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We give general bounds in the Gaussian and Poisson approximations of innovations (or Skorohod integrals)
defined on the space of point processes with Papangelou conditional intensity. We apply the general results
to Gibbs point processes with pair potential and determinantal point processes. In particular, we provide
explicit error bounds and quantitative limit theorems for stationary, inhibitory and finite range Gibbs point
processes with pair potential and β-Ginibre point processes.
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1. Introduction

Innovations have an important role in statistics. Indeed, they are basic quantities for the inspection
of residuals, which is a fundamental step for investigating the quality of adjustment of a para-
metric model to data, see [2]. In one-dimension, innovations of point processes with stochastic
intensity are well-understood by means of the martingale theory, see [21]; innovations of spa-
tial point processes with Papangelou (conditional) intensity, instead, have been introduced quite
recently in [3] (see formula (4) for the formal definition).

Roughly speaking, letting μ denote a point process on a Polish space X and σ a reference
measure on X, the Papangelou intensity of μ, say π(μ)(x,x) has the following interpretation:
π(μ)(x,x)σ (dx) is the infinitesimal probability of finding a point of the process in the region dx

around x ∈ X and with volume σ(dx), given that the point process agrees with the configuration
x outside dx, see Papangelou [31]; see [15,27] and [38] for thorough studies of the mathemat-
ical properties of point processes with Papangelou intensity, and the monographs [49] and [26]
for statistical applications. The Papangelou intensity can be considered as the appropriate coun-
terpart, for a spatial point process, of the notion of stochastic intensity of a “temporal” point
process.

Due to the randomness of the integrand (i.e., the function ϕ in formula (4)) and of the com-
pensator (i.e., the integral with respect to σ in formula (4)), the study of the innovation of a point
processes with Papangelou intensity may involve additional difficulties than the study of the first
order stochastic integral with respect to the point processes itself (see formula (22) for the for-
mal definition). Central limit theorems for first order stochastic integrals with respect to various
classes of spatial point process are obtained for example, in [20,40] and [42]. To the best of our
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knowledge, there are, instead, only few results on Gaussian limits for innovations of spatial point
processes with Papangelou intensity, see, for example, [10].

In this paper, we give general bounds in the Gaussian and Poisson approximations respectively
of innovations and non-compensated and integer-valued innovations (see formula (8) for the
formal definition) defined on the space of point processes with Papangelou intensity, extending
the corresponding results in [33] and [32].

Our proofs are based on the so-called Malliavin–Stein method. In recent years, Stein’s method
and Malliavin’s calculus have been successfully combined in order to derive explicit bounds in
the Gaussian approximation of random variables on the Wiener and Poisson spaces. The strik-
ing contributions are due to Nourdin and Peccati [28] and Peccati, Solé, Taqqu and Utzet [33].
Further developments include [34], where the main result in [33] is extended to random vectors,
[37], where explicit bounds in the Gaussian approximation of U -statistics for Poisson processes
are given, and [24], where the authors prove a class of inequalities which yield new bounds for
the Gaussian approximation on the Poisson space. For functionals of the homogeneous Poisson
process on the half-line, an alternative to the main bound in [33] is offered in [35] by the use
of the Clark–Ocone covariance representation formula. The Clark–Ocone formula is a valuable
tool even for the Gaussian and Poisson approximation of one-dimensional point processes with
stochastic intensity, see [45] and [46]. One step further on this fruitful line of research is made
in [29], where the Stein method is combined with a discrete version of the Malliavin calculus
in order to study the Gaussian fluctuations of functionals of symmetric Bernoulli processes. Ex-
plicit bounds in the Poisson approximation of integer-valued functionals of the Poisson process
are provided in [32] by means of the Chen–Stein method. The Gaussian and Poisson approxima-
tions for functionals of not-necessarily symmetric Bernoulli processes are investigated in [22,23]
and [36].

In the proofs of the main results in [33] and [32], a crucial role is played by the integration
by parts (or duality) formula of the Malliavin calculus on the Poisson space due to Nualart and
Vives [30]. A related integration by parts formula on the space of point processes with Papan-
gelou intensity can be derived by using the Georgii–Nguyen–Zessin formula (see Lemma 2.1)
and it represents the starting point of our analysis. Indeed, combining such duality formula with
Stein’s and Chen–Stein’s methods and the basic properties of point processes with Papangelou
intensity, we are able to provide general bounds for (i) the Wasserstein distance between the
innovation (based on a point process with Papangelou intensity) and a standard normal random
variable (see Theorem 3.1 and Corollary 3.2); (ii) the total variation distance between the non-
compensated and integer-valued innovation (based on a point process with Papangelou intensity)
and a Poisson distributed random variable (see Theorem 4.1 and Corollary 4.2). The general
bounds proved in this paper simplify considerably when the integrands of the innovations do not
depend on configurations, and we shall refer to these particular innovations as raw innovations.

Roughly speaking, thanks to the results in [33], one may expect quantitative Gaussian limit
theorems for sequences of raw innovations and first order stochastic integrals based on families
of point processes which converge (in some sense) to a Poisson process and based on suitable
sequences of integrands. Due to the achievements in [32], one may similarly expect quantitative
Poisson limit theorems for sequences of non-centered and integer-valued first order stochastic in-
tegrals based on families of point processes which converge (in some sense) to a Poisson process
and based on suitable sequences of integrands. Using the general bounds described above, we
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are able to formalize this intuition deriving (i) quantitative Gaussian limit theorems for raw in-
novations and first order stochastic integrals of stationary, inhibitory and finite range Gibbs point
processes with pair potential and β-Ginibre point processes (see Theorems 5.7, 5.8, 7.6 and 7.7);
(ii) quantitative Poisson limit theorems for non-centered and integer-valued first order stochastic
integrals of stationary, inhibitory and finite range Gibbs point processes with pair potential and
β-Ginibre point processes (see Theorems 6.4 and 8.3).

To give a concrete idea of these results, we briefly state some simple consequences. Let Z and
Po(λ) denote, respectively, a standard normal random variable and a Poisson random variable
with mean λ > 0. Let N(μ)(1A) denote the number of points in A ⊂ X of a point process μ

with Papangelou intensity π(μ) (here 1A denotes the indicator function of the set A). Moreover,
let dW and dTV denote, respectively, the Wasserstein distance and the total variation distance
between probability measures (see the formal definitions in Sections 3 and 4, respectively). By
the quantitative limit theorems described above it follows, for instance,

dW

((
znd
)−1/2

(
N(μn)(1[0,n]d ) −

∫
[0,n]d

π(μn)
x dx

)
,Z

)
= O

(
n−d/2) as n → ∞,

dW

((
znd
)−1/2(

N(μn)(1[0,n]d ) − λnn
d
)
,Z
) = O

(
n−d/2) as n → ∞

and

dTV
(
N(μn)(1B),Po

(
z�(B)

))= O
(
n−d/2) as n → ∞,

where μn, n ≥ 1, denotes the Strauss process on R
d with activity z > 0 and range of interaction

equal to 1/n (see the formal definition in the Example 5.6), λn is the intensity of μn, B ⊂ Rd is
a bounded Borel set and � is the Lebesgue measure. Furthermore, let C ⊂ C denote a relatively
compact Borel set and let μ

(β)
C denote the restriction on C of a β-Ginibre point process μ(β),

0 < β < 1, (see Section 7 for the formal definition). By the quantitative limit theorems described
above, it follows, for instance,

dW

(
β1/r

(
N(μ(β))(1b(O,β−1/r )) −

∫
b(O,β−1/r )

π
(μ

(β)

b(O,β−1/r )
)

x dx

)
,Z

)
= O

(
βτr
)

as β → 0,

dW

(
β1/r

(
N(μ(β))(1b(O,β−1/r )) − β−2/r

)
,Z
) = O

(
βτr
)

as β → 0

and

dTV
(
N(μ

(β)
C )(1C),Po

(
π−1�(C)

))= O
(
β1/4) as β → 0.

Here b(O,R) denotes the complex ball centered at the origin and with radius R > 0, r > 6 is a
fixed constant, τr := − 3

r
+ 1

2 if 6 < r < 8, and τr := 1/r if r ≥ 8.
The paper is organized as follows. In Section 2, we give some preliminaries on point pro-

cesses with Papangelou intensity and recall a related integration by parts formula. In Section 3,
we provide a general bound on the Wasserstein distance between the innovation of a point pro-
cess with Papangelou intensity and a standard normal random variable. In Section 4, we prove
a general bound on the total variation distance between the non-compensated and integer-valued
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innovation of a point process with Papangelou intensity and a Poisson distributed random vari-
able. In Section 5, we give error bounds in the Gaussian approximation of raw innovations and
first order stochastic integrals of Gibbs point processes with pair potential, with explicit results
for stationary, inhibitory and finite range Gibbs point processes with pair potential. In Section 6,
we provide error bounds in the Poisson approximation of non-centered and integer-valued first
order stochastic integrals of Gibbs point processes with pair potential, with explicit results for
stationary, inhibitory and finite range Gibbs point processes with pair potential. In Section 7, we
give error bounds in the Gaussian approximation of raw innovations and first order stochastic
integrals of determinantal point processes, with explicit results for β-Ginibre point processes. In
Section 8, we provide error bounds in the Poisson approximation of non-centered and integer-
valued first order stochastic integrals of determinantal point processes, with explicit results for
β-Ginibre point processes.

2. Point processes with Papangelou conditional intensity

The standard references for point processes theory are two volumes book by Daley and Vere-
Jones [11] and [12]. Let X be a Polish space. For any subset C ⊆ X, we denote by 	(C) the
cardinality of C, setting 	(C) = ∞ if C is not finite. We denote by 
X the set of locally finite
and simple point configurations of X:


X := {x = {xi}i∈N ⊆ X : xi �= xj i �= j, 	(xK) < ∞ ∀compact K ⊆ X
}
,

where N := {0,1,2, . . .} and xK := x∩K . We identify a locally finite point configuration x ∈ 
X

with the Radon measure on (X,B(X)) defined by
∑

x∈x εx , where B(X) is the Borel σ -field on
X and εx is the Dirac measure at x. We endow 
X with the vague topology and the corresponding
Borel σ -field B(
X), and we call a probability measure μ on (
X,B(
X)) also (simple) point
process.

For a Borel set A ∈ B(X), we denote by Nx(1A) :=∑x∈x 1A(x) the number of points of the
configuration x ∈ 
X in A, being 1A the indicator function of the set A. Hereafter, we denote by
σ a σ -finite diffuse Radon measure on (X,B(X)). We say that a point process μ have correlation
functions ρ(n), n ≥ 1, if for mutually disjoint Borel sets A1, . . . ,An ∈ B(X),

E

[
n∏

i=1

N(1Ai
)

]
=
∫

A1×···×An

ρ(n)(x1, . . . , xn)σ (dx1) · · ·σ(dxn),

where E denotes the mean with respect to μ. When it will be convenient to emphasize that E is
the expectation operator with respect to μ we write Eμ in place of E.

In the following, we assume that the probability measure μ on (
X,B(
X)) has Papangelou
intensity π and reference measure σ , i.e. π : X × 
X → [0,+∞] is a measurable function such
that ∫


X

∑
x∈x

ϕ
(
x,x \ {x})μ(dx) =

∫

X

∫
X

ϕ(x,x)π(x,x)σ (dx)μ(dx), (1)
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for functions ϕ(x,x) which are non-negative or integrable with respect to the measure

π(x,x)σ (dx)μ(dx).

When it is convenient to explicit the dependence on μ, we write π(μ) in place of π . For ease
of notation, for a measurable function h : X × 
X → R, we write hx(x) in place of h(x,x).
Applying twice the Georgii–Nguyen–Zessin formula (1), we deduce the so-called second order
Georgii–Nguyen–Zessin formula∫


X

∑
x,y∈x:x �=y

ψ
(
x, y,x \ {x, y})μ(dx)

=
∫


X

∫
X

∫
X

ψ(x, y,x)πx

(
x \ {y})πy

(
x ∪ {x})σ(dx)σ (dy)μ(dx) (2)

=
∫


X

∫
X

∫
X

ψ(x, y,x)πx(x)πy

(
x ∪ {x})σ(dx)σ (dy)μ(dx),

for functions ψ : X × X × 
X → R which are non-negative or integrable with respect to the
measure

πx(x)πy

(
x ∪ {x})σ(dx)σ (dy)μ(dx).

Note that the second equality in (2) is a consequence of the diffusivity of σ .
For x,y ∈ 
X , y =∅ or y = {y1, . . . , yn}, n ≥ 1, we define the compound Papangelou (condi-

tional) intensity π̂ (y,x) as π̂ (∅,x) := 1 if y =∅, π̂ ({y1},x) := πy1(x) if y = {y1} and

π̂ (y,x) := πy1(x)

n∏
i=2

πyi

({y1, . . . , yi−1} ∪ x
)

if y = {y1, . . . , yn} and n ≥ 2.

For later purposes, we recall the following relation between the correlation functions and the
compound Papangelou intensity:

ρ(n)(x1, . . . , xn) =
∫


X

π̂
({x1, . . . , xn},x

)
μ(dx), (3)

see Remark 2.5(b) in [16]. We also recall that μ is said repulsive if πx(x) ≥ πx(y), whenever
x ⊆ y, x ∈ X (see, e.g., [26]).

