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In this article, we derive the weak limiting distribution of the least squares estimator (LSE) of a convex
probability mass function (p.m.f.) with a finite support. We show that it can be defined via a certain convex
projection of a Gaussian vector. Furthermore, samples of any given size from this limit distribution can be
generated using an efficient Dykstra-like algorithm.
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1. Introduction

Non-parametric estimation under a shape constraint of a density on a given sub-interval of R, has
attracted considerable attention over the past decades. Typical shape constraints are monotonic-
ity, convexity, log-concavity. Typical estimators are the maximum likelihood estimator (MLE)
and the least-squares estimator (LSE). Both of them are obtained by minimization of a given
criterion over the set of all densities that satisfy the considered shape constraint. Even if the
MLE and LSE uniquely exist, no closed form is available for these estimators so a key step
is to provide a precise characterization of the estimators as well as an algorithm for practical
implementation. Grenander [12] first gives such a characterization for the MLE of a monotone
density, and the pointwise weak convergence of the MLE is derived in [20]. The estimator can
easily be implemented using the Pool Adjacent Violators Algorithm as described in [4]. Both
characterization and pointwise weak convergence of a convex density estimator on the half-real
line are investigated in [13], and practical implementation is discussed in [14]. The MLE of a
log-concave density is characterized in [5] while its pointwise weak convergence is studied in
[3]. Algorithmic aspects are treated in [6]. In the aforementioned continuous case of estimating a
density under a shape constraint over a given sub-interval of R, the limit behavior of global dis-
tances between the estimator and the true density has been investigated. We refer to [17] and [10]
for the limit distribution of the Lp-distance and the supremum-distance respectively, in the case
of a monotone density. The rate of uniform convergence of the log-concave MLE on compacts is
given in [5].

More recently, attention has been given to estimation of a discrete probability mass function
(p.m.f.) under a shape constraint. Similar to the continuous case, no closed form is available for
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shape constrained estimators of a p.m.f. so one needs a precise characterization. Such character-
izations are given in [2,16] and [8] for the monotone, log-concave and convex cases respectively.
In the convex case, [1] show that the same Marshall Lemma proved in the continuous case by
[7] continues to hold in the discrete case, that is, we have ‖F̂n − F‖∞ ≤ 2‖Fn − F‖∞ for any
distribution function F on N with a convex p.m.f., and F̂n and Fn are the cumulative distribu-
tion function of the LSE and the empirical distribution function, respectively. In contrast to the
continuous case, the natural way to investigate the global limit behavior of the estimator is to
compute the limit distribution of the whole process p̂n − p0, where p̂n is the considered estima-
tor and p0 is the true p.m.f. This approach was first considered by [16] in the case of a monotone
p.m.f. on N, and by [2] in the case of a log-concave p.m.f. The discrete case totally differs from
the continuous case. In particular, the rate of convergence is typically

√
n (where n denotes the

sample size) in the discrete case whereas it is of smaller order in the continuous case. Character-
ization and rate of convergence of the LSE of a convex p.m.f. are given in [8] together with an
algorithm, but the limit distribution of the LSE remains unknown. One of the aims of this paper
is to fill this gap.

To be more precise, let X1, . . . ,Xn be i.i.d. from an unknown discrete p.m.f. p0 whose support
takes the form N ∩ [κ,∞) = {κ, κ + 1, . . .} or N ∩ [κ,S] = {κ, κ + 1, . . . , S} for some integers
S > κ ≥ 0. Here, κ is assumed to be known whereas S is unknown. Assuming that p0 is convex
on N ∩ [κ,∞), we are interested in the limiting behavior of the LSE of p0. The case κ = 1 is
of a particular interest in [9], where the problem of estimating the total number N of species in
a given area is investigated under the convexity constraint. Note that we focus here on the LSE.
Studying the limit behavior of the MLE is out of the scope of the article: it would require specific
arguments since the MLE may differ from the LSE in our setup, see Section 2.2 below.

The limiting distribution of the LSE is described as a piecewise convex projection of a Gaus-
sian process, where the pieces are connected to the points of strict convexity of p0. The Gaussian
process involved in the limiting distribution depends on p0 as well. Hence, we provide an estima-
tor of the limiting distribution that involves consistent estimators of the points of strict convexity
of p0. We provide an algorithm for simulating the limiting distribution of the LSE as well as the
approximating distribution. This amounts to simulating (many times) a Gaussian process and its
piecewise convex projection, which is obtained by minimizing the least-squares criterion over
the intersection of closed convex cones. Our algorithm combines two previous algorithms. The
first one is implemented in the function conreg of the package cobs for R; see [19] for a
full description. It is used to minimize the least squares criterion over the closed convex cone
of discrete convex functions on a given interval. Then, the iterative algorithm by [11] is used
to minimize the criterion over the intersection of closed convex cones. We use our algorithm to
illustrate our main results via a simulation study.

The paper is organized as follows. In Section 2, we recall the characterization of the LSE
obtained in [8] and we derive the

√
n-rate of convergence. We show that the MLE and the LSE

may differ, and that the MLE may be non unique. In addition, we prove that any knot (that is,
a point of strict convexity) of the true p.m.f. is also (almost surely, for large enough n) a knot of
the LSE. This allows us to characterize the support of the LSE in the case when the true p.m.f. has
a finite support. Section 3 is devoted to the weak convergence of the LSE. The limit distribution
is computed in the general case and we investigate how the limit distribution simplifies in some
specific cases, such as p.m.f. having consecutive knots. Simulations are reported in Section 4. We
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first investigate on a few examples whether the knots of the estimator include all true knots when
the sample size is finite. Then, we illustrate the convergence of the distribution of the estimator
to the limit distribution. All proofs are postponed to Section 5.

2. Basic properties of the convex LSE

Let X1, . . . ,Xn be i.i.d. from a p.m.f. p0 with support included in N. Denoting by κ the left end-
point of the support, we assume that p0 is convex on N ∩ [κ,∞). This means that the support
of p0 takes either the form N ∩ [κ,∞) = {κ, κ + 1, . . .} or N ∩ [κ,S] = {κ, κ + 1, . . . , S} for
some integers S > κ ≥ 0, and that �p0(k) ≥ 0 for all integers k > κ , where for a sequence
p = {p(k), k ∈ N},

�p(k) = p(k + 1) − 2p(k) + p(k − 1), k ∈ N \ {0} (2.1)

denotes the corresponding discrete Laplacian. Here, κ is assumed to be known whereas S is
unknown. The assumption S > κ is made in order to avoid the uninteresting situation of having
to deal with a Dirac distribution. Since convexity is preserved under translation, we can assume
without loss of generality that κ = 0: in case κ > 0, the characterization as well as the asymptotic
results for the LSE of the true convex p.m.f. can be easily deduced from the ones established
below using the simple fact that the support p.m.f. of Xi − κ admits 0 as its left endpoint. Thus,
in the sequel we restrict our attention to the case of a convex p.m.f. p0 on N with an unknown
support.

Based on the sample X1, . . . ,Xn, we consider the empirical p.m.f. pn, that is

pn(j) = 1

n

n∑
i=1

1{Xi=j}, j ∈N. (2.2)

2.1. Characterization of the convex LSE

We are mainly interested in the asymptotics of p̂n, the LSE of p0 defined as the unique minimizer
of the criterion

�n(p) = 1

2

∑
j∈N

(
pn(j) − p(j)

)2

over p ∈ C, the set of all convex sequences p on N with a finite �2-norm, that is, the set of all
sequences p = {p(k), k ∈N} satisfying

∞∑
k=0

∣∣p(k)
∣∣2

< ∞ and �p(k) ≥ 0 for all integers k ≥ 1. (2.3)

Note that any p ∈ C is non-negative and non-increasing. Existence and uniqueness of p̂n follows
from the Hilbert projection Theorem, see [8], Section 2.1.
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It follows from Theorem 1 of [8] that p̂n also minimizes �n over the set of p.m.f.’s in C.
In particular, p̂n is a proper p.m.f. This fact is rather convenient because it means that in order
to compute the estimator, we can minimize the criterion �n over C rather than over the more
constrained set of p.m.f.’s in C. This also allows us to use simpler algorithms and has the advan-
tage of giving more flexibility when deriving the characterizing Fenchel conditions for p̂n. As
it is the case in many shape constrained problems, such characterization proves to be crucial in
understanding the limiting behavior of the relevant estimator; see, for example, [13,16] and [2].
Thus, for the sake of completeness, we give in Proposition 2.1 below the Fenchel characterization
proved in [8], Lemma 2. For an arbitrary sequence p = {p(k), k ∈ N}, we denote

Fp(k) =
k∑

j=0

p(j) (2.4)

for all k ∈N with Fp(−1) = 0, and we define

Hp(z) =
z−1∑
k=0

Fp(k) (2.5)

for all z ∈ N with the convention Hp(0) = 0. Moreover, a point k ≥ 1 in the support of a convex
p ∈ C is called a knot of p if �p(k) > 0.

Proposition 2.1. The convex p.m.f. p̂n is the LSE if and only if

Hp̂n(z)

{≥ Hpn(z), for all z ∈N,
= Hpn(z), if z is a knot of p̂n. (2.6)

Note that a typographical error occurring in [8], Lemma 2, is now corrected. More precisely,
if p ∈ C satisfies Hp(z) ≥ Hpn(z) with equality at any knot of p (instead of p̂n as stated in [8])
then p = p̂n.

