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Convergence rate of the powers of an
operator. Applications to stochastic systems
BERNARD DELYON

IRMAR, Campus de Beaulieu, 35042 Rennes cedex, France. E-mail: bernard.delyon@univ-rennes1.fr

We extend the traditional operator theoretic approach for the study of dynamical systems in order to han-
dle the problem of non-geometric convergence. We show that the probabilistic treatment developed and
popularized under Richard Tweedie’s impulsion, can be placed into an operator framework in the spirit
of Yosida–Kakutani’s approach. General theorems as well as specific results for Markov chains are given.
Application examples to general classes of Markov chains and dynamical systems are presented.
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1. Introduction

This paper is mainly concerned with the asymptotic behavior of homogeneous Markov chains,
that is, processes of the form

Xn+1 = ϕ(Xn,Un), (1)

where Un is an i.i.d. sequence and ϕ a certain function; the initial condition X0 is deterministic
or random. There exist schematically two different approaches for the analysis of the asymp-
totic behavior of such systems: the operator theoretic approach and the probabilistic approach.
In simple words, the second approach considers Harris chains where, typically, total variation
convergence to the invariant measure in expected to occur, while the first one is a more general
approach which captures the behaviour of chains with weaker mixing properties; we can no-
tice that, at first sight, total variation convergence is more natural in the sense that the transition
operator is actually by definition a contraction for the total variation norm on measures.

The first approach is based on the study of the properties of the transition operator T defined
as

Tf (x) = E
[
f (Xn+1) | Xn = x

] = E
[
f

(
ϕ(x,Un)

)] =
∫

f
(
ϕ(x,u)

)
μ(du), (2)

where μ is the distribution of Un. The second one is based on the fine study of the trajectories
of Xn, especially the recurrence properties.

The most typical objective of both approaches is to understand the behaviour of

T nf (x) = E
[
f (Xn) | X0 = x

]
(3)
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allowing in particular to study arbitrary correlations

E
[
f (Xn)g(X0)

] = E
[
g(X0)T

nf (X0)
]
. (4)

In many situations, (3) converges pointwise for a broad class of functions f and we know that
if this convergence holds for any bounded continuous function, with a limit independent of x, it
would imply the convergence in distribution of Xn to the invariant measure π . This is the case
for the stochastic system

Xn+1 = 1

2
Xn + Un, (5)

where Un an i.i.d. Bernoulli sequence. For any bounded continuous function f , T nf (x) con-
verges, because given X0 = x, the variable Xn = Un−1 + 1

2Un−2 + · · · + 2−n+1U0 + 2−nx has
same distribution as U1 + 1

2U2 + · · · + 2−n+1Un + 2−nx which converges with probability one.
The sequence Xn converges in distribution. If now Un is a Gaussian sequence, the distribution of
Xn converges in total variation, which is not the case if Un is Bernoulli.

At the other extreme, for a stochastic system like

Xn+1 = {2Xn}, (6)

where {·} denote the fractional part, there is no pointwise limit to (3) (because Xn is a determin-
istic function of X0) whereas (4) may well converge, depending on the distribution of X0. This
is the case for many dynamical systems (we denote by “dynamical system” the situation where ϕ

depend only on its first variable and the only source of randomness comes from X0); this means
that (3) converges actually in some weak sense. Notice, however, that the control of correlations,
that is, equation (4), leads to elementary [24] or more sophisticated [21] arguments for proving
laws of large numbers and invariance principles.

With these examples, we see that the distribution of Xn may converge in total variation, in
law, or in Wassertein distance to its limit. Many other intermediate kinds of convergence may be
envisaged. For any given stochastic system (1), the problem can thus be summarized as follows:
In which sense does T nf converges, for which functions f , and at which rate?

This paper uses the operator theoretic approach, although some fruitful ideas have been bor-
rowed from the probabilistic one, especially concerning the case where the convergence is not
geometric.

A huge amount of literature is concerned with both of these points of views. In this section,
we shall first give a sketch of the main ideas of each approach (operator theoretic in Section 1.1
and probabilistic in Section 1.2) with typical examples of the simplest situations, and then we
shall present in Section 1.3 our plan of action.

1.1. The Yosida–Kakutani theorem and the Ionescu–Tulcea–Marinescu
theorem for quasi-compactness

It is well known that in the finite case (i.e., when Xn takes values in a finite state space), T is
actually a matrix, and when T n converges, the rate is always geometric. It is given by ρn, where ρ
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is the second largest modulus of the eigenvalues of T . The gap between 1 (first eigenvalue) and ρ,
is the spectral gap. The case of more than one eigenvalues of modulus one is more complicated
and treated via a first splitting of the space into irreducible classes (the normal form, Chapter
XIII, equation (69) of [10]) due to the multiplicity of the eigenvalue 1, and another splitting of
each irreducible class into cyclic classes via the Frobenius theorem (Chapter XIII, equation (5)
of [10]) due to the complex eigenvalues.

We present now the classical operator approach in the case of a general state space, which may
be seen as the infinite dimensional extension of this matrix treatment. What is expected here is
that for some norm · and any complex valued function f with f < ∞

T nf − π(f ) ≤ Cρn f (7)

for some C > 0 and 0 < ρ < 1 (there is a harmless abuse of notation in the whole paper, appear-
ing already in Equation (7): π(f ) will stand for the complex number

∫
f (x)π(dx) as well as

for the constant function with value π(f )). Examples are given below, this simplest case being
f = ‖f ‖∞.

An operator T on a Banach space (E, · ) is said quasi-compact if some power of T can be
written as

T n = K + V, (8)

where V has spectral radius < 1 (i.e. V k < 1 for some k) and K is a compact operator (e.g., K

is finite-rank). Quasi-compactness has been extensively studied [12].
The Yosida–Kakutani theorem [28] says that, if, in addition to (8), the sequence T k is

bounded, then E splits as:

(i) E = Ec ⊕ E0,
(ii) Ec is the finite dimensional space generated by the eigenvectors with eigenvalues of mod-

ulus 1,
(iii) E0 is closed with T E0 ⊂ E0 and the restriction of T to E0 has spectral radius < 1.

Denoting by λi , i = 1, . . . , p the eigenvalues of T with modulus one, by Ei the corresponding
eigenspaces, by Pi the projection on Ei parallel ⊕j �=iEj , one has the equivalent formulation of
points (i) to (iii):

T =
p∑

i=1

λiPi + Q, Q = T P0 = P0T , (9)

where

|λ1| = · · · = |λp| = 1 (10)

each Pi is a · -continuous projection, with finite rank if i > 0 (11)

p∑
i=0

Pi = Id, (12)
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PiPj = PjPi = 0, 0 ≤ i < j ≤ p, (13)

Qn → 0. (14)

The last equation implies of course that Qn ≤ Cρn for some C > 0, 0 < ρ < 1 (because if
we define q as the first integer such that Qq = ρ0 < 1 and set n = kq + r , r < q , one has
Qn ≤ ρk

0 supr<q Qr ); another consequence of these equations is that for any k ≥ 1

T k =
p∑

i=1

λk
i Pi + Qk. (15)

The simplest case is when p = 1 and the eigenvalue 1 is simple, which means that P1 has rank
one and the convergence of (3) to P1f is obtained (at least in some sense depending on the norm
· ). In the general case, the operators Pi are described in terms of the invariant subspaces and

their decomposition into cyclic classes [28].
A decade later, Ionescu–Tulcea and Marinescu provided a useful tool [13–15] for checking

that quasi-compactness holds when T n is bounded:1 it is assumed that there exists a weaker
norm ‖ · ‖ on E (i.e., ‖f ‖ ≤ C f for some C and all f ∈ E), for which {Tf : f ∈ E, f ≤ 1}
is ‖ · ‖-compact and in addition, for some γ < 1, c ≥ 0 and k > 0, and all f ∈ E

T kf ≤ γ f + c‖f ‖. (16)

Under these assumptions, (9) to (15) hold.
It turns out that conditions (8) and (16) have different natural domains of applications. For an

illustrative purpose, we give below two simple but typical examples concerning Markov chains.
Namely, we show that (8) is well suited for dealing with Harris chain with convergence in total
variation of the distribution of the variable, whereas (16) is more adapted to non-necessarily
irreducible chains where, on the other hand, the transition has, for some metric on the state
space, a contraction effect on the variable (Equation (18) below).

Before giving these examples, we would like to point out the important fact that the use of
two norms is particularly adequate for treating the case where the convergence is not geomet-
ric; we shall come back to this below Section 1.2. More theoretical aspects of this are given in
Appendix A.

Example 1. We consider here a Markov chain on a measured space S, which satisfies a Doeblin
condition in the sense that there exists a positive measure ν(dx) such that its transition kernel
satisfies for all x ∈ S

T (x, dy) ≥ ν(dy).

1The point had been actually introduced much sooner by Doeblin and Fortet in [5], equation (2) and (3) page 143, but in
a more specific context.
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Under these circumstances, one can write (T stands in the whole paper for the transition proba-
bility T (x, dy) as well as for the transition operator f �→ T F )

Tf (x) =
∫

f (y)ν(dy) +
∫

f (y)
(
T (x, dy) − ν(dy)

) = Kf + Vf

and (8) applies with f = ‖f ‖∞, on the space E of bounded measurable functions; K is indeed
compact because its rank is one; finally for any f ∈ E, Vf ≤ (1 − ν(S)) f , hence V ≤
1−ν(S) < 1. The Yosida–Kakutani theorem applies. With some additional efforts, one can show
that Ec is the one-dimensional space of constant functions. If π is the invariant measure, one gets

T nf − π(f ) ≤ Cρn f . (17)

For any initial measure μ, we obtain∣∣μ(
T nf

) − π(f )
∣∣ ≤ Cρn f

and this means exactly that

‖μn − π‖TV ≤ Cρn‖μ‖TV,

where μn is the distribution of Xn when X0 ∼ μ, and ‖ · ‖TV is the total variation norm.

Example 2. Let us consider now a chain defined on some metric space (S, d) with the form

Xn+1 = ϕ(Xn,Un),

where Un is an i.i.d. sequence with distribution μ, and Xn belongs to S. Hence,

Tf (x) =
∫

f
(
ϕ(x,u)

)
μ(du).

The function ϕ is supposed to satisfy adequate measurability assumptions and the following
uniform Lipschitz property on (S, d):

d
(
ϕ(x,u),ϕ(y,u)

) ≤ γ d(x, y) (18)

for some γ < 1 and all x, y,u. On can see ϕ(·, ·) as a family of contractions on S parametrized
by u [14]. In this case, it is easy to check that (16) applies with

‖f ‖ = ‖f ‖∞,

f = ‖f ‖ + [f ], (19)

[f ] = sup
x �=y

f (x) − f (y)

d(x, y)
.

In order to have the ‖ · ‖-compactness of B = {Tf : f ∈ E, f ≤ 1}, we assume that the state
space is compact. Application of the Yosida–Kakutani theorem leads to the geometric conver-
gence of T nf the Lipschitz norm f �→ f , which means the convergence of the distribution
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of Xn in Wasserstein distance, and opens the way for coupling methods (cf. [27], Chapter 6, in
particular Equation (6.3)). Convergence in total variation will not hold in general (e.g. the chain
(5) when Un is Bernoulli). This approach has recently received increased attention, specifically
concerning subgeometric convergence rates, in cases where typically γ depends on (x, y) and
may approach 1 in some ways [2,9]; we will come back to this in Section 4.

All this is based on the fact that x �→ ϕ(x,u) is a contraction for any u, making the depen-
dence with respect to the initial condition decrease with time. Another fruitful approach [17],
which we have not yet mentioned, is based on the assumption that x �→ μx , where μx is the
distribution of ϕ(x,U), is a contraction for the Wasserstein distance, assumption ensured here
by (18). We would say that this theory is actually neither operator-oriented nor probabilistic but
rather geometric; its advantage is probably to give more explicit bounds through more direct
proofs.

1.2. The probabilistic approach

Let us consider an irreducible aperiodic Markov chain with invariant measure π . Interestingly, it
appears that in many situations, geometric convergence like (17) does not occur, but nevertheless
for many f ∈ E, T nf −π(f ) converges exponentially fast to 0. In other words, the convergence
is not · -uniform, and sometimes this convergence does not follow an exponential rate, but
is slower. This situation has been treated quite successfully with a very probabilistic approach,
where the speed of convergence is related to the integrability of recurrence times. The reference
[22], and more specifically [16], deals with these situations. Two key concepts are used: the
ψ -irreducibility, and a drift condition for controlling moments of recurrence times. A simple
illustrative example of this absence of spectral gap is the following operator on (RN,‖ · ‖∞):

Tf (x) = 1

2

(
f (x) + f

(
(x − 1)+

))
, x ∈ N

corresponding to the following chain on N

Xn+1 = (Xn − Un+1)+, P (Un = 0) = P(Un = 1) = 1

2
. (20)

The pointwise convergence T nf (x) → π(f ) = f (0) is very fast, but this convergence is not uni-
form. In particular, this makes (17) impossible to occur with f = ‖f ‖∞. A possible operator
theoretical approach is that one has for some weaker norm ‖ · ‖∥∥T nf − π(f )

∥∥ < ρn f (21)

for any f ∈ E, and some fixed decreasing sequence ρn. For example, the first equation in [7] is
(21) with

‖f ‖ = sup
x

|f (x)|
g0(x)

,

f = sup
x

|f (x)|
f0(x)
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for some functions f0, g0 ≥ 1 (called f and g in the paper). The norm ‖ · ‖ introduced here has
actually strong connections with the one involved in the Ionescu Tulcea–Marinescu approach.
The rate of decrease of ρn depends on the choice of ‖ · ‖. Notice that if in (21) the norms were
equal, the convergence of ρn to zero would imply the geometric convergence; however, this is
not the case any more when the norms are different.