The innovation (of the point process μ) is defined by

δx(ϕ) :=
∑
x∈x

ϕx

(
x \ {x})− ∫

X

ϕx

(
x \ {x})πx(x)σ (dx)

(4)

=
∑
x∈x

ϕx

(
x \ {x})− ∫

X

ϕx(x)πx(x)σ (dx), x ∈ 
X



Probability approximation of point processes 2215

for any measurable function ϕ : X ×
X →R for which |δ(ϕ)| < ∞ μ-a.s. Note that the equality
(4) is a consequence of the diffusivity of σ and that, due to (1), the innovation δ(ϕ) is well-defined
for all ϕ such that

E

[∫
X

|ϕx |πxσ(dx)

]
< ∞. (5)

Throughout this paper, in analogy with the case of one-dimensional point processes with
stochastic intensity, we refer to the integral with respect to σ in (4) as compensator. Moreover,
when it is convenient to explicit the dependence on μ of the innovation, we write δ(μ)(ϕ) in place
of δ(ϕ).

For a measurable function F : 
X → R, we introduce the finite difference operator D defined
by

DxF(x) := F
(
x ∪ {x})− F(x) x ∈ X, x ∈ 
X .

The following integration by parts formula holds, see Corollary 3.1 in [47].

Lemma 2.1. For all measurable functions F : 
X → R and ϕ : X ×
X → R such that (5) holds
and

E

[∫
X

|ϕxDxF |πxσ(dx)

]
< ∞ and E

[
|F |
∫

X

|ϕx |πxσ(dx)

]
< ∞, (6)

we have

E

[∫
X

ϕxDxFπxσ(dx)

]
= E

[
Fδ(ϕ)

]
. (7)

In the next two sections, we provide two different applications of the integration by parts for-
mula (7). These applications are based on the Stein and Chen–Stein methods, see [5,8,9] and [43],
and concern error bounds in the Gaussian approximation of δ(ϕ) and the Poisson approximation
of the non-compensated and integer-valued innovation

Nx(ϕ) :=
∑
x∈x

ϕx

(
x \ {x}), x ∈ 
X , ϕ : X × 
X → N, N= {0,1, . . .} (8)

(here again, when it is convenient to explicit the dependence on μ of the non-compensated and
integer-valued innovation, we write N(μ)(ϕ) in place of N(ϕ)).

3. Bounds in the Gaussian approximation of δ(ϕ)

3.1. General bound

Let F : 
X → R be a measurable function such that E[|F |] < ∞ and pZ the probability density
of a standard normal random variable Z. By definition the Wasserstein distance between (the
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laws of) F and Z is

dW (F,Z) := sup
h∈Lip(1)

∣∣E[h(F ) − pZ(h)
]∣∣,

where Lip(1) denotes the class of real-valued Lipschitz functions with Lipschitz constant less
than or equal to 1 and (with an abuse of notation)

pZ(h) :=
∫
R

h(x)pZ(x)dx

denotes the mean of h(Z). We recall that the topology induced by dW on the class of probability
measures over R is finer than the topology of weak convergence (see, e.g., [14]).

Following [33], we give a general bound for dW (F,Z). Given h ∈ Lip(1), it turns out that
there exists a twice differentiable function fh :R→ R so that

h(x) − pZ(h) = f ′
h(x) − xfh(x), x ∈R. (9)

For a function g :R →R, we define ‖g‖∞ := supx∈R |g(x)|. Equation (9) is called Stein’s equa-
tion and the function fh has the following properties:

‖fh‖∞ ≤ 2
∥∥h′∥∥∞,

∥∥f ′
h

∥∥∞ ≤√2/π
∥∥h′∥∥∞,

∥∥f ′′
h

∥∥∞ ≤ 2
∥∥h′∥∥∞,

see [9], Lemma 2.4. Since ‖h′‖∞ ≤ 1 (indeed h has Lipschitz constant less than or equal to
1), letting FW denote the class of twice differentiable functions f so that ‖f ‖∞ ≤ 2, ‖f ′‖∞ ≤√

2/π and ‖f ′′‖∞ ≤ 2, we have

dW (F,Z) ≤ sup
f ∈FW

∣∣E[f ′(F ) − Ff (F)
]∣∣. (10)

Note that the set FW defined above is contained in the one of formula (2.33) of [33]. Note also
that the right-hand side of (10) is finite since the functions f,f ′ are bounded and F is integrable
with respect to μ.

Theorem 3.1. Let ϕ : X × 
X → R be a measurable function which satisfies (5) and

E

[∫
X

|ϕx |2πxσ(dx)

]
< ∞. (11)

Then

dW

(
δ(ϕ),Z

)
(12)

≤√2/πE

[∣∣∣∣1 −
∫

X

ϕxDxδ(ϕ)πxσ (dx)

∣∣∣∣
]

+ E

[∫
X

|ϕx |
∣∣Dxδ(ϕ)

∣∣2πxσ(dx)

]
.

In particular, note that the second addend in the right-hand side of the inequality (12) controls
the size of the fluctuations of the finite difference of the innovation.
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In the following, for ϕ : X ×
X →R, we shall consider the functions �1,�2 : 
X ×X3 → R

defined by

�1(x, x, y, z)

:= ∣∣ϕx

(
x ∪ {y, z})∣∣Dxϕy

(
x ∪ {z})Dxϕz

(
x ∪ {y})πx

(
x ∪ {y, z})πy(x)πz

(
x ∪ {y}),

(13)
�2(x, x, y, z)

:= ∣∣ϕx

(
x ∪ {y})∣∣Dx

(
ϕz

(
x ∪ {y})πz

(
x ∪ {y}))Dxϕy(x)πx

(
x ∪ {y})πy(x).

Corollary 3.2. Let ϕ : X × 
X → R be a measurable function which satisfies (5) and (11), and
suppose that the functions �1 and �2 are integrable with respect to σ(dx)σ (dy)σ (dz)μ(dx).
Then

dW

(
δ(ϕ),Z

) ≤√2/πE

[∣∣∣∣1 −
∫

X

|ϕx |2πxσ(dx)

∣∣∣∣
]

+ E

[∫
X

|ϕx |3πxσ(dx)

]

+√2/πE

[∫
X2

∣∣ϕx

(· ∪ {y})∣∣|Dxϕy |πx

(· ∪ {y})πyσ(dx)σ (dy)

]

+√2/πE

[∫
X2

|ϕx |
∣∣Dx(ϕyπy)

∣∣πxσ(dx)σ (dy)

]

+ 2E

[∫
X2

∣∣ϕx

(· ∪ {y})∣∣2|Dxϕy |πx

(· ∪ {y})πyσ(dx)σ (dy)

]

+ 2E

[∫
X2

|ϕx |2
∣∣Dx(ϕyπy)

∣∣πxσ(dx)σ (dy)

]
(14)

+ E

[∫
X2

∣∣ϕx

(· ∪ {y})∣∣|Dxϕy |2πx

(· ∪ {y})πyσ(dx)σ (dy)

]

+ E

[∫
X3

�1(·, x, y, z)σ (dx)σ (dy)σ (dz)

]

− 2E

[∫
X3

�2(·, x, y, z)σ (dx)σ (dy)σ (dz)

]

+ E

[∫
X

|ϕx |
∣∣∣∣
∫

X

Dx(ϕyπy)σ (dy)

∣∣∣∣
2

πxσ(dx)

]
.

Remark 3.3. In the upper bound (14), the quantity

E

[∫
X2

∣∣ϕx

(· ∪ {y})∣∣|Dxϕy |πx

(· ∪ {y})πyσ(dx)σ (dy)

]

stands for ∫

X

∫
X

∫
X

∣∣ϕx

(
x ∪ {y})∣∣∣∣Dxϕy(x)

∣∣πx

(
x ∪ {y})πy(x)σ (dx)σ (dy)μ(dx).
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A similar “compact” notation is adopted for the subsequent terms.

Remark 3.4. Let μ be a Poisson process with mean measure σ , that is, π ≡ 1.

(i) If ϕ : X → R is such that ϕ ∈ L1(X,σ ), then by e.g. Corollary 3.2 we have (note that, for
any x, y ∈ X, Dxϕ(y) = 0)

dW

(
δ(ϕ),Z

) ≤√2/π
∣∣1 − ‖ϕ‖2

L2(X,σ )

∣∣+ ∫
X

∣∣ϕ(x)
∣∣3σ(dx)

≤ ∣∣1 − ‖ϕ‖2
L2(X,σ )

∣∣+ ∫
X

∣∣ϕ(x)
∣∣3σ(dx),

which is exactly the bound provided by Corollary 3.4 in [33].
(ii) If ϕ : X × 
X → R depends on the configurations the corresponding bound (14) is not

contained in [33].

Proof of Theorem 3.1. The claim is trivially true if

E

[∫
X

|ϕx |
∣∣Dxδ(ϕ)

∣∣2πxσ(dx)

]
= ∞

and so hereafter we assume

E

[∫
X

|ϕx |
∣∣Dxδ(ϕ)

∣∣2πxσ(dx)

]
< ∞. (15)

We start checking that (5) and (15) imply the first relation in (6) with F = δ(ϕ). Indeed,

E

[∫
X

|ϕx |
∣∣Dxδ(ϕ)

∣∣πxσ(dx)

]

= E

[∫
X

|ϕx |
∣∣Dxδ(ϕ)

∣∣1{∣∣Dxδ(ϕ)
∣∣≤ 1

}
πxσ(dx)

]

+ E

[∫
X

|ϕx |
∣∣Dxδ(ϕ)

∣∣1{∣∣Dxδ(ϕ)
∣∣> 1

}
πxσ(dx)

]

≤ E

[∫
X

|ϕx |πxσ(dx)

]
+ E

[∫
X

|ϕx |
∣∣Dxδ(ϕ)

∣∣2πxσ(dx)

]
< ∞.

Now, take f ∈FW . By the Taylor expansion (with integral remainder), for x /∈ x, we have

Dxf
(
δx(ϕ)

)= f
(
δx∪{x}(ϕ)

)− f
(
δx(ϕ)

)= f ′(δx(ϕ)
)
Dxδx(ϕ) + R

(
Dxδx(ϕ)

)
,

where

R
(
Dxδx(ϕ)

) := ∫ Dxδx(ϕ)

0

(
Dxδx(ϕ) − t

)
f ′′(t)dt.
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Since ‖f ′′‖∞ ≤ 2, we have ∣∣R(Dxδx(ϕ)
)∣∣≤ ∣∣Dxδx(ϕ)

∣∣2.
Combining this with ‖f ‖∞ ≤ 2, ‖f ′‖∞ ≤ 1, (5) and (15), we have

E

[∫
X

|ϕx |
∣∣Dxf

(
δ(ϕ)

)∣∣πxσ(dx)

]

≤ E

[∫
X

|ϕx |
∣∣f ′(δ(ϕ)

)
Dxδ(ϕ)

∣∣πxσ(dx)

]
+ E

[∫
X

|ϕx |
∣∣R(Dxδ(ϕ)

)∣∣πxσ(dx)

]

≤ E

[∫
X

|ϕx |
∣∣Dxδ(ϕ)

∣∣πxσ(dx)

]
+ E

[∫
X

|ϕx |
∣∣Dxδ(ϕ)

∣∣2πxσ(dx)

]
< ∞

and

E

[∣∣f (δ(ϕ)
)∣∣ ∫

X

|ϕx |πxσ(dx)

]
≤ 2E

[∫
X

|ϕx |πxσ(dx)

]
< ∞.

Consequently, by Lemma 2.1 with F = f (δ(ϕ))

E
[
δ(ϕ)f

(
δ(ϕ)

)]= E

[∫
X

ϕxDxf
(
δ(ϕ)

)
πxσ(dx)

]
,

and therefore∣∣E[f ′(δ(ϕ)
)− δ(ϕ)f

(
δ(ϕ)

)]∣∣
=
∣∣∣∣E
[
f ′(δ(ϕ)

)− ∫
X

ϕxDxf
(
δ(ϕ)

)
πxσ(dx)

]∣∣∣∣
=
∣∣∣∣E
[
f ′(δ(ϕ)

)− ∫
X

ϕx

(
f ′(δ(ϕ)

)
Dxδ(ϕ) + R

(
Dxδ(ϕ)

))
πxσ(dx)

]∣∣∣∣
≤√2/πE

[∣∣∣∣1 −
∫

X

ϕxDxδ(ϕ)πxσ (dx)

∣∣∣∣
]

+ E

[∫
X

|ϕx |
∣∣Dxδ(ϕ)

∣∣2πxσ(dx)

]
.

Combining this latter inequality and (10) with F = δ(ϕ) (for the sake of completeness note that
δ(ϕ) is integrable with respect to μ by (1) and (5)), we finally have (12). �

Proof of Corollary 3.2. We divide the proof in two steps. Setting

Lϕx(x) :=
∑
y∈x

Dxϕy

(
x \ {y})− ∫

X

Dx

(
ϕy(x)πy(x)

)
σ(dy)

we have

Dxδx(ϕ) = ϕx(x) + Lϕx(x), x /∈ x.
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In the first step, we prove the bound

dW

(
δ(ϕ),Z

) ≤√2/πE

[∣∣∣∣1 −
∫

X

|ϕx |2πxσ(dx)

∣∣∣∣
]

+ E

[∫
X

|ϕx |3πxσ(dx)

]

+√2/πE

[∫
X

|ϕx ||Lϕx |πxσ(dx)

]
+ 2E

[∫
X

|ϕx |2|Lϕx |πxσ(dx)

]
(16)

+ E

[∫
X

|ϕx ||Lϕx |2πxσ(dx)

]
.

In the second step, we conclude the proof.
Step 1: Proof of (16). By Theorem 3.1 the bound (12) holds. By (11) and the diffusivity of σ ,

we have

E

[∣∣∣∣1 −
∫

X

ϕxDxδ(ϕ)πxσ (dx)

∣∣∣∣
]

= E

[∣∣∣∣1 −
∫

X

ϕx(ϕx + Lϕx)πxσ (dx)

∣∣∣∣
]

(17)

≤ E

[∣∣∣∣1 −
∫

X

|ϕx |2πxσ(dx)

∣∣∣∣
]

+ E

[∫
X

|ϕx ||Lϕx |πxσ(dx)

]
.

