et al. [10]. This is so, since, in Theorem 2.2 we assume that the
data have a finite forth moment, n,q → ∞ in such a way that q = O(n1/2) and, in the case of
long memory, in part (B) of Theorem 2.2 we consider long memory linear processes for which
we have ai ∼ cid−1, as i → ∞.

In order to prove (6.13), we note that, as n → ∞,

n−2dγ0

(
1 − 1

n

)
+ 2n1−2d

n−1∑
h=1

γhbn,h

→
{(

1 − 4e−2
)
γ0 + 4e−2s2

X, when d = 0;

4e−2s2
X, when 0 < d < 1/2,

where bn,h is as in (6.8). Considering that here we have limn→∞ n−2d
∑n

h=1 γh < ∞, (6.30) and
(6.7) imply (6.13), as n → ∞.
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In order to establish (6.14), in view of (6.30) and the fact that, under the conditions of Theo-
rem 2.2, as n → ∞, γ̄0 − γ0 = oPX

(1), we conclude that, as n → ∞,

PX|w

(∣∣∣∣∣n1−2d

(
q

n

)−2d

γ̄0

n∑
i=1

(
w

(n)
i

n
− 1

n

)2

− q−2d γ̄0(1 − 1/n)

∣∣∣∣∣ > ε

)
→ 0 in probability Pw,

where 0 ≤ d < 1/2 and ε > 0 is arbitrary.
We proceed with the proof of (6.14) by showing that, as n,q → ∞, the following relation

holds true: for arbitrary ε1, ε2 > 0, as n,q → ∞, in such a way that q = O(n1/2),

Pw

{
PX|w

(
q−2d

∣∣∣∣∣
q∑

h=1

γ̄hBn,q

∣∣∣∣∣ > 2ε1

)
> 2ε2

}
→ 0, (6.17)

where

Bn,q(h) := q−1
q−h∑
j=1

∣∣(w(n)
j − 1

)(
w

(n)
j+h − 1

)∣∣ − bn,q,h,

bn,q,h := Ew

(
q−1

q−h∑
j=1

∣∣(w(n)
j − 1

)(
w

(n)
j+h − 1

)∣∣)

= −(q − h)

nq
+ 4(q − h)

q

(
1 − 1

n

)n(
1 − 1

n − 1

)n

.

In order to establish (6.17), without loss of generality, we first assume μ = EXX1 = 0, and for
each 1 ≤ h ≤ q define

γ ∗
h := 1

n

n−h∑
i=1

XiXi+h. (6.18)

Observe now that the left-hand side of (6.17) is bounded above by

Pw

{
PX|w

(
q−2d

∣∣∣∣∣
q∑

h=1

(
γ̄h − γ ∗

h

)
Bn,q(h)

∣∣∣∣∣ > ε1

)
> ε2

}
(6.19)

+ Pw

{
PX|w

(
q−2d

∣∣∣∣∣
q∑

h=1

γ ∗
h Bn,q(h)

∣∣∣∣∣ > ε1

)
> ε2

}
.
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We now show that the first term in (6.19), that is, the remainder, is asymptotically negligible. To
do so, we note that we have

q∑
h=1

(
γ̄h − γ ∗

h

)
Bn,q(h) = − X̄n

n

q∑
h=1

Bn,q(h)

n−h∑
i=1

Xi − X̄n

n

q∑
h=1

Bn,q(h)

n−h∑
i=1

Xi+h

+ X̄2
q∑

h=1

Bn,q(h) (6.20)

∼ −X̄2
q∑

h=1

Bn,q(h) uniformly in h in probability PX|w,

where, in the preceding conclusion, generically, Yn ∼ Zn in probability-P means Yn = Zn(1 +
oP (1)). The approximation in (6.20) is true since, for example, for ε > 0

PX

( ⋃
1≤h≤q

∣∣∣∣X̄n −
∑n−h

i=1 Xi

n

∣∣∣∣ > ε

)
≤ qPX

(∣∣∣∣
∑n

i=n−h+1 Xi

n

∣∣∣∣ > ε

)

≤ ε−4q
(h − 1)4

n4
E

(
X4

1

)

≤ ε−4 q5

n4
EX

(
X4

1

) → 0 as n → ∞.