The probabilistic school has thus slowly shifted towards more functional theoretic arguments
as illustrated by the addition of Chapter 20 in [22], or the use of Nagaev’s method in [18], [19],
but still restricting its work to ψ -irreducible chains and total variation convergence of measures
(e.g., [7]), making, for instance, the study of (20) impossible unless the law of Un is changed for
a non a discrete distribution.

1.3. Aim of the paper

The aim of this paper is to show that these ideas can be combined successfully and that they lead
to an operator theoretic approach where non-geometric convergence is considered. The main
feature of this theory is to work simultaneously with two norms and to use this for measuring
non-geometric rates of convergence.

Our approach has essentially two steps: we first give conditions under which (9) to (13) hold
with ∥∥Qnf

∥∥ ≤ ρn f , ρn → 0 (22)

instead of (14). This is the main objective of Section 2 (see Theorem 1). Notice that in this
decomposition the Banach space is (E, · ), and the norm ‖ · ‖ only appears in (22); in particular
nothing guarantees that Qnf tends to zero.

Section 3 is concerned with geometric convergence, that is, ρn = Cρn. Specifically Theorem 3
shows how the Yoshida–Kakutani and Ionescu Tulcea–Marinescu approaches can be combined
into a single statement. This allows an easy treatment of chains having an irreducible component
and another component behaving like Example 2 above.

Section 4 is concerned with sub-geometric convergence. Theorem 7 proposes a way to estimate
the decay rate of the sequence ρn.

General theorems concerning Markov chains and examples are given throughout the paper in
order to point out that this approach is very versatile for the study of a large class of dynamical
systems, in particular for irreducible as well as for non-irreducible Markov chains.

2. General results

In the whole paper, we shall consider an operator T on a vector space (E, · ) endowed with
another norm ‖ · ‖. We shall denote by B0, B the unit balls for these norms:

B0 = {
f ∈ E : ‖f ‖ ≤ 1

}
, (23)

B = {
f ∈ E : f ≤ 1

}
. (24)

We shall work under the following assumptions:
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(A0) (E, · ) is a Banach space, B is complete for the metric induced by ‖·‖, and for some C0

∀f ∈ E, ‖f ‖ ≤ C0 f . (25)

(A1) The number CT = supn T n is finite.

(E,‖ · ‖) is typically not complete. For instance, one can have E = Cb(R), the space of bounded
continuous functions on R, f = ‖f ‖∞ and ‖f ‖ = supx

|f (x)|
1+|x|2 .

The following theorem gives a necessary and sufficient condition to have the decomposition
(9) to (13) and (22):

Theorem 1. If in addition to (A0) and (A1), T is a sum of two operators

T = K + V (26)

both · -continuous and ‖ · ‖-continuous, which satisfy for some CK > 0 and for any n and any
f ∈ E

KT nKB is ‖ · ‖-totally bounded, (27)∥∥V nf
∥∥ ≤ ε′

n f , ε′
n → 0, (28)∑

k≥0

KV k < ∞, (29)

Kf ≤ CK‖f ‖, (30)

then (9) to (13) and (22) hold true.
If T is · -continuous and ‖ · ‖-continuous, and T k satisfies the assumptions (26) to (30) for

some k > 0, then (9) to (13) and (22) hold true.

We observe that the conditions are clearly necessary by taking V = Q and K = T − Q (be-
cause (T − Q)Q = 0 and T − Q has finite rank). The proof is postponed to Appendix A. This
proof utilizes the more general Theorem 11 stated in Section A.1, and is based on an extensive
use of the identity:

T n =
n∑

i=1

T n−i (T − V )V i−1 + V n =
n∑

i=1

T n−iKV i−1 + V n. (31)

Very coarsely, the assumptions combined with (31), imply that for any sequence fk ∈ B , the
sequence T kfk is ‖ · ‖-totally bounded. This allows us to prove that E is the direct sum of two
· -closed, T -stable spaces

E = {
f : ∥∥T nf

∥∥ → 0
} ⊕

{
f : lim inf

n

∥∥f − T nf
∥∥ = 0

}
= E0 ⊕ Ec. (32)

Next we prove that Ec is finite dimensional (by proving that its unit ball is compact) with a basis
of eigenvectors. The projection P0 of Equation (9) is then the projection on E0 parallel to Ec.
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Application to Markov chains. We shall consider a measurable space (S,F ) with a measurable
weight function v ≥ 1 and we adopt the following notation

‖f ‖v = ‖f/v‖∞. (33)

We denote by E the Banach space of bounded measurable functions on (S,F ), with the norm
f = ‖f ‖∞. The conclusion of the theorem will lead directly to the total variation convergence

of the distributions. We have ‖f ‖v ≤ f . We recall that a transition operator on (S,F ) is a
function (x,A) �→ T (x,A) such that for any x ∈ S, A → T (x,A) is a probability measure, and
for any A ∈ F , x → T (x,A) is measurable.

Theorem 2. Let T be a Markov transition operator:

(Tf )(x) =
∫

y

f (y)T (x, dy).

Assume that for some set K0 and some cv > 0

T v(x) ≤ v(x) − cv, ∀x /∈ K0, (34)

T v is bounded on K0 (35)

and that there exists another kernel K(x,dy) such that 0 ≤ K(x,dy) ≤ T (x, dy), and such that
for some ε > 0, and some non-negative measure ν one has

K(x,S) ≥ ε, ∀x ∈ K0, (36)

K(x,S) = 0, ∀x /∈ K0, (37)

‖Kf ‖∞ ≤ ν
(|f |), ∀f ∈ E, (38)

ν(v) < ∞. (39)

Set

f = ‖f ‖∞, (40)

‖f ‖ = ‖f ‖v. (41)

Then Theorem 1 applies with K and V = T − K . In particular Equations (9) to (13) and (22)
hold true.

If in addition there is no measurable set A such that x �→ T (x,A) is a non-trivial indicator
function2 then there exist a probability measure π and a sequence ρn → 0 such that for any
f ∈ E ∥∥T nf − π(f )

∥∥
v
≤ ρn‖f ‖∞. (42)

2This would mean that 1X1∈A would be a deterministic non-constant function of the initial state X0.



2138 B. Delyon

We recall that π(f ) stands here for the constant function with value π(f ). The proof of this
consequence of Theorem 1 is postponed to Appendix B. Estimations of ρn will be given later in
Theorem 9.

Remark. Equation (34) is known as the “drift condition” (cf. Theorem 11.0.1 of [22] or Propo-
sition 5.10 in [23]). Equations (36) to (39) are reminiscent of the T -chain property (cf. [22]
Theorem 6.0.1), used to check the irreducibility assumption (cf. [22] page 87). However, the
Feller property is not required here. Equation (37) is not a restriction, since cancelling K outside
K0 does not affect the other assumptions. The essential difficulty with the present assumptions is
that the set K0 has to be the same in (34) and in (36). Notice however that the sets K0 satisfying
assumptions (36) and (37) are stable by finite union.

Example. Consider the Markov chain on R+ defined by

Xn+1 = Xn + 1 + Xα
nWn+1, (43)

where Wn is an i.i.d. sequence of non-zero centred random variables with values in [−1,1], with
a non-zero absolutely continuous component. In addition, we assume that

1/2 < α < 1.

Take

v(x) = xp + 1

for some p ≤ 1 which will be chosen later as 2(1 − α). Then

T v(x) = 1 + E
[(

x + 1 + xαW1
)p]

.

By the second order Taylor formula applied to the function v in the neighbourhood of x + 1,
there exist a random number 0 < θ < 1 such that

T v(x) = 1 + (x + 1)p − p(1 − p)

2
x2αE

[(
x + 1 + θxαW1

)p−2
W 2

1

]
(44)

≤ 1 + (x + 1)p − p(1 − p)

2
x2α

(
x + 1 − xα

)p−2
σ 2,

where σ 2 is the variance of W1. Taking p = 2(1 − α), we have 0 < p < 1 and

T v(x) ≤ 1 + (x + 1)p − p(1 − p)

2

(
x

x + 1 − xα

)2α

σ 2

≤ 1 + xp − p(1 − p)

3
σ 2 for x large enough.

Equation (34) is satisfied for some interval K0 = [0,M]. Equation (35) is obvious. In order to
check Equations (36) to (39), notice that if the absolutely continuous component of W1 has a
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density ≥ ε on a subset A of [−1,1] with positive measure, K(x,dy) can be taken as ελ(A)

times the distribution of x + 1 + xαW̃1, where W̃1 has density 1A/λ(A), ν is some multiple of
the uniform measure on [0,M + Mα + 1]. Therefore, theorem applies. In order to get (42), it
remains to prove that T 1A = 1B is impossible unless B = R+ or B = ∅. If B is non-trivial one
can find two sequences xn and yn having the same limit such that xn ∈ B and yn /∈ B . The relation
T 1A = 1B would mean that for each n, the distributions of xn + 1 + xα

n W1 and yn + 1 + yα
n W1

are mutually singular (supported on A and Ac), which is impossible for n large because W1 has
an absolutely continuous component. As a consequence, B is necessarily trivial and (42) holds.

Notice that nevertheless E[Xn] = E[X0] + n.

3. Geometric convergence: Quasi-compactness

In this section, we give a theorem which encompasses both Yosida–Kakutani and Ionescu–
Tulcea–Marinescu theorems, and present an application to Markov chains which mixes both
kinds of situations presented above. A specific application to autoregressive processes with
Markov switching is finally studied. We recall that B denotes the unit closed ball for the norm · .

Theorem 3. Let T be an operator on (E, · ) satisfying (A0), (A1) and

(A3) T is ‖ · ‖-continuous. For some ‖ · ‖-totally bounded set KB , γ < 1, c > 0 and q > 0

T qB ⊂ γB + KB, (45)

T qf ≤ γ f + c‖f ‖. (46)

Then Equations (9) to (14) hold.

Under the assumption of the Yosida–Kakutani theorem, one can take here ‖ · ‖ = · , and
clearly Theorem 3 applies. Under the assumptions of the Ionescu–Tulcea–Marinescu theorem,
we can take KB = ‖T q‖B and Theorem 3 applies. Like Theorem 1, this theorem is a conse-
quence of the general Theorem 11 stated in Section A.1; its proof is postponed to Appendix C.

The following theorem may seem very general and unclear for the applications. It says that if
T can be lower bounded by an operator with nice properties, then quasi-compactness holds.

We should point out that we intend to bridge a continuum over two extreme cases: the conver-
gence of the Markov chain in Wasserstein distance and the convergence in total variation. This
will be exemplified below.

Let us just mention that [·] below is typically a Lipschitz semi-norm like in Equation (19)
or simply [·] ≡ 0, in which case we shall we get total variation convergence (cf. the following
corollary).

Theorem 4. Let (S, d) be a metric space and B its Borel σ -field. We assume that is given a
continuous function v(x) ≥ 1 on S such that for any A > 0, {x : v(x) ≤ A} is compact. Consider a
vector space E of B-measurable functions defined on S, with values on C, containing compactly
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supported Lipschitz functions. On E is defined a semi-norm f �→ [f ] and we set for any function
f on S:

f = ‖f ‖ + [f ], (47)

‖f ‖ = sup
x

|f (x)|
v(x)

. (48)

We assume that (E, · ) is a Banach space and that (A0) holds.
Let T be a Markov transition operator defined on E. We assume the existence of 0 < γb, γv < 1

and cv > 0 such that

[Tf ] ≤ γb[f ], f ∈ E, (49)

T v(x) ≤ γvv(x) + cv. (50)

We assume the existence of a non-negative kernel K(x,dz), of functions ψ ≥ 0, εd > 0 and
τ ≥ 0, such that for any x, y ∈ S and f ∈ E,

K(x,dz) ≤ T (x, dz), (51)

K(x,S) ≥ εd(x), (52)∣∣Kf (y) − Kf (x)
∣∣ ≤ τ(x, y)

([f ] + ψ
(
d(x, y)

)‖f ‖). (53)

Moreover the function τ(·, ·) is assumed to be bounded on compact subsets of S × S, ψ(x) tends
to 0 as x → 0, and εd(x) is satisfies

lim
v(x)→∞ εd(x)v(x) = +∞, (54)

∀A, min
v(x)≤A

εd(x) > 0. (55)

Then Theorem 3 applies (i.e. (A2) holds true) with a pair of norms ( · ′,‖ · ‖′) respectively
equivalent to · and ‖ · ‖. In particular, if the constant functions are the only eigenvectors of T

with an eigenvalue of modulus 1, there exist C > 0, 0 < ρ < 1 and a probability measure π such
that for any f ∈ E,

π(f ) − T nf ≤ Cρn f (56)

and π(v) < ∞.

The proof is postponed to Appendix D. We use Theorem 3 with q = 1. The idea is to set

Sf (x) =
n∑

i=1

θi(x)Kf (xi),
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where θ1, . . . , θn is a partition of the unity of a large portion of the space, each xi being a point of
the support of θi . Clearly S(B) is compact. It remains to prove that ‖(T − S)f ‖ ≤ γ ‖f ‖ (which
implies (45)) and that (46) holds true.

We shall consider two examples, one where [f ] is trivially chosen as [f ] ≡ 0 and we get
geometric convergence in ‖ · ‖ norm (which, by duality, corresponds to geometric weighted total
variation convergence for the distribution of the Markov chain), and another case where [·] plays
an important role.