The inequality (16) follows combining (12), (17) and

∣∣Dxδx(ϕ)
∣∣2 ≤ (∣∣ϕx(x)

∣∣+ ∣∣Lϕx(x)
∣∣)2, x /∈ x

(one has to use again the diffusivity of σ ).
Step 2: Conclusion of the proof. For any measurable function ψ : 
X × X →R, we have

E

[∫
X

|ψx ||Lϕx |πxσ(dx)

]

≤
∫


X

∫
X

∣∣ψx(x)
∣∣∑

y∈x

∣∣Dxϕy

(
x \ {y})∣∣πx(x)σ (dx)μ(dx)

+ E

[∫
X2

|ψx |
∣∣Dx(ϕyπy)

∣∣πxσ(dx)σ (dy)

]
(18)

=
∫


X

∫
X2

∣∣ψx

(
x ∪ {y})∣∣∣∣Dxϕy(x)

∣∣πx

(
x ∪ {y})πy(x)σ (dx)σ (dy)μ(dx)

+ E

[∫
X2

|ψx |
∣∣Dx(ϕyπy)

∣∣πxσ(dx)σ (dy)

]
,

where for the latter relation we used (1). Applying the inequality (18) with ψx := ϕx and ψx :=
|ϕx |2, we deduce the bounds for the third and fourth addend in the right-hand side of (16). Now
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we compute explicitly the fifth addend in the right-hand side of (16). We have

E

[∫
X

|ϕx ||Lϕx |2πxσ(dx)

]

= E

[∫
X

|ϕx |
∣∣∣∣∑
y∈·

Dxϕy

(· \ {y})∣∣∣∣
2

πxσ(dx)

]

− 2
∫


X

∫
X

∣∣ϕx(x)
∣∣ ∫

X

Dx

(
ϕz(x)πz(x)

)
σ(dz)

∑
y∈x

Dxϕy

(
x \ {y})πx(x)σ (dx)μ(dx)

+ E

[∫
X

|ϕx |
∣∣∣∣
∫

X

Dx(ϕyπy)σ (dy)

∣∣∣∣
2

πxσ(dx)

]
.

Note that

E

[∫
X

|ϕx |
∣∣∣∣∑
y∈·

Dxϕy

(· \ {y})∣∣∣∣
2

πxσ(dx)

]

= E

[∫
X

|ϕx |
∑
y∈·

∣∣Dxϕy

(· \ {y})∣∣2πxσ(dx)

]

+ E

[∫
X

|ϕx |
∑

y,z∈·:y �=z

Dxϕy

(· \ {y})Dxϕz

(· \ {z})πxσ(dx)

]
(19)

=
∫


X

∫
X2

∣∣ϕx

(
x ∪ {y})∣∣∣∣Dxϕy(x)

∣∣2πx

(
x ∪ {y})πy(x)σ (dx)σ (dy)μ(dx)

+
∫


X

∫
X3

�1(x, x, y, z)σ (dx)σ (dy)σ (dz)μ(dx),

where in (19) we used (1), (2) and the integrability of �1. Finally, by (1) and the integrability of
�2, we have

∫

X

∫
X

∣∣ϕx(x)
∣∣(∫

X

Dx

(
ϕz(x)πz(x)

)
σ(dz)

)

×
∑
y∈x

Dxϕy

(
x \ {y})πx(x)σ (dx)μ(dx)

= E

[∫
X3

�2(·, x, y, z)σ (dx)σ (dy)σ (dz)

]
.

The proof is completed. �
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3.2. Raw innovations and first order stochastic integrals

The bound (14) simplifies considerably when ϕ does not depend on x ∈ 
X .

Corollary 3.5. Let ϕ : X →R be a measurable function such that

∫
X

∣∣ϕ(x)
∣∣E[πx]σ(dx) < ∞ and

(20)∫
X

∣∣ϕ(x)
∣∣2E[πx]σ(dx) < ∞.

Then

dW

(
δ(ϕ),Z

)
≤√2/π

√
1 − 2

∫
X

∣∣ϕ(x)
∣∣2E[πx]σ(dx) +

∫
X2

∣∣ϕ(x)ϕ(y)
∣∣2E[πxπy]σ(dx)σ (dy)

+
∫

X

∣∣ϕ(x)
∣∣3E[πx]σ(dx) +√2/π

∫
X2

∣∣ϕ(x)ϕ(y)
∣∣E[|Dxπy |πx

]
σ(dx)σ (dy) (21)

+ 2
∫

X2

∣∣ϕ(x)
∣∣2∣∣ϕ(y)

∣∣E[|Dxπy |πx

]
σ(dx)σ (dy)

+
∫

X3

∣∣ϕ(x)ϕ(y)ϕ(z)
∣∣E[|DxπyDxπz|πx

]
σ(dx)σ (dy)σ (dz).

The first order stochastic integral (of the point process μ) is defined by

Ix(ϕ) :=
∑
x∈x

ϕ(x) − E

[∫
X

ϕ(x)πxσ (dx)

]
, x ∈ 
X (22)

for any measurable function ϕ : X → R for which |I (ϕ)| < ∞ μ-a.s. Note that I (ϕ) is well-
defined for all ϕ such that the first integrability condition in (20) is satisfied. When it is convenient
to explicit the dependence on μ of the first order stochastic integral, we write I (μ)(ϕ) in place of
I (ϕ).

Corollary 3.6. Under assumptions and notation of Corollary 3.5, we have

dW

(
I (ϕ),Z

)≤ U1 +
∫

X

∣∣ϕ(x)
∣∣√Var(πx)σ (dx),

where U1 denotes the term in the right-hand side of the inequality (21).
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Proof of Corollary 3.5. By Corollary 3.2, noticing that Dxϕ(y) = 0 and Dx(ϕ(y)πy(x)) =
ϕ(y)Dxπy(x), we have

dW

(
δ(ϕ),Z

) ≤√2/πE

[∣∣∣∣1 −
∫

X

∣∣ϕ(x)
∣∣2πxσ(dx)

∣∣∣∣
]

+
∫

X

∣∣ϕ(x)
∣∣3E[πx]σ(dx)

+√2/π

∫
X2

∣∣ϕ(x)ϕ(y)
∣∣E[|Dxπy |πx

]
σ(dx)σ (dy)

+ 2
∫

X2

∣∣ϕ(x)
∣∣2∣∣ϕ(y)

∣∣E[|Dxπy |πx

]
σ(dx)σ (dy)

+ E

[∫
X

∣∣ϕ(x)
∣∣∣∣∣∣
∫

X

ϕ(y)Dxπyσ (dy)

∣∣∣∣
2

πxσ(dx)

]
.

The claim follows by this bound, the Cauchy–Schwarz inequality and the relation

∣∣∣∣
∫

X

ϕ(y)Dxπy(x)σ (dy)

∣∣∣∣
2

≤
∫

X2

∣∣ϕ(y)ϕ(z)
∣∣∣∣Dxπy(x)Dxπz(x)

∣∣σ(dy)σ (dz). �

Proof of Corollary 3.6. The claim follows by Corollary 3.5 noticing that, by the triangular
inequality, the definition of dW and the Cauchy–Schwarz inequality we have

dW

(
I (ϕ),Z

) ≤ dW

(
δ(ϕ),Z

)+ dW

(
I (ϕ), δ(ϕ)

)
≤ dW

(
δ(ϕ),Z

)+ E
[∣∣I (ϕ) − δ(ϕ)

∣∣]
(23)

= dW

(
δ(ϕ),Z

)+ ∫

X

∣∣∣∣
∫

X

ϕ(x)
(
πx(x) − E[πx]

)
σ(dx)

∣∣∣∣μ(dx)

≤ dW

(
δ(ϕ),Z

)+ ∫
X

∣∣ϕ(x)
∣∣√Var(πx)σ (dx). �

3.3. Raw innovations and first order stochastic integrals: The case of
repulsive point processes

In the case of repulsive point processes (see the definition in Section 2), the following bounds
hold.

Corollary 3.7. Under assumptions and notation of Corollary 3.5, if moreover μ is repulsive, we
have

dW

(
δ(ϕ),Z

)
≤√2/π

√
1 − 2

∫
X

∣∣ϕ(x)
∣∣2ρ(1)(x)σ (dx) +

∫
X2

∣∣ϕ(x)ϕ(y)
∣∣2E[πxπy]σ(dx)σ (dy)
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+
∫

X

∣∣ϕ(x)
∣∣3ρ(1)(x)σ (dx)

(24)

+√2/π

∫
X2

∣∣ϕ(x)ϕ(y)
∣∣(E[πxπy] − ρ(2)(x, y)

)
σ(dx)σ (dy)

+ 2
∫

X2

∣∣ϕ(x)
∣∣2∣∣ϕ(y)

∣∣(E[πxπy] − ρ(2)(x, y)
)
σ(dx)σ (dy)

+
∫

X3

∣∣ϕ(x)ϕ(y)ϕ(z)
∣∣(E[πxπyπz] − ρ(3)(x, y, z)

)
σ(dx)σ (dy)σ (dz).

Corollary 3.8. Under assumptions and notation of Corollary 3.7, we have

dW

(
I (ϕ),Z

)≤ U2 +
∫

X

∣∣ϕ(x)
∣∣√Var(πx)σ (dx),

where U2 denotes the term in the right-hand side of the inequality (24).

Remark 3.9. Corollaries 3.7 and 3.8 may be useful to provide explicit bounds in the Gaussian
approximation of raw innovations and first order stochastic integrals of repulsive point processes
for which the first three correlation functions are explicitly known. This is the case of determi-
nantal point processes, see Section 7.

Corollaries 3.7 and 3.8 easily follow by Lemma 3.10 below and Corollaries 3.5 and 3.6, re-
spectively.

Lemma 3.10. If μ is repulsive, then

E
[
πy |Dyπx |

]= E[πxπy] − ρ(2)(x, y), x, y ∈ X

and

E
[|DxπyDxπz|πx

]≤ E[πxπyπz] − ρ(3)(x, y, z), x, y, z ∈ X.

Proof. By the repulsivity of μ, the definition of compound Papangelou intensity and (3), we
have

E
[
πy |Dyπx |

] = E
[
πy

(
πx − πx

(· ∪ {y}))]= E[πxπy] − E
[
π̂
({x, y}, ·)]

= E[πxπy] − ρ(2)(x, y).

By the repulsivity of μ we also have

E
[|DxπyDxπz|πx

]
= E

[
πx

(
πy − πy

(· ∪ {x}))(πz − πz

(· ∪ {x}))]
= E

[
πxπyπz − πx

(
πyπz

(· ∪ {x})+ πzπy

(· ∪ {x})− πy

(· ∪ {x})πz

(· ∪ {x}))]
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and

πy(x)πz

(
x ∪ {x})+ πz(x)πy

(
x ∪ {x})− πy

(
x ∪ {x})πz

(
x ∪ {x})

≥ πz

(
x ∪ {x, y})πy

(
x ∪ {x}).

Therefore by the definition of compound Papangelou intensity and (3) we have

E
[|DxπyDxπz|πx

] ≤ E[πxπyπz] − E
[
πxπz

(· ∪ {x, y})πy

(· ∪ {x})]
= E[πxπyπz] − E

[
πxπ̂

({y, z}, · ∪ {x})]
= E[πxπyπz] − E

[
π̂
({x, y, z}, ·)]

= E[πxπyπz] − ρ(3)(x, y, z).

The proof is completed. �

4. Bounds in the Poisson approximation of N(ϕ)

4.1. General bound

Given a function f : N→ R, we define the operators

�f (k) := f (k + 1) − f (k)

and �2f := �(�f ). Let Po(λ) be a Poisson random variable with mean λ > 0 and, given A ⊆N,
denote by

p
(λ)
A := e−λ

∑
k∈A

λk

k!
the probability of the event {Po(λ) ∈ A}. It turns out that there exists a unique function fA :N→
R such that

1A(k) − p
(λ)
A = λfA(k + 1) − kfA(k), k ≥ 1 (25)

verifying the boundary condition fA(0) = 0. The above equation is called Chen–Stein’s equation,
see, for example, [5]. Throughout this section, given f :N →R, we set ‖f ‖∞ := supk∈N |f (k)|.
The following bounds for the solution of the Chen–Stein equation hold (see Lemma 1.1.1 and
Remark 1.1.2 in [5]):

‖fA‖∞ ≤ min

(
1,

√
2

λe

)
,

(26)

‖�fA‖∞ ≤ 1 − e−λ

λ
.
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In addition, by the latter inequality in (26) and the relation ‖�2fA‖∞ ≤ 2‖�fA‖∞ (which is a
straightforward consequence of the triangle inequality), we deduce

∥∥�2fA

∥∥∞ ≤ 2(1 − e−λ)

λ
. (27)

It has to be noticed that this bound on ‖�2fA‖∞ is better than ‖�2fA‖∞ ≤ 2
λ

, which follows by
Theorem 1.3 in [13].

We finally recall that the total variation distance between (the laws of) the random variables
F : 
X → N and Po(λ) is defined by

dTV
(
F,Po(λ)

) := sup
A⊆N

∣∣μ(F ∈ A) − p
(λ)
A

∣∣.
Of course, the topology induced by dTV on the class of probability measures on N is strictly
stronger than the topology induced by convergence in distribution.

Theorem 4.1. Let ϕ : X × 
X → N be a measurable function which satisfies (5). Then

dTV
(
N(ϕ),Po(λ)

) ≤ 1 − e−λ

λ

(
E

[∣∣∣∣
∫

X

ϕx

(
DxN(ϕ) − 1

)
πxσ(dx)

∣∣∣∣
]

+ E

[∫
X

|ϕx |
∣∣DxN(ϕ)

(
DxN(ϕ) − 1

)∣∣πxσ(dx)

])
(28)

+ min

(
1,

√
2

λe

)
E
[|� − λ|],

where

λ := E[�] = E
[
N(ϕ)

]
and �(x) :=

∫
X

ϕx(x)πx(x)σ (dx).

