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This paper is concerned with tests for changes in the jump behaviour of a time-continuous process. Based
on results on weak convergence of a sequential empirical tail integral process, asymptotics of certain test
statistics for breaks in the jump measure of an Itô semimartingale are constructed. Whenever limiting dis-
tributions depend in a complicated way on the unknown jump measure, empirical quantiles are obtained
using a multiplier bootstrap scheme. An extensive simulation study shows a good performance of our tests
in finite samples.
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1. Introduction

Recent years have witnessed a growing interest in statistical tools for high-frequency observa-
tions of time-continuous processes. With a view on finance, the seminal paper by [9] suggests
to model such a process using an Itô semimartingale, say X, which is why most research has
focused on the estimation of (or on tests concerned with) its characteristics. Particular interest
has been paid to integrated volatility or the entire quadratic variation, mostly adapting parametric
procedures based on normal distributions, as the continuous martingale part of an Itô semimartin-
gale is nothing but a time-changed Brownian motion. For an overview on methods in this field
see the recent monographs by [14] and [3].

Still less popular is inference on the jump behaviour only, even though empirical research
shows a strong evidence supporting the presence of a jump component within X; see, for exam-
ple, [2] or [1]. In this work, we will address the question whether the jump behaviour of X is
time-invariant. Corresponding tests, commonly referred to as change point tests, are well known
in the framework of discrete time series, but have recently also been extended to time-continuous
processes; see, for example, [19] on changes in the drift or [12] on changes in the volatility
function of X. However, to the best of our knowledge, no procedures are available for detecting
breaks in the jump component.
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Suppose that we observe an Itô semimartingale X which admits a decomposition of the form

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs +

∫ t

0

∫
R

u1{|u|≤1}(μ − μ̄)(ds, du)

(1.1)

+
∫ t

0

∫
R

u1{|u|>1}μ(du,dz),

where W is a standard Brownian motion, μ is a Poisson random measure on R+ × R, and
the predictable compensator μ̄ satisfies μ̄(ds, du) = dsνs(du). It is well known from standard
literature (see, for instance, [15]) that in this setup∫ t

0

∫
R

(
1 ∧ |u|2)νs(du)ds < ∞

holds for each t ≥ 0.
Now, we assume that we have data from the process in a high-frequency setup. Precisely, at

stage n ∈N, we are able to observe realizations of the process X at the equidistant times i�n for
i = 1, . . . , n, where the mesh �n → 0, while n�n → ∞. In this situation we want to test the null
hypothesis that the jump behaviour of the process is the same for all n observations, that is, there
exists some measure ν such that νt (dz) = ν(dz) for all t , against alternatives involving the non-
constancy of νt . For instance, one might consider an alternative consisting of one break point,
that is, there exists some θ0 ∈ (0,1) and two Lévy measures ν1, ν2 such that the process giving
the first �nθ0	 observations has Lévy measure ν1 and the remaining n − �nθ0	 observations are
coming from a process with Lévy measure ν2.

For z > 0, set I(z) := [z,∞), whereas for z < 0 set I(z) := (−∞, z]. Let U(z) := ν(I(z))

denote the tail integral (or spectral measure; see [23]) associated with ν, which determines the
jump measure uniquely. For �1, �2 ∈ {1, . . . , n} such that �1 < �2, define

U�1:�2(z) := 1

(�2 − �1 + 1)�n

�2∑
j=�1

1{�n
j X∈I(z)}

(
z ∈R \ {0}),

with �n
jX := Xj�n − X(j−1)�n , which serves as an empirical tail integral based on the incre-

ments �n
�1

X, . . . ,�n
�2

X. If X is a Lévy process with a Lévy measure ν not changing in time, [10]
illustrated that U1:n(z) is a suitable estimator for the tail integral U(z) in the sense that, under
regularity conditions, U1:n(z) is L2-consistent for U(z). Such a result can be shown to hold for
processes with time-varying drift and volatility as well. Hence, following the approach in [13], it
is likely that we can base tests for H0 on suitable functionals of the process

