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In this paper, we characterize (mixtures of) bridges of a continuous time random walk with values in a
countable Abelian group. Our main tool is a conditional version of Mecke’s formula from the point process
theory, which allows us to study, as transformation on the path space, the addition of random loops. Thanks
to the lattice structure of the set of loops, we even obtain a sharp characterization. At the end, we discuss
several examples to illustrate the richness of such random processes. We observe in particular how their
structure depends on the algebraic properties of the underlying group.
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Introduction

Given a reference Markov probability on the time interval [0,1], define the set of all probability
measures obtained as mixtures of its bridges. This set was called reciprocal class by Jamison
since all these probability measures enjoy a time symmetry property called reciprocal property,
which is a weaker version of the Markov property. For a detailed comparison between these prop-
erties, we refer to the recent survey [9]. These processes were first introduced by Schrödinger in
[19] to study the dynamics of a Brownian particle with prescribed laws at the initial and the final
times, see, for example, [8]. Jamison initiated later in a series of papers [5–7] a rigorous mathe-
matical study of these processes. Krener underlined the importance of some quantities related to
the bridges of diffusions, which he then called reciprocal characteristics. The problem of com-
puting, interpreting and using them to characterize bridge mixtures has attracted the attention of
many authors in the context of diffusions (see, e.g., [1,16,20,21]).

The study of mixtures of bridges of particular jump processes has been started more recently
by Murr with the case of counting processes, see [12] and [4]. Then results concerning the char-
acterization of random bridges of a compound Poisson process have been obtained in [2], in the
particular case where (i) the state space is Rd and (ii) the support of the jump measure is a finite
set of A different types of jumps. There, the approach is to study separately the jump-times of
the paths and their type distribution.

In this paper, we propose to characterize bridge mixtures of random walks in the following
more general framework: the state space is a countable Abelian group G. See, for example, [17]
for a review on random walks on groups.
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Our tool is, by working directly at the level of the path space, to exhibit a family of character-
izing integral equations. The equations (8) we obtain can be viewed as a generalization of (the
iterated) Mecke’s formula, which characterizes Poisson random measures via transformations
which consist in adding one point to the canonical process. Indeed, first we add several jumps to
the canonical process, and secondly we work under the constraint that the added paths are loops,
that is they should have as initial and final value the identity element.

However, our method is efficient only if one can assure that the set of loop paths is rich enough
to allow to transform any given path of the random walk into any other one having the same initial
and final value, only by adding and removing a finite number of well chosen elementary loops.
This assumption on the support Gν ⊆ G of the jump measure ν is formalized through (H1)
and (H2), see Section 2.2.

As an interesting byproduct of our integral characterization of the bridge mixtures of a ν-
random walk, we get the identification thanks to equation (8) of the associated family of recip-
rocal characteristics (9). These quantities remain unchanged on the whole set of random walks
having the same bridges, see Corollary 6.

The paper is organized as follows. In Section 1, we set up the necessary definitions and no-
tations regarding random walks on groups, and provide a formula on the path space satisfied by
them. In Section 2, we state and prove our main result: the integral formula derived before on the
path space is in fact an efficient way to characterize the whole set of bridge mixtures of a random
walk. In the last section, we present several examples to illustrate the richness of the kind of
processes we are dealing with.

1. Random walk on Abelian groups

1.1. The random walk as Poisson random measure

Let (G,+) be a countable Abelian group with identity element e. We denote by D([0,1],G) the
space of càdlàg paths for the topology induced by the discrete metric in G. Note that, because of
the existence of left and right limits, paths in D([0,1],G) have finitely many jumps. D([0,1],G)

is equipped with its canonical sigma-algebra F and its canonical filtration (Ft )t∈[0,1].
For any ν nonnegative finite measure on G, we call ν-random walk on G a Markov probability

on D([0,1],G) denoted by Pν whose infinitesimal generator G is given by

(G φ)(g) :=
∑
g′∈G

ν
(
g′)(φ(

g + g′) − φ(g)
)
, g ∈ G,

for any φ bounded function. In the rest of the paper, Gν ⊆ G denotes the support of ν, that is the
set of allowed jumps of the ν-random walk. The path space � ⊂ D([0,1],G) is the set of paths
with jumps in Gν .

Mecke proved in [10] an integral characterization of Poisson point processes on general spaces
which we recall in Proposition 1 in a form adapted to our framework. In the spirit of Murr [13]
and Privault ([14], Section 6.4.4) who studied real-valued processes with independent incre-
ments, we turn Mecke’s formula into a characterization of random walks on G in Proposition 2.
Let us first introduce some notations.
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For a measurable space X , we denote by P(X ) the set of probability measures on X and by
M(X ) the set of finite point measures, that is

M(X ) :=
{

N∑
i=1

δxi
: xi ∈X ,N ∈N

}
.

B+(X ) denotes the set of nonnegative bounded measurable functions over X . We will often
choose for X the following product space � of time-space elements:

� := [0,1] × G � γ = (t, g). (1)

We identify trajectories in D([0,1],G) and point measures in M(�) via the following canonical
bijective map M :

X �→ MX :=
∑

0≤t≤1

∑
g∈G

δ(t,g)1{�Xt=g}. (2)

A useful observation is that the image measure of the ν-random walk under M is a Poisson
random measure on � with intensity the finite measure dt ⊗ ν.

1.2. An integral characterization and its iteration

Mecke’s original idea was to characterize any Poisson random measure by mean of an integral
formula (see Satz 3.1 in [10]), via the change of measures which consists to add one (random)
atom to the initial point measure, as in the right-hand side of equation (3). Adapted to our context
it reads as follows.