Corollary 4.2. Let ϕ : X × 
X → N be a measurable function which satisfies (5). Then

dTV
(
N(ϕ),Po(λ)

) ≤ 1 − e−λ

λ

(
E

[∫
X

ϕx(ϕx − 1)πxσ (dx)

]

+ E

[∫
X2

∣∣ϕx

(· ∪ {y})∣∣|Dxϕy |πx

(· ∪ {y})πyσ(dx)σ (dy)

]

+ E

[∫
X

(ϕx)
2(ϕx − 1)πxσ (dx)

]

+ E

[∫
X2

∣∣ϕx

(· ∪ {y})∣∣∣∣2ϕx

(· ∪ {y})− 1
∣∣|Dxϕy |

(29)

× πx

(· ∪ {y})πyσ(dx)σ (dy)

]
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+ E

[∫
X2

∣∣ϕx

(· ∪ {y})∣∣|Dxϕy |2πx

(· ∪ {y})πyσ(dx)σ (dy)

]

+ E

[∫
X3

∣∣�1(·, x, y, z)
∣∣σ(dx)σ (dy)σ (dz)

])

+ min

(
1,

√
2

λe

)
E
[|� − λ|],

where �1 is defined by (13) and λ and � are defined as in Theorem 4.1.

Remark 4.3. The bounds (28) and (29) have the classical structure of the error estimates in the
Poisson approximation by the total variation distance, see the seminal papers [8] (for the Poisson
approximation of the law of the sum of dependent trials) and [4] (for the Poisson approximation
of the law of the number of points on a compact set of a point process with Janossy densities
and a neighborhood structure). Indeed, the bounds (28) and (29) consist of the sum of two terms

involving the magic Stein’s factors 1−e−λ

λ
and min(1,

√
2
λe ).

Remark 4.4. Let μ be a Poisson process with mean measure σ , i.e. π ≡ 1.

(i) If ϕ : X → N is such that ϕ ∈ L1(X,σ ), then by e.g. Corollary 4.2 we have (note that, for
any x, y ∈ X, Dxϕ(y) = 0)

dTV
(
N(ϕ),Po(λ)

)≤ 1 − e−λ

λ

∫
X

ϕ(x)
((

ϕ(x)
)2 − 1

)
σ(dx),

where

λ :=
∫

X

ϕ(x)σ (dx).

This is exactly the bound provided by the inequality (3.5)–(3.6) in Theorem 3.1 of [32] with
F = N(ϕ), when replacing the term (1 − e−c)/c2 with the quantity (1 − e−c)/c. Indeed, letting
L−1 denote the pseudo-inverse of the Ornstein–Uhlenbeck generator (see, e.g., [33] and [32] for
definition and properties), we have

DxL−1(N(ϕ) − λ
)= −Dx

(
N(ϕ) − λ

)= −ϕ(x).

(ii) If ϕ : X × 
X → R depends on the configurations the corresponding bound (29) is not
contained in [32].

Proof of Theorem 4.1. The claim is trivially true if

E

[∫
X

|ϕx |
∣∣DxN(ϕ)

∣∣∣∣DxN(ϕ) − 1
∣∣πxσ(dx)

]
= ∞,

and so hereafter we assume

E

[∫
X

|ϕx |
∣∣DxN(ϕ)

∣∣∣∣DxN(ϕ) − 1
∣∣πxσ(dx)

]
< ∞. (30)
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Since DxN(ϕ) is integer-valued, we have

E

[∫
X

|ϕx |
∣∣DxN(ϕ)

∣∣πxσ(dx)

]

≤ E

[∫
X

|ϕx |πxσ(dx)

]
+ E

[∫
X

|ϕx |
∣∣DxN(ϕ)

∣∣1{∣∣DxN(ϕ) − 1
∣∣≥ 1

}
πxσ(dx)

]

≤ E

[∫
X

|ϕx |πxσ(dx)

]
(31)

+ E

[∫
X

|ϕx |
∣∣DxN(ϕ)

∣∣∣∣DxN(ϕ) − 1
∣∣1{∣∣DxN(ϕ) − 1

∣∣≥ 1
}
πxσ(dx)

]

≤ E

[∫
X

|ϕx |πxσ(dx)

]
+ E

[∫
X

|ϕx |
∣∣DxN(ϕ)

∣∣∣∣DxN(ϕ) − 1
∣∣πxσ(dx)

]
< ∞.

As shown in the proof of Theorem 3.1 in [32], for any f :N→ R and any k, a ∈N,

∣∣f (k) − f (a) − �f (a)(k − a)
∣∣≤ ‖�2f ‖∞

2

∣∣(k − a)(k − a − 1)
∣∣. (32)

For any x /∈ x, we clearly have

DxfA

(
Nx(ϕ)

)= �fA

(
Nx(ϕ)

)
DxNx(ϕ) + Rx(x), (33)

where

Rx(x) := fA

(
Nx∪{x}(ϕ)

)− fA

(
Nx(ϕ)

)− �fA

(
Nx(ϕ)

)
DxNx(ϕ).

By (32) with f = fA, k = Nx∪{x}(ϕ) and a = Nx(ϕ), we have

∣∣Rx(x)
∣∣≤ ‖�2fA‖∞

2

∣∣DxNx(ϕ)
(
DxNx(ϕ) − 1

)∣∣. (34)

Note that the second relation in (6) with F(x) = fA(Nx(ϕ)) holds thanks to (5) and the fact that
the function fA is bounded. Using (33), (34), the boundedness of �fA and �2fA, (30) and (31),
we have

E

[∫
X

|ϕx |
∣∣DxfA

(
N(ϕ)

)∣∣πxσ(dx)

]

= E

[∫
X

|ϕx |
∣∣�fA

(
N(ϕ)

)
DxN(ϕ) + Rx

∣∣πxσ(dx)

]

≤ ‖�fA‖∞E

[∫
X

|ϕx |
∣∣DxN(ϕ)

∣∣πxσ(dx)

]

+ ‖�2fA‖∞
2

E

[∫
X

|ϕx |
∣∣DxN(ϕ)

(
DxN(ϕ) − 1

)∣∣πxσ(dx)

]
< ∞.
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So the first relation in (6) with F(x) = fA(Nx(ϕ)) holds. Consequently, by the Chen–Stein equa-
tion (25), Lemma 2.1 with F = fA(N(ϕ)) and (33), for any A ⊆N, we have

p
(λ)
A − μ

(
N(ϕ) ∈ A

) = E
[
N(ϕ)fA

(
N(ϕ)

)− λfA

(
N(ϕ) + 1

)]
= E

[(
N(ϕ) − �

)
fA

(
N(ϕ)

)− �
(
fA

(
N(ϕ) + 1

)− fA

(
N(ϕ)

))]
+ E

[
(� − λ)fA

(
N(ϕ) + 1

)]
= E

[
δ(ϕ)fA

(
N(ϕ)

)− ��fA

(
N(ϕ)

)]+ E
[
(� − λ)fA

(
N(ϕ) + 1

)]
= E

[∫
X

ϕxDxfA

(
N(ϕ)

)
πxσ(dx) − ��fA

(
N(ϕ)

)]

+ E
[
(� − λ)fA

(
N(ϕ) + 1

)]
= E

[
�fA

(
N(ϕ)

)(∫
X

ϕxDxN(ϕ)πxσ (dx) − �

)]

+ E

[∫
X

ϕxRxπxσ (dx)

]
+ E

[
(� − λ)fA

(
N(ϕ) + 1

)]

= E

[
�fA

(
N(ϕ)

) ∫
X

ϕx

(
DxN(ϕ) − 1

)
πxσ(dx)

]

+ E

[∫
X

ϕxRxπxσ (dx)

]
+ E

[
(� − λ)fA

(
N(ϕ) + 1

)]
.

The bound (28) follows by taking absolute values on both sides, as well as by applying the
estimates (26), (27) and (34). �

Proof of Corollary 4.2. For x /∈ x, we have

DxNx(ϕ) = ϕx(x) +
∑
y∈x

Dxϕy

(
x \ {y}),

DxNx(ϕ)
(
DxNx(ϕ) − 1

) = ϕx(x)
(
ϕx(x) − 1

)+ (2ϕx(x) − 1
)∑

y∈x

Dxϕy

(
x \ {y})

+
∑
y∈x

∣∣Dxϕy

(
x \ {y})∣∣2 +

∑
y,z∈x:y �=z

Dxϕy

(
x \ {y})Dxϕz

(
x \ {z}).

By these relations and (28), we deduce

dTV
(
N(ϕ),Po(λ)

) ≤ 1 − e−λ

λ

(
E

[∫
X

ϕx(ϕx − 1)πxσ (dx)

]

+ E

[∫
X

|ϕx |
∑
y∈·

∣∣Dxϕy

(· \ {y})∣∣πxσ(dx)

]
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+ E

[∫
X

(ϕx)
2(ϕx − 1)πxσ (dx)

]

+ E

[∫
X

|ϕx ||2ϕx − 1|
∑
y∈·

∣∣Dxϕy

(· \ {y})∣∣πxσ(dx)

]

+ E

[∫
X

|ϕx |
∑
y∈·

∣∣Dxϕy

(· \ {y})∣∣2πxσ(dx)

]

+ E

[∫
X

|ϕx |
∑

y,z∈·:y �=z

∣∣Dxϕy

(· \ {y})Dxϕz

(· \ {z})∣∣πxσ(dx)

])

+ min

(
1,

√
2

λe

)
E
[|� − λ|].

The claim follows noticing that by (1) we have

E

[∫
X

∣∣ϕx(·)
∣∣∑

y∈·

∣∣Dxϕy

(· \ {y})∣∣πx(·)σ (dx)

]

=
∫


X

∫
X2

∣∣ϕx

(
x ∪ {y})∣∣∣∣Dxϕy(x)

∣∣πx

(
x ∪ {y})πy(x)σ (dx)σ (dy)μ(dx),

E

[∫
X

∣∣ϕx(·)
∣∣∣∣2ϕx(·) − 1

∣∣∑
y∈·

∣∣Dxϕy

(· \ {y})∣∣πx(·)σ (dx)

]

=
∫


X

∫
X2

∣∣ϕx

(
x ∪ {y})∣∣∣∣2ϕx

(
x ∪ {y})− 1

∣∣∣∣Dxϕy(x)
∣∣πx

(
x ∪ {y})πy(x)σ (dx)σ (dy)μ(dx),

E

[∫
X

∣∣ϕx(·)
∣∣∑

y∈·

∣∣Dxϕy

(· \ {y})∣∣2πx(·)σ (dx)

]

=
∫


X

∫
X2

∣∣ϕx

(
x ∪ {y})∣∣∣∣Dxϕy(x)

∣∣2πx

(
x ∪ {y})πy(x)σ (dx)σ (dy)μ(dx)

and by (2) we have

E

[∫
X

|ϕx |
∑

y,z∈·:y �=z

∣∣Dxϕy

(· \ {y})Dxϕz

(· \ {z})∣∣πxσ(dx)

]

= E

[∫
X3

∣∣�1(·, x, y, z)
∣∣σ(dx)σ (dy)σ (dz)

]
. �

4.2. Non-centered and integer-valued first order stochastic integrals

The bound (29) simplifies considerably when ϕ does not depend on x ∈ 
X .
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Corollary 4.5. Let ϕ : X → N be a measurable function which satisfies the first integrability
condition in (20). Then

dTV
(
N(ϕ),Po(λ)

)
≤ 1 − e−λ

λ

∫
X

ϕ(x)
((

ϕ(x)
)2 − 1

)
E[πx]σ(dx)

(35)

+ min

(
1,

√
2

λe

)
E
[|� − λ|]

≤ 1 − e−λ

λ

∫
X

ϕ(x)
((

ϕ(x)
)2 − 1

)
E[πx]σ(dx)

+ min

(
1,

√
2

λe

)√∫
X2

ϕ(x)ϕ(y)
(
E[πxπy] − E[πx]E[πy]

)
σ(dx)σ (dy), (36)

where

λ := E[�] = E
[
N(ϕ)

]
and �(x) :=

∫
X

ϕ(x)πx(x)σ (dx).

Proof. The bound (35) follows by Corollary 4.2 noticing that Dxϕ(y) = 0 since ϕ does not
depend on configurations. The bound (36) follows by (35) and the relation

E
[|� − λ|]
≤
√

E
[
�2
]− λ2

=
√∫

X2
ϕ(x)ϕ(y)E[πxπy]σ(dx)σ (dy) −

∫
X2

ϕ(x)ϕ(y)E[πx]E[πy]σ(dx)σ (dy).
�

Remark 4.6. (i) Let K be a measurable subset of X and set

�(x) :=
∫

K

πx(x)σ (dx).

If λ := E[�] < ∞, then by Corollary 4.5 we immediately have

dTV
(
N(1K),Po(λ)

)≤ min

(
1,

√
2

λe

)
E
[|� − λ|].

(ii) Let Po(�) be a mixed Poisson random variable defined on (
X,B(
X),μ) with stochastic
parameter �, and set θ := E[�] < ∞. By Theorem 1.C(i) in [5], we have

dTV
(
Po(�),Po(θ)

)≤ min

(
1,

√
1

θ

)
E
[|� − θ |]. (37)
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We note that this inequality can be retrieved by using the part (i) of this remark. Indeed, letting
K ⊂ X denote a non-empty compact set, if μ has Papangelou intensity

πx(x) := 1K(x)
�(x)

σ (K)
,

we have

�(x) = �(x)

and so by the part (i) of this remark

dTV
(
N(1K),Po(θ)

)≤ min

(
1,

√
2

θe

)
E
[|� − θ |],

which yields the inequality (37) since 2/e < 1 and N(1K) has a mixed Poisson distribution with
stochastic parameter �.