Dn(θ, z) := U1:�nθ	(z) − U(�nθ	+1):n(z),

where θ ∈ [0,1] and z ∈ R \ {0}. Under the null hypothesis, this expression can be expected to
converge to 0 for all θ ∈ [0,1] and z ∈ R \ {0}, whereas under alternatives, for instance, those
involving a change at θ0 as described before, Dn(θ0, z) should converge to an expression which
is non-zero.
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More precisely, we will consider the following standardized version of Dn, namely

Tn(θ, z) := √
n�nλn(θ)

{
U1:�nθ	(z) − U(�nθ	+1):n(z)

}
(1.2)

for θ ∈ [0,1] and z ∈ R \ {0}, where λn(θ) = �nθ	
n

n−�nθ	
n

. An appropriate functional allowing to
test the hypothesis of a constant Lévy measure is for instance given by a Kolmogorov–Smirnov
statistic of the form

T (ε)
n := sup

θ∈[0,1]
sup
|z|≥ε

∣∣Tn(θ, z)
∣∣, ε > 0. (1.3)

The null hypothesis of no change in the Lévy measure is rejected for large values of T
(ε)
n . The

restriction to jumps larger than ε is important, since there might be infinitely many of arbitrary
small size.

The limiting distribution of the previously mentioned test statistic will turn out to depend in
a complicated way on the unknown Lévy measure ν. Therefore, corresponding quantiles are not
easily accessible and must be obtained by suitable bootstrap approximations. Following related
ideas for detecting breaks within multivariate empirical distribution functions [13], we opt for
using empirical counterparts based on a multiplier bootstrap scheme, frequently also referred to
as wild or weighted bootstrap. The approach essentially consists of multiplying each indicator
within the respective empirical tail integrals with an additional, independent and standardized
multiplier. The underlying empirical process theory is for instance summarized in the mono-
graph [18].

The remaining part of this paper is organized as follows: the derivation of a functional weak
convergence result for the process Tn under the null hypothesis is the content of Section 2. The
asymptotic properties of T

(ε)
n can then easily be derived from the continuous mapping theorem.

Section 3 is concerned with the approximation of the limiting distribution using the previously
described multiplier bootstrap scheme. In Section 4, we discuss the formal derivation of sev-
eral tests for a time-homogeneous jump behaviour, whereas an extensive simulation study is
presented in Section 5. All proofs are deferred to the Appendix.

2. Functional weak convergence of the sequential empirical tail
integral

In this section, we derive a functional weak convergence result for the process Tn defined in (1.2)
under the null hypothesis. More precisely, for any fixed ε > 0, we will show weak convergence in
the metric space �∞(Aε) of all real-valued bounded functions on Aε equipped with the sup-norm,
where Aε := [0,1] × Mε with Mε := (−∞,−ε] ∪ [ε,∞). Throughout this work, we denote by
‖f ‖M the sup-norm of a real-valued function f defined on a set M .

The following regularity conditions will be imposed on the underlying Itô semimartingale X

with representation (1.1) and on the sampling scheme, respectively.

Condition 2.1. (a) The drift bt and the volatility σt are predictable processes and there exists
a non-negative random variable S on the underlying probability space with ESp < ∞ for some
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p > 2 such that, for P-almost every ω ∈ 
,

sup
t≥0

{∣∣bt (ω)
∣∣ + ∣∣σt (ω)

∣∣} ≤ S(ω).

(b) There exists some Lévy measure ν such that νt ≡ ν for all t ≥ 0.
(c) ν is absolutely continuous with respect to the Lebesgue measure. Its density h = dν/dλ,

called Lévy density, is continuously differentiable in every point z ∈ R \ {0} with derivative h′
and satisfies, for any ε > 0,

sup
|z|≥ε

{∣∣h(z)
∣∣ + ∣∣h′(z)

∣∣} < ∞.

(d) The observation scheme satisfies

�n → 0, n�n → ∞ and n�1+τ
n → 0, (2.1)

where τ = (p − 2)/(p + 1) ∈ (0,1) with p > 2 from Condition 2.1(a).