Proposition 1. For P̃ ∈P(M(�)) the following assertions are equivalent:

(i) P̃ is the Poisson random measure with intensity measure ρ = dt ⊗ ν on �.
(ii) For all 
 ∈ B+(M(�) × �),∫ ∫

�


(μ,γ )μ(dγ )P̃(dμ) =
∫ ∫

�


(μ + δγ , γ )ρ(dγ )P̃(dμ). (3)

Remark that the left-hand side of (3) also reads
∫ ∑

γ∈μ 
(μ,γ )P̃(dμ) where the notation
γ ∈ μ means that the points γ ∈ � build the support of the point measure μ: one integrates the
function 
 under the Campbell measure associated with P̃. Thus, (3) determines the Campbell
measure of a Poisson random measure as the shifted product measure of itself with its intensity.

Let us adapt this tool to D([0,1],G). First, for γ = (t, g) ∈ �, we consider the simple step
function g1[t,1] ∈ D([0,1],G) and then the transformation X �→ X + g1[t,1] on the path space
which consists in adding one jump g at time t . It corresponds to the addition of one atom to a
random measure. Indeed, under any probability P ∈ P(D([0,1],G)) satisfying P(Xt = Xt−) = 1
for all t ∈ [0,1], one has:

MX+g1[t,1] = MX + δγ P-a.s. (4)
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This simple observation is all what is needed to rewrite Proposition 1 in the language of random
walks.

Proposition 2. For P ∈ P(D([0,1],G)) the following assertions are equivalent:

(i) P is a ν-random walk on G.
(ii) For all F ∈ B+(D([0,1],G) × �),

EP

(∫
�

F(X,γ )MX(dγ )

)
= EP

(∫
�

F(X + g1[t,1], γ )ρ(dγ )

)
, (5)

where MX is defined through (2).

Proof. (i) ⇒ (ii). Since Pν is ν-random walk, MX is a Poisson random measure with intensity
dt ⊗ ν. Then Mecke’s formula holds for P̃ := P ◦ M−1. Since M is invertible and its inverse
is measurable we can plug into (3) test functions 
 of the form F(X,γ ) and the conclusion
follows.

(ii) ⇒ (i). Let P ∈ P(D([0,1],G)) satisfying (5). We define P̃ := P◦M−1 ∈ P(M(�)). Then,
by considering test functions of the form 
 = F(MX,γ ) and using the fact that MX+g1[t,1] =
MX + δγP⊗ ρ-a.s., we deduce that P̃ is a Poisson random measure with intensity ρ = dt ⊗ ν by
Proposition 1. Observing that

Xt =
∑
g∈G

gMX

([0, t] × {g})

the conclusion follows using (4). �

To prepare the characterization of bridges which we will prove in the next section, we now
present an iteration of the formula (5). For this purpose, we define the set �n, union of all
diagonals of �n:

�n := {
γ̄ ∈ �n : ∃i �= j, γi = γj

}
.

In the above definition, and in all what follows, a typical element of �n is denoted by γ̄ (recall
the definition of � in (1)). We are ready to state the multivariate Mecke formula satisfied under
the ν-random walk.

Proposition 3. Let Pν be a ν-random walk on G. Then, for any n ≥ 1 and any test function
F ∈ B+(D([0,1],G) × �n),

EPν

(∫
�n\�n

F (X, γ̄ )M⊗n
X (dγ̄ )

)
(6)

= EPν

(∫
�n

F (X + g11[t1,1] + · · · + gn1[tn,1], γ̄ )ρ⊗n(dγ̄ )

)
.
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We do not prove this formula here. A proof can be found in Chapter 5 of Mecke’s habilitation,
see [11] for an english translation, or in the book [18], Corollary 3.2.3.

Remark 4. In general it is not true that
∫
�n

F (X, γ̄ )M⊗n
X (dγ̄ ) = 0. Indeed, if γ is an atom of

MX then (γ, . . . , γ )︸ ︷︷ ︸
n times

is an atom of M⊗n
X which belongs to �n.

2. Bridge mixtures and their characterization

2.1. Random bridges of a random walk

First, consider the set of pairs (x, y) ∈ G2 for which the bridge of the ν-random walk is mean-
ingful:

S(ν) := {
(x, y) ∈ G2 : Pν(X1 = y|X0 = x) > 0

}
.

Then, for (x, y) ∈ S(ν) the bridge P
xy
ν between x and y is defined by

Pxy
ν (·) := Pν(· ∩ {X0 = x,X1 = y})

Pν(X0 = x,X1 = y)
.

We now define our main object of study. It is the set of probability measures on � that can be
written as a mixture of the bridges of Pν :

Rec(ν) =
{
Q ∈P(�) :Q =

∫
S(ν)

Pxy
ν Q01(dx dy)

}
,

where Q01 denotes the joint marginal law of Q at times 0 and 1. Let us note that for (x, y) fixed
in S(ν), the bridge P

xy
ν itself belongs to the set Rec(ν).

For a recent and short review on bridge mixtures via a stochastic analysis approach and the
treatment of basic examples we refer the reader for example, to [15].

2.2. Loops and their skeletons

We call loop a path in D([0,1],G) that starts and ends at the identity element e. For each path
X ∈ �, we define its skeleton as the application ϕX : Gν → N defined by:

ϕX(g) := MX

([0,1] × {g}).
Thus, ϕX(g) counts how many times the jump g occurs along the path X.