5. Gibbs point processes with pair potential: Gaussian
approximation of raw innovations and first order stochastic
integrals

In this section, we provide error bounds in the Gaussian approximation of raw innovations and
first order stochastic integrals of Gibbs point processes with pair potential. As a by-product, we
give explicit error bounds (and quantitative central limit theorems) in the Gaussian approximation
of raw innovations and first order stochastic integrals of stationary, inhibitory and finite range
Gibbs point processes with pair potential.

5.1. Gibbs point processes with pair potential

A pair potential is a Borel measurable function φ : Rd → R ∪ {+∞} such that φ(x) = φ(−x).
For any x ∈ 
Rd and x ∈ R

d \ x, we define the relative energy of interaction between a particle
at x and the configuration x by

E(x,x) =
⎧⎨
⎩
∑
y∈x

φ(x − y), if
∑
y∈x

∣∣φ(x − y)
∣∣< ∞,

+∞, otherwise.

A point process μ on (
Rd ,B(
Rd )) is called Gibbs point process with activity z > 0 and pair
potential φ if it has Papangelou intensity of the form πx(x) := z exp(−E(x,x)) with σ(dx) = dx

(see [38]). We denote by G(z,φ) the set of all Gibbs point processes with activity z > 0 and pair
potential φ. A Gibbs point process μ ∈ G(z,φ) is called inhibitory if φ ≥ 0 and finite range if
1 − e−φ has compact support.
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Let T = (τx)x∈Rd be the shift group, where τx : 
Rd → 
Rd is the translation by the vector
−x ∈ Rd . A point process μ on 
Rd is said stationary if μ is invariant with respect to T . In the
following, we shall denote by Gs(z,φ) the set of stationary Gibbs point processes corresponding
to z > 0 and φ. Note that a Gibbs point process μ with activity z > 0 and pair potential φ ≡ 0 is
a Poisson process with mean measure zdx and so μ ∈ Gs(z,0). We recall that, under the famous
assumptions of superstability, lower regularity and integrability on φ the set Gs(z,φ), z > 0, is
non-empty (see [38]). For later purposes, we emphasize that the integrability condition on φ

means ∫
Rd

∣∣1 − e−φ(x)
∣∣dx < ∞. (38)

Sufficient conditions which guarantee the superstability and lower regularity of a pair potential
are given in [38], Propositions 1.2, 1.3 and 1.4. page 133.

We conclude this paragraph recalling that if μ is a stationary point process on (
Rd ,B(
Rd ))

with a translations invariant Papangelou intensity π , that is, πx(x) = π0(τxx), x ∈ R
d , x ∈ 
Rd ,

then E[πx] = E[π0], x ∈ R
d . In particular, this relation holds for stationary Gibbs point processes

with pair potential since, as one may easily check, E(0, τxx) = E(x,x), x ∈ R
d , x ∈ 
Rd . The

quantity E[π0] is called intensity of μ.

5.2. General bounds

Theorem 5.1. Let μ ∈ G(z,φ), with z > 0 and φ :Rd →R∪{+∞}, and suppose that ϕ :Rd →
R satisfies (20). Then

dW

(
δ(ϕ),Z

) ≤√2/π

√
1 − 2

∫
Rd

∣∣ϕ(x)
∣∣2E[πx]dx +

∫
R2d

∣∣ϕ(x)ϕ(y)
∣∣2E[πxπy]dx dy

+
∫
Rd

∣∣ϕ(x)
∣∣3E[πx]dx

+√2/π

∫
R2d

∣∣ϕ(x)ϕ(y)
∣∣∣∣1 − e−φ(y−x)

∣∣E[πxπy]dx dy (39)

+ 2
∫
R2d

∣∣ϕ(x)
∣∣2∣∣ϕ(y)

∣∣∣∣1 − e−φ(y−x)
∣∣E[πxπy]dx dy

+
∫
R3d

∣∣ϕ(x)
∣∣∣∣ϕ(y)

∣∣∣∣ϕ(z)
∣∣∣∣1 − e−φ(y−x)

∣∣∣∣1 − e−φ(z−x)
∣∣E[πxπyπz]dx dy dz.

Theorem 5.2. Under assumptions and notation of Theorem 5.1, we have

dW

(
I (ϕ),Z

)≤ U3 +
∫
Rd

∣∣ϕ(x)
∣∣√Var(πx)dx, (40)

where U3 denotes the term in the right-hand side of the inequality (39).
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Proof of Theorem 5.1. For any x /∈ x and y ∈ R
d ,

Dxπy(x) = zDx exp
(−E(y,x)

)= zDx exp

(
−
∑
u∈x

φ(y − u)

)
1

{∑
u∈x

∣∣φ(y − u)
∣∣< ∞

}

= z

(
exp

(
−

∑
u∈x∪{x}

φ(y − u)

)
1

{ ∑
u∈x∪{x}

∣∣φ(y − u)
∣∣< ∞

}

− exp

(
−
∑
u∈x

φ(y − u)

)
1

{∑
u∈x

∣∣φ(y − u)
∣∣< ∞

})
(41)

= z1

{∑
u∈x

∣∣φ(y − u)
∣∣< ∞

}

× exp

(
−
∑
u∈x

φ(y − u)

)(
e−φ(y−x)1

{∣∣φ(y − x)
∣∣< ∞}− 1

)
= πy(x)

(
e−φ(y−x)1

{
φ(y − x) < +∞}− 1

)= πy(x)
(
e−φ(y−x) − 1

)
.

The claim follows by (21) and (41). �

Proof of Theorem 5.2. It is an easy consequence of Theorem 5.1 and the inequality (23). �

5.3. Explicit bounds for stationary, inhibitory and finite range Gibbs point
processes with pair potential

Theorem 5.3. Let μ ∈ Gs(z,φ), with z > 0 and φ :Rd → [0,+∞], and suppose

ϕ ∈ L1(
R

d , dx
)∩ L2(

R
d, dx

)
. (42)

If the pair potential φ is such that 1 − e−φ has compact support then, for any p′, q ′,p′′, q ′′ > 1
such that p′−1 + q ′−1 = p′′−1 + q ′′−1 = 1,

dW

(
δ(ϕ),Z

) ≤ max
x∈[c1,c2]

(√
2/π

√
1 − 2x‖ϕ‖2

L2(Rd ,dx)
+ zx‖ϕ‖4

L2(Rd ,dx)
+ Ax

)

≤√2/π
√

1 − 2c1‖ϕ‖2
L2(Rd ,dx)

+ zc2‖ϕ‖4
L2(Rd ,dx)

+ c2A,

where

A := ‖ϕ‖3
L3(Rd ,dx)

+ z
√

2/π‖ϕ‖2
L2(Rd ,dx)

∥∥1 − e−φ
∥∥

L1(Rd ,dx)

+ 2z
∥∥ϕ2
∥∥

Lp′
(Rd ,dx)

‖ϕ‖
Lq′

(Rd ,dx)

∥∥1 − e−φ
∥∥

L1(Rd ,dx)

+ z2‖ϕ‖
Lp′p′′

(Rd ,dx)
‖ϕ‖

Lp′q′′
(Rd ,dx)

‖ϕ‖
Lq′

(Rd ,dx)

∥∥1 − e−φ
∥∥2

L1(Rd ,dx)
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and

c1 := z

1 + z‖1 − e−φ‖L1(Rd ,dx)

,

(43)
c2 := z

2 − exp(−z‖1 − e−φ‖L1(Rd ,dx))
.

Theorem 5.4. Under assumptions and notation of Theorem 5.3, we have

dW

(
I (ϕ),Z

) ≤√2/π
√

1 − 2c1‖ϕ‖2
L2(Rd ,dx)

+ zc2‖ϕ‖4
L2(Rd ,dx)

+ c2A + ‖ϕ‖L1(Rd ,dx)

√
zc2 − (c1)2.

Example 5.5. Define

φ(x) := − log
(
1 − rde′ρr(x)

)
r > 0, e′ < e, x ∈ R

d , (44)

where ρr(x) := r−dρ(x/r) is the classical mollifier (see, e.g., [7] page 70), that is,

ρ(x) := e1/(‖x‖2−1)1
{‖x‖ ≤ 1

}
.

Then ‖1 − e−φ‖L1(Rd ,dx) = rde′. Since φ is continuous, non-negative and such that φ(0) > 0,
by Proposition 1.2(b) in [38] we have that φ is superstable. Since φ is bounded from below and
satisfies (38), then φ is lower regular (see again [38]). Consequently, the bounds of Theorems 5.3
and 5.4 hold for any integrable and square-integrable ϕ and μ ∈ Gs(z,φ), z > 0.

Example 5.6. Let μ be the Strauss process with activity z > 0 and range of interaction r > 0,
that is, take

φ(x) := (− logν)1
{‖x‖ ≤ r

}
, ν ∈ [0,1], x ∈R

d . (45)

Then μ is stationary, φ satisfies the assumptions of Theorem 5.3 and ‖1 − e−φ‖L1(Rd ,dx) =
(1 − ν)αdrd , where αd denotes the volume of the unit ball (see, e.g., [44]).

Proof of Theorem 5.3. If

ϕ /∈ L2p′(
R

d,dx
)∪ Lq ′(

R
d,dx

)∪ Lp′p′′(
R

d,dx
)∪ Lp′q ′′(

R
d,dx

)
,

then there is nothing to prove. We shall therefore assume these integrability conditions. In the
following for functions f,g : Rd → [0,∞), we denote by f ∗ g the convolution

f ∗ g(x) :=
∫
Rd

f (x)g(x − y)dy.
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Since the pair potential is non-negative, we have πx ≤ z. Therefore, by the bound in Theorem 5.1
and the stationarity of μ, we have

dW

(
δ(ϕ),Z

) ≤√2/π
√

1 − 2E[π0]‖ϕ‖2
L2(Rd ,dx)

+ zE[π0]‖ϕ‖4
L2(Rd ,dx)

+ E[π0]
(

‖ϕ‖3
L3(Rd ,dx)

+ z
√

2/π

∫
Rd

∣∣ϕ(x)
∣∣|ϕ| ∗ ∣∣1 − e−φ

∣∣(x)dx

(46)

+ 2z

∫
Rd

∣∣ϕ(x)
∣∣2|ϕ| ∗ ∣∣1 − e−φ

∣∣(x)dx

+ z2
∫
Rd

∣∣ϕ(x)
∣∣(|ϕ| ∗ ∣∣1 − e−φ

∣∣(x)
)2 dx

)
.

By Hölder’s inequality and the standard properties of convolutions (see, e.g., Théoreme IV.15,
page 66 in [7]), we have∫

Rd

∣∣ϕ(x)
∣∣|ϕ| ∗ ∣∣1 − e−φ

∣∣(x)dx ≤ ‖ϕ‖2
L2(Rd ,dx)

∥∥1 − e−φ
∥∥

L1(Rd ,dx)
,

∫
Rd

∣∣ϕ(x)
∣∣2|ϕ| ∗ ∣∣1 − e−φ

∣∣(x)dx ≤ ‖ϕ2‖
Lp′

(Rd ,dx)

∥∥|ϕ| ∗ ∣∣1 − e−φ
∣∣∥∥

Lq′
(Rd ,dx)

≤ ∥∥ϕ2
∥∥

Lp′
(Rd ,dx)

‖ϕ‖
Lq′

(Rd ,dx)

∥∥1 − e−φ
∥∥

L1(Rd ,dx)

and ∫
Rd

∣∣ϕ(x)
∣∣(|ϕ| ∗ ∣∣1 − e−φ

∣∣(x)
)2 dx

≤ ∥∥|ϕ||ϕ| ∗ ∣∣1 − e−φ
∣∣∥∥

Lp′
(Rd ,dx)

∥∥|ϕ| ∗ ∣∣1 − e−φ
∣∣∥∥

Lq′
(Rd ,dx)

≤ ∥∥|ϕ||ϕ| ∗ ∣∣1 − e−φ
∣∣∥∥

Lp′
(Rd ,dx)

‖ϕ‖
Lq′

(Rd ,dx)

∥∥1 − e−φ
∥∥

L1(Rd ,dx)

≤ ‖ϕ‖
Lp′p′′

(Rd ,dx)

∥∥|ϕ| ∗ ∣∣1 − e−φ
∣∣∥∥

Lp′q′′
(Rd ,dx)

× ‖ϕ‖
Lq′

(Rd ,dx)

∥∥1 − e−φ
∥∥

L1(Rd ,dx)

≤ ‖ϕ‖
Lp′p′′

(Rd ,dx)
‖ϕ‖

Lp′q′′
(Rd ,dx)

‖ϕ‖
Lq′

(Rd ,dx)

∥∥1 − e−φ
∥∥2

L1(Rd ,dx)
.

Combining these inequalities with (46), we have

dW

(
δ(ϕ),Z

) ≤√2/π
√

1 − 2E[π0]‖ϕ‖2
L2(Rd ,dx)

+ zE[π0]‖ϕ‖4
L2(Rd ,dx)

+ E[π0]
(‖ϕ‖3

L3(Rd ,dx)
+ z
√

2/π‖ϕ‖2
L2(Rd ,dx)

∥∥1 − e−φ
∥∥

L1(Rd ,dx)

+ 2z
∥∥ϕ2
∥∥

Lp′
(Rd ,dx)

‖ϕ‖
Lq′

(Rd ,dx)

∥∥1 − e−φ
∥∥

L1(Rd ,dx)

+ z2‖ϕ‖
Lp′p′′

(Rd ,dx)
‖ϕ‖

Lp′q′′
(Rd ,dx)

‖ϕ‖
Lq′

(Rd ,dx)

∥∥1 − e−φ
∥∥2

L1(Rd ,dx)

)
.
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The claim follows by this bound and Theorem 3.1 in [44] which ensures

c1 ≤ E[π0] ≤ c2. (47)

�

Proof of Theorem 5.4. The claim follows by Theorem 5.3, the inequality (23) and the inequality∫
Rd

∣∣ϕ(x)
∣∣√Var(πx)dx ≤ ‖ϕ‖L1(Rd ,dx)

√
zc2 − (c1)2,

which follows by the stationarity of μ and the inequalities πx ≤ z and (47). �

We conclude this paragraph with the following quantitative central limit theorems, which are
a direct consequence of Theorems 5.3 and 5.4, respectively.