Application to geometric total variation convergence. In the case [f ] ≡ 0 we get the following
corollary:

Corollary 5. Let (S, d) be a metric space and B its Borel σ -field. We assume that is given a
continuous function v(x) ≥ 1 on S such that for any A > 0, {x : v(x) ≤ A} is compact. Consider
the Banach space (E, · ) of B-measurable functions f defined on S such that

f = sup
x

|f (x)|
v(x)

(57)

is finite.
Let T be a Markov transition operator defined on E. We assume the existence of 0 < γv < 1

and cv > 0 such that

T v(x) ≤ γvv(x) + cv. (58)

We assume the existence of of a non-negative kernel K(x,dz), functions εd > 0, ψ ≥ 0, such that
for any x, y ∈ S and f ∈ E

K(x,dz) ≤ T (x, dz), (59)

K(x,S) ≥ εd(x), (60)∣∣Kf (y) − Kf (x)
∣∣ ≤ ψ

(
d(x, y)

)‖f ‖. (61)

Moreover, we assume that ψ(x) tends to 0 as x → 0, and that the function εd(x) satisfies

lim
v(x)→∞ εd(x)v(x) = +∞, (62)

∀A, min
v(x)≤A

εd(x) > 0. (63)

Then Equations (9) to (14) hold. In particular, if the constant functions are the only eigenvectors
of T with an eigenvalue of modulus 1, there exist C > 0, 0 < ρ < 1 and a probability measure π

such that for any f ∈ E,

π(f ) − T nf ≤ Cρn f (64)

and π(v) < ∞. In addition, for any x ∈ S, the distribution μx
n of Xn when X0 = x converges

exponentially fast in total variation to π .∥∥π − μx
n

∥∥ ≤ Cρnv(x). (65)
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Proof. It suffices to prove the last statement. Equation (64) implies that for any bounded function
f ∈ E and any measure μ∣∣π(f ) − μn(f )

∣∣ ≤ Cρn f v(x) ≤ Cρn‖f ‖∞v(x),

where μn is the distribution of Xn starting from x. This means the total variation convergence of
μn to π . �

In many cases εd(x) = 1/2 will do the job, but in the following example the situation is more
complicated:

Xn+1 =
⎧⎨
⎩

1

2
Xn, with probability 1 − p(Xn),

Vn, with probability p(Xn),

where Vn is an i.i.d. sequence and p is a positive function of x; Vn can be constant. We see that
only the second type of transition contributes to the convergence in total variation, this is why we
shall need p(x) not to be too small. Let us assume that for some 0 < α < 1 and for some positive
uniformly continuous function q(x)

E
[|Vn|α

]
< ∞,

0 < q(x) ≤ p(x),

lim
x→∞q(x)|x|α = +∞.

Then Equations (58) to (63) are clearly satisfied with

v(x) = |x|α + 1,

K(x,A) = q(x)P (V1 ∈ A),

εd(x) = q(x).

Indeed

T v(x) = (
1 − p(x)

)
v(x/2) + p(x)E

[
v(V1)

] ≤ |x|α2−α + 1 + E
[
v(V1)

]
(i.e. γv = 2−α) and Equations (59) to (63) are immediately checked.

The exponential convergence holds. If one tries to prove the same convergence by the proba-
bilistic approach, e.g. Theorem 16.1.2 of [22], the problem is to prove the ψ -irreducibility, that
is, the existence of a measure ψ such that if ψ(A) > 0, for any x, Px(Xn ∈ A for some n) > 0.
This condition is implicitly checked by the assumptions.

Application to functional autoregressive processes with Markov switching. We consider the
following mixed Markov process (In,Xn) ∈ S where S = {1, . . . , s} ×Rd :

P(In+1 = j | In = i) = pij , 1 ≤ i, j ≤ s, (66)

Xn+1 = α(In)ϕ(Xn) + β(In,Vn), (67)
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where α is a matrix valued measurable function, ϕ and β are vector valued measurable functions,
and Vn is an independent i.i.d. sequence. In other words

Tf (i, x) =
∑

k

pikE
[
f

(
k,α(i)ϕ(x) + β(i,V1)

)]
.

If for all i the variable β(i,V1) has a density, we can apply Corollary 5 at the price of extra
reasonable assumptions because (59) to (61) would be satisfied for some kernel K (the continuity
of ϕ is important here); our point is to deal with singular measures. As in [3], Theorem 1.4, we
have made efforts to give conditions which allow for non-contracting values for α, as one can
see in Equation (69).

Theorem 6. Consider the Markov chain defined by (66) and (67). We assume that the chain In

is irreducible and aperiodic with invariant measure π on its finite state space, and that for some
q > 0 ∣∣ϕ(y) − ϕ(z)

∣∣ ≤ |y − z|, (68)∑
i

πi log
(∥∥α(i)

∥∥)
< 0, (69)

sup
i

E
[∣∣β(i,V1)

∣∣q]
< +∞, (70)

where | · | the euclidean norm and ‖ · ‖ is the usual matrix norm ‖M‖ = sup|x|=1 |Mx|. Then
Theorem 4 applies and (56) holds with the norm

f ′ = sup
i,x,x′

|f (i, x) − f (i, x′)|
|x − x′|η + sup

i,x

|f (i, x)|
|x|η + 1

for η small enough. This implies that for any realization (In,Xn) of the chain at time n with an
arbitrary initial distribution, one can find a coupling with a pair (I ′,X′) having the stationary
distribution, such that

P
(
In �= I ′) + E

[∣∣Xn − X′∣∣η] < Cρn
(
1 + E

[|X0|η
])

.

Proof. We will choose

[f ] =
∑

i

νi[f ]i , [f ]i = sup
x,y

|f (i, x) − f (i, y)|
|x − y|η ,

v(i, x) = |x|εeελ(i) + 1,

d
(
(i, x), (j, y)

) = 1i �=j + |x − y|η

for some constants νi and λ(i) which will be specified later. Concerning K we simply set:

K = T .
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In that case, (51) and (52) are obvious (εd = 1), and (53) will be a consequence of (49). The
technical part is to prove that (49) and (50) hold true. We now focus on (50). We first note that
since

Xn+1 = α(In)
(
ϕ(Xn) − ϕ(0)

) + (
α(In)ϕ(0) + β(In,Vn)

)
we can assume that ϕ(0) = 0. Unsurprisingly, the contraction property (50) is related to the rate
at which the product of α(Ik)’s converges to zero, this one being itself controlled by the speed
at which the law of large numbers acts on the sums of log(‖α(Ik)‖)’s. This uses classically the
Poisson equation: Since the chain In is irreducible aperiodic on a finite state space, there exists a
unique (up to a constant) solution λ to the Poisson equation

E
[
λ(I1) | I0 = i

] = λ(i) − l(i) + π(l), l(i) = log
(∥∥α(i)

∥∥)
(it is simply λ = ∑∞

k=0(T
k
0 − π)l where T0 = (pij )1≤i,j≤s is the transition operator of the chain

In). The process

Zn = |Xn|εeελ(In)

satisfies, thanks to (67), (68), and ϕ(0) = 0:

Zn+1 ≤ (∥∥α(In)
∥∥∣∣ϕ(Xn)

∣∣ + ∣∣β(In,Vn)
∣∣)ε

eελ(In+1)

≤ ∥∥α(In)
∥∥ε|Xn|εeελ(In+1) + ∣∣β(In,Vn)

∣∣εeελ(In+1)

= Zne
ε{log‖α(In)‖+λ(In+1)−λ(In)} + eελ(In+1)

∣∣β(In,Vn)
∣∣ε.

And since the factor of ε is bounded, we have for some c

Zn+1 ≤ Zn

(
1 + ε

(
λ(In+1) − λ(In) + log

∥∥α(In)
∥∥) + cε2) + eελ(In+1)

∣∣β(In,Vn)
∣∣ε,

E[Zn+1 | Fn] ≤ Zn

(
1 + επ(l) + cε2) + eε supi λ(i) sup

i

E
[∣∣β(i,V1)

∣∣ε],
where Fn stand for the σ -field σ(Ii,Xi,0 ≤ i ≤ n). Hence, if we take ε ≤ q such that επ(l) +
cε2 < 0, we obtain (50). Concerning (49):

∣∣Tf (i, y) − Tf (i, x)
∣∣ ≤

∑
k

pikE
[∣∣f (

k,α(i)ϕ(y) + β(i,V1)
) − f

(
k,α(i)ϕ(x) + β(i,V1)

)∣∣]

≤ ∣∣ϕ(y) − ϕ(x)
∣∣η∥∥α(i)

∥∥η
∑

k

pik[f ]k,

[Tf ]i ≤ ∥∥α(i)
∥∥η

∑
k

pik[f ]k,
∑

i

νi[Tf ]i ≤
∑
i,k

νi

∥∥α(i)
∥∥η

pik[f ]k.
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We see that if we can find ν such that

∀k,
∑

i

∥∥α(i)
∥∥η

νipik < νk (71)

then Equation (49) will be satisfied. To this aim, we define

ν = π + η
∑
k≥1

(
π.l − π(l)π

)
P k

with the notation

(π.l)(i) = πil(i).

Set ai = ‖α(i)‖η; since

ai = 1 + ηl(i) + O
(
η2)

we get

ν.a = π + η
∑
k≥1

(
π.l − π(l)π

)
P k + ηπ.l + O

(
η2)

hence,

(ν.a)P = π + η
∑
k≥1

(
π.l − π(l)π

)
P k + ηπ(l) + O

(
η2) = ν + ηπ(l) + O

(
η2).

This equation implies that for η small enough, Equation (71) is satisfied. In particular, we shall
impose η ≤ ε. We have now proved (49) to (54).

As a byproduct, Equation (49) implies that any eigenfunction f , with associated eigenvalue
|λ| = 1, does not depend on x, and consequently, since In is irreducible, f is necessarily constant.

Theorem 4 applies and (56) holds with

f = sup
x,i

|f (i, x)|
|x|εeελ(i) + 1

+
∑

i

νi[f ]i .

Since by irreducibility, νi > 0 for all i, this norm is equivalent to

N(f ) = sup
i,x

|f (i, x)|
|x|ε + 1

+ sup
i,x,y

|f (i, x) − f (i, y)|
|x − y|η .

This norm is also equivalent to f ′ because, on the one hand, η ≤ ε, and on the other hand

sup
i,x

|f (i, x)|
|x|η + 1

≤ sup
i,x

|f (i, x) − f (i,0)| + |f (i,0)|
|x|η + 1

≤ sup
i,x

|f (i, x) − f (i,0)|
|x|η + sup

i

∣∣f (i,0)
∣∣ ≤ N(f ).
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By the duality properties of the Wasserstein distance (cf. [27], Theorem 5.10, Equations (5.11)
and (6.3))

inf
In,I ′,Xn,X′ P

(
In �= I ′) + E

[∣∣Xn − X′∣∣η]
= sup

f Lipschitz
E

[
f (In,Xn) − f

(
I ′,X′)],

where the infimum is taken over all the pairs of random variables (I ′,X′) and (In,Xn) having
respectively the stationary distribution and the chain distribution at time n, and f is 1-Lipschitz
w.r.t. the distance d . The expectation in the right-hand side is just E[(Qnf )(I0,X0)], which is
smaller than Cρn(1 + E[|X0|η]). �

4. Subgeometric rates

In the rest of the paper, we shall find conditions under which the rate of convergence of V n to 0
will give us an insight about the rate of convergence of Qn to 0. We set for any operator S on E

‖S‖E0 = sup
f ≤1

‖Sf ‖,

‖S‖0E = sup
‖f ‖≤1

Sf .

With this convention, one has

‖UV ‖ ≤ ‖U‖E0‖V ‖0E,

UV ≤ ‖U‖0E‖V ‖E0.

We shall consider positive rate sequences αn, n ≥ 1, satisfying the conditions (R1) to (R3)
below. For instance, sequences like αn = (n + 1)−p , p > 1, or αn = exp−√

n, or αn =
(n + 1)−1(log(n + 1))−2 satisfy these assumptions (notice that the first part of (R2) holds if
x �→ logαx is convex). These conditions make it easy to solve some recursive equations (cf.
Appendix F).

Theorem 7. Let (A0) be satisfied and T be a · - and ‖ · ‖-continuous operator on E satisfying
(A1), Equations (9) to (13) and (22). Let αn be a sequence satisfying

(R1) n �→ αn is decreasing,

(R2) n �→ αn+1

αn

is increasing and converges to 1,

(R3)
∑
n≥1

α2
n

α2n

< ∞.
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We assume that T can be rewritten as T = K + V with∥∥V k
∥∥

E0 ≤ C1αk, k > 0, (72)

KV k ≤ C2αk, k > 0, (73)

KQk → 0 as k → ∞ (74)

(Equations (73) and (74) are clearly satisfied if (72) and (30) hold true). Then one has for some
C > 0 and all n > 0 ∥∥Qn

∥∥
E0 ≤ C

∑
k≥n

αk.

If in addition supn ‖T n‖ < ∞, then ∥∥Qn
∥∥

E0 ≤ Cαn. (75)

The proof is based on (31) and on the key result of Proposition 13. It is postponed to Ap-
pendix E.

Remarks. (1) If Theorem 1 is used for checking the assumptions, there is no need to check (29),
which is automatically satisfied thanks to (28), (30) and the summability of αn (consequence of
(R1) and (R3)). (2) Condition (R2) excludes geometric rates. The theorem is indeed wrong in
this case: For example, in the finite dimensional case, Theorem 1 holds with V = 0, and (75)
only holds with some geometric rate.