Some remarks are in order. The characterization above can be seen as the discrete version of the
one given by [13] for the LSE of a convex density with respect to Lebesgue measure. However,
some of the consequences implied by the characterization of the continuous LSE do not hold
true in our discrete case, due to the lack of the notion of differentiability in the discrete case.
For instance, if Fp̂n and Fpn denote the continuous versions of the quantities defined above then
Fp̂n(s) = Fpn(s) at any knot s of the estimator; see Corollary 2.1 of [13]. This equality cannot
be expected to hold true for the discrete convex LSE in the general case. In fact, by definition of
Hpn and Hp̂n in the discrete case,

Fpn(z) = Hpn(z + 1) − Hpn(z) and Fp̂n(z) = Hp̂n(z + 1) − Hp̂n(z)

for all z ∈ N, so it follows from (2.6) that the equality is replaced instead by the two inequalities
Fp̂n(s) ≥ Fpn(s) and Fp̂n(s − 1) ≤ Fpn(s − 1). The equality Fp̂n(s) = Fpn(s) can only hold if, in
addition to the equality Hp̂n(s) = Hpn(s), one also has Hp̂n(s + 1) = Hpn(s + 1). This happens
for instance in situations where p̂n has two consecutive knots at s and s + 1.
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2.2. The convex MLE compared to the LSE

Recall that the MLE of p0 is defined as the maximizer (if it exists) of the criterion

�n(p) =
∑
i≥0

pn(i) log
[
p(i)

]
over the set of all convex p.m.f.’s p on N, where pn denotes the empirical p.m.f. The following
proposition shows that the LSE of a convex p.m.f. may differ from the MLE. Moreover, it proves
that the MLE may be non unique in this discrete setting. To see this, we consider a sample of
only one observation X1 from a convex p.m.f. p0. We describe the LSE and the MLE in terms of
the triangular distributions defined as follows. Given j ∈ N \ {0}, consider the triangular p.m.f.
with support on {0, . . . , j − 1} given by

Tj (i) = 2(j − i)+
j (j + 1)

, (2.7)

where as usual, x+ = max{x,0} for all real numbers x.

Proposition 2.2. The convex LSE of p0 based on the single observation X1 > 0 is uniquely
defined by T3X1+1 whereas the MLE exists but is non unique: the log-likelihood �1 is maximized
at T2X1 , T2X1+1 and at every mixture of those two triangular distributions.

These results differ from those obtained by [13] in the continuous case. In that case, the MLE
is uniquely defined.

2.3. Tightness of the convex LSE

Next, we consider almost sure consistency of p̂n in all distances �r . Here as usual, ‖p‖r denotes
the �r -norm of a sequence p = {p(k), k ∈N}:

‖p‖r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( ∞∑

k=0

∣∣p(k)
∣∣r)1/r

, if r ∈N \ {0},
sup
k∈N

∣∣p(k)
∣∣, if r = ∞.

Proposition 2.3. For any integer r ∈ [2,∞], with probability one we have that

lim
n→∞‖p̂n − p0‖r = 0.

The following proposition is an easy consequence of Proposition 2.3.

Proposition 2.4. If s > 0 is a knot of p0, then with probability one, there exists n0 such that for
all n ≥ n0, s is a knot of p̂n.
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We finish this section by recalling boundedness in probability of
√

n(p̂n −p0) and the implied
boundedness for the associated “integral” processes. Note that boundedness in probability of√

n(p̂n −p0) is much weaker than tightness. However, these properties are equivalent in the case
where

√
n(p̂n −p0) is identically equal to zero after a certain range. We will use this equivalence

later on under the assumption that the true convex p.m.f. has a finite support.

Theorem 2.5. If p̂n is the convex LSE of the true p.m.f. p0, then

√
n‖p̂n − p0‖∞ = Op(1). (2.8)

Furthermore, if p0 has a finite support, then

√
n‖Fp̂n − Fp0‖∞ = Op(1) and

√
n‖Hp̂n − Hp0‖∞ = Op(1). (2.9)

2.4. The support of the convex LSE

In the sequel, we will assume that p0 has a finite support and we denote the support by
{0,1, . . . , S}. Note that S + 1 is the last knot of p0 in the sense that �p0(S + 1) = p0(S) > 0
and �p0(k) = 0 for all integers k > S + 1. Under this assumption, it is natural to ask whether
the support of p̂n is also finite. It turns out that the answer is affirmative as we now show in the
following proposition.

Proposition 2.6. If p0 is supported on {0, . . . , S} with S ∈N\{0}, then with probability one there
exists n0 such that for all n ≥ n0, the support of the LSE p̂n is either {0, . . . , S} or {0, . . . , S + 1}.

3. Asymptotics of the convex LSE

In this section, we derive the weak limit of the LSE when the true distribution is supported on a
finite set. The limit distribution is given in Section 3.1 in the most general setting where we do
not make any additional assumption on the structure of the knots of the true p.m.f. p0. It turns out
that the limit distribution of the estimator involves all knots of p0, see Theorem 3.2 below. This
seems to contrast with the continuous case, where the limiting distribution of the LSE at a point
depends only on the density (and its derivatives) of the observations at this point, so that the limit
distribution is “localized”. Moreover, the limit distribution of the MLE of a discrete log-concave
p.m.f. given in [2] is localized in some sense. For these reasons, we provide in Section 3.3 below
general characterizing conditions for such localizations to occur for the LSE of a discrete convex
p.m.f. This comprehensive study of possible localization led us to find an error in the proof of
Proposition 3 in [2], and to conclude that the limit distribution given in Theorem 5 of that paper
is not correct.
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3.1. The general setting

Assume that p0 is supported on {0, . . . , S} with an unknown integer S > 0. From Proposition 2.6,
it follows that with probability one, p̂n is supported on {0, . . . , S + 1} provided that n is suffi-
ciently large. Therefore, we consider the weak limit of p̂n on {0, . . . , S + 1}. To this end, first
consider the weak limit of the empirical p.m.f. pn. By standard results, the empirical process√

n(Fpn − Fp0) weakly converges to U(Fp0) on {0, . . . , S + 1}, where U denotes a standard
Brownian bridge from (0,0) to (1,0). With

W(k) =U
(
Fp0(k)

) −U
(
Fp0(k − 1)

)
(3.1)

for all integers k = 0, . . . , S + 1, we conclude that
√

n(pn − p0) weakly converges to W on
{0, . . . , S + 1}. Since p̂n is the minimizer of a criterion that involves pn, its weak limit depends
on W. Theorem 3.2 below proves that the limiting distribution of the LSE is that of the minimizer
(whose existence is proved in Theorem 3.1 below) of the criterion

�(g) = 1

2

S+1∑
k=0

(
g(k) −W(k)

)2 (3.2)

over the set C(K) that we define now. Let K be the set of all interior knots of p0, that is all knots
of p0 in {1, . . . , S}. If p0 does not have any interior knot (which means that p0 is triangular
p.m.f.), then K =∅. Associated with K is the following class of functions

C(K) = {
g = (

g(0), . . . , g(S + 1)
) ∈R

S+2 such that �g(k) ≥ 0 for all k ∈ {1, . . . , S} \K}
.

This means that g ∈ C(K) is convex between two successive knots of p0. Define

H(z) =
z−1∑
k=0

U
(
Fp0(k)

) =
z−1∑
k=0

k∑
j=0

W(j) (3.3)

for all z ∈N, with H(0) = 0. Then, we have the following theorem.

Theorem 3.1. The criterion (3.2) admits a unique minimizer ĝ over C(K). Furthermore, with
probability one, an element ĝ ∈ C(K) is the minimizer if and only if the process Ĥ defined on
{0, . . . , S + 2} by

Ĥ(x) =
x−1∑
k=0

k∑
j=0

ĝ(j) (3.4)

with the convention that Ĥ(0) = 0, satisfies

Ĥ(x)

⎧⎨⎩
≥ H(x), for all x ∈ {0, . . . , S + 2},
=H(x), if x ∈K ∪ {0, S + 1, S + 2}

or x ∈ {1, . . . , S} \K satisfies �ĝ(x) > 0.
(3.5)
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In the above theorem, note that it is implicit that the minimizer ĝ is actually ĝ(ω). We are now
ready to establish the weak convergence of p̂n. For x ∈ {0, . . . , S + 1} define

Ĝ(x) =
x∑

k=0

ĝ(k) = Ĥ(x + 1) − Ĥ(x). (3.6)

Theorem 3.2. If p̂n is the convex LSE of the true p.m.f. p0 with support {0, . . . , S}, then we have
the joint weak convergence on {0, . . . , S + 1} as n → ∞:⎛⎝

√
n(Hp̂n − Hp0)√
n(Fp̂n − Fp0)√
n(p̂n − p0)

⎞⎠ ⇒
⎛⎝ Ĥ

Ĝ

ĝ

⎞⎠ .

3.2. Estimating the limiting distribution

The asymptotic distribution ĝ derived in Theorem 3.2 depends on the projection of a Gaussian
vector, whose dispersion matrix depends on p0, onto a set C(K) that depends on the interior
knots of p0. Since those knots are typically unknown, the asymptotic distribution cannot be di-
rectly used to build confidence intervals. Below, we fill the gap between the theoretical result of
Theorem 3.2 and the practical problem of building such intervals. This is achieved via the con-
struction of a random vector ĝn that weakly converges to ĝ without depending on some unknown
parameter. The distribution of ĝn can easily be approximated via Monte-Carlo simulations, and
can therefore be used to approximate the distribution of

√
n(p̂n − p0).