If X is a loop, we observe that ∑
g∈Gν

ϕX(g)g = e.
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Therefore, as X varies in the set of all possible loops, ϕX varies in the set

L + :=
{
ϕ ∈NGν :

∑
g∈Gν

ϕ(g)g = e, �(ϕ) < +∞
}
, (7)

where �(ϕ) := ∑
g∈Gν

|ϕ(g)| is the length of ϕ. Enlarging this set to the maps ϕ with negatives
values by considering

L :=
{
ϕ ∈ ZGν :

∑
g∈Gν

ϕ(g)g = e, �(ϕ) < +∞
}
,

one recovers for L a lattice structure, which will be very useful. In particular, L admits a
basis B. Suppose now that one can choose B ⊂ L +, which is the case if the following assump-
tion (H1) is satisfied:

Span
(
L +) = L , (H1)

where Span(L +) is, as usual, the set of all integer combinations of elements of L +. From now
on, we fix such a basis B.

To any ϕ∗ ∈ B, we can associate the – nonempty – set of loops whose skeleton is ϕ∗:

�e,ϕ∗ := {
X ∈ � : X0 = X1 = e and ϕX = ϕ∗}.

These paths have exactly ϕ∗(g) jumps of type g, for all g ∈ Gν .
Furthermore, we have to assume that each jump in Gν belongs to (at least) the skeleton of one

loop, that is, the following assumption holds:

∀g ∈ Gν there exists ϕ ∈ L such that ϕ(g) > 0. (H2)

Note that w.l.o.g. we can assume that this skeleton ϕ belongs indeed to the basis B.
As we shall see in Section 2.4, assumptions (H1) and (H2) allow a fruitful decomposition of

the path space �. Heuristically, one can transform one path into any other one having the same
initial and final values, by subsequently adding and removing loops whose skeleton belongs to B.
However, let us first state our main result.

2.3. Main result: An integral characterization of bridge mixtures

In the next theorem, we state that the identity (6) appeared in Proposition 3 is not only valid
under any mixture of bridges of Pν but indeed characterizes them, if one restricts the set of test
functions F to some well chosen subset.

For each skeleton ϕ∗ in the basis B, consider the following set of bounded measurable test
functions on D([0,1],G) × ��(ϕ∗):

Hϕ∗ := {
F : F(X, γ̄ ) ≡ 1{g11[t1,1]+···+g�(ϕ∗)1[t�(ϕ∗),1]∈�e,ϕ∗ }F(X, γ̄ )

}
.

Therefore, we will restrict our attention to perturbations of the sample paths consisting in adding
a loop whose skeleton is equal to ϕ∗. Now we are ready for stating and proving the main result.
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Theorem 5. The probability measure Q ∈ P(�) belongs to the set Rec(ν) if and only if for any
skeleton ϕ∗ in the basis B and for all test functions F ∈ Hϕ∗ , we have:

EQ

(∫
�n\�n

F (X, γ̄ )M⊗n
X (dγ̄ )

)
(8)

= 
ν
ϕ∗EQ

(∫
�n

F (X + g11[t1,1] + · · · + gn1[tn,1], γ̄ )(dt ⊗ 
)⊗n(dγ̄ )

)
,

where n = �(ϕ∗), 
 := ∑
g∈G δg is the counting measure on G and


ν
ϕ∗ :=

∏
g∈Gν

ν(g)ϕ
∗(g) ∈ R+. (9)

In particular, if (8) holds true under Q satisfying Q(X0 = x,X1 = y) = 1 for some (x, y) ∈ S(ν),
then Q is nothing else but the bridge P

xy
ν .

The result above carries two main messages. First, it shows that a conditional version of the
multivariate Mecke formula characterizes bridges of random walks and their mixtures, general-
izing the known fact that Mecke formula characterizes random walks. Second, it shows that the
natural way to decompose paths of bridges is into loops, rather than into single step functions, as
usual.

The positive coefficient 
ν
ϕ∗ appearing in (8), usually called reciprocal characteristics, only

depends on the jump measure ν and on the skeleton ϕ∗. Letting vary ϕ∗ they determine Rec(ν)

in the following sense.

Corollary 6. Let ν and μ two nonnegative finite measures on G with the same support. The sets
of bridge mixtures Rec(ν) and Rec(μ) coincide if and only if



μ
ϕ∗ = 
ν

ϕ∗ , ∀ϕ∗ ∈ B. (10)

In that case the bridges of both ν- and μ-random walk on G coincide too.

Remark 7. There is a remarkable probabilistic interpretation of the number 
ν
ϕ∗ as the leading

factor, in the short-time expansion, of the probability that the ν-random walk follows a loop with
skeleton ϕ∗. This is proven for Markov processes on graphs in [3].