Application to Markov chains. We consider here Markov chains which satisfy the following is
strengthening of (34):

T v(x) ≤ v(x) − θ
(
v(x)

)
, x /∈ K0 (76)

for some function θ , e.g. θ(u) = uq , 0 < q < 1. Our goal here is to use this information for
bounding the sequence ρn in (42).

Lemma 8. Let T be a Markov transition operator on a space S:

(Tf )(x) =
∫

y

f (y)T (x, dy).

Assume that for some set K0 ⊂ S, some c, ε > 0, some non-negative function v bounded below
by a positive number, some function θ and some submarkovian operator V

T v ≤ v − θ(v) + c1K0, (77)

V ≤ T , (78)

(V 1)(x) ≤ 1 − ε1x∈K0 (79)
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((V 1)(x) is V (x,S)). We assume in addition that θ be a non-decreasing non-negative concave
differentiable function on [0,+∞) with a derivative which tends to zero at infinity. Then, for
some constant c′

V n1 ≤ v + c′

ψ(−1)(n)
, (80)

where the exponent (−1) stands for the reciprocal function and

ψ(x) =
∫ x

0

1

θ(y)
dy.

In addition, for some constant c′′

T nθ(v) ≤ v

n
+ c′′. (81)

The point here is that (80) implies (72) with αn = ψ(−1)(n)−1 as soon as · ≥ ‖ · ‖∞ and
‖f ‖ ≤ ‖f/v‖∞.

In view of (77), a natural choice for V is Vf (x) = (1 − 1x∈K0)Tf (x), and we shall do this
later in the proof of Theorem 10, but in the following application, we see that a more general
situation is useful.

Theorem 9. Let all the assumptions and notations of Theorem 2 hold and assume that (34) is
strengthened as

T v(x) ≤ v(x) − θ
(
v(x)

)
, x /∈ K0 (82)

for some concave function θ satisfying the assumptions of Lemma 8. In addition, we assume that
the sequence

αn = 1

ψ(−1)(n)

(ψ is given by (133)) satisfies the conditions (R1) to (R3) of Theorem 7. Then for some c > 0 and
any bounded measurable function f

sup
x

∣∣∣∣T nf (x) − π(f )

v(x)

∣∣∣∣ ≤ cρn‖f ‖∞, ρn =
∑
k≥n

αk, (83)

π
(∣∣T nf − π(f )

∣∣) ≤ cαn‖f ‖∞. (84)

The proof is a straightforward application of Lemma 9 together with Theorem 7 in the case
f = ‖f ‖∞, ‖f ‖ = ‖f ‖v , and is postponed to Appendix H. We find the following matchings

between drift function and rates (Table 1).
It is has been known for a certain time that the function ψ(−1) plays a key role in the estimation

of the rate of convergence (e.g., [6,7] for Harris chains), and applications of this kind of result in
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Table 1. Rates for various drift functions

θ(t) αn ρn

log(t + 1)2 ∼ n−1(logn)−2 ∼ (logn)−1

tq , 0 < q < 1 ∼ n−1/(1−q), ∼ n−q/(1−q)

ct
log(t+1)

∼ e−√
2cn ∼ e−√

2cn√
n

the field of Markov chains are not uncommon. For example, in [16] Jarner and Roberts give an
application to Monte Carlo Markov Chains. They also consider (Example 1) the random walk on
[0,+∞)

Xn+1 = (Xn + Wn+1)+,

where Wn is an i.i.d. sequence with E[W1] < 0. Under the assumption that there exists an integer
m ≥ 2 such that

E
[|W1|m

]
< ∞

they prove that the drift condition (82) is satisfied with

v(x) = (x + 1)m,

θ(x) = xα, α = m − 1

m
.

In Theorem 3.6, they state that for any x, sup‖f ‖∞≤1 |T nf (x) − π(f )| = o(n−α/(1−α)), which is
somewhat intermediary between (83) and (84). On this example, we clearly see the interpretation
of the difference of rates between (83) and (84): if the initial state X0 = x0 is very large, it takes
a long time to come back to the invariant measure (this time is certainly proportional to x0), but
if the initial state is drawn from π , it won’t be large and the convergence rate is increased.

Similarly, in example (43), it is easily shown using (44) that

T v(x) ≤ v(x) − p(1 − p)

3
x2α+p−2σ 2

for x large enough, as soon as 2 − 2α < p < 1. This means that (82) is satisfied with θ(t) =
t (2α+p−2)/p . Hence, for any 2 − 2α < p < 1, Theorem 9 applies with αn = cn−p/(2α−2).

An application of Lemma 8 to weakly contractive stochastic dynamical systems. Consider a
complete separable metric space (S, d). We define the Lipschitz seminorm

[g] = sup
x �=y

|g(x) − g(y)|
d(x, y)

.

We shall consider a transition operator on S, having a Lyapunov function [equation (85)] and
a contraction property with is strict only in a part K of the space [equation (86), (87)]. The
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importance of considering such transition operators has been highlighted and exemplified by
Butkovsky in [2]. He shows that, under these circumstances, Equation (88) holds (Equation (2.3)
of the article, which is actually slightly weaker than (88), see below). We show in addition that
Equation (89) holds true (an analogous result is more or less implicit in the proofs of [2], cf.
Equation (4.8) of the article, but with a much worse rate of convergence).

Following [2], we have proved (88) only in the case d ≤ 1. It is apparent in the proof that the
general case can be treated similarly, starting from (89) again, as soon as one manages to get
control of T nf (x), where f is the function f (x) = d(x, y0)θ(v(x)), y0 being arbitrary.

While Butkovsky works on the space of measures (i.e., considering the action of the dual
operator T ∗), we will show this theorem by working directly on the space of Lipschitz functions
and by using Lemma 8. The proof is postponed to Appendix I, and uses as another key point a
theorem of Shaoyi Zhang which allows to perform a dynamical coupling of two realizations of a
Markov chain, with different initial conditions, with a single Markov chain on the product space
S × S.

Durmus, Fort and Moulines present also an analogous result in [9] (Theorem 3) improving
Equation (2.3) of [2], but there, the bound on T ng(x)−π(g) still appears with a third extra term
(in comparison with (88)). Equation (89) is not given. They apply the result to the Metropolis
algorithm.

Theorem 10. Let (S, d) be a complete separable metric space with d ≤ 1. Let T (x, dy) be a
transition operator on S such that for some function v bounded below by a positive number,
some set K ⊂ S, some constant c:

T v ≤ v − θ(v) + c1K, (85)

where θ is a non-decreasing non-negative concave differentiable function on [0,+∞) with a
derivative which tends to zero at infinity. We assume in addition that for the same set K , some
ε > 0, some constant c, and any Lipschitz function g on S:

[T g] ≤ [g], (86)∣∣T g(x) − T g(y)
∣∣ ≤ (1 − ε) d(x, y)[g], x, y ∈ K. (87)

Then there exists a unique invariant measure π and for any Lipschitz function g, x ∈ S and n > 0

∣∣T ng(x) − π(g)
∣∣ ≤ [g]min

(
1,

v(x)

ψ(−1)(n)

)
+ [g] c

θ(ψ(−1)(n))
, (88)

where ψ in given in Lemma 8. In addition

∣∣T ng(x) − T ng(y)
∣∣ ≤ [g]d(x, y)

v(x) + v(y) + c

ψ(−1)(n)
(89)

which is true even without the assumption that d ≤ 1.



Convergence rate of the powers of an operator 2151

Since for 0 ≤ x ≤ y one has x
y

≤ θ(x)
θ(y)

(the function x �→ x
y

− θ(x)
θ(y)

is convex and non-positive
at x = 0 and x = y), (88) leads to

∣∣T ng(x) − π(g)
∣∣ ≤ [g] θ(v(x)) + c

θ(ψ(−1)(n))
.

This is Equation (2.3) obtained in [2], but with θ(v) instead of v, and without an extra exponent.
Equation (89) is interesting because it allows to estimate correlations: if the initial measure of

the chain is μ, we have

∣∣E[
f (X0)

(
g(Xn) − E[g(Xn)]

)]∣∣ =
∣∣∣∣
∫

f (x)
(
T ng(x) − T ng(y)

)
μ(dy)μ(dx)

∣∣∣∣
≤ [g]

ψ(−1)(n)

∫ ∣∣f (x)
∣∣d(x, y)

(
v(x) + v(y) + c

)
μ(dy)μ(dx).

Notice that the difference in convergence rate between (88) and (89) seems to shows that the
forgetting of initial conditions holds at a strictly faster rate than the convergence to the invariant
measure. This is due to the fact that the invariant measure may give strong weight to points with
large value of v, points which are difficult for the Markov chain to reach, but are not important
when comparing trajectories with close initial conditions.

Application of Theorem 7 to an expansive dynamical system. Consider the following applica-
tion defined on [0,1]

v(x) =
{

x
(
1 + 2γ xγ

)
, 0 ≤ x < 1/2,

2x − 1, 1/2 ≤ x ≤ 1,
(90)

where 0 < γ < 1 is fixed, and the corresponding operator

Tf (x) = f
(
v(x)

)
. (91)

We are interested in the asymptotics of T n. There exists an extensive literature on the subject
[11,20] and the result we are going to present here, Equation (95), is already known [29]; our
point is to give a new and direct proof of this estimate which plays a key role in the obtainment of
central limit theorems (through the Gordin–Liverani theorem), and which is known to be optimal
[26]. Notice that this proof does not require any explicit assumption on the invariant measure (see
Equation (5.2) in [20]). We detail only here the example (90) but it will appear clearly that the
following development extends to many other cases. Nevertheless, we feel that such extensions
fall beyond the scope of this paper.

For any integrable function f on [0,1], we set

F(x) =
∫ x

0
f (t) dt − xf̄ , f̄ =

∫ 1

0
f (t) dt.
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We start with the following identity which we prove below:

Tf (x) = (
v′(x)−1F

(
v(x)

))′ + (
f̄ − (

v′(x)−1)′
F

(
v(x)

))
(92)

= Vf (x) + Kf (x),

where the prime denotes in the whole present section the density of the absolutely continuous part
of the distributional derivative (which will always be a measure). We shall take E = L∞([0,1]):

f = ‖f ‖∞.

In order to prove (92), note that v′(x)−1F(v(x)) is clearly Lipschitz because F(v(x)) cancels
at the discontinuity point of v′, implying that this function as well as its distributional derivative
belongs to E with (

v′(x)−1F
(
v(x)

))′ = f
(
v(x)

) − f̄ + (
v′(x)−1)′

F
(
v(x)

)
which proves (92). We obtain also by induction on n that

V nf (x) = (
v′
n(x)−1F

(
vn(x)

))′
, (93)

where vn is the nth iterate of v. In order to prove this, notice that v′
n(x)−1F(vn(x)) being Lips-

chitz, it is the integral of its derivative and (93) leads to

V n+1f (x) = (
v′(x)−1(v′

n(·)−1F
(
vn(·)

))(
v(x)

))′ = (
v′
n+1(x)−1F

(
vn+1(x)

))′
.

On the other hand, it is proved by induction in appendix J that

v′
n(x) ≥ c1n

1/γ vn(x) (94)

with c1 = (2γ − 1)1/γ . Hence, if we consider the norm ‖f ‖ = ‖ ∫ .

0 f (t) dt‖∞, we are led to∥∥V nf
∥∥ = ∥∥v′

n(x)−1F
(
vn(x)

)∥∥∞
≤ c−1

1 n−1/γ
∥∥x−1F(x)

∥∥∞

≤ c−1
1 n−1/γ sup

0≤x≤1
x−1

∫ x

0

∣∣f (y)
∣∣dy

≤ c−1
1 n−1/γ f .

Because B = {f ∈ E : f ≤ 1} is ‖ · ‖-compact (F is 1-Lipschitz if f ∈ B), the assumptions
of Theorem 1 and of Theorem 7 are all satisfied (but here ‖T n‖ is not bounded). Thanks to
classical distortion arguments (see, for instance, [29] Theorem 1), one knows that T admits
a unique absolutely continuous invariant probability measure π , which is ergodic and mixing.
In particular, there is no nontrivial eigenfunction for any eigenvalue of modulus 1 and we can
conclude that ∥∥T nf − π(f )

∥∥ ≤ Cn1−1/γ f . (95)
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Appendix A: Proof of Theorem 1

The proof of Theorem 1 requires two preliminary results which are the subject of the forthcoming
section.

A.1. Asymptotically almost periodic powers of an operator

Theorem 11 below gives conditions under which, in some sense, the powers of an operator T can
be rewritten

T n =
∑
i≥1

λn
i Pi + T nP0,

where each Pi is a projection, PiPj = 0, i �= j , and T nP0 tends to zero in some sense. However,
if each term of the series will be well defined (eigenspace and eigenvalue), the series may fail
to converge, as in the case of almost periodic sequences; but since the set of points x for which
Pix = 0 except for a finite number of indices i will appear to be dense, the series

∑
i≥1 λn

i Pix

will converge at least on a dense subspace of E. Lemma 12 will give a condition under which
there is only a finite number of non-zero λi ’s.

Let us say a few words concerning Assumptions (B1) and (B2) below, since they are the
key assumptions and may appear somehow complicated; it is easily shown that under these
assumptions, for any x ∈ E the sequence T nx has ‖ · ‖-compact closure. These assumptions
are essentially used to prove the total boundedness of the sequence (T n)n>0 for a certain norm
(Step 1 of the proof of Theorem 11). These assumptions are reminiscent of that of the De Leeuw–
Glicksberg theorem [4], but here we consider ‖ · ‖-total boundedness rather than · -weak total
boundedness (which is actually not a weaker assumption).