The preceding is true since 1 ≤ h ≤ q and q = O(n1/2), as n,q → ∞.
We note that for 0 ≤ d < 1/2, as n → ∞, we have that n1/2−dX̄n = OPX

(1). The latter con-
clusion, in view of the equivalence in (6.20), implies that, for each ε1, ε2 > 0, there exists ε > 0
such that

Pw

{
PX|w

(
q−2d

∣∣∣∣∣
q∑

h=1

(
γ̄h − γ ∗

h

)
Bn,q(h)

∣∣∣∣∣ > ε1

)
> ε2

}

∼ Pw

{
q−2d

n1−2d

q∑
h=1

∣∣Bn,q(h)
∣∣ > ε

}
(6.21)

≤ ε−1 q−2d

n1−2d

q∑
h=1

Ew

(∣∣Bn,q(h)
∣∣).

Observing now that supn≥2 sup1≤h≤q Ew(|Bn,q(h)|) ≤ 10, we can bound the preceding relation
above by

10ε−1 q1−2d

n1−2d
−→ 0,
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as n,q → ∞ in such away that q = O(n1/2). This means that the first term in (6.19) is asymp-
totically negligible and, as a result, (6.17) follows when the second term in the former relation is
also asymptotically negligible. To prove this negligibility, we first define

γ ∗∗
h := 1

n

n∑
i=1

XiXi+h. (6.22)

Now, observe that

PX

{ ⋃
1≤h≤q

∣∣γ ∗∗
h − γ ∗

h

∣∣ > ε

}

≤ qP

{
1

n

∣∣∣∣∣
n∑

i=n−h+1

XiXi+h

∣∣∣∣∣ > ε

}

≤ ε−2 q3

n2
EX

(
X4

1

) → 0,

as n,q → ∞ such that q = O(n1/2), hence, as n,q → ∞ such that q = O(n1/2), using a similar
argument to arguing (6.19) and (6.21), with γ ∗

h replacing γ̄h and γ ∗∗
h replacing γ ∗

h therein, we
arrive at

Pw

{
PX|w

(
q−2d

∣∣∣∣∣
q∑

h=1

γ ∗
h Bn,q(h)

∣∣∣∣∣ > ε1

)
> ε2

}

∼ Pw

{
PX|w

(
q−2d

∣∣∣∣∣
q∑

h=1

γ ∗∗
h Bn,q(h)

∣∣∣∣∣ > ε1

)
> ε2

}
.

Therefore, in order to prove (6.17), it suffices to show that, as n,q → ∞ so that q = O(n1/2),

Pw

{
PX|w

(
q−2d

∣∣∣∣∣
q∑

h=1

γ ∗∗
h Bn,q(h)

∣∣∣∣∣ > ε1

)
> ε2

}
→ 0,

where γ ∗∗
h is defined in (6.22). The latter relation, in turn, follows from the following two con-

clusions: as n,q → ∞ so that q = O(n1/2),

sup
1≤h,h′≤q

Ew

(∣∣Bn,q(h)Bn,q

(
h′)∣∣) = o(1) (6.23)

and

q−4d

q∑
h=1

q∑
h′=1

∣∣EX

(
γ ∗∗
h γ ∗∗

h′
)∣∣ = O(1). (6.24)
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To prove (6.23), we use the Cauchy inequality to write

Ew

(∣∣Bn,q(h)Bn,q

(
h′)∣∣)

≤ Ew

(
Bn,q(h)

)2

≤ q − h

q2
Ew

((
w

(n)
1 − 1

)(
w

(n)
2 − 1

))2

+ (q − h)(q − h − 1)

q2
Ew

∣∣(w(n)
1 − 1

)(
w

(n)
2 − 1

)(
w

(n)
3 − 1

)(
w

(n)
4 − 1

)∣∣
− b2

n,q,h

≤ (q − 1)/q2O(1) + 3/n2 + 8/n(1 − 1/n)n
(
1 − 1/(n − 1)

)n
.

We note that the right-hand side of the preceding relation does not depend on h and it ap-
proaches zero as n → ∞. The latter conclusion implies (6.23).

In order to establish (6.24), we define

H := lim
s→∞ s−2d

s∑

=−s

|γ
|.