2.4. Proof of the main theorem

(⇒) We use, as main argument, the specific form of the density with respect to Pν of any proba-
bility measure in Rec(ν) as it was proved in [2], Proposition 1.5:

Q ∈ Rec(ν) ⇒Q � Pν, and
dQ

dPν

= h(X01) for some h : G × G → R+,
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where we write X01 for the vector (X0,X1). Take now any F ∈ Hϕ∗ . Then, using Identity (6),
the definition of Hϕ∗ and the fact that (X + g11[t1,1] + · · · + gn1[tn,1])01 = X01, one gets

EQ

(∫
�n

F (X + g11[t1,1] + · · · + gn1[tn,1], γ̄ )(dt ⊗ ν)⊗n(dγ̄ )

)
F∈Hϕ∗= 
ν

ϕ∗EQ

(∫
�n

F (X + g11[t1,1] + · · · + gn1[tn,1], γ̄ )(dt ⊗ 
)⊗n(dγ̄ )

)

= 
ν
ϕ∗EPν

(
h(X01)

∫
�n

F (X + g11[t1,1] + · · · + gn1[tn,1], γ̄ )(dt ⊗ 
)⊗n(dγ̄ )

)

= 
ν
ϕ∗EPν

(∫
�n

h
(
(X + g11[t1,1] + · · · + gn1[tn,1])01

)
× F(X + g11[t1,1] + · · · + gn1[tn,1], γ̄ )(dt ⊗ 
)⊗n(dγ̄ )

)

= EPν

(∫
�n\�n

h(X01)F (X, γ̄ )M⊗n
X (dγ̄ )

)

= EQ

(∫
�n\�n

F (X, γ̄ )M⊗n
X (dγ̄ )

)

which completes the proof of the first implication.
(⇐) The converse implication is more sophisticated and needs several steps.
Let us introduce the set of paths which correspond to the support of ey-bridges, y ∈ G:

�y := {X ∈ � : X0 = e,X1 = y}.

Now we partition �y according to the skeleton of its elements:

�y =
⋃

ϕ∈L +
y

�y,ϕ, �y,ϕ := �y ∩ {X ∈ � : ϕX = ϕ},

where L +
y =

{
ϕ ∈NGν :

∑
g∈Gν

gϕ(g) = y, �(ϕ) < +∞
}
.

In order to discretize the time, we introduce a mesh h ∈ N∗ and partition �y,ϕ by specifying
the number of different jumps occurred in each h-dyadic interval. That is, we consider functions
θ : {0, . . . ,2h − 1}×Gν −→ N and we look for paths which have θ(k, g) jumps of type g during
the time interval Ih

k := (2−hk,2−h(k + 1)], for each k and each g ∈ Gν . For each skeleton ϕ, we
define the set

�h
ϕ :=

{
θ : {0, . . . ,2h − 1

} × Gν −→N,
∑

0≤k≤2h−1

θ(k, g) = ϕ(g),∀g ∈ Gν

}
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of all possible h-dyadic time repartition of the jumps, compatible with the skeleton ϕ. We thus
obtain �y,ϕ = ⋃

θ∈�h
ϕ
�

h,θ
y,ϕ where

�h,θ
y,ϕ := {

X ∈ �y : MX

(
Ih
k × {g}) = θ(k, g),0 ≤ k < 2h, g ∈ Gν

}
.

Consider the set

V := {
v = (ϕ, θ) with ϕ ∈ L +

y , θ ∈ �h
ϕ

}
(11)

of pairs of skeletons connecting e to y and h-dyadic time repartition of their jumps. Elements
of this set are discrete versions of paths of �: the spatial structure of the path is given by the
skeleton ϕ, and the time structure is approximated by θ . One equips V with the following l1-
metric:

d(v, ṽ) :=
∑

(k,g)∈{0,...,2h−1}×Gν

|θ − θ̃ |(k, g) ∈N, v = (ϕ, θ), ṽ = (ϕ̃, θ̃ ) ∈ V.

Take now two paths X,X′ ∈ �y and their trace v, v′ on V. Our aim is to find a way to transform
X into X′ (resp., v into v′) by adding or removing a finite number of loops whose skeletons
belong to the basis B. Let us introduce the following relation:

v1 = (ϕ1, θ1) ↪→ v2 = (ϕ2, θ2) if ϕ2 ∈ ϕ1 + B and θ2 − θ1 ∈ �h
ϕ2−ϕ1

.

We shall now use assumptions (H1) and (H2).

Lemma 8. For each v and ṽ �= v ∈ V on can construct a connecting finite sequence
v1, . . . , vN = ṽ

Ñ
, ṽ

Ñ−1, . . . , ṽ1 in V such that

v ↪→ v1 ↪→ ·· · ↪→ vN = ṽ
Ñ

←↩ ṽ
Ñ−1 · · · ←↩ ṽ1 ←↩ ṽ.

Proof. We distinguish two cases:

Case (i). The skeletons ϕ and ϕ̃ coincide.
In this case, it is sufficient to show that we can construct v1 and ṽ1 in V such that v ↪→ v1,

ṽ ↪→ ṽ1, ϕ1 = ϕ̃1 and d(v1, ṽ1) ≤ d(v, ṽ) − 1. The conclusion would then follow by iterating
this procedure until d(vK, ṽK) = 0, that is, vK = ṽK . At this point, we have constructed a chain
from v to vK , and another one from ṽ to ṽK . Joining them, we obtain a chain from v to ṽ and the
conclusion follows.

Therefore, let us indicate how to construct v1 and ṽ1. Since θ �= θ̃ but ϕ = ϕ̃ there exists a jump
g ∈ Gν and two time intervals Ih

k and Ih
l such that θ(k, g) ≥ θ̃ (k, g)+1 and θ(l, g) ≤ θ̃ (l, g)−1.

Moreover, thanks to (H2) there exists at least one skeleton ϕ∗ in the basis B containing the
jump g: ϕ∗(g) > 0. Consider now any time repartition θ1 ∈ �h

ϕ∗ such that θ1(l, g) ≥ 1. We then

construct θ̃1 as follows:

θ̃1 = θ1 + 1{(k,g)} − 1{(l,g)}.