For the statement of this theorem, we refer to the equations (23) to (25).

Theorem 11. Let T be a continuous operator on the Banach space (E, · ) satisfying assump-
tions (A0), (A1) and:

(B1) The sequence T n is uniformly ‖ · ‖-equicontinuous on · -bounded sets in the following
sense:

lim
x∈B,‖x‖→0

sup
n

∥∥T nx
∥∥ = 0. (96)

(B2) T nB is asymptotically ‖·‖-totally bounded in the following sense: There exist a sequence
of finite sets Kn ⊂ E, and a sequence εn → 0 such that for any n ≥ 0

T nB ⊂ Kn + εnB0. (97)

Then the following facts hold true: The space E is the direct sum of two · -closed spaces

E = {
x : ∥∥T nx

∥∥ → 0
} ⊕

{
x : lim inf

n

∥∥x − T nx
∥∥ = 0

}
= E0 ⊕ Ec. (98)



2154 B. Delyon

The projection Pc on Ec parallel to E0 satisfies Pc ≤ CT . There exist a non-negative sequence
ρn converging to 0 such that ∥∥T nx

∥∥ ≤ ρn x , x ∈ E0, n ≥ 0. (99)

The space Eu of the finite linear combinations of eigenvectors with eigenvalue of modulus one is
‖ · ‖-dense in Ec.

The set � of these eigenvalues is at most countable, and for each λ ∈ � there exists a contin-
uous projection Pλ on the corresponding eigenspace parallel to the others and to E0. It satisfies
Pλ ≤ CT and

lim
n→∞

∥∥∥∥∥Pλx − 1

n

n−1∑
i=0

λ−iT ix

∥∥∥∥∥ = 0, x ∈ E. (100)

There exists a sequence ki such that the projection Pc on Ec satisfies

lim
i→∞ sup

x∈B

∥∥Pcx − T ki x
∥∥ = 0. (101)

The unit ball of Ec, B ∩ Ec, is ‖ · ‖-totally bounded.
If the integer powers of T extend to a ‖ · ‖-C0-semi-group (T t )t≥0, that is,

∀x ∈ E, lim
t→0

∥∥T tx − x
∥∥ = 0, (102)

the space Ec is generated by the vectors x such that for some ωx , T tx = eiωxtx for any t ≥ 0.

Proof. Step 1: The non-negative powers of T form a totally bounded set for the distance

d(f,g) = sup
x ≤1

∥∥f (x) − g(x)
∥∥

on bounded functions on B . Any limit point of its closure is a continuous operator on (E, · ),
with norm ≤ CT .

We start with a simple modification of Kn in order to imbed it in CT B . Fix n > 0, denote by
yk,1 ≤ k ≤ Nn the points of Kn, choose arbitrary Nn points xk ∈ T nB such that ‖xk − yk‖ ≤ εn

and define K̃n = {xk,1 ≤ k ≤ Nn}. Assumption (B2) is still satisfied with K̃n but εn is now two
times larger; in addition K̃n ⊂ CT B .

Hence there exist two functions un and vn such that for x ≤ 1

T nx = un(x) + vn(x), un(x) ∈ K̃n,

and ∥∥vn(x)
∥∥ ≤ 2εn, vn(x) ≤ 2CT . (103)



Convergence rate of the powers of an operator 2155

Fix n large; for any p:

T 2n+px = CT T n
(
C−1

T T pun(x)
) + T n+pvn(x)

= CT un

(
C−1

T T pun(x)
) + CT vn

(
C−1

T T pun(x)
) + T n+pvn(x)

= αp(x) + βp(x) + γp(x).

The set of functions {αp(·),p ≥ 0} has at most N
Nn
n elements; clearly ‖βp(x)‖ ≤ 2CT εn; and

Assumption (B1) with Equation (103) implies that ‖γp(x)‖ ≤ ηn, for all p ≥ 0 and some se-

quence ηn → 0. We have just proved that the set {T k, k ≥ 2n} can be covered with N
Nn
n d-balls

of radius 2CT εn + ηn; hence {T k, k ≥ 0} is totally bounded for the distance d .
For any x ∈ B , the sequence T nx belongs to CT B , hence any ‖·‖-cluster point of this sequence

belongs to CT B (because of (A0)), and the continuity follows.
Step 2: For any limits d(T uk ,U) → 0 and d(T vk ,V ) → 0, one has d(T uj +vk ,UV ) → 0

if min(j, k) → +∞. In particular UV = V U and for any third similar limit operator W ,
d(WU,WV ) ≤ CT d(U,V ).

One has indeed:

d
(
T uj +vk ,UV

) ≤ d
(
T uj +vk , T uj V

) + d
(
T uj V ,UV

)
≤ sup

{∥∥T uj x
∥∥ : ‖x‖ ≤ d

(
T vk ,V

)
, x ≤ 2CT

} + d
(
T uj ,U

)
V .

The second term obviously converges to zero, and the first one also because of Assumption (B1).
For the last assertion

d(WU,WV ) = d(UW,V W) ≤ d(U,V ) W .

Step 3: Proof of Equations (98) and (101).
Let nk be a sequence such that T nk d-converges to some limit S. We can assume that nk −

nk−1 → ∞. From the sequence nk − nk−1 one can extract a sequence pi = nki+1 − nki
such that

T pi and T pi−1 d-converge to some limit Pc and R. Set mi = nki
.

S = d-limT mi+pi = SPc.

Since pi → ∞, there exists qi → ∞ such that Pc = d-limT mi+qi and we get

Pc = d-limT mi T qi = d-limST qi = d-limPcST qi = P 2
c .

Pc is a projection on PcE and Equation (101) holds. We shall prove now that PcE is indeed Ec

and that (98) holds true.
Clearly PcE ⊂ Ec. On the other hand, for any x ∈ Ec there exists a sequence rk such that

‖x − T rkx‖ converges to 0. We can assume that rk > pk and that d(T rk−pk ,U) → 0 for some
U ; in particular d(T rk ,PcU) → 0. Hence, x = PcUx ∈ PcE. Finally, PcE = Ec. The null space
of Pc clearly contains E0. On the other hand for any point x /∈ E0, there exists a sequence rk
such that ‖T rkx‖ ≥ ε and T rk−pk d-converges to some limit V ; the bound ‖V Pcx‖ ≥ ε leads
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to Pcx �= 0. This implies by contradiction that any point of the null space of Pc belongs to E0;
hence the null space of Pc is E0 and E = E0 ⊕ Ec.

The bound on the norm of Pc is a consequence of the last point of Step 1.
Step 4: T is one-to-one on Ec. The powers of T on Ec generate a compact G group of operators

on Ec with the distance

dc(f, g) = sup
x ≤1,x∈Ec

∥∥f (x) − g(x)
∥∥.

Since T Pc = PcT and Pc = T R = RT (R is defined in Step 3), Ec is T -stable and R is its
inverse on Ec. The monoid generated by the powers of T

G = {
T n,n ≥ 0

}
is a group since we have seen that R ∈ G. The continuity of the multiplication on G comes from
Step 2, and the compactness from Step 1.

Step 5: Eu is ‖ · ‖-dense in Ec. Properties of Pλ.
Each character χ on G is uniquely determined by the value of χ(T ), because of the definition

of G and χ(T n) = χ(T )n.
For any eigenvalue λ of T with modulus 1, there exists a unique character χ such that χ(T ) =

λ which can be defined as follows: pick an eigenvector x, a ‖ · ‖-continuous linear form u such
that u(x) = 1 and set χ(S) = u(Sx); χ is indeed a character since it is dc-continuous with
χ(T n) = χ(T )n; in particular since the set of characters of a compact group is at most countable,
there is at most a countable number of eigenvalues of modulus one.

In order to show now that for any character χ , χ(T ) is an eigenvalue, we proceed as follows.
Let μ be the Haar measure on G, consider a character χ on G and define

Qχ =
∫

G

χ(S)−1Sμ(dS) (104)

(as a continuous function on G, f (S) = S is the uniform limit of simple functions (by compact-
ness) and this integral is well defined with the usual properties, cf. [8], Section III.2). If x is a
χ(T )-eigenvector, then the relation T nx = χ(T n)x extends to G as Sx = χ(S)x, and clearly
Qχx = x.

The invariance of μ implies that for U ∈ G:

Qχ =
∫

G

χ(SU)−1SUμ(dS) = χ(U)−1UQχ. (105)

In particular, taking U = T , for any x ∈ E, Qχx is 0 or an eigenvector with eigenvalue χ(T ). In
addition integrating this expression w.r.t. μ(dU) we get that Qχ is a projector. If Qχ is non-zero,
Qχ is thus a projector on the χ(T )-eigenspace. If Qχ = 0, for any ‖ · ‖-continuous linear form
u on E and y ∈ E, one has ∫

G

χ(S)−1u(Sy)μ(dS) = 0.
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The Fourier transform of S �→ u(Sy) being 0, this dc-continuous function is itself 0. Hence
u(Sy) = 0 for any such u and y and any S ∈ G, which is impossible. Hence, Qχ is non-zero,
χ(T ) is an eigenvalue, an Qχ is a projection whose range is the χ(T )-eigenspace.

In summary, there is a one-to-one correspondence between characters and eigenvalues with
modulus one, defined by λ = χ(T ), and Qχ is a projector whose range is exactly the eigenspace.

Since S ≤ CT we have Qχ ≤ CT , and since by (104) they commute, Qχ is a projector
parallel to the other eigenspaces.

In order to show that Eu is ‖ · ‖-dense in Ec, consider a ‖ · ‖-continuous linear form u such
that u(x) = 0 for any eigenvector x, then for any y ∈ Ec, S �→ u(Sy) is dc-continuous and for
any character χ one has ∫

G

χ(S)−1u(Sy)μ(dS) = u
(
Qχ(y)

) = 0.

The Fourier transform of S �→ u(Sy) being 0, this continuous function is itself 0. Hence, u(y) =
0. Eu is ‖·‖-dense in Ec. The projection Pλ is finally well defined on E by setting Pλx = Qχ(T )x

if x ∈ Ec and Pλx = 0 if x ∈ E0.
We now prove (100). This equation holds on E0 and Eu. Set

Pλ,n = 1

n

n−1∑
i=0

λ−iT i .

For any x ∈ Ec we can pick out y ∈ Eu such that ‖x − y‖ ≤ ε and get

‖Pλ,qx − Pλ,nx‖ ≤ ∥∥Pλ,q(x − y)
∥∥ + ∥∥Pλ,n(x − y)

∥∥ + ‖Pλ,qy − Pλ,ny‖
≤ 2 sup

k

∥∥T k(x − y)
∥∥ + ‖Pλ,qy − Pλ,ny‖.

Since this quantity can be made smaller than 3ε by taking n and q large, this proves that Pλ,qx is
a ‖ · ‖-Cauchy sequence, and its limit Pλx satisfies (100). Since for all x ∈ E, Pλ,nx ≤ CT x

and ‖Pλ,nx − Pλx‖ → 0, Assumption (A0) implies that Pλx ≤ CT x .
Step 6: Equation (99).
Using a sequence pk such that d(T pk ,Pc) = αk → 0, we obtain ‖T pkx‖ ≤ αk for x ∈ B ∩ E0.

For n ≥ pk large, one can write ‖T nx‖ ≤ ‖T pk (T n−pkx)‖ ≤ CT αk . This implies (99).
Step 7: Bc = Ec ∩ B is ‖ · ‖-totally bounded.
Using the same sequence pk , we get with (97)

Bc ⊂ (
Pc − T pk

)
Bc + T pkBc ⊂ αkB0 + Kpk

+ εpk
B0.

This means that Bc is ‖ · ‖-totally bounded.
Step 8: Case of semi-group T t .
We can carry on Steps 1 to 4 with t ∈ R+ instead of n ∈ N. The group G is now G =

{T s, s ≥ 0}. In Equation (105) we take U = T t and we obtain that y = Pχx is a vector such
that T ty = χ(T t )y. In particular if y �= 0, we have χ(T s+t ) = χ(T s)χ(T t ), and on the other
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hand assumption (102) implies that the function t → ‖T ty‖ is continuous, and so is t → χ(T t );
hence χ(T t ) = eiωt for some ω ∈ R. �

The following lemma gives a condition for checking that Ec is finite dimensional. This could
be checked specifically on examples but we shall see in Theorem 1 that this holds naturally in
general situations; in addition, this finite dimensionality assumption is very important in Theo-
rem 7.

Lemma 12. If in addition to (A0) and (A1), T is ‖ · ‖-continuous and satisfies the following
assumption:

(B1′) There exists two sequences ηn → 0 and η′
n,p → 0 (as min(n,p) → ∞), such that for

any n,p > 0

T n
(
B ∩ p−1B0

) ⊂ ηnB0 + η′
n,pB,

then (B1) is also satisfied. If (B2) is also satisfied, then (9) to (13) hold true and∥∥Qnx
∥∥ ≤ ρn x , ρn → 0. (106)

Proof. We start with (B1). We have to prove that any sequence xp of B such that ‖xp‖ → 0
satisfies supn>0 ‖T nxp‖ → 0. Without loss of generality, we can assume that ‖xp‖ ≤ 1/p. One
has ∥∥T nxp

∥∥ ≤ ηn + η′
n,pC0.