Remark 2.2 (Lévy processes and processes with independent increments). If bt and σt are de-
terministic and bounded functions, the process X has independent increments and condition (2.1)
can be weakened to

�n → 0, n�n → ∞ and n�3
n → 0. (2.2)

The details are not worked out for the sake of brevity but they can be found in a former version
of this article on arXiv; see [5]. In particular, condition (2.2) is sufficient in the important case of
Lévy processes, where drift and volatility are constant.

The limiting behaviour of the process Tn can mainly be deduced from the next theorem, which
is a result for weak convergence of a sequential empirical tail integral process. For θ ∈ [0,1] and
z ∈ R \ {0} set

Un(θ, z) := �nθ	
n

U1:�nθ	(z) = 1

kn

�nθ	∑
j=1

1{�n
j X∈I(z)}, (2.3)

where kn := n�n, and denote its standardized version by

Gn(θ, z) := √
kn

{
Un(θ, z) −EUn(θ, z)

}
. (2.4)

Obviously, the sample paths of Un(θ, z) are elements of �∞(Aε).

Theorem 2.3. Suppose the assumptions of Condition 2.1 are satisfied. Then, for any ε > 0,
Gn �G in (�∞(Aε),‖ · ‖Aε ), where G is a tight mean zero Gaussian process with covariance

H(θ1, z1; θ2, z2) := E
[
G(θ1, z1)G(θ2, z2)

] = (θ1 ∧ θ2) × ν
(
I(z1) ∩ I(z2)

)
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for (θ1, z1), (θ2, z2) ∈ Aε . The sample paths of G are almost surely uniformly continuous on Aε

with respect to the semimetric

ρ(θ1, z1; θ2, z2) := {
(θ1 ∧ θ2)ν

(
I(z1)�I(z2)

) + |θ1 − θ2|ν
(
I(zL(θ1,θ2))

)}1/2

with L(θ1, θ2) := 1 + 1{θ1≤θ2} and where � denotes the symmetric difference of two sets. More-
over (Aε,ρ) is totally bounded.

Note that we have centered Un(θ, z) around its expectation in (2.4). In most applications,
however, we are interested in estimating functionals of the jump measure, for which the next
lemma is essential. By a standard approximation argument, it is sufficient for our purposes to
have the lemma for Lévy processes. In that case, similar statements can be found in [11], with
slightly stronger assumptions on h, and in [7] in the bivariate case. As the proof is essentially the
same up to minor modifications, it is not carried out explicitly for the sake of brevity.

Lemma 2.4. Let X be a Lévy process with characteristic triplet (b, σ, ν) and with the jump
measure ν satisfying Condition 2.1(c). Let further δ > 0 be fixed. Then there exists a constant
K = K(δ) > 0 such that, for all |z| ≥ δ and all t ≥ 0,∣∣P(

Xt ∈ I(z)
) − tν

(
I(z)

)∣∣ ≤ Kt2.

We are now in a position to consider the process

G̃n(θ, z) := √
kn

{
Un(θ, z) − θν

(
I(z)

)}
.

As an immediate consequence of the previous two results, we obtain the following sequential
generalization of Theorem 4.2 of [7].

Corollary 2.5. Suppose the assumptions of Condition 2.1 are satisfied. Then, for any ε > 0,
G̃n �G in (�∞(Aε),‖ · ‖Aε), where G denotes the Gaussian process from Theorem 2.3.

A further consequence of Theorem 2.3 is the desired weak convergence of the process Tn,
which was defined in (1.2), under the null hypothesis.

Theorem 2.6. Suppose the assumptions of Condition 2.1 are satisfied. Then, for any ε > 0, the
process Tn defined in (1.2) converges weakly to T in (�∞(Aε),‖ · ‖Aε), where

T(θ, z) =G(θ, z) − θG(1, z)

for (θ, z) ∈ Aε . T is a tight mean zero Gaussian process with covariance function

Ĥ (θ1, z1; θ2, z2) := E
{
T(θ1, z1)T(θ2, z2)

} = {
(θ1 ∧ θ2) − θ1θ2

}
ν
(
I(z1) ∩ I(z2)

)
.