Observe that H < ∞. We now carry on with the proof of (6.24), using a generalization of an
argument used in the proof of Proposition 7.3.1 of Brockwell and Davis [4] as follows:

q−4d

q∑
h=1

q∑
h′=1

∣∣EX

(
γ ∗∗
h γ ∗∗

h′
)∣∣

≤ q−2d

q∑
h=1

|γh|q−2d

q∑
h′=1

|γh′ |

+
(

q

n

)1−2d

n−2d
n∑

k=−n

|γh|q−2d

q∑
L=−q

|γk+L| (6.25)

+ 1

n

n∑
k=−n

q−2d

q∑
h′=1

|γk+h′ |q−2d

q∑
h=1

|γk−h|

+ q−2d

n1−2d
n−2d

n∑
i=1

n∑
k=−n

|aiai+k|q−d

q∑
h=1

|ai+h|q−d

q∑
h′=1

|ai+k−h′ |.

It is easy to see that, as n → ∞, and consequently q → ∞, the right-hand side of the inequality
(6.25) converges to the finite limit 3H 2. Now the proof of (6.24) and also that of Theorem 2.2
are complete.
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Proof of Corollary 3.1

Due to the similarity of parts (A) and (B), we only give the proof for part (A) of Corollary 3.1.
In order to establish part (A), we first construct an asymptotic 1−α size one-sided randomized

confidence bound for the parameter μX = EXX using part (B) of Theorem 2.2, as follows:

μX ≥
∑n

i=1 |w(n)
i /n − 1/n|Xi − D

1/2

n,q,d̂
z1−α∑n

j=1 |w(n)
j /n − 1/n|

. (6.26)

Now, since the function G is an increasing function, we conclude that (6.26) is equivalent to
having

G(μX) ≥ G
(∑n

i=1 |w(n)
i /n − 1/n|Xi − D

1/2

n,q,d̂
z1−α∑n

j=1 |w(n)
j /n − 1/n|

)
.

Employing Jenssen’s inequality at this stage yields conclusion (A) of Corollary 3.1. Now the
proof of Corollary 3.1 is complete.

Proof of Theorem 5.1

Without loss of generality here, we assume that μ = 0, and note that

VarX|w

(
n∑

i=1

(
w

(n)
i

n
− 1

n

)
Xi

)

= γ0

n∑
j=1

(
w

(n)
j

n
− 1

n

)2

+ 2
n−1∑
h=1

γh

n−h∑
j=1

(
w

(n)
j

n
− 1

n

)(
w

(n)
j+h

n
− 1

n

)
.

Now, in view of Theorem 2.2 of Abadir et al. [2], it suffices to show that, as n → ∞,

max1≤i≤n(w
(n)
i /n − 1/n)2

γ0
∑n

j=1(w
(n)
j /n − 1/n)2 + 2

∑n−1
h=1 γh

∑n−h
j=1(w

(n)
j /n − 1/n)(w

(n)
j+h/n − 1/n)

(6.27)
= oPw(1).

Noting that γ0 > 0, the proof of the preceding statement results from the following two conclu-
sions: as n → ∞,

n max
1≤i≤n

(
w

(n)
i

n
− 1

n

)2

= oPw(1) (6.28)
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and

nγ0

n∑
j=1

(
w

(n)
j

n
− 1

n

)2

+ 2n

n−1∑
h=1

γh

n−h∑
j=1

(
w

(n)
j

n
− 1

n

)(
w

(n)
j+h

n
− 1

n

)
− γ0

(6.29)
= oPw(1).

To prove (6.28), for ε > 0, in what follows we employ Bernstien’s inequality and write

Pw

(
max

1≤i≤n

∣∣∣∣w
(n)
i

n
− 1

n

∣∣∣∣ >
ε√
n

)
≤ nPw

(∣∣∣∣w
(n)
1

n
− 1

n

∣∣∣∣ >
ε√
n

)

≤ n exp

{
−n1/2 ε2

n−1/2 + ε

}
= o(1),

as n → ∞. Now the proof of (6.28) is complete.
Considering that here we have

∑∞
h=1 γh < ∞, the proof of (6.29) will follow from the follow-

ing two statements: as n → ∞,

n

n∑
i=1

(
w

(n)
i

n
− 1

n

)2

− (1 − 1/n) = oPw(1) (6.30)

and

n

n−1∑
h=1

γh

n−h∑
j=1

(
w

(n)
j

n
− 1

n

)(
w

(n)
j+h

n
− 1

n

)
= oPw(1). (6.31)

To prove (6.30), with ε > 0, we first use Chebyshev’s inequality followed by some algebra in-
volving the use of the moment generating function of the multinomial distribution to arrive at