To define ĝn, let Sn = max{X1, . . . ,Xn}, and gn be the centered Gaussian vector of dimension
Sn+2 and whose dispersion matrix is given by �n, the (Sn+2)×(Sn+2) matrix with component
(i + 1, j + 1) equal to pn(i)(1 − pn(i)) for all i = j and −pn(i)pn(j) for all i �= j , with i, j =
0, . . . , Sn + 1. Since gn converges weakly to W, by analogy to how ĝ was defined, it is natural to
define ĝn as the minimizer of

�n(g) = 1

2

Sn+1∑
k=0

(
g(k) − gn(k)

)2
(3.7)

over a set Cn that approaches C(K) as n → ∞. We feel it is useful to point out that defining Cn as
the set of all functions (g(0), . . . , g(Sn + 1)) ∈R

Sn+2 such that �g(k) ≥ 0 for all k ∈ {1, . . . , Sn}
with possible exception at the knots of p̂n does not work. Indeed, due to the fact that (with
probability one, asymptotically) the set of all knots of p̂n contains the set of all knots of p0
with typically a strict inclusion, the proposed set does not approaches C(K) as n → ∞. An
appropriate choice for Cn is given in the following theorem. In dealing with convergences, we
view X1, . . . ,Xn as the first n terms of an infinite sequence (Xi)i∈N of i.i.d. random variables.

Theorem 3.3. Let (vn)n∈N be a sequence of positive numbers that satisfy

lim
n→∞vn = 0 and lim

n→∞
√

nvn = ∞. (3.8)
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Define gn as above and let ĝn be the minimizer of (3.7) over the set Cn of all functions
g = (g(0), . . . , g(Sn + 1)) ∈ R

Sn+2 such that �g(x) ≥ 0 for all x ∈ {1, . . . , Sn} with possible
exceptions at the points x that satisfy �p̂n(x) > vn. Then, conditionally on (Xi)i∈N, the random
vector ĝn converges in distribution to ĝ in probability as n → ∞.

Remark 3.4. The meaning of the above convergence should be clarified: ĝn is a random vector
in R

Sn+2 whereas ĝ is in R
S+2. But since P(Sn ≤ S) = 1, the convergence in distribution has a

full meaning once ĝn is identified with the (S + 2)-dimensional vector (ĝn,0, . . . ,0), where the
number of null entries is exactly S − Sn.

Remark 3.5. Note that in the inequality �p̂n(x) > vn, p̂n can be replaced by pn. The arguments
used to show Theorem 3.3 will remain almost unchanged since we can use the central limit theo-
rem. The same thing applies for the estimator �n, which can be defined by taking any consistent
estimator of p0 for the purpose of approaching the Gaussian distribution of W.

In practice, Theorem 3.3 can be used to simulate an approximation of the distribution of√
n(p̂n − p0) as follows: once the empirical estimator has been computed from the observa-

tions X1, . . . ,Xn, compute �n and simulate B (a large positive integer) independent copies
gn,1, . . . , gn,B from a centered multivariate Gaussian distribution with dispersion matrix �n.
Then, for j = 1, . . . ,B , compute ĝn,j as the minimizer of the criterion (3.7) where gn is re-
placed by gn,j over the set Cn as defined in Theorem 3.3. From Theorem 3.3, it follows that the
empirical distribution of ĝn,j , j = 1, . . . ,B approaches the limit distribution ĝ of

√
n(p̂n − p0).

As a consequence of Theorem 3.3, ĝn converges in distribution to ĝ unconditionally. This fact
is less useful for practical applications but easier to illustrate with simulations as shown below in
Section 4.

3.3. Localization

It follows from Theorem 3.2 above that the limiting distribution of p̂n at a fixed point involves
all knots of p0 in the general case. This seems to contrast with the continuous case where the
limiting distribution of the LSE is localized in the sense that it depends only on the true density
(and its derivatives) at the fixed point. Hence, a natural question is whether the convex LSE could
be also localized in the discrete case.

To draw a correct comparison between what happens in the discrete and continuous cases, one
has to go back to the working assumptions under which the limiting distribution has been derived
in the latter case. In [13], it is assumed that the true convex density f defined on [0,∞) is twice
continuously differentiable in a small neighborhood of a fixed point x0 > 0 such that f ′′(x0) > 0.
In particular, the density is strictly convex at x0. Under this assumption, the limiting distribution
only depends on f (x0) and f ′′(x0). In Theorem 3.2, we do not consider any particular configu-
ration for the knots of p0. For the sake of comparison, and if we translate for the moment strict
convexity at a point s in the support of p0 as having s to be a triple knot, that is s − 1, s and
s + 1 are successive knots of p0, then it follows from Proposition 2.4 and Proposition 2.1 that
with probability one there exists n0 large enough such that for all n ≥ n0

Hp̂n(s − 1) = Hpn(s − 1), Hp̂n(s) = Hpn(s) and Hp̂n(s + 1) = Hpn(s + 1).
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This implies that p̂n(s) = pn(s) and the limiting distribution is simply that of the Gaussian
random variable N (0,p0(s)(1 − p0(s))). In this case, the limit of the LSE at the point s is
completely localized in the sense that it is not influenced by the remaining knots of p0. The
identity p̂n(s) = pn(s) shows even the stronger fact that the localization is actually happening at
the level of the estimator itself.

It is conceivable that other configurations lead to some form of localization of the weak limit.
We provide below general characterizing conditions for such localizations to occur. In fact, the
LSE and its weak limit get localized either to the left or right at any knot of p0 that is either
followed or preceded by another knot of p0. In such cases, the limit of the LSE can be described
only in terms of knots of p0 that are either to the left or right of that knot; see comments after
Theorems 3.6 and 3.7. In the sequel, we shall use the same notation as in Section 3.1.

First, we consider the question of localizing “to the left” of a knot. This means that given
an interior knot s of p0, we wonder whether the restriction to {0, . . . , s} of the limiting ĝ is
distributed as the minimizer of the left-localized criterion

�≤s(g) = 1

2

s∑
k=0

(
g(k) −W(k)

)2

over the set

C≤s(K) = {
g = (

g(0), . . . , g(s)
) ∈ R

s+1 such that �g(k) ≥ 0 for all k ∈ {1, . . . , s − 1} \K}
.

The following theorem provides a necessary and sufficient condition for the answer to be positive.
It also gives a necessary and sufficient condition for the restriction of

√
n(p̂n − p0) to (0, . . . , s)

to converge to the left-localized minimizer.

Theorem 3.6. Assume that the support of p0 is finite. Then for an arbitrary interior knot s of p0,
there exists a unique minimizer of �≤s over C≤s(K). The minimizer is equal to (ĝ(0), . . . , ĝ(s))

if, and only if,

Ĝ(s) =U
(
Fp0(s)

)
. (3.9)

Moreover,
√

n(p̂n(0) − p0(0), . . . , p̂n(s) − p0(s)) converges in distribution to the minimizer of
�≤s over C≤s(K) if, and only if,

Fp̂n(s) = Fpn(s) + op

(
n−1/2). (3.10)

Consider the case where s is a double knot, in the sense that both s and s + 1 are knots of p0.
It follows from Proposition 2.4 together with the characterization in Proposition 2.1, that with
probability one, both Hp̂n(s) = Hpn(s) and Hp̂n(s + 1) = Hpn(s + 1) hold true for sufficiently
large n. Therefore, Fp̂n(s) = Fpn(s) with probability one for sufficiently large n, so that (3.10)
holds and the limiting distribution is left-localized.

Now, we consider the question of localizing “to the right” of a knot. This means that given
an interior knot s of p0, we wonder whether the restriction to {s, . . . , S + 1} of the limiting ĝ is
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distributed as the minimizer of the right-localized criterion

�≥s(g) = 1

2

S+1∑
k=s

(
g(k) −W(k)

)2

over the set C≥s(K) of all g = (g(s), . . . , g(S + 1)) ∈ R
S−s such that �g(k) ≥ 0 for all k ∈

{s + 1, . . . , S} \ K. A necessary and sufficient condition for the answer to be positive, is given
below.

Theorem 3.7. Assume that the support of p0 is finite. Then for an arbitrary interior knot s of
p0, there exists a unique minimizer of �≥s over C≥s(K). The minimizer is equal to (ĝ(s), . . . ,

ĝ(S + 1)) if, and only if,

Ĝ(s − 1) =U
(
Fp0(s − 1)

)
. (3.11)

Moreover,
√

n(p̂n(s) − p0(s), . . . , p̂n(S + 1) − p0(S + 1)) converges in distribution to the mini-
mizer of �≥s over C≥s(K) if, and only if,

Fp̂n(s − 1) = Fpn(s − 1) + op

(
n−1/2). (3.12)

Similar as above, (3.12) holds in the specific case where both s − 1 and s are knots of p0.

4. Numerical aspects

4.1. A Dykstra algorithm for computing the asymptotic distribution

In monotone or concave/convex regression, active set methods are often proposed to compute the
estimators; see for example [15] or [14] for more recent work. One may also refer to [18] for a
more general method of non parametric regression under a shape constraint.