Using the continuous mapping theorem, we are now able to derive the weak convergence
of various statistics allowing for the detection of breaks in the jump behaviour. The following
corollary treats the statistic T

(ε)
n defined in (1.3).
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Corollary 2.7. Under Condition 2.1 we have, for each ε > 0,

T (ε)
n � T (ε) := sup

0≤θ≤1
sup
|z|≥ε

∣∣T(θ, z)
∣∣.

The covariance function of the limiting process in Theorem 2.6 depends on the Lévy measure
of the underlying process, which is usually unknown in applications. If one only wants to detect
changes in the tail integral of the Lévy measure at a fixed point z0 ∈ R \ {0}, the following
proposition deals with the simple transformation

V(z0)
n (θ) := Tn(θ, z0)√

U1:n(z0)
1{U1:n(z0)>0}

of Tn which yields a pivotal limiting distribution.

Proposition 2.8. Suppose Condition 2.1 is satisfied and let z0 ∈ R \ {0} be a real number with
ν(I(z0)) > 0. Then, V(z0)

n � B in �∞([0,1]), where B denotes a standard Brownian bridge. As
a consequence,

V (z0)
n := sup

θ∈[0,1]

∣∣V(z0)
n (θ)

∣∣ � sup
θ∈[0,1]

∣∣B(θ)
∣∣.

Remark 2.9. We have derived the previous results under somewhat simplified assumptions on
the observation scheme in order to keep the presentation rather simple. A more realistic setting
could involve additional microstructure noise effects or might rely on non-equidistant data. In
both cases, standard techniques still yield similar results.

For example, in case of noisy observations, [25] has shown that a particular de-noising tech-
nique allows for virtually the same results on weak convergence as for the plain Un(θ, z) in
the case without noise. For non-equidistant data, the limiting covariance functions H and Ĥ in
general depend on the sampling scheme. The latter effect is well known from high-frequency
statistics in the case of volatility estimation; see, for example, [21].

3. Bootstrap approximations for the sequential empirical tail
integral

We have seen in Theorem 2.6 that the distribution of the limit T of the process Tn depends in a
complicated way on the unknown Lévy measure of the underlying process. However, we need
the quantiles of T or at least good approximations for them to obtain a feasible test procedure.
Typically, one uses resampling methods to solve this problem.

Probably the most natural way to do so is to use U1:n(z) in order to obtain an estimator ν̂n for
the Lévy measure first, and to draw a large number of independent samples of an Itô semimartin-
gale with Lévy measure ν̂n then, possibly with estimates for drift and volatility as well. Based on
each sample, one might then compute the test statistic Tn, and by doing so one obtains empirical
quantiles for T.

However, from a computational side, such a method is computationally expensive since one
has to generate independent Itô semimartingales for each stage within the bootstrap algorithm.
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Therefore, we have decided to work with an alternative bootstrap method based on multipliers,
where one only needs to generate n i.i.d. random variables with mean zero and variance one (see
also [13], who used a similar approach in the context of empirical processes).

Precisely, the situation now is as follows: The bootstrapped processes, say Ŷn = Ŷn(X1, . . . ,

Xn, ξ1, . . . , ξn), will depend on some random variables X1, . . . ,Xn and on some random weights
ξ1, . . . , ξn. The X1, . . . ,Xn, that we consider as collected data, are defined on a probabil-
ity space (
X,AX,PX). The random weights ξ1, . . . , ξn are defined on a distinct probability
space (
ξ ,Aξ ,Pξ ). Thus, the bootstrapped processes live on the product space (
,A,P) :=
(
X,AX,PX) ⊗ (
ξ ,Aξ ,Pξ ). The following notion of conditional weak convergence will be
essential. It can be found in [18] on pages 19–20.