Theorem 5.7. Let μn ∈ Gs(zn,φn), where {zn}n≥1 is a sequence of positive numbers such that
limn→∞ zn = z > 0 and φn :Rd → [0,+∞], n ≥ 1, is a sequence of non-negative pair potentials
such that 1 − e−φn has compact support and ‖1 − e−φn‖L1(Rd ,dx) → 0, as n → ∞. In addition,
assume that {ϕn}n≥1 is a sequence of integrable and square-integrable functions such that, for
some p′, q ′,p′′, q ′′ > 1 with p′−1 + q ′−1 = p′′−1 + q ′′−1 = 1,

‖ϕn‖2
L2(Rd ,dx)

→ z−1, ‖ϕn‖L3(Rd ,dx) → 0,∥∥ϕ2
n

∥∥
Lp′

(Rd ,dx)
‖ϕn‖Lq′

(Rd ,dx)

∥∥1 − e−φn
∥∥

L1(Rd ,dx)
→ 0,

‖ϕn‖Lp′p′′
(Rd ,dx)

‖ϕn‖Lp′q′′
(Rd ,dx)

‖ϕn‖Lq′
(Rd ,dx)

∥∥1 − e−φn
∥∥2

L1(Rd ,dx)
→ 0,

as n → ∞. Then

dW

(
δ(μn)(ϕn),Z

)
≤√2/π

√
1 − 2c

(n)
1 ‖ϕn‖2

L2(Rd ,dx)
+ znc

(n)
2 ‖ϕn‖4

L2(Rd ,dx)
+ c

(n)
2 An ∀n ≥ 1

and this latter term goes to zero as n → ∞. Here,

dW

(
δ(μn)(ϕn),Z

) := sup
h∈Lip(1)

∣∣Eμn

[
h
(
δ(μn)(ϕn)

)]− pZ(h)
∣∣,

δ
(μn)
x (ϕn) :=

∑
x∈x

ϕn(x) −
∫
Rd

ϕn(x)π(μn)
x (x)dx,

π(μn) is the Papangelou intensity of μn, An, c
(n)
1 and c

(n)
2 are defined, respectively, as A, c1 and

c2 in the statement of Theorem 5.3 with ϕn in place of ϕ, zn in place of z and φn in place of φ.
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Theorem 5.8. Under assumptions and notation of Theorem 5.7, if moreover

‖ϕn‖L1(Rd ,dx)

√
znc

(n)
2 − (c(n)

1

)2 → 0 as n → ∞ (48)

then

dW

(
I (μn)(ϕn),Z

) ≤√2/π

√
1 − 2c

(n)
1 ‖ϕn‖2

L2(Rd ,dx)
+ znc

(n)
2 ‖ϕn‖4

L2(Rd ,dx)
+ c

(n)
2 An

+ ‖ϕn‖L1(Rd ,dx)

√
znc

(n)
2 − (c(n)

1

)2
, ∀n ≥ 1

and this latter term goes to zero as n → ∞. Here,

dW

(
I (μn)(ϕn),Z

) := sup
h∈Lip(1)

∣∣Eμn

[
h
(
I (μn)(ϕn)

)]− pZ(h)
∣∣

and

I
(μn)
x (ϕn) :=

∑
x∈x

ϕn(x) − Eμn

[
π

(μn)
0

] ∫
Rd

ϕn(x)dx.

Example 5.9. Let {zn}n≥1 be a sequence of positive numbers converging to z > 0, φn, n ≥ 1,
defined by (44) or (45) with r = n−1, and

ϕn(x) := 1√
z�(Kn)

1Kn(x) n ≥ 1, x ∈R
d ,

where � denotes the Lebesgue measure and Kn ⊂R
d are bounded Borel sets such that �(Kn) →

∞. For any α > 0, we have

‖ϕn‖Lα(Rd ,dx) = 1√
z
�(Kn)

1/α−1/2,
∥∥ϕ2

n

∥∥
Lα(Rd ,dx)

= 1

z
�(Kn)

(1/α)−1

and so ‖ϕn‖2
L2(Rd ,dx)

= z−1 and, for any p′, q ′,p′′, q ′′ > 1 such that p′−1 + q ′−1 = p′′−1 +
q ′′−1 = 1,

‖ϕn‖3
L3(Rd ,dx)

= ‖ϕ2
n‖Lp′

(Rd ,dx)
‖ϕn‖Lq′

(Rd ,dx)

= ‖ϕn‖Lp′p′′
(Rd ,dx)

‖ϕn‖Lp′q′′
(Rd ,dx)

‖ϕn‖Lq′
(Rd ,dx)

= 1

z3/2
�(Kn)

−1/2.

Let η be the positive constant defined by

η :=
{

e′, if φn is defined by (44) with r = n−1,

(1 − ν)αd, if φn is defined by (45) with r = n−1 (49)
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(recall that αd denotes the volume of the unit ball). Then, for μn ∈ Gs(zn,φn), n ≥ 1, by Theo-
rem 5.7, we have the quantitative central limit theorem

dW

(
δ(μn)(ϕn),Z

)≤√2/π

√
1 − 2c

(n)
1 z−1 + znc

(n)
2 z−2 + c

(n)
2 An → 0, (50)

where

c
(n)
1 := zn

1 + ηznn−d
, c

(n)
2 := zn

2 − e−ηznn−d
(51)

and

An := 1

z3/2
�(Kn)

−1/2 + ηz−1
√

2/π(zn)
2n−d

+ 2η

z3/2
�(Kn)

−1/2(zn)
2n−d

+ η2

z3/2
�(Kn)

−1/2(zn)
4n−2d .

In the particular case when zn = z for any n ≥ 1 and limn→∞ �(Kn)/nd = 1, elementary com-
putations show that the term in the right-hand side of (50) is asymptotically equivalent to(

z−1/2 +√2ηz/π
)
n−d/2 as n → ∞.

Note that in the 1-dimensional Poisson case (i.e., d = 1, z = 1 and η = 0) the bound is consistent
with the Berry–Esseen bound.

We also note that if √
�(Kn)

zn

(
znc

(n)
2 − (c(n)

1

)2)→ 0 as n → ∞ (52)

then the hypothesis (48) holds and by Theorem 5.8 we have the quantitative central limit theorem

dW

(
I (μn)(ϕn),Z

)
≤√2/π

√
1 − 2c

(n)
1 z−1 + znc

(n)
2 z−2 + c

(n)
2 An (53)

+
√

�(Kn)

zn

(
znc

(n)
2 − (c(n)

1

)2)→ 0.

Consider again the particular case when zn = z for any n ≥ 1 and limn→∞ �(Kn)/nd = 1. Ele-
mentary computations show that the second addend in the right-hand side of (53) is asymptoti-
cally equivalent to

ηz5/2n−d/2 as n → ∞.
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Therefore the term in the right-hand side of (53) is asymptotically equivalent to(
z−1/2 +√2ηz/π + ηz5/2)n−d/2 as n → ∞.

6. Gibbs point processes with pair potential: Poisson
approximation of non-centered and integer-valued first order
stochastic integrals

In the case of Gibbs point processes with pair potential the first correlation function ρ(1)(x) =
E[πx] is not known explicitly. Therefore, for the purpose of Poisson approximation, one cannot
apply directly Corollary 4.5 (indeed, ρ(1) appears in the expression of the mean of the approx-
imating Poisson random variable). In this section we provide an error bound in the Poisson
approximation of non-centered and integer-valued first order stochastic integrals with respect to
Gibbs point processes with pair potential, which may be useful when upper and lower bounds on
ρ(1) are available. As a by-product, we give explicit error bounds (and a quantitative Poisson limit
theorem) in the Poisson approximation of non-centered and integer-valued first order stochastic
integrals of stationary, inhibitory and finite range Gibbs point processes with pair potential.

6.1. General bound

Theorem 6.1. Let μ ∈ G(z,φ), with z > 0 and φ : Rd → R∪{+∞}, and suppose that ϕ :Rd →
R satisfies the first integrability condition in (20). Then, for any positive constant λ′ > 0, we have

dTV
(
N(ϕ),Po

(
λ′))≤ U4 + ∣∣λ − λ′∣∣,

where U4 denotes the term in (36) and λ is defined as in Corollary 4.5.

Proof. The claim follows by Corollary 4.5, noticing that by the triangular inequality and the
inequality

dTV
(
Po(b),Po

(
b′))≤ ∣∣b − b′∣∣, b, b′ > 0 (54)

see [1] Corollary 3.1, one has

dTV
(
N(ϕ),Po

(
λ′)) ≤ dTV

(
N(ϕ),Po(λ)

)+ dTV
(
Po(λ),Po

(
λ′))

≤ dTV
(
N(ϕ),Po(λ)

)+ ∣∣λ − λ′∣∣. �

6.2. Explicit bounds for stationary, inhibitory and finite range Gibbs point
processes with pair potential

Theorem 6.2. Let μ ∈ Gs(z,φ), where z > 0 and the pair potential φ : Rd → [0,+∞] is non-
negative and such that 1 − e−φ has compact support. In addition, assume that ϕ : Rd → N is
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integrable. Then, for any c ∈ [c1, c2],
dTV
(
N(ϕ),Po

(
c‖ϕ‖L1(Rd ,dx)

))
≤ max

x∈[c1,c2]

(
A
(
1 − e−Bx

)+ B min

(
1,

√
2

xBe

)√
zx − x2 + B|x − c|

)

≤ A
(
1 − e−Bc2

)+ B min

(
1,

√
2

c1Be

)√
zc2 − (c1)2 + B(c2 − c1),

where A := B−1‖ϕ(ϕ2 −1)‖L1(Rd ,dx), B := ‖ϕ‖L1(Rd ,dx) and the constants c1 and c2 are defined
by (43).

Example 6.3. The bounds of Theorem 6.2 clearly hold for the Gibbs point processes considered
in the Examples 5.5 and 5.6.

Proof of Theorem 6.2. By Theorem 6.1, for any positive constant c > 0, we have

dTV
(
N(ϕ),Po

(
c‖ϕ‖L1(Rd ,dx)

)) ≤ 1 − e−E[π0]‖ϕ‖
L1(Rd ,dx)

‖ϕ‖L1(Rd ,dx)

∫
Rd

ϕ(x)
((

ϕ(x)
)2 − 1

)
dx

+ ‖ϕ‖L1(Rd ,dx) min

(
1,

√
2

E[π0]‖ϕ‖L1(Rd ,dx)e

)

×
√

zE[π0] − (E[π0]
)2

+ ∣∣E[π0] − c
∣∣‖ϕ‖L1(Rd ,dx).

The claim follows by this relation and the inequality (47). �

We conclude this paragraph with the following quantitative Poisson limit theorem.

Theorem 6.4. Let μn ∈ Gs(zn,φn), where {zn}n≥1 is a sequence of positive numbers such that
limn→∞ zn = z > 0 and φn :Rd → [0,+∞], n ≥ 1, is a sequence of non-negative pair potentials
such that 1 − e−φn has compact support and ‖1 − e−φn‖L1(Rd ,dx) → 0, as n → ∞. In addition,
assume that {ϕn}n≥1 is a sequence of N-valued and integrable functions such that

lim
n→∞‖ϕn‖L1(Rd ,dx) = lim

n→∞‖ϕn‖3
L3(Rd ,dx)

= γ ∈ (0,∞).

Then

dTV
(
N(μn)(ϕn),Po(zγ )

) ≤ An

(
1 − e−Bnc

(n)
2
)

+ Bn min

(
1,

√
2

c
(n)
1 Bne

)√
znc

(n)
2 − (c(n)

1

)2
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+ Bn

(
c
(n)
2 − c

(n)
1

)
+ max

{∣∣zγ − c
(n)
1 Bn

∣∣, ∣∣zγ − c
(n)
2 Bn

∣∣} ∀n ≥ 1

and this latter term goes to zero as n → ∞. Here

dTV
(
N(μn)(ϕn),Po(zγ )

) := sup
C⊆N

∣∣μn

(
N(μn)(ϕn) ∈ C

)− p
(zγ )

C

∣∣,
N

(μn)
x (ϕn) :=

∑
x∈x

ϕn(x),

An, Bn, c
(n)
1 , c

(n)
2 are defined, respectively, as A, B , c1 and c2 in the statement of Theorem 6.2

with ϕn in place of ϕ, zn in place of z and φn in place of φ.