Bridges of random walks on groups 1527

It is simple to check that v1 := (ϕ +ϕ∗, θ + θ1), ṽ1 := (ϕ +ϕ∗, θ̃ + θ̃1) fulfill the desired require-
ments. By construction, v ↪→ v1, ṽ ↪→ ṽ1 and v1, ṽ1 have the same skeleton. Moreover,∣∣θ + θ1 − (θ̃ + θ̃1)

∣∣ = |θ − θ̃ | − 1{(k,g),(l,g)}

so that d(v1, ṽ1) = d(v, ṽ) − 2.
Case (ii). The skeletons ϕ and ϕ̃ differ.
We first observe that, if ϕ, ϕ̃ ∈ L +

y thus ϕ − ϕ̃ ∈ L . Since B is a basis of the lattice L

(see (H1)), there exist (ϕ∗
j )Kj=1, (ϕ̃

∗
i )K̃i=1 ⊆ B such that

ϕ +
K∑

j=1

ϕ∗
j = ϕ̃ +

K̃∑
i=1

ϕ̃∗
i .

Let us now choose for all j and i a time repartition θj ∈ �h
ϕ̃∗

j
and θ̃i ∈ �h

ϕ̃i
. It is straightforward

to verify that, if we define

v0 = v, vj :=
(

ϕ +
j∑

j ′=1

ϕ∗
j ′ , θ +

j∑
j ′=1

θj ′

)
,

ṽ0 = ṽ, ṽi :=
(

ϕ̃ +
i∑

i′=1

ϕ̃∗
i′, θ̃

∗ +
i∑

i′=1

θ̃i′

)

then (vj )
K
j=0, (ṽi)

K̃
i=0 are two sequences connecting v to vK and ṽ to ṽ

K̃
. By construction, vK, ṽ

K̃

have the same skeleton and one can use case (i) again.
�

In the next lemma, we compare the probability of the paths in �
h,θ
y,ϕ and those obtained by

adding a loop with skeleton ϕ∗ ∈ B, under Q and under Pν , see Figure 1.

Lemma 9. Let y ∈ G,h ∈ N∗, ϕ ∈ L +
y , θ ∈ �h

ϕ be fixed. Suppose (8) holds under Q. Then, for

any ϕ∗ ∈ B and θ∗ ∈ �h
ϕ∗ ,

Q(�
h,θ+θ∗
y,ϕ+ϕ∗)

Pν(�
h,θ+θ∗
y,ϕ+ϕ∗)

= Q(�
h,θ
y,ϕ)

Pν(�
h,θ
y,ϕ)

. (12)

Proof. Take an arbitrary ordering of the support of θ∗: (k̃1, g̃1), . . . , (k̃N , g̃N ). To simplify the
notation, we write θj (resp., θ∗

j ) for θ(k̃j , g̃j ) (resp. θ∗(k̃j , g̃j )). Consider the test function
F(X, γ̄ ) = f (X)v(γ̄ ), where

f = 1
�

h,θ+θ∗
y,ϕ+ϕ∗

and v(γ̄ ) = 1
�

h,θ∗
e,ϕ∗

(g11[t1,1] + · · · + gn1[tn,1]) with n = �
(
ϕ∗).
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Figure 1. In this picture we illustrate by an example the proof of Lemma 9. Take G = (Z,+), and
Gν = {−1,1,2}, situation which is treated in Section 3.1.1. B = {ϕ1, ϕ2}, where ϕ1 := 11 + 1−1 and
ϕ2 := 12 + 21−1, is a basis fulfilling (H1) and (H2). The picture shows how to transform the path (a) in the
path (f) by mean of addition and cancellation of loops whose skeleton belongs to B. All loops that are ei-
ther added or removed are denoted by red dashed lines, which correspond to their jumps. At first, following
case (ii), we have to modify the loop (a) to match its skeleton (2,2,0) with that of (f), (3,1,1). Therefore
in (b) we remove a loop with skeleton ϕ1, then in (c) add back a loop with skeleton ϕ2. The skeleton is now
the desired one. Now we follow case (i): we shift one jump of height −1 and one of height 1 further right.
Since those two jumps form a loop with skeleton ϕ1 we simply delete them in (d) and add a new loop with
the same skeleton, but now with the desired jump times in (e).

It is straightforward that

f ◦ (X + g11[t1,1] + · · · + gn1[tn,1])v(γ̄ ) = 1
�

h,θ
y,ϕ

(X)v(γ̄ ) Q⊗ ρn a.e.

Therefore, since F ∈ Hϕ∗ , (8) holds and its right-hand side rewrites as


ν
ϕ∗

(∫
�n

v(γ̄ )(dt ⊗ 
)⊗n(dγ̄ )

)
Q

(
�h,θ

y,ϕ

)
.

Concerning the left-hand side, let us first rewrite it as

EQ

(
f (X)

∫
�n\�n

v(γ̄ )M⊗n
X (dγ̄ )

)
.

Our aim is to show by a direct computation that the (discrete) stochastic integral
∫
�n\�n

v(γ̄ ) ×
M⊗n

X (dγ̄ ) is actually constant for that choice of v if X ∈ �
h,θ+θ∗
y,ϕ+ϕ∗ .
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First, we observe that an atom γ̄ ∈ �n \ �n of M⊗n
X contributes (with the value 1) to the

integral if and only if g11[t1,1] + · · · + gn1[tn,1] ∈ �
h,θ∗
e,ϕ∗ , that is if

�
{
i : γi ∈ Ih

kj
× {g̃j }

} = θ∗
j , 1 ≤ j ≤ N. (13)

We then need to count the atoms of M⊗n
X satisfying (13). This is equivalent to count all ordered

lists of n = �(ϕ∗) atoms of MX verifying that:

(1) the list contains no repetitions;
(2) for all 1 ≤ j ≤ N , the number of elements in the list which belong to Ih

kj
× {g̃j } is θ∗

j .