Definition 3.1. Let Ŷn = Ŷn(X1, . . . ,Xn; ξ1, . . . , ξn): (
,A,P) → D be a (bootstrapped) ele-
ment in some metric space D depending on some random variables X1, . . . ,Xn and some random
weights ξ1, . . . , ξn. Moreover, let Y be a tight, Borel measurable map into D. Then Ŷn converges
weakly to Y conditional on the data X1,X2, . . . in probability, notationally Ŷn �ξ Y , if and
only if:

(a) supf ∈BL1(D) |Eξ f (Ŷn) −Ef (Y )| P∗→ 0,

(b) Eξ f (Ŷn)
∗ −Eξ f (Ŷn)∗

P→ 0 for all f ∈ BL1(D).

Here, Eξ denotes the conditional expectation over the weights ξ given the data X1, . . . ,Xn,
whereas BL1(D) is the space of all real-valued Lipschitz continuous functions f on D with sup-
norm ‖f ‖∞ ≤ 1 and Lipschitz constant 1. Moreover, f (Ŷn)

∗ and f (Ŷn)∗ denote a minimal mea-
surable majorant and a maximal measurable minorant with respect to the joint data (including
the weights ξ ), respectively.

Remark 3.2. (i) Note that we do not use a measurable majorant or minorant in item (a) of the
definition. This is justified through the fact that, in this work, all expressions f (Ŷn), with a
bootstrapped statistic Ŷn and a Lipschitz continuous function f , are measurable functions of the
random weights.

(ii) Note that the implication “(ii) ⇒ (i)” in the proof of Theorem 2.9.6 in [24] shows that,
in general, conditional weak convergence �ξ implies unconditional weak convergence � with
respect to the product measure P.

Throughout this paper, we denote by

Ĝn = Ĝn(θ, z) = Ĝn(X�n, . . . ,Xn�n, ξ1, . . . , ξn; θ, z)

the bootstrap approximation which is defined by

Ĝn(θ, z) := 1

n
√

kn

�nθ	∑
j=1

n∑
i=1

ξj {1{�n
j X∈I(z)} − 1{�n

i X∈I(z)}}

= 1√
kn

�nθ	∑
j=1

ξj

{
1{�n

j X∈I(z)} − ηn(z)
}
,
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where ηn(z) = n−1 ∑n
i=1 1{�n

i X∈I(z)}. The following theorem establishes conditional weak con-
vergence of this bootstrap approximation for the sequential empirical tail integral process Gn.

Theorem 3.3. Let Condition 2.1 be satisfied and suppose that (ξj )j∈N are independent and iden-
tically distributed random variables with mean 0 and variance 1, defined on a distinct probability
space as described above. Then, for any ε > 0,

Ĝn �ξ G

in (�∞(Aε),‖ · ‖Aε), where G denotes the limiting process of Theorem 2.3.

Theorem 3.3 suggests to define the following bootstrapped counterparts of the process Tn

defined in equation (1.2):

T̂n(θ, z) := T̂n(X�n, . . . ,Xn�n; ξ1, . . . , ξn; θ, z) := Ĝn(θ, z) − �nθ	
n

Ĝn(1, z)

= √
n�n

�nθ	
n

n − �nθ	
n

[
1

�nθ	�n

�nθ	∑
j=1

ξj

{
1{�n

j X∈I(z)} − ηn(z)
}

− 1

(n − �nθ	)�n

n∑
j=�nθ	+1

ξj

{
1{�n

j X∈I(z)} − ηn(z)
}]

,

The following result establishes consistency of Tn in the sense of Definition 3.1.

Theorem 3.4. Under Condition 2.1, for any ε > 0, we have

T̂n �ξ T

in (�∞(Aε),‖ · ‖Aε), with T defined in Theorem 2.6.

The distribution of the limit of the Kolmogorov–Smirnov-type test statistic T
(ε)
n defined

in (1.3) can be approximated by the bootstrap statistics investigated in the following corollary,
which is a simple consequence of Proposition 10.7 in [18].

Corollary 3.5. Under Condition 2.1 we have, for each ε > 0,

T̂ (ε)
n := sup

0≤θ≤1
sup
|z|≥ε

∣∣T̂n(θ, z)
∣∣ �ξ sup

0≤θ≤1
sup
|z|≥ε

∣∣T(θ, z)
∣∣ =: T (ε).
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4. The testing procedures

4.1. Hypotheses

In order to derive a test procedure which utilizes the results on weak convergence from the
previous two sections, we have to formulate our hypotheses first. Under the null hypothesis, the
jump behaviour of the process is constant. More precisely, this means the following:

H0: We observe an Itô semimartingale as in equation (1.1) with a characteristic triplet
(bt , σt , ν) that satisfies Condition 2.1.