Here, we describe a simple algorithm that enables us to simulate a sample of any size from
the asymptotic distribution ĝ of

√
n(p̂n − p0) in the case where p0 has a finite unknown support

{0, . . . , S}, see Theorem 3.2. The algorithm also enables us to simulate a sample of any size from
the conditional distribution of ĝn given in Theorem 3.3, see Remark 4.1 below. Let s1 < · · · < sm
be the interior knots of p0, and put s0 = 0 and sm+1 = S + 1. Then, define

Cj = {
g = (

g(0), . . . , g(S + 1)
) ∈ R

S+2 such that �g(k) ≥ 0 for all k ∈ {sj , . . . , sj+1}
}

for j = 0, . . . ,m. By definition (see Theorem 3.1), ĝ is the unique minimizer of the criterion �

in (3.2) over C(K), which means that ĝ can be viewed as the projection of W onto
⋂m

j=0 Cj .
Since the Cj ’s are closed convex cones, the solution can be found using the algorithm of [11]
which proceeds by performing cyclic projections onto the convex cones C0, . . . ,Cm. Although
details of the algorithm are given in [11], we describe here how these projections are performed.

Set g(0) ≡ (W(0),W(1), . . . ,W(S +1)) and u
(0)
j = 0 for j = 0, . . . ,m. Then, for i ≥ 1, iterate

the three following steps.
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(1) Compute g
(i)
j , the projection of g

(i)
j−1 − u

(i−1)
j onto Cj for j = 0, . . . ,m.

(2) Set u
(i)
j ≡ g

(i)
j − (g

(i)
j−1 − u

(i−1)
j ).

(3) Set i = i + 1 and go to (1).

Granted that we know how to obtain the convex projections g
(n)
j , convergence of the above al-

gorithm is a consequence of Theorem 3.1 of [11]. The projection onto each cone Cj , j = 0, . . . ,m

can be efficiently computed using the R function conreg available in the R package COBS; see
[19] for more details.

Now, for any fixed integer N ≥ 1, a sample of size N from the same distribution as
(ĝ(0), . . . , ĝ(S + 1)) can be done as follows: we generate a centered Gaussian vector (W0, . . . ,

WS) whose dispersion matrix is given by �0, the (S + 1) × (S + 1) matrix with component
(i + 1, j + 1) equal to p0(i)(1 − p0(i)) for all i = j and −p0(i)p0(j) for all i �= j , with
i, j = 0, . . . , S. This can be done using the R function rmvnorm available from the mvtnorm
package. In the second step, we compute the piecewise convex projection of (W0, . . . ,WS,0) as
described above, and the two steps are then repeated N times.

Remark 4.1. Let (vn) be a sequence satisfying (3.8). Once X1, . . . ,Xn have been observed, a
sample from the conditional distribution of ĝn given in Theorem 3.3 can be simulated by using the
above algorithm with s1, . . . , sm replaced by the points x that satisfy �p̂n(x) > vn, sm+1 = Sn+1
where we recall that Sn = max{X1, . . . ,Xn}, and g(0) replaced by a centered Gaussian vector in
R

Sn+2 with dispersion matrix �n. Alternatively, according to Remark 3.5, the points s1, . . . , sm
might be replaced by the points x that satisfy �pn(x) > vn.

4.2. How well the true knots are captured

Recall that Proposition 2.4 implies that with probability one, having enough large sample sizes
ensures that a knot of the true p.m.f. p0 is also a knot of the LSE p̂n. However, the proposition
does not indicate how large n should be. To gain some insight into the relationship between
the size of the sample at hand and whether the knots of the estimator include all true knots, we
have carried out a simulation study with samples of size n ∈ {50,200,800,3200,12 800,51 200}.
Given a simulated sample of size n from a distribution p0, the convex LSE p̂n was computed
using the algorithm described in [8].

To define the convex p.m.f.’s under which the samples were generated, we use the fact that a
p.m.f. p0 is convex if and only if p0 admits the mixture representation

p0 =
∑
j≥1

πjTj , (4.1)

where Tj is the triangular distribution defined by (2.7), 0 ≤ πj ≤ 1 and
∑

j≥1 πj = 1, see Theo-
rem 7 in [8]. The representation is unique and the mixing weights are given by

πj = j (j + 1)

2
�p(j)
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Table 1. Mixing weights πj for the convex p.m.f.’s p1,p2,p3,p4,p5,p6

p.m.f. π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11

p1 0 0 0 2/3 0 0 0 0 0 0 1/3
p2 1/3 0 0 0 0 1/2 0 0 0 0 1/6
p3 0 1/6 0 0 1/6 0 0 0 1/2 0 1/6
p4 0 0 0 1/6 0 1/6 0 1/12 0 1/2 1/12
p5 0 0 1/6 1/12 1/4 0 1/12 0 1/6 1/6 1/6
p6 0 1/12 1/6 1/12 1/12 1/12 1/12 1/12 1/12 1/6 1/12

for j ≥ 1. Note that in particular, j is a knot of p0 if and only if πj > 0, and if the support of p0
takes the form {0, . . . , S}, then πS+1 > 0 whereas πj = 0 for all j > S + 1.

In our simulations, the samples were generated from four convex p.m.f.’s that are all supported
on {0, . . . ,10}. We give in Table 1 the values of the mixing weights πj ,1 ≤ j ≤ 11 for various
p.m.f.’s p0 that are denoted by p1, p2, p3 and p4.

Figure 1 shows the process
√

n(Hp̂n − Hpn) together with the knots of the LSE p̂n and the
true knots, for a sample of size n ∈ {50,200} generated from p3. In these examples, it can be
seen that in accordance with Proposition 2.1, Hp̂n(z) ≥ Hpn(z) with an equality at all knots z

of p̂n. However, the sample sizes are not large enough to ensure that the knots of p̂n include
all knots of the true p.m.f. p3. Neither they are large enough to ensure that the support of p̂n

is included in {0, . . . , S + 1} where S = 10 denotes the greatest point in the support of the true
p.m.f.; see Proposition 2.6. Figure 2 is similar to Figure 1 but now, the samples are generated
from the triangular p.m.f. T11, which means that the mixing probabilities are π11 = 1 and πj = 0

Figure 1. The figures show the process
√

n(Hp̂n
− Hpn) for a random sample of size n as shown. The

samples were generated from p3 as in Table 1. The diamond symbols depict the knots of the LSE p̂n

computed based on the samples, whereas the bullets show the locations of the true knots.
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Figure 2. The figures show the process
√

n(Hp̂n
− Hpn) for a random sample of size n as shown. The

samples were generated from a triangular p.m.f. supported on {0,1, . . . ,10}. The diamond symbols depict
the knots of the LSE p̂n computed based on the samples.

for all j �= 11. Again, we observe that Hp̂n(z) ≥ Hpn(z) with an equality at all knots z of p̂n. In
the case of a sample size n = 50, the knots of p̂n do not include the only true knot 11 and the
support of p̂n is not included in {0, . . . ,11}. On the other hand, in the case of a larger sample size
n = 200, the knots of p̂n include the only true knot 11 and p̂n is supported on {0, . . . ,11}.

Figures 1 and 2 are not sufficient to gain full insight into the connection between the knots
of p̂n and the true knots since only one sample is considered in each situation. Thus, for each
considered sample size and distribution, we simulated independently 1000 samples to evaluate
the probability that the knots of p̂n include all true knots. The probabilities are estimated by
empirical frequencies. Results are reported in Table 2. As expected, the empirical frequency
increases as n increases. It is typically larger in cases of true distributions with only few knots
than in cases of true distributions with many knots.

4.3. Assessing the convergence of the convex LSE to the weak limit

To assess convergence of the estimation error to the right weak limit, consider F̂(j)
n,M and F

(j)

M ′ to
be respectively the empirical distributions of

√
n(p̂n(j)−p0(j)) and ĝ(j) for j ∈ {0, . . . , S + 1}

based on M and M ′ independent replications. Here, M and M ′ will be chosen to be large. More
explicitly, a sample of n independent random variables X

(i)
1 , . . . ,X

(i)
n is drawn from p0 for each

i = 0, . . . ,M to form a sample of size M from the distribution of the estimation error. Note that
this sample is multidimensional of dimension S + 1 hence our need to consider the marginal
components of its distribution. Similarly, we draw a sample of size M ′ from the distribution of
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Table 2. Empirical frequencies in % of having all knots of the true convex p.m.f. among those of the
estimator p̂n for n ∈ {50,200,800,3200,12 800,51 200}. The empirical frequencies are based on 1000
replications for each sample size and distribution. The true convex p.m.f.’s, p1, p2, p3, p4, p5 and p6 have
1 and 2, 3, 4, 6 and 9 interior knots respectively. See text for the exact expressions of those p.m.f.’s

n p1 p2 p3 p4 p5 p6

50 73.9 44.8 4.2 0.0 0.0 0.0
200 96.8 82.8 14.5 2.1 0.3 0.0
800 100 99.5 47.3 9.0 3.7 0.0

3200 100 100 84.1 31.4 32.4 4.3
12 800 100 100 99.1 66.3 71.2 33.1
51 200 100 100 100 92.8 95.9 88.5

weak limit using the algorithm described in Section 4.1. Define now

Dn,M,M ′ = sup
0≤j≤S+1

∥∥F̂(j)
n,M − F

(j)

M ′
∥∥∞.

We will use this random variable to assess the established convergence. This is based on
the fact that it is expected to become small for large n. Since the “target” distributions are
F

(j)

M ′ , j = 0, . . . , S + 1, we choose M ′ > M . Also, we store those obtained empirical distribu-
tions and reuse them while sampling many times from the estimation error. This enables us to
obtain independent realizations from F̂

(j)
n,M while F(j)

M ′ , j = 0, . . . , S +1 are fixed. To visualize the
statistical summary of Dn,M,M ′ , the obtained outcomes are represented in the form of boxplots.