Since on the other hand ∥∥T nxp

∥∥ ≤ ‖T ‖n‖xp‖
we have for any n0

sup
n>0

∥∥T nxp

∥∥ ≤ max
n≥n0

(
ηn + η′

n,pC0
) + 1

p
max
n<n0

‖T ‖n

which can be made arbitrarily small by taking n0 large first and then by increasing p.
Let us prove now that Ec is finite-dimensional. It suffices to prove that Bc = Ec ∩ B is · -

totally bounded; since we already know that Ec ∩ B is ‖ · ‖-totally bounded, it suffices to prove
that · and ‖ · ‖ induce the same topology on Bc . Notice first that if x ∈ E and ‖x − xn‖ → 0
then

x ≤ lim
n

xn

because of (A0) (the inequality is obviously true if xn is not bounded). Let x ∈ B ∩ Ec. We
want to prove that x can be made arbitrarily small by taking ‖x‖ small enough. Consider an
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integer p such that ‖x‖ ≤ p−1. There exists a sequence nk such that ‖x − T nkx‖ tends to zero.
Thanks to (B1′), there exist uk ∈ B0 and vk ∈ B such that

T nkx = ηnk
uk + η′

nk,p
vk.

Since ‖x − T nkx + ηnk
uk‖ tends to zero, using the previous remark:

x ≤ lim
k

T nkx − ηnk
uk = lim

k
η′

nk,p
vk ≤ lim

k
η′

nk,p

which can be made arbitrarily small by taking p large. Hence, · and ‖ · ‖ are topologically
equivalent on Ec and the compactness holds.

Now that Ec is finite dimensional, Equations (9) to (13) and (106) are an immediate rewording
of the conclusion of Theorem 11 (notice that ρn has changed from equation (99) by a factor
P0 ). �

A.2. Proof of Theorem 1

Let us recall the identity (31)

T n =
n∑

i=1

T n−i (T − V )V i−1 + V n =
n∑

i=1

T n−iKV i−1 + V n. (107)

In particular, Assumption (A1) together with (29) implies that the sequence V n is bounded by
a constant CV , and KV nKB is ‖ · ‖-totally bounded. We set αn = KV n and ᾱk = ∑∞

i=k αi .
Let x ∈ E, for any 0 ≤ k ≤ n:

(
T n − V n

)
x ≤

n∑
i=1

T n−iKV i−1x

≤ CT

k∑
i=1

KV i−1x + CT

n∑
i=k+1

KV i−1x

≤ CT CK

k∑
i=1

∥∥V i−1x
∥∥ + CT ᾱk x

≤ ck‖x‖ + CT ᾱk x

for some ck . In particular if x ∈ B ∩ p−1B0 one has

(
T n − V n

)
x ≤ min

k≤n

(
ck

p
+ CT ᾱk

)
.
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This implies (B1′) where η′
n,p is the right-hand side of the previous equation and ηn = ε′

n. We
proceed now with (97):

T n =
n∑

i=1

T i−1KV n−i + V n

=
n∑

i=1

(
i−1∑
j=1

T j−1KV i−j−1 + V i−1

)
KV n−i + V n

(108)

=
∑

1≤j<i≤n

T j−1KV i−j−1KV n−i +
n∑

i=1

V i−1KV n−i + V n

= An + Bn + Cn.

The set AnB is ‖ · ‖-totally bounded; on the other hand

CnB + BnB ⊂
(

ε′
n +

n∑
i=1

αn−iε
′
i−1

)
B0.

The sum tends to zero as n tends to infinity and this leads finally to (97).
We turn now to the last assertion. If T k satisfies (B1) and (B2) and T is · -continuous

and ‖ · ‖-continuous, clearly T also satisfies (B1) and (B2). Theorem 11 applies to T . Since any
eigenvector of T associated with an eigenvalue of modulus one is an eigenvector of T k associated
with an eigenvalue of modulus one, Ec is finite dimensional, and (9) to (13) and (22) hold.

Appendix B: Proof of Theorem 2

(A0) is clearly satisfied. In addition T is a · -contraction, and (A1) holds true. Up to a replace-
ment of v with v/cv , we can assume that cv = 1. Since T 1 = 1, Equations (34), (35) and (36)
imply

V v ≤ T v ≤ v − 1 + c1K0, (109)

V 1 ≤ 1 − ε1K0 (110)

for some c > 0. Combining these equations, we obtain that the function v̄ = v + c/ε satisfies

V v̄ ≤ v̄ − 1. (111)

Multiplying (111) by V k and summing, up we obtain

V nv̄ +
n−1∑
k=0

V k1 ≤ v̄. (112)
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Equation (30) is obvious from (38) and (39) and Equation (29) is a consequence of (112) and
(39) since for any f

KV nf ≤ ν
(∣∣V nf

∣∣) ≤ ‖f ‖∞ν
(
V n1

) ≤ f ν
(
V n1

)
.

For (28) notice that V n1 is a decreasing sequence of functions, because V 1 ≤ 1, hence:

V n1 ≤ 1

n

n−1∑
k=0

V k1 ≤ v̄

n

and (28) holds. It remains to prove the compactness of KT pK . Notice first that in the assump-
tions we can replace ν with ν̄ defined as

ν̄(f ) =
∑
i≥0

2−iν
(
T if

)
,

which makes T continuous on L1(ν̄) with norm ≤ 2. Second, notice that ν̄(v̄) < ∞, that is
(39) still holds. From (38), we get that ‖Kf ‖∞ ≤ ν(|f |) implies that the measure μ(g) =∫

g(x, y)K(x, dy)ν̄(dx) is absolutely continuous w.r.t. ν̄(dx) ⊗ ν̄(dy), and let p(x, y) be its
density; if g has the form g(x, y) = h(x)f (y), one has∫

h(x)f (y)p(x, y)ν̄(dx)ν̄(dy) =
∫

h(x)(Kf )(x)ν̄(dx)

hence one has for any bounded measurable function f and for ν̄-a.e. x,

Kf (x) =
∫

f (y)p(x, y)ν̄(dy).

The function p can be approximated in L1(ν̄ ⊗ ν̄) as

p(x, y) =
n∑

i=1

qi(x)ri(y) + ρ(x, y),

∫ ∣∣ρ(x, y)
∣∣ν̄(dx)ν̄(dy) < ε.

This finite rank approximation implies that K is a compact operator of L(E,L1(ν)), hence KB

is totally bounded in L1(ν̄). By continuity, the same property holds for T pKB . Equation (38)
implies now that KT pKB is totally bounded in (E, · ). The assumptions of Theorem 1 are
thus satisfied.

To obtain (42), it remains to prove that the space Ec is one dimensional. For this, let nk be
a sequence such that λ

nk

i → λi for each eigenvalue λi with modulus 1, and denote by Pc the
projector on Ec parallel to E0. Then ‖T nkf −T Pcf ‖ converges to 0 for any f ∈ E. Hence, T Pc

is a Markov transition operator with the same one-modulus eigenvectors as T . It is compact on E

and if there exists more than one eigenvector, one can find two non-trivial measurable sets A and
B such that T Pc1A = 1B ([25] Chapter 6, Section 3, Theorem 3.7). Notice now that the function
f = Pc1A satisfies 0 ≤ f ≤ 1 and by Jensen’s inequality

T
(
f n

) ≥ (Tf )n = 1B.
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On the other hand, since f n ≤ f , we have T (f n) ≤ Tf = 1B , and we obtain that T (f n) = 1B

for all n > 0; letting n tend to infinity, we get

T (1f =1) = 1B.

Appendix C: Proof of Theorem 3

We begin with the case q = 1.
Elementary inductions lead to

T nx ≤ γ n x + c
∥∥T n−1x

∥∥ + γ c
∥∥T n−2x

∥∥ + · · · + γ n−1c‖x‖
(113)

≤ γ n x + cn‖x‖.
This may be improved as

T nx ≤ CT min
k≤n

T kx ≤ CT min
k≤n

(
γ k x + ck‖x‖).

This implies (B1′) of Lemma 12 with ηn = 0 and

η′
n,p = CT min

k≤n

(
γ k + ck

p

)
. (114)

We have similarly

T nB ⊂ γ nB + γ n−1KB + γ n−2T KB + · · · + T n−1KB

and this implies now (B2) in Theorem 11.
It remains to prove that Q [from equation (9)] has a spectral radius < 1. Notice that for any

n > 0, Qn = T n−1Q, this proves that CQ = supn Qn is finite. For any x ∈ B we have from (9),
(113) and (22)

Qn+kx = T nQkx ≤ (CQ + 1) T n Qkx

Qkx + 1
≤ (CQ + 1)η′

n,p

with

p−1 = ‖Qkx‖
Qkx + 1

≤ ρk.

By choosing n and k large enough, this ensures that some power of Q is a · -contraction.
If now q > 1, the operator T q satisfies the assumptions for the case q = 1, thus T q satisfies

(A1), (B1′) and (B2). Since T is · and ‖ · ‖-continuous, this clearly implies that T also satisfies
these assumptions, by writing T n = T r+kq with 0 ≤ r < q .
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Appendix D: Proof of Theorem 4

For the proof, we shall change ‖ · ‖ into

‖f ‖′ = sup
x

|f (x)|
v′(x)

, v′(x) = v(x) + A

1 + A

for some constant A ≥ 1 which will be chosen later, and f as

f ′ = ‖f ‖′ + α[f ]
for a small constant α, and prove that the assumptions of Theorem 3 are fulfilled with q = 1.
Notice that ‖f ‖ ≤ ‖f ‖′. For any f ∈ E, by the positivity of T and Equation (50),∣∣Tf (x)

∣∣ ≤ ‖f ‖′T v′(x)

≤ ‖f ‖′ γvv(x) + A + cv

1 + A
(115)

≤ ‖f ‖′
(

v′(x) + cv

1 + A

)

hence

‖Tf ‖′ ≤
(

1 + cv

A

)
‖f ‖′. (116)

T is ‖ · ‖′-continuous. In addition, Equation (50) implies that for any n > 0

T nv(x) ≤ γ n
v v(x) + cv

1 − γv

(117)

hence ‖T n‖′ is bounded. Equation (49) with (116) implies (46) with γ = γb, and c = 1 + cv/A.
With (117), it implies also that T n ′ is bounded. Thus (A0), (A1) and (46) are satisfied.

In order to prove that Theorem 3 applies, it remains to prove that (45) holds true. Consider
A0 > 0 which will be chosen large enough later, and η small; if v(x) ≤ A0 the set Ox = {y :
d(x, y) ≤ η} ∩ {v < 2A0} is still an open neighbourhood of x because v is continuous. Consider
a finite sequence (xi)1≤i≤I such that v(xi) ≤ A0 and {v ≤ A0} ⊂ ⋃I

i=1 Oxi
. This is possible

thanks to the compactness of {v ≤ A0}. There exist θ1(x), θ2(x), . . . , θI+1(x) a locally Lipschitz
partition of the unity of S such that the support of each θi , i ≤ I , is contained in Oxi

, and
the support of θI+1 is contained in {x : v(x) > A0} (see [1], Theorem 2, page 10). We define
ϕ = 1 − θI+1 which is 0 on {v ≥ 2A0} and 1 on {v ≤ A0}. We split Tf as

Tf (x) =
(

I∑
i=1

{
Tf (x) − εϕ(x)Kf (xi)

}
θi(x) + Tf (x)θI+1(x)

)
+ εϕ(x)

I∑
i=1

Kf (xi)θi(x)

= Vf (x) + Sf (x).
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Clearly, for f ≤ 1, Sf belongs to a fixed ‖ · ‖-compact set because the sum is finite. We are
going to show that

Vf ≤ γ2 f (118)

for some γ2 < 1; this will imply (45). One has

[Vf ] ≤ [Tf ] + ε
∑

i

∣∣Kf (xi)
∣∣[ϕθi]

≤ γb[f ] + ε‖f ‖
∑

i

(
γvv(xi) + cv

)[ϕθi] (119)

≤ γb[f ] + εc0‖f ‖′, c0 = (A0 + cv)
∑

i

[ϕθi].

It is more complicated to bound ‖Vf ‖′. For i ≤ I and θi(x) > 0 then d(x, xi) ≤ η and Equations
(115) and (53) imply that∣∣Tf (x) − εϕ(x)Kf (xi)

∣∣
= ∣∣(1 − εϕ(x)

)
Tf (x)

∣∣ + ∣∣εϕ(x)
(
Tf (x) − Kf (x)

)∣∣ + ∣∣εϕ(x)
(
Kf (x) − Kf (xi)

)∣∣
≤ (

1 − εϕ(x)
)(

γvv(x) + cv + A
) ‖f ‖′

1 + A
+ εϕ(x)(T − K)v′(x)‖f ‖′ + εc1

([f ] + ψ(η)‖f ‖),
where c1 is the maximum of τ on {ϕ > 0}. Since ϕ(x) > 0 implies v(x) ≤ 2A0, if we denote by
γ0 the maximum of 1 − εd on {v ≤ 2A0} the second term can be bounded as

(T − K)v′(x) ≤ T v(x) + A − K(v + A)(x)

1 + A
≤ γvv(x) + cv + γ0A

1 + A
≤ γdv′(x)

with γd = max(γv, γ0 + cv/A). Notice that γd < 1 as soon as A > cv/(1 − γ0). Our bound
becomes∣∣Tf (x) − εϕ(x)Kf (xi)

∣∣
≤ (

1 − εϕ(x)
)(

γvv(x) + cv + A
) ‖f ‖′

1 + A
+ εγdv′(x)‖f ‖′ + εc1[f ] + εc1ψ(η)‖f ‖.