We want to test this hypothesis versus the alternative that there is exactly one change in the jump
behaviour. This means in detail:

H1: There exists some θ0 ∈ (0,1) and two Lévy measures ν1 �= ν2 satisfying Condition 2.1(c)
such that, at stage n, we observe an Itô semimartingale X = X(n) with characteristic
triplet (b

(n)
t , σ

(n)
t , ν

(n)
t ) such that

ν
(n)
t = 1{t<�nθ0	�n}ν1 + 1{t≥�nθ0	�n}ν2.

Furthermore, b
(n)
t and σ

(n)
t satisfy Condition 2.1(a) with a bound S which is uniform in

n ∈ N and t ≥ 0. Moreover, the observation scheme satisfies Condition 2.1(d).

The corresponding alternative for a fixed z0 ∈ R \ {0} is then given through:

H(z0)
1 : We have the situation from H1, but with ν1(I(z0)) �= ν2(I(z0)).

4.2. The tests and their asymptotic properties

In the sequel, let B ∈ N be some large number and let (ξ (b))b=1,...,B denote independent vectors
of i.i.d. random variables, ξ (b) := (ξ

(b)
j )j=1,...,n, with mean zero and variance one. As before,

we assume that these random variables are generated independently from the original data. We
denote by T̂n,ξ(b) or T̂

(ε)

n,ξ (b) the particular statistics calculated with respect to the data and the bth

bootstrap multipliers ξ
(b)
1 , . . . , ξ

(b)
n . For a given level α ∈ (0,1), we consider the following test

procedures:

KSCP-Test 1. Reject H0 in favor of H(z0)
1 if V

(z0)
n ≥ qK

1−α , where V
(z0)
n is defined in Propo-

sition 2.8 and where qK
1−α denotes the 1 − α quantile of the Kolmogorov–Smirnov-

(KS-)distribution, that is the distribution of K = sups∈[0,1] |B(s)| with a standard Brownian
bridge B.

KSCP-Test 2. Reject H0 in favor of H(z0)
1 if

W(z0)
n := sup

θ∈[0,1]

∣∣Tn(θ, z0)
∣∣ ≥ q̂

(B)
1−α

(
W(z0)

n

)
,
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where q̂
(B)
1−α(W

(z0)
n ) denotes the (1 − α)-sample quantile of Ŵ

(z0)

n,ξ (1) , . . . , Ŵ
(z0)

n,ξ (B) , and where

Ŵ
(z0)

n,ξ (b) := supθ∈[0,1] |T̂n,ξ(b) (θ, z0)|.
CP-Test. Choose an appropriate small ε > 0 and reject H0 in favor of H1, if

T (ε)
n ≥ q̂

(B)
1−α

(
T (ε)

n

)
,

where q̂
(B)
1−α(T

(ε)
n ) denotes the (1 − α)-sample quantile of T̂

(ε)

n,ξ (1) , . . . , T̂
(ε)

n,ξ (B) .

Since ε > 0 has to be chosen prior to an application of the CP-Test, we can only detect changes
in the jumps larger than ε. From a theoretical point of view this is not entirely satisfactory,
since one is interested in distinguishing arbitrary jump measures. On the other hand, in most
applications only the larger jumps are of particular interest, and at least the size of �n provides
a natural bound to disentangle jumps from volatility. Thus, a practitioner can choose a minimum
jump size ε first, and use the CP-Test to decide whether there is a change in the jumps larger
than ε.

The following proposition shows that the three aforementioned tests keep the asymptotic level
α under the null hypothesis.