Those were based on 100 replications of F̂(j)
n,M, j = 0, . . . , S + 1. Here, M = 1000, M ′ = 5000

and n ∈ {50,100,500,1000,5000,10 000,50 000}. In the simulations, we have taken the follow-
ing true convex p.m.f.’s which are all supported on {0, . . . ,10}:

• The triangular p.m.f. p0 given by p0(i) = (11 − i)+/66 for i ∈ N.
• The convex p.m.f.’s p1,p2,p3,p4,p5,p6 considered above in Section 4.2.
• The p.m.f., p7, of a truncated Geometric p.m.f. with success probability equal to 1/2, given

by p7(i) = (1 − 2−11)−12−(i+1) for i ∈ {0, . . . ,10} and p7(i) = 0 otherwise.

Note that if a geometric p.m.f. is always convex on N, this is not the case anymore after
truncation. Indeed, convexity of the latter version holds true if and only if the waiting probability
is ≤ 1/2. A simple proof of this fact can be found in Section 5.

Lemma 4.2. Let S be a positive integer and q ∈ (0,1). The truncated Geometric distribution,
defined by

p(i) = qi(1 − q)

1 − qS+1
, i ∈ {0, . . . , S}

and p(i) = 0 for all integers i ≥ S + 1, is convex if and anly if q ≤ 1/2.
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Figure 3. Boxplots of Dn,M,M ′ with M = 1000 and M ′ = 5000. The sample size n is as indicated and the
true convex p.m.f. is p0 on the left figure, and p1 on the right figure. See text for details.

To compute the uniform distance between F̂
(j)
n,M and F

(j)

M ′ , we computed the maximal value of
the absolute difference on a discretized grid {−4,−3.99, . . . ,3.99,4} with a regular step equal
to 0.01. The boxplots shown in Figures 3–6 give support to the asymptotic theory of the estima-
tion error of the LSE in case the true p.m.f. is one of the selected convex p.m.f.’s p0,p1, . . . , p7.
Interestingly, weak convergence seems not to happen at the same speed. For the triangular p.m.f.
p0, the boxplots appear to stabilize for n ≥ 1000 whereas the obtained boxplots for the other
distributions seem to indicate that convergence has not been yet attained. According to our nu-

Figure 4. Boxplots of Dn,M,M ′ with M = 1000 and M ′ = 5000. The sample size n is as indicated and the
true convex p.m.f. is p2 on the left figure, and p3 on the right figure. See text for details.
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Figure 5. Boxplots of Dn,M,M ′ with M = 1000 and M ′ = 5000. The sample size n is as indicated and the
true convex p.m.f. is p4 on the left figure, and p5 on the right figure. See text for details.

merical findings in Section 4.2, large sample sizes could be required for the estimator to be able
to capture these knots. Thus, the slow convergence to the true limit for pi,1 ≤ i ≤ 7 could be
partially explained by the fact that those p.m.f.’s have all interior knots, as opposed the relatively
fast convergence in the case of the triangular p.m.f. p0 which has none. We would like to note
that all points in {1, . . . ,10} are interior knots of the truncated geometric p.m.f. p7 since it is
strictly convex of its support. Hence, it is the p.m.f. with the largest number of interior knots

Figure 6. Boxplots of Dn,M,M ′ with M = 1000 and M ′ = 5000. The sample size n is as indicated and the
true convex p.m.f. is p6 on the left figure, and the truncated geometric, p7, with success probability equal
to 1/2. See text for details.
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and also the one for which the convergence seems to be the slowest. Also, the limit ĝ reduces
in this particular case to W. Indeed, the empirical p.m.f. pn is convex for large sample sizes
(see Proposition 2.4) so that p̂n = pn, and hence

√
n(p̂n − p7) has the same limit distribution

W as
√

n(pn − p7). Another way of viewing this is to note that the required convexity of the
minimizer ĝ between the knots becomes a superfluous constraint since it is always satisfied by
the straight line connecting W at two given knots. This is true only in this case because all knots
are consecutive.

We would like to finish this section by adding that it is of course impossible to have a precise
statement about the speed of convergence in case the true convex p.m.f. is known to be finitely
supported. However, our numerical findings indicate that in applications such as construction of
asymptotic confidence bands, one has to keep in mind that moderate sample sizes may not be
enough to obtain good coverage. Finally, note that in our assessment we have assumed that the
distribution of ĝ is continuous. We believe this is true but we do not intend to prove it here as it
is beyond the scope of this work.

4.4. Assessing how well the weak limit is estimated

We finish this numerical section by a small simulation study which aims at assessing how well
the weak limit is estimated using out Theorem 3.3 above. Choosing the appropriate sequence
(vn)n among the infinitely many possibilities is not an easy task. One can easily see that if

√
nvn

converges too quickly or too slowly to ∞, then one may need very big sample sizes to be able to
finally observe knots at all or to extract the true knots from the total set of knots of the estimator
(we know that this set will include random ones). To see how the theory works in practice, we
have carried out a simulation study with the four different convex p.m.f.’s, p0, p1, p2 and p3,
which were already defined above. We recall that these p.m.f.’s are all supported on {0,1, . . . ,10}
and have 0, 1, 2 and 3 interior knots respectively. To assess how well the (true) weak limit is
estimated, we have computed the maximal value of the uniform distance between the marginal
empirical distribution functions of the estimated weak limit as defined in Theorem 3.3 and that
of the true weak limit based on M = 1000 and M ′ = 5000 replications, respectively. As in the
section above, the uniform distance was approximated by computing the maximal value of the
absolute difference on a discretized grid {−4,−3.99, . . . ,3.99,4} with a regular step equal to
0.01. The sequence vn was chosen to be equal to vn = √

log(log(n))/n. The other choices we
have tried include log(n)/

√
n,

√
log(n)/n, log(log(n))/

√
n and all of them performed worse

that the selected vn in the sense that larger samples sizes were needed before good convergence
to the true weak limit was observed. Based on 100 replications and for each sample size n ∈
{500,1000,5000,10 000,50 000}, we have computed the boxplots of the approximated uniform
distance between the empirical distributions. The results are shown in Figure 7 for the considered
p.m.f.’s pi, i = 0,1,2,3. As expected, bigger sample sizes are needed to observe convergence to
the true weak limit for p.m.f.’s with larger number of knots. It remains to know how the sequence
(vn)n, which somehow plays a role similar to bandwidth in the context of kernel estimation,
should be chosen. Ideally, such a choice should be data-based, but we do not tackle this question
in this present work and leave it to a future investigation.
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Figure 7. Boxplots of the maximal value between the marginal empirical distribution functions of the true
and estimated weak limit with vn = √

log(log(n))/n, see text for further details. The sample size n is as
indicated. The boxplots are based on 100 replications. The top ones correspond to the true convex p.m.f.’s
p0 (left) and p1 (right) and the bottom ones to p2 (left) and p3 (right).

5. Proofs

Proof of Proposition 2.2. Assume we observe only X1 > 0. We will show that the likelihood is
maximized at a triangular p.m.f. To see this, define the function f (x) = 2(x − X1)/(x(x + 1))

for x ∈ (X1,∞). Then, the first derivative of f is given by f ′(x) = 2g(x)/(x2(x + 1)2) where
g(x) = −x2 + 2xX1 + X1. The function g is strictly concave on R with g(X1 + 1) > 0 and
g(x) → −∞ as x → ∞. This means that there exists a unique x0 ∈ (X1 + 1,∞) such that
g(x0) = 0, g(x) > 0 for all x ∈ (X1 + 1, x0) and g(x) < 0 for all x ∈ (x0,∞). Hence, f achieves
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its maximum over (X1 + 1,∞) at the unique point x0. This in turn implies that there exists
an integer j0 ≥ X1 + 1 such that f (j0) ≥ f (j) for all integers j ≥ X1 + 1. Now, consider an
arbitrary convex p.m.f. p on N and recall that p admits the mixture representation (4.1) where
Tj is the triangular distribution defined by (2.7), 0 ≤ πj ≤ 1 and

∑
j≥1 πj = 1. Since

Tj (X1) =
{

0, for j ≤ X1,
f (j), for j ≥ X1 + 1,

where f was defined above, we conclude that for all convex p.m.f. p on N, we have

Tj0(X1) ≥
∑
j≥1

πjTj (X1) = p(X1). (5.1)

Note now that in the case of a single observation X1, the log-likelihood criterion reduces to

�1(p) = log
(
p(X1)

)
. (5.2)

Combining the identities in (5.1) and (5.2) ensures existence of the MLE. Furthermore, the cal-
culations above imply that there exists some integer j0 ≥ X1 + 1 such that Tj0 is a solution.
However, we shall see that it is not the only one when X1 > 1.

To be able to exhibit an explicit value of j0, we seek integers j ≥ X1 + 1 such that

�1(Tj+1) − �1(Tj ) ≤ 0 and �1(Tj ) − �1(Tj−1) ≥ 0

or equivalently (using again (5.2) and monotonicity of the logarithm), such that

Tj+1(X1) − Tj (X1) ≤ 0 and Tj (X1) − Tj−1(X1) ≥ 0.