If in this expression, ϕ(x) < 1, then v(x) ≥ A0 and(
1 − εϕ(x)

)(
γvv(x) + cv + A

) ≤ γvv(x) + cv + A

≤
(

sup
u≥A0

γvu + cv + A

u + A

)(
v(x) + A

)

= γvA0 + cv + A

A0 + A

(
v(x) + A

)
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and if ϕ(x) = 1:

(
1 − εϕ(x)

)(
γvv(x) + cv + A

) ≤ (1 − ε)

(
sup
u≥0

γvu + cv + A

u + A

)(
v(x) + A

)

= (1 − ε)

(
cv

A
+ 1

)(
v(x) + A

)
.

In any case, we get

∣∣Tf (x) − εϕ(x)Kxi
f (xi)

∣∣
(120)

≤ γ1‖f ‖′v′(x) + εγd‖f ‖′v′(x) + εc1[f ] + εc1ψ(η)‖f ‖

with

γ1 = max

(
γvA0 + cv + A

A0 + A
, (1 − ε)

(
1 + cv

A

))
.

In order to bound the factor of θI+1 in the expression of Vf , we notice that in the case where
θI+1(x) > 0, we have v(x) ≥ A0 and

∣∣Tf (x)
∣∣ ≤ γvv(x) + cv + A

1 + A
‖f ‖′

=
(

γvv
′(x) + cv + (1 − γv)A

1 + A

)
‖f ‖′

≤
(

γv + cv + (1 − γv)A

A0 + A

)
‖f ‖′v′(x) (121)

≤ cv + A + γvA0

A0 + A
‖f ‖′v′(x)

≤ γ1‖f ‖′v′(x).

Since (120) is true if θi(x) > 0, and (121) holds if θI+1(x) > 0, we obtain for all x

∣∣Vf (x)
∣∣ ≤ γ1v

′(x)‖f ‖′ + εγd‖f ‖′v′(x) + εc1[f ] + εc1ψ(η)‖f ‖

thus

‖Vf ‖′ ≤ (
γ1 + εc1ψ(η) + εγd

)‖f ‖′ + εc1[f ] (122)

and combining (122) and (119) leads to

‖Vf ‖′ + α[Vf ] ≤ (
γ1 + εc1ψ(η) + εγd + εαc0

)‖f ‖′ + (αγb + εc1)[f ]. (123)
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In order to get (118) for some γ2 < 1, we need simultaneously:

γvA0 + cv + A

A0 + A
+ εc1ψ(η) + εγd + εαc0 < 1,

1 + cv

A
− ε

(
1 + cv

A
− c1ψ(η) − γd − c0α

)
< 1,

γb + ε
c1

α
< 1.

In other words, it suffices that

ε
(
γd + c1ψ(η) + c0α

)
<

A0 − γvA0 − cv

A0 + A
,

cv < εA
(
1 − γd − c1ψ(η) − c0α

)
,

ε
c1

α
< 1 − γb.

Remember that c0 and c1 depend on A0, and

1 − γd = min
(

1 − γv, min
v≤2A0

εd(x) − cv/A
)
.

Assumption (62) implies that for some B > 0, ε(x) > 14cv/v(x) for v(x) > B , and if A0 is such
that εd(x) > 7cv/A0 for v(x) < B then εd(x) > 7cv/A0 for v(x) ≤ 2A0. Thus, if A0 is large
enough, and A ≥ A0 (A will be chosen later)

1 − γd ≥ 6cv

A0
. (124)

This makes our choice of A0, together with the condition A0 − γvA0 − cv ≥ 1. We choose now
η such that c1ψ(η) ≤ cv/A0 and

α = 1 − γd − 2c1ψ(η)

2c0
.

With this choice of α, our equation set becomes

1

2
ε(1 + γd) <

A0 − γvA0 − cv

A0 + A
,

2cv < εA(1 − γd),

2εc0c1 < (1 − γb)
(
1 − γd − 2c1ψ(η)

)
and by (124), with A0 − γvA0 − cv ≥ 1, this is implied by

ε <
1

A0 + A
,
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A0 < 3εA,

εc0c1A0 < 2(1 − γb)cv.

If we take ε = A0/2A, these equation are satisfied for A large enough, as well as the condition
A ≥ cv/(1 − γ0) that has been required before.

It remains to prove the last assertion. Since 1 is the only eigenvalue of modulus one and since
its multiplicity is one, there exists a linear form π on E such that (56) holds. This equation
implies that for f ∈ E ∥∥π(f )1 − T nf

∥∥ ≤ Cρn f

hence ∣∣π(f )
∣∣‖1‖ ≤ sup

k

∥∥T k
∥∥‖f ‖ + Cρn f .

Now we can let n tend to infinity and conclude that π is ‖ · ‖-continuous. This ‖ · ‖-continuous
linear functional defined on the set of compactly supported Lipschitz functions extends to a
positive functional on Cc(S), the set of all compactly supported functions on S. By the Riesz
theorem, there exists a Borel measure μ such that π(f ) = μ(f ) for any f ∈ Cc(S); since v is
the increasing limit of a sequence of functions of Cc(S), we have π(v) = μ(v) < ∞. Any f in
E being the ‖ · ‖-limit of compactly supported Lipschitz functions, by ‖ · ‖-continuity of π we
obtain that π(f ) = μ(f ), f ∈ E.

Appendix E: Proof of Theorem 7

Multiplying both sides of (31) by P0 on the left and by Qq on the right we get

Qn+q =
n−1∑
i=1

Qn−iKV i−1Qq + P0KV n−1Qq + P0V
nQq. (125)

We consider first the simpler case when ‖T n‖ is bounded, say ‖T n‖ ≤ c. In this case, considering
a sequence nk such that λ

nk

i converges to 1, for i = 1, . . . , p (this can be done by considering a
converging subsequence λmk of λm = (λm

i , . . . , λm
p ) and taking nk = m2k − mk), Equation (15)

implies that for any x ∈ E ∥∥∥∥∥
p∑

i=1

λ
nk

i Pix

∥∥∥∥∥ ≤ ∥∥T nkx
∥∥ + ∥∥Qnkx

∥∥
and letting k tend to infinity, thanks to (22):∥∥∥∥∥

p∑
i=1

Pix

∥∥∥∥∥ ≤ c‖x‖.
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Hence, ‖P0‖ ≤ 1 + c is finite, and Equation (125) leads directly to

∥∥Qn+q
∥∥

E0 ≤
n−1∑
i=1

∥∥Qn−i
∥∥

E0 KV i−1Qq + ‖P0‖ Qq
∥∥KV n−1

∥∥
E0 + ‖P0‖ Qq

∥∥V n
∥∥

E0.

We plan to apply Proposition 13 of the Appendix F with un = ‖Qn‖E0 and βi = KV i−1Qq

for some q large enough. We remark that (130) is satisfied since

KV iQq = KV iT qP0 ≤ αiC2CT P0 . (126)

Because of the summability of αi (a consequence of (R1) and (R3)), and with the help of the
Lebesgue Dominated Convergence theorem, Equation (131) will be satisfied for q large enough
if we can prove that for any i ≥ 0

lim
q

KV iQq = 0. (127)

But this is easily obtained by induction on i since it is true for i = 0 and for any i, q > 0

KV iQq = KV i−1(T − K)Qq

≤ KV i−1Qq+1 + KV i−1KQq

≤ KV i−1Qq+1 + KV i−1 KQq .

Hence, Proposition 13 applies and (75) holds.
If now ‖T n‖ is not bounded, we have to work slightly more on Equation (125). Consider

f (z) =
p∏

i=1

(1 − zλ̄i).

Since Equations (9) to (13) imply that T n = ∑
λn

i Pi + P0Q
n, n ≥ 0 (this differs from (15)

because we have to take into account the case n = 0) we have f (T ) = P0f (Q). Hence, after
multiplication on the left by f (Q) Equation (125) becomes

f (Q)Qn+q =
n−1∑
i=1

f (Q)Qn−iKV i−1Qq + f (T )KV n−1Qq + f (T )V nQq

thus ∥∥f (Q)Qn+q
∥∥

E0
(128)

≤
n−1∑
i=1

∥∥f (Q)Qn−i
∥∥

E0 KV i−1Qq + ∥∥f (T )KV n−1Qq
∥∥

E0 + ∥∥f (T )V nQq
∥∥

E0.
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Since ‖f (T )‖ < ∞, (126) implies that there exists a constant C such that∥∥f (T )KV n−1Qq
∥∥

E0 + ∥∥f (T )V nQq
∥∥

E0 ≤ Cαn

and we obtain, as before (because (126) and (127) still hold true) that∥∥f (Q)Qn
∥∥

E0 ≤ C′αn.

Set g(z) = 1/f (z) = ∑
i≥0 giz

i . The partial fraction decomposition of g implies that supi |gi | <
∞. For any n ≥ 0

∥∥Qn
∥∥

E0 ≤ ∥∥Qng(Q)f (Q)
∥∥

E0 ≤
∑

k

∥∥Qn+kgkf (Q)
∥∥

E0 ≤ sup
i

|gi |
∑

k

∥∥Qn+kf (Q)
∥∥

E0

hence ∥∥Qn
∥∥

E0 ≤ C
∑
k≥n

αk.

Appendix F: Convolution of sequences

Proposition 13. Let (αn)n≥1 be a positive sequence satisfying Assumptions (R1) to (R3) of The-
orem 7, and (βi)i≥1 be a non-negative sequence. Let q be a non-negative integer and (un)n≥1 be
a non-negative sequence such that

un+q ≤ C0αn +
n−1∑
i=1

un−iβi, n ≥ 1 (129)

for some C0 > 0. If

sup
k

βk

αk

< ∞, (130)

∞∑
i=1

βi < 1 (131)

then

sup
n

un

αn

< ∞. (132)

Proof. Set

vn = un

αn

,
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v∗
n = sup

k≤n

vk,

θn = αn

αn+q

,

Cβ = sup
k

βk

αk

then, for any i0 and n > i0

vn+q ≤ C0θn + θn

n−1∑
i=1

vn−i

αn−iβi

αn

≤ C0θn + θnv
∗
i0

n−1∑
i=n−i0

αn−iβi

αn

+ θnv
∗
n

n−i0∑
i=i0

αn−iβi

αn

+ θnv
∗
n

i0∑
i=1

αn−iβi

αn

≤ C0θn + θnv
∗
i0
Cβ

n−1∑
i=n−i0

αn−iαi

αn

+ θnv
∗
nCβ

n−i0∑
i=i0

αn−iαi

αn

+ θnv
∗
n

αn−i0

αn

i0∑
i=1

βi

≤ C0θn + θnv
∗
i0
Cβi0

α1αn−i0

αn

+ θ ′
nv

∗
n

(
Cβ

n−i0∑
i=i0

αn−iαi

αn

+
i0∑

i=1

βi

)
,

where θ ′
n tends to 1 (Assumption (R2)). By assumption (R2), for any i, the sequence j �→

αj−i/αj , j ≥ i is decreasing, hence for i ≤ n/2 one has

αn−i

αn

≤ αi

α2i

thus for 1 ≤ i0 < n

n−i0∑
i=i0

αn−iαi

αn

≤ 2
[n/2]∑
i=i0

αn−iαi

αn

≤ 2
[n/2]∑
i=i0

α2
i

α2i

≤ 2
∞∑

i=i0

α2
i

α2i

and we get, for n > i0

vn+q ≤ C′ + θ ′
nρv∗

n,

ρ = 2

( ∞∑
i=i0

α2
i

α2i

)
sup
k

βk

αk

+
i0∑

i=1

βi,

where C′ depends on everything except on n. Since θ ′
n → 1 and i0 can be chosen large enough

to have ρ < 1, this proves that for some n0 > 0 and 0 < ρ′ < 1

vn+q ≤ C′ + ρ′v∗
n, n ≥ n0.
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In particular

vn+q ≤ C′ + ρ′v∗
n+q, n ≥ n0.

By increasing C′ we even get

vn ≤ C′′ + ρ′v∗
n, n ≥ 1

and since the r.h.s. is also an upper bound for vk , k ≤ n (because v∗
k ≤ v∗

n), we get

v∗
n ≤ C′′ + ρ′v∗

n, n ≥ 1

which proves that vn is bounded. �

Appendix G: Proof of Lemma 8

We need a preparatory lemma which will be essential for working with (76); the point of this
lemma is to bring out a function ζ which satisfies (135), is significantly larger than ζ(t) = t and
that can be easily iterated (Equation (134) implies ζ (n)(t) = ψ(−1)(ψ(t) + n)):

Lemma 14. Let θ be a non-decreasing non-negative concave differentiable function on [0,+∞)

with a derivative which tends to zero at infinity, and define for t ≥ 0

ψ(t) =
∫ t

0

1

θ(y)
dy, (133)

ζ(t) = ψ(−1)
(
ψ(t) + 1

)
. (134)

We assume that ψ is finite and tends to infinity.

θ(t) ≤ t.

Then ζ is concave and for any t such that t ≥ θ(t)

ζ
(
t − θ(t)

) ≤ t. (135)

For any t ≥ 0

ζ(t) ≤ t + θ
(
ζ(t)

)
. (136)

Proof. The equation

ψ
(
ζ(t)

) = ψ(t) + 1

implies that ζ(t) > t . By differentiating this equation, we get

ζ ′(t) = θ(ζ(t))

θ(t)
(137)
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and

ζ ′′(t) = θ ′(ζ(t))ζ ′(t)θ(t) − θ(ζ(t))θ ′(t)
θ(t)2

= θ(ζ(t))

θ(t)2

(
θ ′(ζ(t)

) − θ ′(t)
) ≤ 0.