Proposition 4.1. Under H0, KSCP-Test 1, KSCP-Test 2 and CP-Test have asymptotic level α in
the sense that, for all α ∈ (0,1),

lim
n→∞P

(
V (z0)

n ≥ qK
1−α

) = α, lim
B→∞ lim

n→∞P
{
W(z0)

n ≥ q̂
(B)
1−α

(
W(z0)

n

)} = α,

for all z0 ∈R \ {0} with ν(I(z0)) > 0, and

lim
B→∞ lim

n→∞P
{
T (ε)

n ≥ q̂
(B)
1−α

(
T (ε)

n

)} = α,

for all ε > 0 such that ν((−∞,−ε] ∪ [ε,∞)) > 0.

The next proposition shows that the preceding tests are consistent under the fixed alternatives
defined in Section 4.1. For the sake of brevity, we only consider alternatives involving one change
point, even though such a result can be extended to a known number of multiple breaks by
essentially the same proofs. We also suspect that continuous changes can be detected, but the
theory becomes substantially more complicated then.

Proposition 4.2. KSCP-Test 1, KSCP-Test 2 and CP-Test are consistent in the following sense:
under H(z0)

1 , for all α ∈ (0,1) and all B ∈N, we have

lim
n→∞P

(
V (z0)

n ≥ qK
1−α

) = 1 and lim
n→∞P

(
W(z0)

n ≥ q̂
(B)
1−α

(
W(z0)

n

)) = 1.

Under H1, there exists an ε > 0 such that, for all α ∈ (0,1) and all B ∈N,

lim
n→∞P

(
T (ε)

n ≥ q̂
(B)
1−α

(
T (ε)

n

)) = 1.
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4.3. Locating the change point

Let us finally discuss how to construct suitable estimators for the location of the change point.
Again, we concentrate on the detection of a single change point. Multiple change points can be
detected using a standard binary segmentation algorithm dating back to [26]. We begin with a
useful proposition.

Proposition 4.3. Fix ε > 0. Then, under H1, (θ, z) �→ k
−1/2
n Tn(θ, z) converges in (�∞(Aε),

‖ · ‖Aε ) to the function

T (θ, z) :=
{

θ(1 − θ0)
{
ν1(z) − ν2(z)

}
, if θ ≤ θ0,

θ0(1 − θ)
{
ν1(z) − ν2(z)

}
, if θ ≥ θ0,

in outer probability, with ν1(z) := ν1(I(z)) and ν2(z) := ν2(I(z)).

Since θ �→ T (θ, z) attains its maximum in θ0, natural estimators for the position of the change
point are therefore given by

θ̂ (ε)
n := arg max

θ∈[0,1]
sup
|z|≥ε

∣∣Tn(θ, z)
∣∣

for the test problem H0 versus H1 and by

θ̃ (z0)
n := arg max

θ∈[0,1]

∣∣Tn(θ, z0)
∣∣

in the setup H0 versus H(z0)
1 . Both estimators are consistent.

Proposition 4.4. If H1 is true, there exists an ε > 0 such that θ̂
(ε)
n = θ0 + oP(1) as n → ∞. In

the special case of H(z0)
1 , we have θ̃

(z0)
n = θ0 + oP(1).

5. Finite-sample performance

In this section, we present results of a large scale Monte Carlo simulation study, assessing the
finite-sample performance of the proposed test statistics for detecting breaks in the Lévy measure.
Moreover, under the alternative of one single break, we show results on the performance of the
estimator for the break point from Section 4.3.

The experimental design of the study is as follows.

• We consider five different choices for the number of trading days, namely kn =
50,75,100,150,250, and corresponding frequencies �−1

n = 450,300,225,150,90. Note
that n = kn�

−1
n = 22,500 for any of these choices.

• We consider two different models for the drift and the volatility: either, we set bt = σt ≡
0 or bt = σt ≡ 1, resulting in a pure jump process and a process including a continuous
component, respectively.
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• We consider a one parametric model for the tail integral, namely

Uβ(z) = νβ

(
I(z)

) =

⎧⎪⎨
⎪⎩

(
β

πz

)1/2

, if z > 0,

0, if z < 0,

β > 0 (5.1)

(which yields a 1/2-stable subordinator in the case of bt = σt ≡ 0). For the parameter β ,
we consider 51 different choices, that is β = 1 + 2j/25, with j ∈ 0, . . . ,50, ranging from
β = 1 to β = 5.