This is in turn equivalent to

j (j + 1 − X1) ≤ (j + 2)(j − X1) and (j − 1)(j − X1) ≥ (j + 1)(j − 1 − X1)

for j ≥ X1 + 1. These conditions are fulfilled if and only if 2X1 ≤ j ≤ 2X1 + 1 with j ≥ X1 + 1.
This implies that j0 ∈ {2X1,2X1 + 1} ∩ [X1 + 1,∞) where we recall that j0 is such that �1(p)

achieves its maximum over all convex p.m.f.’s p on N at Tj0 . Note that if j0 = X1 + 1, then we
necessarily have X1 = 1 (since X1 = 0 was excluded). In this case, j0 = 2X1 = 2. If X1 > 1,
then j0 > X1 + 1 and the above calculations imply that j0 ∈ {2X1,2X1 + 1}. In this case, one
can easily verify that

�1(T2X1) = �1(T2X1+1) = − log(2X1 + 1),

which is the maximal value of the log-likelihood. This also implies that the same maximal value
is attained at any mixture πT2X1 + (1 − π)T2X1+1 with π ∈ (0,1), giving rise to an infinite
numbers of solutions.
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We now prove that the LSE (which uniquely exists by strict convexity of the �2 norm) takes
the form Tj for some j . The least squares criterion defined for one observation X1 is

�1(Tj ) = 1

2

j−1∑
i=0

Tj (i)
2 − Tj (X1) + 1

2

= 2j + 1

3j (j + 1)
− 2(j − X1)+

j (j + 1)
+ 1

2
.

It follows from Theorem 1 in [8] that the greatest support point of the LSE is greater than or
equal X1. Since the greatest support point of Tj is j − 1, we restrict attention to integers j ≥
X1 + 1 such that the following conditions hold

�1(Tj+1) − �1(Tj ) ≥ 0 and �1(Tj ) − �1(Tj−1) ≤ 0. (5.3)

A straightforward calculation shows that

�1(Tj+1) − �1(Tj ) = 4j − 2 − 12X1

3j (j + 1)(j + 2)
and �1(Tj ) − �1(Tj−1) = 4j − 6 − 12X1

3j (j − 1)(j + 1)
.

Then, conditions in (5.3) hold if and only if

4j − 2 − 12X1 ≥ 0 and 4j − 6 − 12X1 ≤ 0,

which is equivalent to 1
2 + 3X1 ≤ j ≤ 3

2 + 3X1 with j ∈ N. Then the unique integer j ≥ X1 + 1
satisfying (5.3) is 3X1 + 1. Now, using the notation in (2.4) and (2.5), we have for all i ≥ 0 and
j ≥ 1

Fpn(i) =
{

0, if i < X1,
1, if i ≥ X1;

Hpn(i) =
{

0, if i < X1 + 1,
i − X1, if i ≥ X1 + 1;

and

FTj
(i) =

⎧⎨⎩
(2j − 1)i − i2 + 2j

j (j + 1)
, if i ≤ j − 1,

1, if i ≥ j ;

HTj
(i) =

⎧⎪⎪⎨⎪⎪⎩
i(i − 1)

6j (j + 1)

(
6j − 2i − 2 + 12j

i − 1

)
, if i ≤ j ,

1

3
(2j + 1) + (i − j), if i ≥ j + 1.

It is not difficult to check that HTj
(j) = Hpn(j) if and only if j = 3X1 + 1. Moreover, we

have HT3X1+1(i) ≥ Hpn(i) for all i ≥ 0. The later holds because Hpn(i) = 0 for i < X1 + 1,
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HT3X1+1(i) = Hpn(i) for all integers i such that i > 3X1 + 1 and the inequality also holds
for X1 + 1 ≤ i ≤ 3X1 + 1 since the sequence h(i) = HT3X1+1(i) − Hpn(i) decreases on set
{X1 + 1, . . . ,3X1 + 1} with h(3X1 + 1) = 0. Since j is the only knot of Tj , it then follows from
the characterization of the LSE proved in Proposition 2.1 that the LSE is equal to T3X1+1. �

Proof of Proposition 2.3. For all sequences q , we have that ‖q‖2 ≤ ‖q‖1/2∞ ‖q‖1/2
1 whence

‖pn − p0‖2 ≤ ‖pn − p0‖1/2∞ ‖pn − p0‖1/2
1

≤ ‖pn − p0‖1/2∞ → 0

almost surely by the Glivenko–Cantelli theorem. Now, for all sequences q and r ∈ [2,∞], one
has ‖q‖r ≤ ‖q‖2, so it follows from Theorem 4 of [8] that

‖p̂n − p0‖r ≤ ‖p̂n − p0‖2

≤ ‖pn − p0‖2 → 0, a.s.

which completes the proof. �

Proof of Theorem 2.5. Theorem 6 of [8] implies (2.8). Let {0, . . . , S} denote again the support
of p0. Since p̂n is a proper p.m.f., it follows from Proposition 2.6 that Fp̂n(z) − Fp0(z) = 0 for
z ≥ S + 1. Hence, for all z ∈ N we have that

√
n
∣∣Fp̂n(z) − Fp0(z)

∣∣ ≤ √
n

z∧S∑
x=0

∣∣p̂n(x) − p0(x)
∣∣

≤ (S + 1)
√

n‖p̂n − p0‖∞ = Op(1).

Also, the definition of Hp̂n and Hp0 and Proposition 2.6 imply that for all z ∈ N

√
n
∣∣Hp̂n(z) − Hp0(z)

∣∣ ≤ √
n

z∧(S+1)−1∑
x=0

∣∣Fp̂n(x) − Fp0(x)
∣∣

≤ (S + 1)2√n‖p̂n − p0‖∞ = Op(1)

and the result follows. �

Proof of Proposition 2.6. First, note that the maximal point of the support of the empirical p.m.f.
pn is X(n) = max1≤i≤n Xi , and that with probability one, X(n) = S provided that n is sufficiently
large. Now, by Theorem 1 of [8] we know that p̂n admits a finite support whose maximal point
ŝn ≥ X(n). Therefore, with probability one we have ŝn ≥ S for n large enough. We show now by
contradiction that with probability one there exists n∗ such that if n ≥ n∗ then ŝn ∈ {S,S + 1}.
Suppose that ŝn ≥ S + 2. By Proposition 1 of [8] we know that with probability one there exists
n0 such that for n ≥ n0, p̂n has to be linear on the set {S − 1, S, S + 1, . . . , ŝn}. But S + 1 is a
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knot of p0 which implies by Proposition 2.4 above that with probability one there exits n∗ ≥ n0
such that for n ≥ n∗, S + 1 is also a knot of p̂n. This yields a contradiction. �

Proof of Theorem 3.1. First, note that C(K) is a non-empty closed convex cone of RS+2, so
there exists a unique minimizer of � over C(K).

Now suppose that ĝ is the minimizer of � over C(K). Let x ∈ {1, . . . , S + 2}. Then, for ε > 0
the function k �→ ĝ(k) + εTx(k), where Tx(k) = (x − k)+, is clearly in C(K). Hence,

0 ≤ lim
ε↘0

�(ĝ + εTx) − �(ĝ)

ε

=
S+1∑
k=0

ĝ(k)Tx(k) −
S+1∑
k=0

W(k)Tx(k).

Recall that Ĝ is the function defined by (3.6) for k ∈ {0, . . . , S + 1}, and W is given in (3.1).
Setting Ĝ(−1) = 0 for notational convenience, and noting that Fp0(−1) = 0 implies that with
probability one, U(Fp0(−1)) = 0, we can rewrite the last inequality as

0 ≤
S+1∑
k=0

{
Ĝ(k) − Ĝ(k − 1)

}
(x − k)+ −

S+1∑
k=0

{
U

(
Fp0(k)

) −U
(
Fp0(k − 1)

)}
(x − k)+

=
S∑

k=0

Ĝ(k)
(
(x − k)+ − (

x − (k + 1)
)
+
) + Ĝ(S + 1)(x − S − 1)+

−
S∑

k=0

U
(
Fp0(k)

)(
(x − k)+ − (

x − (k + 1)
)
+
) −U

(
Fp0(S + 1)

)
(x − S − 1)+

=
x−1∑
k=0

Ĝ(k) −
x−1∑
k=0

U
(
Fp0(k)

)
,

where the last inequality follows from the fact that

(x − k)+ − (x − k − 1)+ =
{

1, if k ≤ x − 1,
0, if k ≥ x,

together with the fact that (x − S − 1)+ = 0 for x ∈ {1, . . . , S + 1}, and (x − S − 1)+ = 1 for
x = S + 2. Thus with probability one,

Ĥ(x) =
x−1∑
k=0

Ĝ(k) ≥
x−1∑
k=0

U
(
Fp0(k)

) =H(x)

for all x ∈ {1, . . . , S + 2}. Note that at x = 0, equality of Ĥ and H is guaranteed by the chosen
convention. Proof of equality in case �ĝ(x) > 0 uses the fact that the perturbation function Tx
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satisfies that ĝ + εTx is in C(K) for |ε| small enough yielding

lim
ε→0

1

ε

(
�(ĝ + εTx) − �(ĝ)

) = 0.

We also have equality of Ĥ and H at the points in K ∪ {S + 1, S + 2} since at these points there
is no constraint.