Therefore, for each j , we first choose a subset of cardinality θ∗
j among θj + θ∗

j elements (recall

that X ∈ �
h,θ+θ∗
y,ϕ+ϕ∗ ). To do that, we have

(θj +θ∗
j

θ∗
j

)
choices. Then we decide how to sort the list, and

for this, there are n! possibilities.
Therefore

1
�

h,θ+θ∗
y,ϕ+ϕ∗

(X)

∫
�n\�n

v(γ̄ )M⊗n
X (dγ̄ ) = 1

�
h,θ+θ∗
y,ϕ+ϕ∗

(X)n!
N∏

j=1

(
θj + θ∗

j

θ∗
j

)

and (8) rewrites as


ν
ϕ∗

∫
�n

v(γ̄ )(dt ⊗ 
)⊗n(dγ̄ )Q(�y,ϕ) = n!
N∏

j=1

(
θj + θ∗

j

θ∗
j

)
Q

(
�

h,θ+θ∗
y,ϕ+ϕ∗

)
. (14)

Since equation (8) holds under Pν , equation (14) holds under Pν as well. Since Pν gives positive
probability to both events �y,ϕ and �

h,θ+θ∗
y,ϕ+ϕ∗ , the identity (12) follows.

Remark that, with the notation of the above lemma, if we define v := (ϕ, θ) and w := (ϕ +
ϕ∗, θ + θ∗), then v ↪→ w.

Lemma 8 allows us to extend the conclusion of Lemma 9 to the whole set of skeletons, as we
will prove now.

Lemma 10. Let y ∈ G,h ∈ N∗, ϕ, ϕ̃ ∈ L +
y , θ ∈ �h

ϕ, θ̃ ∈ �h
ϕ̃

be fixed. Suppose (8) holds un-
der Q. Then,

Q(�
h,θ̃
y,ϕ̃

)

Pν(�
h,θ̃
y,ϕ̃

)
= Q(�

h,θ
y,ϕ)

Pν(�
h,θ
y,ϕ)

. (15)

Proof. We observe that v = (ϕ, θ) and ṽ = (ϕ̃, θ̃ ) are elements of V . As proved above, there
exists a connecting sequence (vi)

K
i=0 := (ϕi, θi)

K
i=0, with v0 = v, vK = ṽ, linking v to ṽ, and

such that either vi ←↩ vi+1 or vi ↪→ vi+1. This entitles us to apply recursively Lemma 9 to any
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pair vi, vi+1 and obtain

Q(�
h,θi+1
y,ϕi+1)

Pν(�
h,θi+1
y,ϕi+1)

= Q(�
h,θi
y,ϕi

)

Pν(�
h,θi
y,ϕi

)
= · · · = Q(�

h,θ
y,ϕ)

Pν(�
h,θ
y,ϕ)

.

The conclusion follows with i = N − 1. �

We can now complete the proof of the converse implication of the main theorem.
Fix x, y ∈ G with Q(X01 = (x, y)) > 0. W.l.o.g. we assume that x = e. Thanks to Lemma 10

we know that for any mesh h, there exists a positive constant ch such that

Q
(
�h,θ

y,ϕ

) = chPν

(
�h,θ

y,ϕ

)
, ∀ϕ ∈ L +

y , θ ∈ �h
ϕ.

Now we show that the proportionality constant does not depend on the scale of the time discreti-
sation: ch = ch+1. To this aim, let us observe that

Q(�y) =
∑

(ϕ,θ)∈V

Q
(
�h,θ

y,ϕ

) =
∑

(ϕ,θ)∈V

chPν

(
�h,θ

y,ϕ

) = chPν(�y).

In the same way one gets Q(�y) = ch+1Pν(�y) which implies that ch = ch+1. Therefore, there
exists a constant c > 0 such that

Q
(
�h,θ

y,ϕ

) = cPν

(
�h,θ

y,ϕ

)
, ∀h ∈ N∗, ϕ ∈ L +

y , θ ∈ �h
ϕ.

By standard approximation arguments this implies the equality between Q and cPν on �y ∩ F
which then implies Qey = P

ey
ν . The conclusion follows. �

Remark 11. Consider the identities (8) for G = Rd and compute them for particular test func-
tions F which only depend on the skeleton of the paths. These equations, indexed by the skeletons
in B, then characterize the (marginal) distribution of the random vector defined as the number
of jumps of any type occurred during the time interval [0,1], as it was done in [2]. Note that for
the unconstrained random walk the distribution of this random vector is a multivariate Poisson
law, see, for example, [2] Section 2.2.1.

3. Examples

In this section, we present several examples of random walks defined on finite or infinite Abelian
groups G.

For each example, we verify if assumptions (H1) and (H2) are satisfied by computing a basis
B of skeleton of loops. We give explicitly the associated characteristics (9). In some cases, we
also write down the integral formula (8), highlighting how it is influenced by the geometrical
properties of the underlying group G.
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Finally, for a fixed random walk Pν on G, we address the question of finding all random walks
Pμ which have the same bridges than Pν , that is, using Corollary 6, we solve equation (10) and
identify the set of probability measures:

Rec(ν) ∩ {Pμ : μ finite measure on Gν}.
We will see that, in some cases, this set reduces to the singleton Pν and in other cases, this set is
nontrivial.