Pw

(∣∣∣∣∣n
n∑

i=1

(
w

(n)
i

n
− 1

n

)2

− (1 − 1/n)

∣∣∣∣∣ > ε

)

≤ ε−2n2Ew

(
n∑

i=1

(
w

(n)
i

n
− 1

n

)2

− (1 − 1/n)

n

)2

≤ ε−2n2
(

1 − 1

n

)−2{1 − 1/n

n6
+ (1 − 1/n)4

n3
+ (n − 1)(1 − 1/n)2

n4
+ 4(n − 1)

n4
+ 1

n2

− 1

n3
+ n − 1

n6
+ 4(n − 1)

n5
− (1 − 1/n)2

n2

}
−→ 0 as n → ∞.

The latter completes the proof of (6.30).
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In order to establish (6.31), with ε > 0, we write

Pw

(
n

∣∣∣∣∣
n∑

h=1

γh

n−h∑
j=1

(
w

(n)
j

n
− 1

n

)(
w

(n)
j+h

n
− 1

n

)∣∣∣∣∣ > ε

)

(6.32)

≤ ε−1
n−1∑
h=1

|γh|E1/2
w

(
n

n−h∑
j=1

(
w

(n)
j

n
− 1

n

)(
w

(n)
j+h

n
− 1

n

))2

.

Observe now that

Ew

(
n

n−h∑
j=1

(
w

(n)
1

n
− 1

n

)(
w

(n)
2

n
− 1

n

))2

= n2(n − h)Ew

((
w

(n)
1

n
− 1

n

)(
w

(n)
2

n
− 1

n

))2

+ n2(n − h)(n − h − 1)

× Ew

((
w

(n)
1

n
− 1

n

)(
w

(n)
2

n
− 1

n

)(
w

(n)
3

n
− 1

n

)(
w

(n)
4

n
− 1

n

))

≤ n3O
(
n−4) + n3O

(
n−6) → 0 as n → ∞.

The preceding conclusion is true, since Ew((
w

(n)
1
n

− 1
n
)(

w
(n)
2
n

− 1
n
))2 = O(n−4) and Ew((

w
(n)
1
n

−
1
n
)(

w
(n)
2
n

− 1
n
)(

w
(n)
3
n

− 1
n
)(

w
(n)
4
n

− 1
n
)) = O(n−6). Incorporating now the latter two results into (6.32),

the conclusion (6.31) follows. Now the proof of Theorem 5.1 is complete.

Proof of Theorem 5.2

In order to prove Theorem 5.2, using a Slutsky type argument, it suffices to show that the Stu-
dentizing sequence of T ∗stu

n , asymptotically in n, in a hierarchical way, coincides with the right
normalizing sequence, that is, with the one in the denominator of T ∗

n defined in (5.4).
Considering that, as n → ∞, we have that γ̄0 − γ0 = oPX

(1), where 0 < γ0 < ∞, the proof of
this theorem follows if, for ε1, ε2 > 0, we show that

Pw

{
PX|w

(
γ̄0

∣∣∣∣n
n∑

i=1

(
w

(n)
i

n
− 1

n

)
− (1 − 1/n)

∣∣∣∣ > ε1

)
> ε2

}

= o(1), as n → ∞.
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To establish the preceding relation, we note that its left-hand side is bounded above by

Pw

{
EX(γ̄0)

(∣∣∣∣n
n∑

i=1

(
w

(n)
i

n
− 1

n

)
− (1 − 1/n)

∣∣∣∣
)

> ε1ε2

}

≤ Pw

{(∣∣∣∣∣n
n∑

i=1

(
w

(n)
i

n
− 1

n

)
− (1 − 1/n)

∣∣∣∣∣
)

>
ε1ε2

γ0

}
.

The rest of the proof is similar to that of (6.30). Now the proof of this theorem is complete.
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References

[1] Abadir, K.M., Distaso, W. and Giraitis, L. (2009). Two estimators of the long-run variance: Beyond
short memory. J. Econometrics 150 56–70. MR2525994

[2] Abadir, K.M., Distaso, W., Giraitis, L. and Koul, H.L. (2014). Asymptotic normality for weighted
sums of linear processes. Econometric Theory 30 252–284. MR3177798

[3] Beran, J. (1994). Statistics for Long-Memory Processes. Monographs on Statistics and Applied Prob-
ability 61. New York: Chapman & Hall. MR1304490

[4] Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods, 2nd ed. New York:
Springer.
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