Therefore, if ĝ is the minimizer of �, we have shown that the process Ĥ defined on {0, . . . , S +
2} as in (3.4) satisfies (3.5). Conversely, consider ĝ ∈ C(K) such that the process Ĥ in (3.4)
satisfies (3.5). Let g ∈ C(K). We will show now that �(g) ≥ �(ĝ). We have

�(g) − �(ĝ) = 1

2

S+1∑
k=0

(
g(k) − ĝ(k)

)2 +
S+1∑
k=0

(
g(k) − ĝ(k)

)(
ĝ(k) −W(k)

)

≥
S+1∑
k=0

(
g(k) − ĝ(k)

)(
ĝ(k) −W(k)

)

=
S+1∑
k=0

(
g(k) − ĝ(k)

)(
D̂(k) − D̂(k − 1)

)
,

where D̂(k) = Ĝ(k) −U(Fp0(k)). Now, similar as above, for all x ∈ {1, . . . , S + 2} we have

S+1∑
k=0

(
D̂(k) − D̂(k − 1)

)
(x − k)+ =

x−1∑
k=0

D̂(k)

(5.4)
= Ĥ(x) −H(x) ≥ 0,

with equality if �ĝ(x) > 0, or a point in K∪ {0, S + 1, S + 2}. To conclude, we will use the fact
that an arbitrary element g ∈ C(K) can be written as

g(k) = α +
m+1∑
j=1

cj (sj − k)+ +
m+1∑
j=1

Jj∑
i=1

cj,i(zj,i − k)+ (5.5)

for all k = 0, . . . , S + 1, with s1 < · · · < sm the interior knots of p0, sm+1 = S + 1, zj,1, . . . , zj,Jj

the knots of g in {sj−1 + 1, . . . , sj − 1} for j = 1, . . . ,m + 1, and where α, c1, c2, . . . , cm+1
are real numbers, and cj,i > 0 for j = 1, . . . ,m + 1 and i = 1, . . . , Jj . This comes from the
fact that any finite convex sequence p = {p(0), . . . , p(K)} for some K > 0, admits the (spline)
representation

p(k) = a + γ1(s1 − k)+ + · · · + γp(sp − k)+ + γp+1(K − k)+, (5.6)

where a is a real number, γi > 0 and 0 < s1 < · · · < sp < K are the interior knots of p. Using
the spline representation in (5.5) together with (5.4), where we recall that we have an equality



On asymptotics of the discrete convex LSE of a p.m.f. 1473

for x = s1, . . . , sm+1, it follows that

S+1∑
k=0

(
D̂(k) − D̂(k − 1)

)
g(k)

= αD̂(S + 1) +
m+1∑
j=1

Jj∑
i=1

cj,i

S+1∑
k=0

(
D̂(k) − D̂(k − 1)

)
(zj,i − k)+

≥ αD̂(S + 1),

where in the last inequality we used the fact that cj,i ≥ 0 for all j, i. Now, the boundary conditions
Ĥ(S + 1) =H(S + 1) and Ĥ(S + 2) =H(S + 2) in (3.5) imply that

D̂(S + 1) = Ĝ(S + 1) −U
(
Fp0(S + 1)

)
= Ĥ(S + 2) − Ĥ(S + 1) −U

(
Fp0(S + 1)

)
= H(S + 2) −H(S + 1) −U

(
Fp0(S + 1)

) = 0.

We arrive at

S+1∑
k=0

(
D̂(k) − D̂(k − 1)

)
g(k) ≥ 0

and similarly, since we have an equality in (5.4) if �ĝ(x) > 0,

S+1∑
k=0

(
D̂(k) − D̂(k − 1)

)
ĝ(k) = 0.

It follows that �(g) ≥ �(ĝ) and that ĝ is the minimizer of �. �

Proof of Theorem 3.2. For z ∈ N define

Yn(z) =:
z−1∑
k=0

√
n
(
Fpn(k) − Fp0(k)

) =
z−1∑
k=0

Un

(
Fp0(k)

)
,

Ŷn(z) =:
z−1∑
k=0

√
n
(
Fp̂n(k) − Fp0(k)

)
,

and recall that H is given by (3.3) with Yn(0) = Ŷn(0) = H(0) = 0. It follows from the charac-
terization of p̂n in (2.6) that

Ŷn(x)

{≥ Yn(x), for x ∈ {0, . . . , S + 2},
=Yn(x), if x ∈ {0, . . . , S + 2} is a knot of p̂n. (5.7)
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By standard results on weak convergence of empirical processes, we have the joint convergence

Yn(x)→
d
H(x), for x ∈ {0, . . . , S + 2}.

Now, Theorem 2.5 implies that there exists a subsequence {Ŷn′ }n′ which weakly converges to
some L on {0, . . . , S + 2}. In what follows, we will use the Skorokhod representation to assume
that convergences of {Ŷn′ }n′ and {Yn′ }n′ to their respective limits happen almost surely. The goal
now is to show that L and Ĥ, defined in Theorem 3.1 above, are equal with probability one. Let
us define

g̃(x) := L(x + 1) +L(x − 1) − 2L(x)

for x ∈ {0, . . . , S + 1} with L(−1) = 0. Note that we have that

L(S + 2) = L(S + 1) =H(S + 1) =H(S + 2). (5.8)

Indeed, it follows from Proposition 2.6 that p̂n is a p.m.f. whose support is included in {0, . . . ,

S +1} with probability one, for sufficiently large n. This implies that Fp̂n(S +1) = Fp0(S +1) =
1 and therefore, Ŷn(S +2) = Ŷn(S +1). Similarly, Yn(S +2) =Yn(S +1) with probability one.
Now, S + 1 is a knot of p0 so it follows from Proposition 2.4 that S + 1 is also a knot of p̂n with
probability one, for n sufficiently large. Hence, by (5.7) we have Ŷn(S + 1) = Yn(S + 1). We
conclude that with probability one and n large enough,

Ŷn(S + 2) = Ŷn(S + 1) =Yn(S + 1) =Yn(S + 2),

and the claim follows by passing n′ → ∞. Hence, with probability one we have that

L(x)

{≥ H(x), for x ∈ {0, . . . , S + 2},
=H(x), if x ∈K ∪ {0, S + 1, S + 2} or �g̃(x) > 0.

Equality of L and H at points in K∪{0, S +1, S +2} in the last assertion follows from the chosen
convention at 0, Proposition 2.4 together with the equalities Ŷn′(x) =Yn′(x) with probability one
and n′ large enough for x ∈ K, and the identity in (5.8) for S + 1 and S + 2. Equality of L and
H at points x ∈ {1, . . . , S} \ K with �g̃(x) > 0 follows from the fact that x is a knot of p̂n′ in
{s + 1, . . . , s′ − 1}, with s and s′ being two successive knots of p0, if and only if it is a knot of√

n′(p̂n′ − p0) using linearity of p0 between two successive knots. Thus, if x is a knot of g̃, then
as soon as n′ is large enough x is also a knot of

z �→ Ŷn′(z + 1) + Ŷn′(z − 1) − 2Ŷn′(z) = √
n′(p̂n′(z) − p0(z)

)
.

This in turn implies that Ŷn′(x) = Yn′(x) implying after passing to the limit that L(x) = H(x)

almost surely. Furthermore, g̃ is clearly in C(K).
Therefore, it follows from Theorem 3.1 that g̃ must be equal to the minimizer of � defined

in (3.2). Thus, there exists a version of ĝ such that

ĝ(x) = L(x + 1) +L(x − 1) − 2L(x) = Ĥ(x + 1) + Ĥ(x − 1) − 2Ĥ(x)
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for x ∈ {0, . . . , S + 1}. Put � = Ĥ − L. Then, for x ∈ {0, . . . , S + 1}, we have that �(x + 1) =
2�(x) − �(x − 1). But �(−1) = �(0) = 0 since L(−1) = Ĥ(−1) = 0 and L(0) = Ĥ(0) = 0.
We conclude by induction that � = 0, that is Ĥ = L, on {0, . . . , S + 2}. Now, from an arbitrary
subsequence n′ we can extract a further subsequence n′′ along which Ŷn′′ and Yn′′ weakly con-
verge jointly to Ĥ and H. Since the limit is the same for any such subsequence, we conclude that
Ŷn and Yn weakly converge jointly to Ĥ and H on {0, . . . , S + 2}. This in turn implies that the
following convergences

√
n(Hp̂n − Hp0) ⇒ Ĥ,

√
n(Fp̂n − Fp0) ⇒ Ĝ

and
√

n(p̂n − p0) ⇒ ĝ occur jointly, and the proof is complete. �

Proof of Theorem 3.3. Let Kn be the set of all points x ∈ {1, . . . , S} that satisfy �p̂n(x) > vn.
Let ε = minx∈K �p0(x). Since K is the set of all interior knots of p0, we have ε > 0 whenever
K �=∅. We will now prove that limn→∞ P(Kn �=K) = 0. To this end, note that

P(Kn �=K) ≤ P(there exists x ∈ K such that x /∈Kn)
(5.9)

+ P(there exists x ∈ Kn such that x /∈ K),

whence it suffices to show that both probabilities on the right-hand side tend to zero.
Consider the first probability. If there exists x ∈ K such that x /∈Kn, then K is not empty, and it

follows from the definition of ε and Kn that �p̂n(x) ≤ vn and �p0(x) ≥ ε. Since limn→∞ vn =
0, this means that

�p̂n(x) − �p0(x) ≤ −ε/2

for n sufficiently large. Hence, the first probability is bounded from above by

P
(
there exists x ∈ {1, . . . , S} such that �p̂n(x) − �p0(x) ≤ −ε/2

)
(5.10)

for n sufficiently large. However, it follows from Theorem 3.2 that �p̂n(x) − �p0(x) =
Op(n−1/2) for all x ∈ {1, . . . , S} and therefore, the probability in (5.10) converges to zero, im-
plying that the first probability on the right-hand side of (5.9) converges to zero as n → ∞.