Proof. The claim follows by the bound in Theorem 6.2, noticing that for any n ≥ 1

dTV
(
N(μn)(ϕn),Po(zγ )

) ≤ sup
c∈[c(n)

1 ,c
(n)
2 ]

dTV
(
N(μn)(ϕn),Po(cBn)

)

+ sup
c∈[c(n)

1 ,c22(n)]
dTV
(
Po(cBn),Po(zγ )

)

≤ sup
c∈[c(n)

1 ,c
(n)
2 ]

dTV
(
N(μn)(ϕn),Po(cBn)

)
+ max

c∈[c(n)
1 ,c

(n)
2 ]

|zγ − cBn|,

where the latter inequality is a consequence of (54). �

Example 6.5. Let {zn}n≥1 be a sequence of positive numbers converging to z > 0, φn, n ≥ 1,
defined by (44) or (45) with r = n−1 and ϕn(x) := 1Kn(x), n ≥ 1, where Kn ⊂ R

d are
bounded Borel sets such that �(Kn) → γ ∈ (0,∞), being � the Lebesgue measure. Then, for
μn ∈ Gs(zn,φn), n ≥ 1, by Theorem 6.4 we have the quantitative Poisson limit theorem

dTV
(
N(μn)(1Kn),Po(zγ )

) ≤ �(Kn)min

(
1,

√
2

c
(n)
1 �(Kn)e

)√
znc

(n)
2 − (c(n)

1

)2
+ �(Kn)

(
c
(n)
2 − c

(n)
1

)
+ max

{∣∣zγ − c
(n)
1 �(Kn)

∣∣, ∣∣zγ − c
(n)
2 �(Kn)

∣∣}→ 0,

where c
(n)
1 and c

(n)
2 are defined as in (51) (with η as in (49)). In the particular case when zn =

z and limn→∞ �(Kn)/(γ + n−d) = 1, elementary computations show that the bound above is
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asymptotically equivalent to

γ

√
ηz3 min

(
1,

√
2

γ ze

)
n−d/2 as n → ∞.

7. Determinantal point processes: Gaussian approximation of
raw innovations and first order stochastic integrals

In this section, we provide error bounds in the Gaussian approximation of raw innovations and
first order stochastic integrals of determinantal point processes. As a by-product, we give explicit
error bounds (and quantitative central limit theorems) in the Gaussian approximation of raw
innovations and first order stochastic integrals of β-Ginibre point processes.

7.1. Determinantal point processes

We refer the reader to the monograph [6] for the notions of functional analysis considered here-
after.

Let K be a Hilbert–Schmidt operator from L2(X,σ ) into L2(X,σ ) which satisfies the follow-
ing conditions:

• K is a bounded Hermitian integral operator on L2(X,σ ).
• The spectrum of K is contained in [0,1].
• K is locally of trace-class, that is, for any relatively compact Borel set C ∈ B(X) the restric-

tion KC of K to L2(C,σC) is of trace-class.

Here, σC denotes the restriction of σ to C. Under the above conditions on K, letting K : X2 → C

denote the kernel of K, we have that there exists a unique (in law) point process μ on 
X with
correlation functions

ρ(n)(x1, . . . , xn) = det
(
K(xi, xj )

)
1≤i,j≤n

, (55)

where (K(xi, xj ))1≤i,j≤n denotes the n × n matrix with ij -entry K(xi, xj ). The point process
μ is called determinantal point process with kernel K and reference measure σ , see [19,25,40]
and [41]. In the sequel, when we consider a determinantal point process, we tacitly assume the
above conditions on the correlation operator K.

Let C ∈ B(X) be a relatively compact Borel set. We define the local interaction operator by
J [C] := KC(I − KC)−1, where I is the identity operator, see, for example, [18] and [16] for a
thorough study of this operator. Here, we limit ourselves to say that J [C] is of trace-class on
L2(C,σC) and its kernel, denoted by J [C], can be chosen as

J [C](x, y) =
∑
n≥0

κ
(n)
C

1 − κ
(n)
C

f
(n)
C (x)f

(n)
C (y), x, y ∈ C, (56)
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where κ
(n)
C and f

(n)
C , n ≥ 0, denote, respectively, the eigenvalues and the eigenfunctions of the

operator KC , and x denotes the complex conjugate of x ∈ C (see, for example, Lemma 7 in
[18]). With this choice of the kernel J [C], the matrix J [C](x,x) := (J [C](x, y))x,y∈x, x ∈ 
C ,
is positive definite.

It turns out that the point process μC , i.e. the restriction of μ on 
C , is a determinatal point
process with kernel KC , that is, the restriction of K to C2, and reference measure σC . Moreover,
by Theorem 3.1 in [16], μC has Papangelou intensity

π(μC)
x (x) = detJ [C](x ∪ {x})

detJ [C](x,x)
, x ∈ C,x ∈ 
C,

where the ratio is defined to be zero whenever the denominator vanishes.
A notable determinantal point process is the β-Ginibre point process, 0 < β ≤ 1, see e.g. [18]

and [48]. It is a determinantal point process μ on 
C with kernel

K(x,y) := 1

π
exy/β exp

(
− 1

2β

(|x|2 + |y|2)), x, y ∈C

and reference measure σ(dx) := dx, the Lebesgue measure on C. One recovers the classical
Ginibre point process (see [17]) for β = 1. It is known that a β-Ginibre point process is station-
ary and converges weakly to a stationary Poisson process with intensity 1/π , as β → 0. The
following lemma will be used later on.

Lemma 7.1. Let μ be a β-Ginibre point process, 0 < β < 1. Then, for any relatively compact
Borel set C ∈ B(C) and x ∈ C,

J [C](x, x) ≤ 1

π(1 − √
β)

.

Proof. We start bounding the eigenvalues κ
(n)
C , n ≥ 0, of the correlation operator KC . Since

K(x,y) =
∑
n≥0

f (n)(x)f (n)(y) where f (n)(x) := 1√
πn! (x/

√
β)ne−(1/(2β))|x|2 ,

by for example, Lemma 3.2 in [39] one has

κ
(n)
C =

∫
C

∣∣f (n)(x)
∣∣2 dx and f

(n)
C (x) = f (n)(x)√

κ
(n)
C

, x ∈ C. (57)

Let b(O,R) be a complex ball centered at the origin and with radius R > 0 such that b(O,R) ⊃
C. Then

κ
(n)
C ≤

∫
b(O,R)

∣∣f (n)(x)
∣∣2 dx =√β

γ (n + 1,R2/β)

n! ≤√β, (58)
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where

γ (x, a) :=
∫ a

0
tx−1e−t dt, x ∈ C, a ≥ 0

denotes the lower incomplete Gamma function. Finally, by (56), the second relation in (57) and
(58), we have, for any relatively compact C ∈ B(C) and x ∈ C,

J [C](x, x) =
∑
n≥0

|f (n)(x)|2
1 − κ

(n)
C

≤ 1

1 − √
β

∑
n≥0

∣∣f (n)(x)
∣∣2 = 1

π(1 − √
β)

.
�

7.2. General bounds

Theorem 7.2. Let μ be a determinantal point process with kernel K and reference measure σ .
Moreover, let C ∈ B(X) be a relatively compact Borel set and let ϕ ∈ L2(C,KC(x, x)σ (dx)).
Then

dW

(
δ(μC)(ϕ),Z

)

≤√2/π

√(
1 −

∫
C

∣∣ϕ(x)
∣∣2K(x,x)σ (dx)

)2

+ CC

(
ϕ2, ϕ2

)

+
∫

C

∣∣ϕ(x)
∣∣3K(x,x)σ (dx) +√2/πCC(ϕ,ϕ) + 2CC

(
ϕ2, ϕ

)

+
∫

C

∣∣ϕ(x)
∣∣∣∣K(x,x)

∣∣σ(dx)

[(∫
C

∣∣ϕ(x)
∣∣J [C](x, x)σ (dx)

)2

(59)

−
(∫

C

∣∣ϕ(x)
∣∣K(x,x)σ (dx)

)2]

− 2
∫

C3

∣∣ϕ(x)ϕ(y)ϕ(z)
∣∣R(K(x,y)K(y, z)K(z, x)

)
σ(dx)σ (dy)σ (dz)

+ 3
∫

C

∣∣ϕ(x)
∣∣∣∣K(x,x)

∣∣σ(dx)

∫
C2

∣∣ϕ(y)ϕ(z)
∣∣∣∣K(y, z)

∣∣2σ(dy)σ (dz).

Here

dW

(
δ(μC)(ϕ),Z

) := sup
h∈Lip(1)

∣∣EμC

[
h
(
δ(μC)(ϕ)

)]− pZ(h)
∣∣,

δ
(μC)
x (ϕ) :=

∑
x∈x

ϕ(x) −
∫

C

ϕ(x)π(μC)
x (x)σ (dx),

CC(f,g) :=
∫

C

∣∣f (x)
∣∣K(x,x)σ (dx)

∫
C

∣∣g(y)
∣∣(J [C](y, y) − K(y,y)

)
σ(dy),

f, g : C → R
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and Rx denotes the real part of x ∈C.

Theorem 7.3. Under assumptions and notation of Theorem 7.2, we have

dW

(
I (μC)(ϕ),Z

)≤ U5 +
∫

C

∣∣ϕ(x)
∣∣√K(x,x)

(
J [C](x, x) − K(x,x)

)
σ(dx).

Here

dW

(
I (μC)(ϕ),Z

) := sup
h∈Lip(1)

∣∣EμC

[
h
(
I (μC)(ϕ)

)]− pZ(h)
∣∣,

I
(μC)
x (ϕ) :=

∑
x∈x

ϕ(x) −
∫

C

ϕ(x)K(x, x)σ (dx)

and U5 denotes the term in the right-hand side of the inequality (59).

Proof of Theorem 7.2. By (3) and (55) with n = 1, (denoting by ρ
(n)
C the correlation functions

of μC ) we have

ρ
(1)
C (x) = EμC

[
π(μC)

x

]= KC(x, x), x ∈ C. (60)

Furthermore, by for example, Lemma 4.2.6 in [19] we have
∫
C

ρ
(1)
C (x)σ (dx) < ∞. So by the

square integrability of ϕ with respect to KC(x, x)σ (dx) we deduce the integrability of ϕ with
respect to KC(x, x)σ (dx). Consequently, the corresponding integrability conditions (20) are sat-
isfied. By the second relation in formula (3.2) of [16] one has

J [C](x, x) ≥ π(μC)
x (x), x ∈ X, x ∈ 
C . (61)

By (55), (60) and (61) it follows

EμC

[
π(μC)

x π(μC)
y

]− ρ
(2)
C (x, y)

(62)
≤ KC(x, x)

(
J [C](y, y) − KC(y, y)

)+ ∣∣KC(x, y)
∣∣2

and

EμC

[
π(μC)

x π(μC)
y π(μC)

z

]− ρ
(3)
C (x, y, z)

≤ KC(x, x)
(
J [C](y, y)J [C](z, z) − KC(y, y)KC(z, z)

)
− 2R

(
KC(x, y)KC(y, z)KC(z, x)

)
(63)

+ KC(x, x)s
∣∣KC(y, z)

∣∣2 + KC(y, y)
∣∣KC(x, z)

∣∣2
+ KC(z, z)

∣∣KC(x, y)
∣∣2.



Probability approximation of point processes 2247

Using again (60) and (61), we also have∫
C2

∣∣ϕ(x)ϕ(y)
∣∣2EμC

[
π(μC)

x π(μC)
y

]
σ(dx)σ (dy)

=
∫

C2

∣∣ϕ(x)ϕ(y)
∣∣2(EμC

[
π(μC)

x π(μC)
y

]
− KC(x, x)KC(y, y)

)
σ(dx)σ (dy) (64)

+
(∫

C

∣∣ϕ(x)
∣∣2KC(x, x)σ (dx)

)2

≤
(∫

C

∣∣ϕ(x)
∣∣2KC(x, x)σ (dx)

)2

+ CC

(
ϕ2, ϕ2).

Recalling that μC is repulsive (see, e.g., [40]), the claim follows combining the bound (24) in
Corollary 3.7 with the relations (62), (63) and (64). �

Proof of Theorem 7.3. The claim follows combining the inequalities (23) and (59) with the
relation

EμC

[(
π(μC)

x

)2]− (EμC

[
π(μC)

x

])2 ≤ KC(x, x)
(
J [C](x, x) − KC(x, x)

)
, (65)

which follows by (60) and (61). �

7.3. Explicit bounds for β-Ginibre point processes

Theorem 7.4. Let μ be a β-Ginibre point process, 0 < β < 1, C ∈ B(C) a relatively compact
Borel set, ϕ ∈ L2(C,dx) and define RC := supx∈C |x|. Then

dW

(
δ(μC)(ϕ),Z

)

≤√2/π

√(
1 − π−1‖ϕ‖2

L2(C,dx)

)2 + π−2‖ϕ‖4
L2(C,dx)

β1/2

1 − β1/2
+ π−1‖ϕ‖3

L3(C,dx)

+ (π−2
√

2/π‖ϕ‖2
L1(C,dx)

+ 2π−2‖ϕ‖2
L2(C,dx)

‖ϕ‖L1(C,dx)

) √
β

1 − β1/2
(66)

+
(

π−3‖ϕ‖3
L1(C,dx)

2 − √
β

(1 − √
β)2

+ 4

π31/4
‖ϕ‖3

L2(C,dx)
R2

C

)√
β

+ 3π−2‖ϕ‖L1(C,dx)‖ϕ‖2
L2(C,dx)

β.

Here the quantities δ(μC)(ϕ) and dW (δ(μC)(ϕ),Z) are defined as in the statement of Theorem 7.2.
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Theorem 7.5. Under assumptions and notation of Theorem 7.4, we have

dW

(
I (μC)(ϕ),Z

)

≤√2/π

√(
1 − π−1‖ϕ‖2

L2(C,dx)

)2 + π−2‖ϕ‖4
L2(C,dx)

β1/2

1 − β1/2
+ π−1‖ϕ‖3

L3(C,dx)

+ (π−2
√

2/π‖ϕ‖2
L1(C,dx)

+ 2π−2‖ϕ‖2
L2(C,dx)

‖ϕ‖L1(C,dx)

) √
β

1 − β1/2
(67)

+
(

π−3‖ϕ‖3
L1(C,dx)

2 − √
β

(1 − √
β)2

+ 4

π31/4
‖ϕ‖3

L2(C,dx)
R2

C

)√
β

+ 3π−2‖ϕ‖L1(C,dx)‖ϕ‖2
L2(C,dx)

β + π−1‖ϕ‖L1(C,dx)

β1/4√
1 − √

β
.