We turn now to Equation (135); since ψ is strictly increasing, (135) is equivalent to

ψ
(
t − θ(t)

) + 1 ≤ ψ(t)

but since θ is non-decreasing

ψ(t) − ψ
(
t − θ(t)

) =
∫ t

t−θ(t)

1

θ(y)
dy ≥ θ(t)

1

θ(t)
= 1.

Concerning (136), notice that (134) means that

∫ ζ(t)

t

1

θ(y)
dy = 1

and that on the other hand ∫ ζ(t)

t

1

θ(y)
dy ≥ (

ζ(t) − t
) 1

θ(ζ(t)
. �

We can now proceed to the proof of Lemma 8. Combining equations (77) to (79), we get

T v ≤ v − θ(v) + λ(1 − V 1), λ = c

ε
.

We define the functions ζ and ψ from θ as in Lemma 14 and we set for t ≥ 0

ζn(t) =ψ(−1)
(
ψ(t) + n

) = ζ
(
ζn−1(t)

)
. (138)

Differentiating (138) and using (137), we obtain

ζ ′
n(t) = ζ ′(ζn−1(t)

)
ζ ′
n−1(t) = θ(ζn(t))

θ(ζn−1(t))
ζ ′
n−1(t) (139)

hence

ζ ′
n(x) = θ(ζn(x))

θ(x)
. (140)

The function ζn is concave, as a composition of increasing concave functions. Using the Jensen
inequality and the concavity of ζk (as a composition of increasing concave functions), we obtain

T
(
ζk(v)

) ≤ ζk(T v) ≤ ζk

(
v − θ(v) + λ − λV 1

)
. (141)
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Set δ = minx(v(x)/2. We proceed now by considering two cases depending on x − θ(x) ≥ δ or
not (x is the implicit argument in (141)). By concavity of ζk , we get on the set {x : x − θ(x) ≥ δ}

T
(
ζk(v)

) ≤ ζk

(
v − θ(v)

) + λζ ′
k

(
v − θ(v)

)
(1 − V 1)

(142)
≤ ζk−1(v) + λζ ′

k(δ)(1 − V 1),

the last inequality coming from the fact that ζ ′
k is decreasing.

In the case where x, the implicit argument in (141), satisfies x − θ(x) < δ, we have:

T
(
ζk(v)

) ≤ ζk(δ + λ − λV 1) ≤ ζk(δ) + λζ ′
k(δ)(1 − V 1) (143)

but since ζ(x) ≤ x + θ(ζ(x)) (Equation (136))

ζk(δ) ≤ ζk−1(δ) + θ
(
ζk(δ)

) = ζk(δ) + ζ ′
k(δ)θ(δ). (144)

On the other hand, from x − v(x) < δ, we get 2δ ≤ T v ≤ δ + λ − λV 1, thus δ ≤ λ(1 − V 1), and
(143), (144) lead to

T
(
ζk(v)

) ≤ ζk−1(δ) + ζ ′
k(δ)θ(δ) + λζ ′

k(δ)(1 − V 1)
(145)

≤ ζk−1(δ) +
(

2θ(δ)

δ
+ λ

)
ζ ′
k(δ)(1 − V 1).

Putting together (142) and (145), we obtain that everywhere

T
(
ζk(v)

) ≤ ζk−1(v) + λ1ζ
′
k(δ)(1 − V 1) (146)

with λ1 = 2δ−1θ(δ) + λ. Thus, since v ≥ δ,

V ζk(v) = V
(
ζk(v) − ζk(δ)

) + ζk(δ)V 1

≤ T
(
ζk(v) − ζk(δ)

) + ζk(δ)V 1 (147)

≤ ζk−1(v) − (
ζk(δ) − λ1ζ

′
k(δ)

)
(1 − V 1).

Since ζn(δ) tends to infinity (ψ(ζn(t)) = ψ(t) + n) and θ(x)/x tends to zero (θ is concave
with a derivative which tends to zero), the sequence ζ ′

n(δ)/ζn(δ) tends to 0 (cf. (140)). As a
consequence, there exist n0 such that λ1ζ

′
k(δ) − ζk(δ) ≤ 0 for k > n0, hence multiplying both

sides of (147) by V k−1 and summing up from 1 to n > n0, we get

V nζn(v) ≤v + c′

with c′ = ∑n0
k=1 |ζk(δ) − λ1ζ

′
k(δ)|. Since ζn(x) ≥ ψ(−1)(n) we get finally

V n1 ≤ v + c′

ψ(−1)(n)
.
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This proves (80). Concerning (81), notice that (146) implies that for any n:

T
(
ζk(v)

) ≤ ζk−1(v) + c1

for some c1 > 0. Hence, multiplying both sides by T k−1 and summing up, we get

T n
(
ζn(v)

) ≤ v + nc1. (148)

Since by definition of ζn, one has ∫ ζn(x)

x

dt

θ(t)
= n

we obtain in particular that n ≤ ζn(x)−x
θ(x)

, and (148) becomes

T n
(
v + nθ(v)

) ≤ v + nc1.

This implies (81).

Appendix H: Proof of Theorem 9

We plan to apply Theorem 7 with

f = ‖f ‖∞,

‖f ‖ = ‖f ‖v.

Clearly, since Theorem 2 applies, Equations (9) to (13) and (22) are satisfied. As in the proof
of Theorem 2 we set V = T − K ; we recall that K(x,S) = 0 if x /∈ K0 (cf. the statement of
Theorem 2). We have to estimate ‖V n‖E0; but since Equation (36) with the fact that K(x,S) = 0
for x /∈ K0 imply that

V 1 ≤ 1 − ε1K0 .

Lemma 8 leads to

V n1 ≤ v + c

ψ(−1)(n)
.

Theorem 7 applies and, in particular, we obtain (83). For (84), we consider

‖f ‖ = π
(|f |).

Since · is unchanged, Equations (9) to (13), (73) and (74) are still satisfied, as well as (22)
because π(|f |) ≤ ‖f ‖vπ(v). In addition ‖T n‖ = 1, and

∥∥V n
∥∥

E0 = π
(
V n1

) ≤ c′

ψ(−1)(n)
.

Theorem 7 still applies and we obtain (84).



Convergence rate of the powers of an operator 2175

Appendix I: Proof of Theorem 10

As is [2], the idea is to prove directly that that T ng is a Cauchy sequence. If we set

r(x, y) = 1 − ε1x,y∈K,

Equations (86), (87) can be summarized as∣∣Tf (x) − Tf (y)
∣∣ ≤ r(x, y) d(x, y)[f ].

By the Kantorovich–Rubinstein formula ([27] equation (5.11) and (6.3)) this means that given
X0 = x and Y0 = y there exists a coupling of X1 and Y1 such that

E
[
d(X1, Y1)

] ≤ r(x, y) d(x, y). (149)

Using Theorem 1.1 of [30], this coupling may be done measurably w.r.t. x and y in the sense that
there exists a transition kernel T((x, y), ·) on E × E with marginal transitions given by T and
such that (149) is satisfied:∫

f
(
x′)

T
(
x, y, dx′, dy′) =

∫
f

(
y′)

T
(
y, x, dx′, dy′) = Tf (x),

∫
d
(
x′, y′)

T
(
x, y, dx′, dy′) ≤ r(x, y) d(x, y).

This result is very important since it gives directly the best coupling method as the realization of
a Markov chain on the product space. We have thus with standard notations

Tf (x, y) = Ex,y

[
f (X1, Y1)

]
,

Td ≤ rd.

Set for any function f on S × S

[[f ]] = sup
x �=y

|f (x, y)|
d(x, y)

.

For the application of Lemma 8, we define sub-Markovian transition operator

Vu(x, y) = d(x, y)−1
T(ud)(x, y).

Since obviously, for any measurable positive bounded function u,

f (x, y) ≤ [[f/u]]d(x, y)u(x, y),

we get

Tf ≤ [[f/u]]T(du) = [[f/u]]d.Vu,
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hence

[[Tf/Vu]] ≤ [[f/u]].

Replacing f with T
n−1f and u with V

n−1u, we get[[
T

nf/Vnu
]] ≤ [[

T
n−1f/Vn−1u

]]
,

and by induction

T
nf (x, y) ≤ d(x, y)Vnu(x, y)[[f/u]].

In particular, taking u = 1:

T
nf (x, y) ≤ d(x, y)

(
V

n1
)
(x, y)[[f ]]. (150)

In order to apply Lemma 8, we need to check that (77) is satisfied. Setting v̄(x, y) = v(x)+v(y),
one has

Tv̄(x, y) = T v(x) + T v(y)

≤ v(x) + v(y) − θ
(
v(x)

) − θ
(
v(y)

) − c1K(x) − c1K(y)

≤ v(x) + v(y) − θ
(
v(x) + v(y)

) − c1K×K(x, y)

since by concavity and positivity of θ , θ(a + b) ≤ θ(a) + θ(b) for a, b ≥ 0 (differentiate w.r.t.
a). Obviously (78) and (79) are satisfied. Lemma 8 applies and (80) implies

V
n1 ≤ v̄ + c

ψ(−1)(n)
, (151)

where

ψ(x) =
∫ x

0

1

θ(y)
dy.

Since in addition V
n1 ≤ 1, Equation (150) becomes now

T
nf (x, y) ≤ d(x, y)min

(
1,

v̄(x, y) + c

ψ(−1)(n)

)
[[f ]]. (152)

For any function f of the form f (x, y) = g(x) − g(y), this leads to

T ng(x) − T ng(y) ≤ d(x, y)min

(
1,

v(x) + v(y) + c

ψ(−1)(n)

)
[g]. (153)

This proves (89).
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From (153), we get

T ng(x) − T ng(y) ≤ d(x, y)min

(
1,

v(x) + c

ψ(−1)(n)

)
[g] + d(x, y)min

(
1,

v(y)

ψ(−1)(n)

)
[g]

(154)
= A(x,y) + B(x, y).

Since for 0 ≤ x ≤ y one has x
y

≤ θ(x)
θ(y)

(the function x �→ x
y

− θ(x)
θ(y)

is convex and non-positive at
x = 0 and x = y), we have

B(x, y) ≤ d(x, y)
θ(v(y))

θ(ψ(−1)(n))
[g]. (155)

Since T pg(x) = ∫
g(y)T p(x, dy) we get from (154):

∣∣T ng(x) − T n+pg(x)
∣∣ =

∣∣∣∣
∫ (

T ng(x) − T ng(y)
)
T p(x, dy)

∣∣∣∣
≤

∫
A(x,y)T p(x, dy) + [g]

∫
d(x, y)

θ(v(y))

θ(ψ(−1)(n))
T p(x, dy)

≤ min

(
1,

v(x) + c

ψ(−1)(n)

)
[g] + [g]θ(

ψ(−1)(n)
)−1(

T pθ(v)(x)
)

because d ≤ 1. Since, by (81), T pθ(v) ≤ c′′ + v/p (we just apply Lemma 8 with Vf (x) =
(1 − 1x∈K)Tf (x))

∣∣T ng(x) − T n+pg(x)
∣∣ ≤ [g]min

(
1,

v(x) + c

ψ(−1)(n)

)
+ [g]

θ(ψ(−1)(n))

(
v(x)/p + c′′). (156)

This shows that T ng(x) is a Cauchy sequence and its limit (a constant function because of (155))
is necessarily π(g) where π is the invariant measure. Letting p tend to infinity we get

∣∣T ng(x) − π(g)
∣∣ ≤ [g]min

(
1,

v(x) + c

ψ(−1)(n)

)
+ c′′[g]

θ(ψ(−1)(n))
. (157)

Appendix J: Proof of Equation (94)

We shall prove that for 0 ≤ x < 1

v′
n(x)γ ≥ 1 + anvn(x)γ , a = 2γ − 1. (158)

We recall that

v(x) =
{

x
(
1 + 2γ xγ

)
, 0 ≤ x < 1/2,

2x − 1, 1/2 ≤ x ≤ 1
(159)
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and that the prime sign stands for the right derivative. In the case n = 0, the inequality is ob-
vious. In the case n ≥ 1, we assume by induction that (158) is satisfied and since v′

n+1(x) =
v′
n(x)v′(vn(x))), valid for n ≥ 0, Equation (158) with n + 1 will be implied by(

1 + anvn(x)γ
)
v′(vn(x)

)γ ≥ 1 + a(n + 1)vn+1(x)γ .

This has to be proved for n ≥ 0. It suffices to show that for any 0 ≤ y ≤ 1(
1 + anyγ

)
v′(y)γ ≥ 1 + a(n + 1)v(y)γ (160)

(i.e. y = vn(x)). By linearity of both sides of (160) w.r.t. n, we only have to check this for n = 0,
and n → ∞, that is {

v′(y)γ ≥ 1 + av(y)γ ,

yv′(y) ≥ v(y)
(161)

(the first equation is (158) with n = 1). In the case, y < 1/2 this is rewritten as{(
1 + (γ + 1)2γ yγ

)γ ≥ 1 + ayγ
(
1 + 2γ yγ

)γ
,

1 + (γ + 1)2γ yγ ≥ 1 + 2γ yγ .

The second inequality is obvious. For the first one, since 2y < 1, setting z = 2γ yγ , this holds if(
1 + (γ + 1)z

)γ ≥ 1 + az

for 0 ≤ z ≤ 1. Since the difference of both sides is a concave function of z which vanishes at
z = 0, and is non-negative at z = 1 (we recall that a = 2γ − 1), the inequality is satisfied. In the
case y ≥ 1/2, (161) is {

2γ ≥ 1 + a(2y − 1)γ ,

2y ≥ 2y − 1

which is obviously satisfied.
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