Next, consider the second probability on the right side of (5.9). If there exists x ∈ Kn such that
x /∈ K, then �p̂n(x) > vn and �p0(x) = 0. Since limn→∞

√
nvn = ∞, we can find N ∈ N such

that for a given A > 0 we have that
√

nvn > A for all n ≥ N . This in turn implies that
√

n
(
�p̂n(x) − �p0(x)

)
> A

for all n ≥ N . Fix η > 0. Applying again Theorem 3.2, we can choose A sufficiently large so that

P(there exists x ∈ Kn such that x /∈ K)

≤ P
(
there exists x ∈ {1, . . . , S} such that

√
n
(
�p̂n(x) − �p0(x)

)
> A

)
< η

for all n ≥ N . Since η was arbitrary, this implies that the second probability on the right hand
side of (5.9) converges to 0 and that limn→∞ P(Kn �=K) = 0.
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On the other hand, Sn = S with probability converging to 1. Hence, we can assume without
loss of generality that Sn = S and Kn = K. In this case, we also have Cn = C(K) and ĝn is
precisely the minimizer of

1

2

S+1∑
k=0

(
g(k) − gn(k)

)2

over C(K), which means that ĝn is the convex projection of gn on the non-empty closed convex
set C(K) in R

S+2.
Now, assume that X1, . . . ,Xn are the first n terms of a sequence (Xi)i∈N of i.i.d. random

variables, and let G be a standard Gaussian vector with dimension S + 2, which is independent
of (Xi)i∈N. Conditionally on (X1, . . . ,Xn), the random vector (gn(0), . . . , gn(S + 1)) has the
same distribution as

�
1/2
n G.

Moreover, with � being the (S + 2) × (S + 2) matrix with component (i + 1, j + 1) equal to
p0(i)(1−p0(i)) for all i = j and −p0(i)p0(j) for all i �= j , with i, j = 0, . . . , S +1, the random
vector (W(0), . . . ,W(S + 1)) has the same distribution as

�1/2G.

In the sequel, we assume without loss of generality that (gn(0), . . . , gn(S + 1)) = �
1/2
n G and

(W(0), . . . ,W(S + 1)) = �1/2G. Thus in particular, W and gn are defined on the same probabil-
ity space. From what precedes, ĝn is the convex projection of gn on the non-empty closed convex
set C(K) in R

S+2 whereas ĝ was defined to be the convex projection of W on the same set C(K)

in R
S+2. Using that the metric projection is Lipschitz, we conclude that

S+1∑
k=0

(
ĝ(k) − ĝn(k)

)2 ≤
S+1∑
k=0

(
W(k) − gn(k)

)2
.

From the Cauchy–Schwarz inequality, it follows that

S+1∑
k=0

(
ĝ(k) − ĝn(k)

)2 ≤
S+2∑
i=1

S+2∑
j=1

(
�

1/2
n,i,j − �

1/2
i,j

)2 ×
S+2∑
k=1

G2
k, (5.11)

where �n,i,j , �i,j and Gk , respectively denote the component (i, j) of �n, the component (i, j)

of �, and the component k of G. But pn almost surely converges to p0 on {0, . . . , S + 2}, so �n

converges to � conditionally on (Xi)i∈N, with probability one. This means that the right-hand
side in (5.11) converges to zero conditionally on (Xi)i∈N, with probability one. As this implies
that the left hand side converges to zero as well, this proves that ĝn converges in distribution to
ĝ conditionally on (Xi)i∈N, which completes the proof of Theorem 3.3. �

Proof of Theorem 3.6. Existence and uniqueness of the minimizer both follow from the pro-
jection theorem on closed convex cones in R

s+1. With similar arguments as for the proof of
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Theorem 3.1 and using that s ∈K, it can be shown that an arbitrary element ĝ≤s ∈ C≤s(K) is the
minimizer if and only if the process Ĥ≤s defined on {0, . . . , s + 1} by

Ĥ
≤s(x) =

x−1∑
k=0

k∑
j=0

ĝ≤s(j),

if x ∈ {1, . . . , s + 1} and Ĥ
≤s(0) = 0 satisfies

Ĥ
≤s(x) ≥H(x)

for all x ∈ {0, . . . , s + 1}, with an equality if x ∈ K ∪ {0, s + 1} or x ∈ {1, . . . , s − 1} satisfies
�ĝ≤s(x) > 0. Consider the restriction ĝ≤s = (ĝ(0), . . . , ĝ(s)) of ĝ to {0, . . . , s}. A point x ∈
{1, . . . , s − 1} is a knot of ĝ≤s if, and only if, it is a knot of ĝ. Therefore, it immediately follows
from the characterization of ĝ given in Theorem 3.1 that the minimizer of �≤s over C≤s is equal
to ĝ≤s if, and only if, Ĥ(s +1) =H(s +1). Since we already have Ĥ(s) =H(s), this is equivalent
to

Ĥ(s + 1) − Ĥ(s) =H(s + 1) −H(s),

that is (3.9).
To prove the last assertion, note that from Theorem 3.2, it follows that

√
n(p̂n(0) −

p0(0), . . . , p̂n(s) − p0(s)) converges in distribution to (ĝ(0), . . . , ĝ(s)) as n → ∞. Thus, it
converges in distribution to the minimizer of �≤s over C≤s(K) if, and only if, (3.9) holds true
with probability one. On the other hand, from Theorem 3.2, one also has

√
n

(
Fp̂n − Fp0

Fpn − Fp0

)
⇒

(
Ĝ

Un(Fp0)

)
(5.12)

as n → ∞. Therefore, one can have (3.9) with probability one if, and only if,

√
n
((

Fp̂n(s) − Fp0(s)
) − (

Fpn(s) − Fp0(s)
))

converges in probability to zero as n → ∞. This is equivalent to (3.10), so the proof of the
theorem is complete. �

Proof of Theorem 3.7. Existence and uniqueness of the minimizer both follow from the pro-
jection theorem on closed convex cones in R

S−s . With similar arguments as for the proof of
Theorem 3.1, it can be shown that an arbitrary element ĝ≥s ∈ C≥s(K) is the minimizer if and
only if the process Ĥ≥s defined on {s, . . . , S + 2} by

Ĥ
≥s(x) =

x−1∑
k=s

k∑
j=s

ĝ≥s(j),

if x ∈ {s + 1, . . . , S + 2} and Ĥ
≥s(s) = 0 satisfies Ĥ≥s(x) ≥ H≥s(x) for all x ∈ {s, . . . , S + 2},

with an equality if x ∈ K ∪ {0, S + 1, S + 2} or x ∈ {1, . . . , S} satisfies �ĝ≥s(x) > 0, where
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H
≥s(s) = 0 and

H
≥s(x) =

x−1∑
k=s

k∑
j=s

W(j)

for all x ∈ {s + 1, . . . , S + 2}. The connection between H and H
≥s is as follows. For all x ∈

{s, . . . , S + 2} one has

H(x) =
s−1∑
k=0

k∑
j=0

W(j) +
x−1∑
k=s

s−1∑
j=0

W(j) +H
≥s(x)

= H(s) + (x − s)
(
H(s) −H(s − 1)

) +H
≥s(x).

Similarly,

Ĥ(x) = Ĥ(s) + (x − s)
(
Ĥ(s) − Ĥ(s − 1)

) + Ĥ
≥s(x)

for all x ∈ {s, . . . , S + 2}, so that

Ĥ
≥s(x) −H

≥s(x) = Ĥ(x) −H(x) + (x − s)
(
Ĥ(s − 1) −H(s − 1)

)
, (5.13)

using that Ĥ(s) =H(s).
Consider ĝ≥s = (ĝ(s), . . . , ĝ(S + 1)). A point x ∈ {s + 1, . . . , S} is a knot of ĝ≥s if, and

only if, it is a knot of ĝ. Therefore, it immediately follows from the characterization of ĝ

given in Theorem 3.1, together with (5.13), that the minimizer of �≥s over C≥s(K) is equal to
(ĝ(s), . . . , ĝ(S + 1)) if, and only if, Ĥ(s − 1) = H(s − 1). Since we already have Ĥ(s) = H(s),
this is equivalent to

Ĥ(s) − Ĥ(s − 1) =H(s) −H(s − 1),

that is (3.11).
To prove the last assertion, note that from Theorem 3.2, it follows that

√
n(p̂n(s) −

p0(s), . . . , p̂n(S + 1) − p0(S + 1)) converges in distribution to (ĝ(s), . . . , ĝ(S + 1)) as n → ∞.
Thus, it converges in distribution to the minimizer of �≥s over C≥s(K) if, and only if, (3.11)
holds true with probability one. According to (5.12), this happens if, and only if,

√
n
((

Fp̂n(s − 1) − Fp0(s − 1)
) − (

Fpn(s − 1) − Fp0(s − 1)
))

converges in probability to zero as n → ∞. This is equivalent to (3.12), so the proof of the
theorem is complete. �

Proof of Lemma 4.2. We have �p(k) ≥ 0 for all k < S by convexity of the function k �→ qk . We
also have �p(k) ≥ 0 for all integers k > S + 1 since for those k, �p(k) = 0. Now, �p(S + 1) =
p(S) ≥ 0, and

�p(S) = qS−1(1 − q)

1 − qS+1
(1 − 2q),
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which is ≥0 if, and only if, q ≤ 1/2. We conclude that �p(k) ≥ 0 for all k ∈ N if, and only if,
q ≤ 1/2. �
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