3.1. The group G = Z is infinite

3.1.1. The finite support Gν of the jump measure ν contains {−1,1}
For any z ∈ Gν \ {1} we define on Gν the non negative map ϕz as follows:

ϕz = 1z + |z|1−sgn(z).

It corresponds to the skeleton of paths with one jump of type z and |z| jumps of type − sgn(z).
As candidate for the lattice basis of L , we propose

B := {ϕz}z∈Gν\{1}.

Assumption (H2) is trivially satisfied and it is clear that the elements of B are linearly indepen-
dent. Therefore, we only need to check if B spans L , that is, if for each φ ∈ L , there exist
integer coefficients αz ∈ Z such that

∀z̄ ∈ Gν, φ(z̄) =
∑
z∈Gν

z �=1

αzϕz(z̄). (16)

We now verify that the following choice is the right one:

For z ∈ Gν \ {−1,+1}αz = φ(z) and α−1 = φ(−1) −
∑
z∈Gν

z>1

zφ(z).

• z̄ /∈ {−1,+1}. Since ϕz̄ is the only element of B whose support contains z̄, we have

φ(z̄) = αz̄ϕz̄(z̄) =
∑
z∈Gν

z �=1

αzϕz(z̄).

• z̄ = −1. Notice that −1 belongs to the support of any ϕz, as soon as z > 1. Therefore,

φ(−1) =
∑
z∈Gν

z>1

φ(z)z + α−1 =
∑
z∈Gν

z>1

αzϕz(−1) + α−1ϕ−1(−1) =
( ∑

z∈Gν

z �=1

αzϕz

)
(−1).
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• z̄ = 1. Notice that +1 belongs to the support of any ϕz, as soon as z ≤ −1. Recall that
φ ∈ L . Therefore,

φ(1) = −
∑
z∈Gν

z �=1

φ(z)z =
∑
z∈Gν

z<1

−φ(z)z + φ(−1)

=
∑
z∈Gν

z≤−1

αzϕz(1) =
( ∑

z∈Gν

z �=1

αzϕz

)
(1).

Let us now compute the reciprocal characteristics associated to each skeleton in B:


ν
ϕz

= ν
(− sgn(z)

)|z|
ν(z), z ∈ Gν \ {1}.

Finally, thanks to Corollary 6, we obtain

Pμ ∈ Rec(ν) ⇔ ∀z ∈ Gν \ {1}, μ
(− sgn(z)

)|z|
μ(z) = ν

(− sgn(z)
)|z|

ν(z)

⇔ ∃α > 0 such that
dμ

dν
(z) = αz.

Example 12 (Simple random walks: Gν = {−1,1}). Due to the above computations, the basis
B of the lattice L reduces to the singleton {ϕ−1} and the unique reciprocal characteristics is
given by


ν
ϕ−1

= ν(−1)ν(1).

Therefore, the only loops which appear in the integral characterization (8) have length n =
�(ϕ−1) = 2. Test functions of the form

F
(
X, (γ1, γ2)

) = f (X)1{g1=1,g2=−1}h(t1, t2)

belong to Hϕ−1 . Such functions are supported by pairs (γ1, γ2) building a path with one jump
+1 at time t1 and one jump −1 at time t2. The identity (8) now reads as:

EQ

(
f (X)

∑
(t1,t2):�Xt1=1

�Xt2 =−1

h(t1, t2)

)

= ν(−1)ν(1)

∫
[0,1]2

EQ

(
f (X + g11[t1,1] + g21[t2,1])

)
h(t1, t2) dt1 dt2.

As in Remark 11, if we consider test functions f which only depend on the skeletons of the
paths, f (X) = v(ϕX), we obtain that the distribution χ(dn−1, dn1) ∈ P(N2) of the number n−1

(resp., n1) of negative (resp., positive) jumps is characterized by the system of equations: for all
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v ∈ B+(N2),∫
v(n−1, n1)n−1n1χ(dn−1, dn1) = ν(−1)ν(1)

∫
v(n−1 + 1, n1 + 1)χ(dn−1, dn1),

χ(n1 = n−1) = 1.

This result coincides with [2], Example 2.18.

3.1.2. Gν = {1,2}
In that case, since −1 does not belong to the support of the jump measure, it leads to a case
where (H2) is not satisfied. It is straightforward to prove that the lattice L is one-dimensional
and is equal to {zϕ∗, z ∈ Z} where

ϕ∗(1) = 2, ϕ∗(2) = −1.

Clearly L does not admit a non negative basis.

3.2. G is the cyclic group Z/NZ

We now consider the finite cyclic group G := Z/NZ =: {0,1,2, . . . ,N − 1}.
3.2.1. The support Gν of the jump measure reduces to {−1,1}
This case corresponds to nearest neighbour random walks. The non negative basis B :=
{ϕN−1, ϕ

∗} where

ϕN−1 = 11 + 1N−1 = 11 + 1−1 and ϕ∗ = N11

is suitable. The associated characteristics are


ν
ϕN−1

= ν(1)ν(−1) and 
ν
ϕ∗ = ν(1)N .

The existence of the second invariant 
ν
ϕ∗ corresponding to the loop around the cycle

{0,1,2, . . . ,N − 1} implies that Pν is the unique nearest neighbour random walk of the set
Rec(ν). This differs from the nearest neighbour random walk on Z, treated in Example 12. We
proved there that any random walk Pμ, with μ satisfying μ(−1)μ(1) = ν(−1)ν(1), induces the
same set of bridges.