Here the quantities I (μC)(ϕ) and dW (I (μC)(ϕ),Z) are defined as in the statement of Theorem 7.3.

Proof of Theorem 7.4. By (60), we have ρ
(1)
C (x) = π−1, x ∈ C, and so by Lemma 7.1 we

deduce

CC(f,g) ≤ π−2‖f ‖L1(C,dx)‖g‖L1(C,dx)

β1/2

1 − β1/2
, (68)

where CC(f,g) is the quantity defined in the statement of Theorem 7.2. Consequently, the sum
of the first four addends in the right-hand side of the inequality (59) is less than or equal to

√
2/π

√(
1 − π−1‖ϕ‖2

L2(C,dx)

)2 + π−2‖ϕ‖4
L2(C,dx)

β1/2

1 − β1/2
+ π−1‖ϕ‖3

L3(C,dx)

+ (π−2
√

2/π‖ϕ‖2
L1(C,dx)

+ 2π−2‖ϕ‖2
L2(C,dx)

‖ϕ‖L1(C,dx)

) √
β

1 − β1/2

+ π−3‖ϕ‖3
L1(C,dx)

√
β

2 − √
β

(1 − √
β)2

.

Note that, for any x ∈ C, we have |Rx| ≤ |x| and |ex | ≤ e|x|. Therefore,

∣∣K(x,y)
∣∣≤ π−1e|xy|/βe−(2β)−1(|x|2+|y|2) = π−1e−(2β)−1(|x|−|y|)2

and

∣∣R(K(x,y)K(y, z)K(z, x)
)∣∣ ≤ ∣∣K(x,y)K(y, z)K(z, x)

∣∣
≤ π−3e−(2β)−1[(|x|−|y|)2+(|y|−|z|)2+(|z|−|x|)2].
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So

−2
∫

C3

∣∣ϕ(x)ϕ(y)ϕ(z)
∣∣R(K(x,y)K(y, z)K(z, x)

)
dx dy dz

≤ 2π−3
∫

C3

∣∣ϕ(x)ϕ(y)ϕ(z)
∣∣e−(2β)−1[(|x|−|y|)2+(|y|−|z|)2+(|z|−|x|)2] dx dy dz (69)

≤ 2π−3‖ϕ‖3
L2(C,dx)

√∫
C3

e−β−1[(|x|−|y|)2+(|y|−|z|)2+(|z|−|x|)2] dx dy dz,

where the latter inequality follows by the Cauchy–Schwarz inequality. Since C is contained in
the ball centered at the origin with radius RC , for any y, z ∈ C, by a simple computation we have∫

C

e−β−1[(|x|−|y|)2+(|x|−|z|)2] dx ≤ 2π

∫ RC

0
ρe−β−1[(ρ−|y|)2+(ρ−|z|)2] dρ

≤ 2π2βRC

∫
R

1√
πβ

e−β−1(ρ−|y|)2 1√
πβ

e−β−1(ρ−|z|)2
dρ

= 2π2

√
2π

RC

√
β exp

(
− (|y| − |z|)2

2β

)
.

Therefore, for any z ∈ C, we deduce∫
C2

e−β−1[(|x|−|y|)2+(|y|−|z|)2+(|z|−|x|)2] dx dy ≤ 2π2

√
2π

RC

√
β

∫
C

exp

(
− (|y| − |z|)2

2(β/3)

)
dy

≤ 4π3

√
2π

R2
C

√
β

∫
R

exp

(
− (ρ − |z|)2

2(β/3)

)
dρ

= 4π3

√
3

R2
Cβ,

and so by (69) we have

−2
∫

C3

∣∣ϕ(x)ϕ(y)ϕ(z)
∣∣R(K(x,y)K(y, z)K(z, x)

)
dx dy dz ≤ 2π−3‖ϕ‖3

L2(C,dx)

√
4π4
√

3
R4

Cβ

= 4

π31/4
‖ϕ‖3

L2(C,dx)
R2

C

√
β.

Setting φβ(x) := e−β−1|x|2 , we also have∫
C

∣∣ϕ(x)
∣∣∣∣K(x,x)

∣∣σ(dx)

∫
C2

∣∣ϕ(y)ϕ(z)
∣∣∣∣K(y, z)

∣∣2 dy dz

= π−3‖ϕ‖L1(C,dx)

∫
C2

∣∣ϕ(y)ϕ(z)
∣∣φβ(y − z)dy dz
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≤ π−3‖ϕ‖L1(C,dx)

∫
C

∣∣ϕ(y)
∣∣(|ϕ1C | ∗ φβ

)
(y)dy

≤ π−3‖ϕ‖L1(C,dx)‖ϕ‖L2(C,dx)

∥∥|ϕ1C | ∗ φβ

∥∥
L2(C,dx)

(70)

≤ π−3‖ϕ‖L1(C,dx)‖ϕ‖2
L2(C,dx)

‖φβ‖L1(C,dx) (71)

= π−2‖ϕ‖L1(C,dx)‖ϕ‖2
L2(C,dx)

β, (72)

where in (70) we used the Cauchy–Schwarz inequality, in (71) we applied Théoreme IV.15 in
[7] and in (72) we used the equality ‖φβ‖L1(C,dx) = πβ . The claim follows combining the above
inequalities with the bound (59). �

Proof of Theorem 7.5. By the inequality (65), the fact that KC(x, x) = π−1, x ∈ C, and
Lemma 7.1, we have

VarμC

(
π(μC)

x

)≤ π−2
√

β

1 − √
β

, x ∈ C.

The claim follows combining this inequality with the inequalities (23) and (66). �

We conclude this paragraph with the following quantitative central limit theorems, which are
a direct consequence of Theorems 7.4 and 7.5, respectively.

Theorem 7.6. Let {μ(β)}0<β<1 be a family of β-Ginibre point processes, let {Cβ}0<β<1 ⊂ B(C)

be a collection of relatively compact Borel sets and let ϕβ ∈ L2(Cβ,dx), 0 < β < 1, be such that

‖ϕβ‖2
L2(Cβ ,dx)

→ π, ‖ϕβ‖3
L3(Cβ,dx)

→ 0, β1/6‖ϕβ‖L1(Cβ ,dx) → 0, R2
Cβ

√
β → 0,

as β → 0, where RCβ := supx∈Cβ
|x|. Then

dW

(
δ
(μ

(β)
Cβ

)
(ϕβ),Z

)≤ U
(β)

1 (73)

and U
(β)

1 → 0, as β → 0. Here the quantity U
(β)

1 is defined as the term in the right-hand side of
the inequality (66) with Cβ in place of C and ϕβ in place of ϕ.

Theorem 7.7. Under assumptions and notation of Theorem 7.6, we have

dW

(
I

(μ
(β)
Cβ

)
(ϕβ),Z

)≤ U
(β)

1 + π−1‖ϕβ‖L1(Cβ,dx)

β1/4√
1 − √

β
→ 0,

as β → 0.

Example 7.8. Define

Cβ := b(O,Rβ) and ϕβ(x) := 1√
π−1�(Cβ)

= 1

Rβ

, x ∈ b(O,Rβ).
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Here b(O,R) denotes the complex ball centered at the origin with radius R > 0 and � the
Lebesgue measure on C. We have

‖ϕβ‖L1(b(O,Rβ),dx) = πRβ, ‖ϕβ‖2
L2(b(O,Rβ),dx)

= π, ‖ϕβ‖3
L3(b(O,Rβ),dx)

= π

Rβ

.

Therefore, if Rβ → +∞ in such a way that β1/6Rβ → 0, as β → 0, by Theorems 7.6 and 7.7 we
have, respectively,

dW

(
δ
(μ

(β)

b(O,Rβ )
)
(ϕβ),Z

)
≤√2/π

β1/4√
1 − β1/2

+ 1

Rβ

+
(√

2/π + 2

Rβ

)
R2

β

√
β

1 − β1/2
(74)

+
(

2 − √
β

(1 − √
β)2

+ 4
√

π

31/4Rβ

)
R3

β

√
β + 3βRβ → 0

and

dW

(
I

(μ
(β)

b(O,Rβ )
)
(ϕβ),Z

)
≤ (
√

2/π + Rβ)
β1/4√

1 − β1/2
+ 1

Rβ

+
(√

2/π + 2

Rβ

)
R2

β

√
β

1 − β1/2
(75)

+
(

2 − √
β

(1 − √
β)2

+ 4
√

π

31/4Rβ

)
R3

β

√
β + 3βRβ → 0,

as β → 0. In the particular case when limβ→0 Rβ/β−1/r = γ ∈ (0,∞), for a constant r > 6, the
term in the right-hand side of the inequality (74) is asymptotically equivalent to

ψ1(β) :=

⎧⎪⎨
⎪⎩

2γ 3β−3/r+1/2, if 6 < r < 8,(
γ −1 + 2γ 3

)
β1/8, if r = 8,

γ −1β1/r , if r > 8,

as β → 0, and the term in the right-hand side of the inequality (75) is asymptotically equivalent
to

ψ2(β) :=

⎧⎪⎨
⎪⎩

2γ 3β−3/r+1/2, if 6 < r < 8,(
γ + γ −1 + 2γ 3

)
β1/8, if r = 8,

γ −1β1/r , if r > 8,

as β → 0.
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8. Determinantal point processes: Poisson approximation of
non-centered and integer-valued first order stochastic
integrals

In this section, we provide an error bound in the Poisson approximation of non-centered and
integer-valued first order stochastic integrals of determinantal point processes. As a by-product,
we give an explicit error bound (and a quantitative Poisson limit theorem) in the Poisson approx-
imation of non-centered and integer-valued first order stochastic integrals of β-Ginibre point
processes.

8.1. General bound

Theorem 8.1. Let μ be a determinantal point process with kernel K and reference measure σ

and let C ∈ B(X) be a relatively compact Borel set. Moreover, let ϕ : C → N be a measurable
function such that ∫

C

∣∣ϕ(x)
∣∣K(x,x)σ (dx) < ∞.

Then

dTV
(
N(μC)(ϕ),Po(λ)

)
≤ 1 − e−λ

λ

∫
C

ϕ(x)
((

ϕ(x)
)2 − 1

)
K(x,x)σ (dx) + min

(
1,

√
2

λe

)√
CC(ϕ,ϕ).

Here

dTV
(
N(μC)(ϕ),Po(λ)

) := sup
A⊆N

∣∣μC

(
N(μC)(ϕ) ∈ A

)− p
(λ)
A

∣∣,
N

(μC)
x (ϕ) :=

∑
x∈x

ϕ(x),

λ := ∫
C

ϕ(x)K(x, x)σ (dx) and CC is defined as in the statement of Theorem 7.2.

Proof. By (60) and (61), we have

EμC

[
π(μC)

x π(μC)
y

]− EμC

[
π(μC)

x

]
EμC

[
π(μC)

y

]≤ K(x,x)
(
J [C](y, y) − K(y,y)

)
, x, y ∈ C.

The claim follows by this inequality and the bound in Corollary 4.5. �

8.2. Explicit bound for β-Ginibre point processes

Theorem 8.2. Let μ be a β-Ginibre point process, 0 < β < 1, and let C ∈ B(C) be a rela-
tively compact Borel set. Moreover, let ϕ : C → N be an integrable function (with respect to the
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Lebesgue measure on C). Then

dTV
(
N(μC)(ϕ),Po

(
π−1‖ϕ‖L1(C,dx)

))

≤ 1 − e−π−1‖ϕ‖
L1(C,dx)

‖ϕ‖L1(C,dx)

∫
C

ϕ(x)
((

ϕ(x)
)2 − 1

)
dx (76)

+ π−1‖ϕ‖L1(C,dx) min

(
1,

√
2

π−1‖ϕ‖L1(C,dx)e

)
β1/4√

1 − β1/2
.

Here the quantities N(μC)(ϕ) and dTV(N(μC)(ϕ),Po(π−1‖ϕ‖L1(C,dx))) are defined as in the
statement of Theorem 8.1.

Proof. The claim follows by Theorem 8.1, relation ρ
(1)
C (x) = π−1, x ∈ C, and the inequality

(68) with f = g = ϕ. �

We conclude with following quantitative Poisson limit theorem, which is a simple consequence
of Theorem 8.2.

Theorem 8.3. Let {μ(β)}0<β<1 be a family of β-Ginibre point processes, let C ∈ B(C) be a rel-
atively compact Borel set and let ϕβ : C →N, 0 < β < 1, be a collection of Lebesgue integrable
functions such that

lim
β→0

‖ϕβ‖L1(C,dx) = lim
β→0

‖ϕβ‖3
L3(C,dx)

= γ ∈ (0,∞).

Then

dTV
(
N(μ

(β)
C )(ϕβ),Po

(
π−1‖ϕβ‖L1(C,dx)

))≤ U
(β)

2 ,

and U
(β)

2 → 0 as β → 0. Here the quantity U
(β)

2 is defined as the term in the right-hand side of
the inequality (76) with ϕβ in place of ϕ.

Example 8.4. Let {μ(β)}0<β<1 be a collection of β-Ginibre point processes and let C ∈ B(C) be
a relatively compact Borel set. Consider the functions ϕβ(x) := 1Cβ (x), x ∈ C, where {Cβ}0<β<1
is a family of Borel sets contained in C and such that �(Cβ) → γ ∈ (0,∞), as β → 0, where �

denotes the Lebesgue measure on C. Then

dTV
(
N(μ

(β)
C )(1Cβ ),Po

(
π−1�(Cβ)

))≤ π−1�(Cβ)min

(
1,

√
2

π−1�(Cβ)e

)
β1/4√

1 − β1/2
→ 0

as β → 0.

Note that the right-hand side of the above inequality is asymptotically equivalent to

π−1γ min

(
1,

√
2

π−1γ e

)
β1/4 as β → 0.
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