The distribution χ of the random vector (n−1, n1) under the 00-bridge is given by the follow-
ing system of integral equations, satisfied for any test function v on N2:

∫
v(n−1, n1)n−1n1χ(dn−1, dn1) = ν(−1)ν(1)

∫
v(n−1 + 1, n1 + 1)χ(dn−1, dn1),∫

v(n−1, n1)n1 · · · (n1 − (N − 1)
)
χ(dn−1, dn1) = ν(1)N

∫
v(n−1, n1 + N)χ(dn−1, dn1),

χ(n1 − n−1 ∈ NZ) = 1.
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3.2.2. The support Gν of the jump measure covers Z/NZ \ {0}
We now consider a random walk on Z/NZ which can jump anywhere: Gν = Z/NZ \ {0}. Here,
we focus for simplicity on the case N = 4, which is the first nontrivial example, and disintegrate
the jump measure ν as follows:

ν = ν(1)δ1 + ν(2)δ2 + ν(3)δ3, ν(1)ν(2)ν(3) > 0.

It can be proven along the same lines as in the previous examples, that a suitable nonnegative
basis for the lattice L is given by B = {ϕ∗, η∗, ξ∗} where

ϕ∗ = 11 + 13, η∗ = 411, ξ∗ = 211 + 12.

Hence, the associated characteristics are:


ν
ϕ∗ = ν(1)ν(3), 
η∗

ν = ν(1)4, 
ν
ξ∗ = ν(1)2ν(2).

We now turn our attention to the integral formula (8). Simple functions F ∈ Hξ∗ are of the form:

F
(
X, (γ1, γ2, γ3)

) = f (X)1{g1=g2=1,g3=2}h(t1, t2, t3).

(γ1, γ2, γ3) is in the support of F if two jumps of value 1 happen at times t1, t2 and one jump of
value 2 at time t3, leading to a global null displacement since 4 = 0. The formula (8) reads:

EQ

(
f (X)

∑
(t1,t2,t3):t1 �=t2,

�Xt1=�Xt2 =1

�Xt3 =2

h(t1, t2, t3)

)

= ν(1)2ν(2)EQ

(∫
[0,1]3

f (X + g11[t1,1] + · · · + g31[t3,1])h(t1, t2, t3)

)
dt1 dt2 dt3.

The distribution of the random vector (n1, n2, n3) under the 00-bridge is given by the following
identities, valid for any v :N3 → R:∫

v(n1, n2, n3)n1n3χ(dn1, dn2, dn3) = ν(1)ν(3)

∫
(v(n1 + 1, n2, n3 + 1)χ(dn1, dn2, dn3),∫

vn1(n1 − 1)(n1 − 2)(n1 − 3)χ(dn1, dn2, dn3)

= ν(1)4
∫

v(n1 + 4, n2, n3)χ(dn1, dn2, dn3),∫
v(n1, n2, n3)n1(n1 − 1)n2χ(dn1, dn2, dn3)

= ν(1)2ν(2)

∫
v(n1 + 2, n2 + 1, n3)χ(dn1, dn2, dn3),

χ(n11 + n22 + n33 = 0) = 1.

In this situation, again Pν is the unique random walk of the set Rec(ν).
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3.3. The state space is a product group

Consider the product of two groups, say G and G′, and two non negative finite measures on
them, say ν and ν′, such that in both cases (H1) and (H2) are satisfied. Then, the product group
G × G′ equipped with the product measure ν ⊗ ν′ fulfills (H1) and (H2) too. The key idea is as
follows: if B and B′ are suitable basis of G and G′ then we can define for all η ∈ B,

ϕη : Gν × Gν′ →N, ϕη

(
g,g′) = η(g)

and for all η′ ∈ B′,

ϕη′ : Gν × Gν′ → N, ϕη′
(
g,g′) = η′(g′).

The set B⊗ = {ϕη}η∈B ∪{ϕη′ }η′∈B′ is an appropriate basis for the lattice of skeletons defined on
the product group.

Example 13 (Random walk on the d-dimensional discrete hypercube (Z/2Z)d ). The d-
dimensional discrete hypercube is the d-product of the cyclic group with two elements. We
denote by (e1, . . . , ed) its canonical basis.

A random walk on the hypercube is defined uniquely through its jump measure ν =∑d
i=1 ν(i)δei

. Since it can be realized as the product of d random walks on Z/2Z, the basis
B := {ϕ∗

i }1≤i≤d, ϕ∗
i = 21ei

, is a suitable choice.
For the integral characterization it is enough to consider loops of length � = 2. However, we

have here d different skeletons to consider. Test functions of the form

F(X,γ ) = f (X)1{g1=g2=ei }h(t1, t2), 1 ≤ i ≤ d,

belong to Hϕ∗
i
. For any i ∈ {1, . . . , d} fixed, (8) reads as:

EQ

(
f (X)

∑
(t1,t2):t1 �=t2,

�Xt1 =�Xt2 =ei

h(t1, t2)

)

= ν(i)2
∫

[0,1]2
EQ

(
f (X + g11[t1,1] + g21[t2,1])

)
h(t1, t2) dt1 dt2.

Concerning the distribution of the random vector (ne1, . . . , ned
), it has independent marginals

χi,1 ≤ i ≤ d , which are characterized through the system of equations: for all v ∈ B+(N),∫
v(n)n(n − 1)χi(dn) = ν(i)2

∫
v(n + 1)χi(dn),

χi(n ∈ 2N) = 1.
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