• We consider models with one single break in the tail integral at 50 different break points,
ranging from θ0 = 0 to θ0 = 0.98 (note that θ0 = 0 corresponds to the null hypothesis).
The tail integrals before and after the break point are chosen from the previous parametric
model.

The target values of our study are, on the one hand, the empirical rejection level of the tests
and, on the other hand, the empirical distribution of the estimators for the change point θ0. To as-
sess these target values, any combination of the previously described settings was run 1000 times,
with the bootstrap tests being based on B = 250 bootstrap replications. The Itô semimartingales
were simulated by a straight-forward modification of Algorithm 6.13 in [8], where, under alter-
natives involving one break point, we simply merged two paths of independent semimartingales
together.

The simulation results under these settings are partially reported in Tables 1 and 2 (for the
null hypothesis) and in Figures 1–4 (for various alternatives). More precisely, Tables 1 and 2
contain simulated rejection rates under the null hypothesis for various values of kn and z0 in
the KSCP-Tests, for the pure jump subordinator (Table 1) and for the process involving a con-
tinuous component (Table 2). For the CP-Tests, the suprema over z ∈ (−∞,−ε] ∪ [ε,∞) were
approximated by taking a maximum over a finite grid M of positive numbers, since the simulated

Table 1. Test procedures under H0. Simulated relative frequency of rejections in the application of the
KSCP-Test 1, the KSCP-Test 2 and the CP-Test, using 1000 pure jump subordinator data vectors under the
null hypothesis

kn CP-Test Pointwise tests z0 = 0.1 z0 = 0.15 z0 = 0.25 z0 = 1 z0 = 2

50 0.06 KSCP-Test 1 0.048 0.056 0.047 0.035 0.033
KSCP-Test 2 0.060 0.067 0.060 0.050 0.048

75 0.054 KSCP-Test 1 0.034 0.044 0.045 0.041 0.046
KSCP-Test 2 0.045 0.059 0.061 0.058 0.060

100 0.06 KSCP-Test 1 0.047 0.044 0.042 0.044 0.042
KSCP-Test 2 0.060 0.056 0.058 0.062 0.056

150 0.06 KSCP-Test 1 0.049 0.056 0.049 0.040 0.042
KSCP-Test 2 0.065 0.064 0.065 0.059 0.061

250 0.07 KSCP-Test 1 0.046 0.042 0.046 0.055 0.050
KSCP-Test 2 0.054 0.048 0.059 0.072 0.060
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Table 2. Test procedures under H0. Simulated relative frequency of rejections in the application of the
KSCP-Test 1, the KSCP-Test 2 and the CP-Test, using 1000 subordinator data vectors plus a drift b = 1 and
plus a Brownian motion under H0

kn CP-Test Pointwise tests z0 = 2
√

�n z0 = 3.5
√

�n z0 = 6.5
√

�n z0 = 7
√

�n

50 0.049 KSCP-Test 1 0.032 0.036 0.035 0.031
KSCP-Test 2 0.049 0.051 0.049 0.050

75 0.050 KSCP-Test 1 0.042 0.039 0.039 0.032
KSCP-Test 2 0.050 0.057 0.051 0.053

100 0.051 KSCP-Test 1 0.039 0.040 0.037 0.038
KSCP-Test 2 0.051 0.054 0.049 0.057

150 0.057 KSCP-Test 1 0.038 0.045 0.034 0.039
KSCP-Test 2 0.057 0.057 0.053 0.052

250 0.049 KSCP-Test 1 0.031 0.035 0.042 0.030
KSCP-Test 2 0.049 0.048 0.053 0.042

processes had only positive jumps (see (5.1)): we used the grids M = {j · 0.05 | j = 1, . . . ,200}
in the pure jump case, resulting in ε = 0.05, and M = {(2 + j · 0.5)

√
�n | j = 0, . . . ,196} in

the case bt = σt ≡ 1, resulting in ε = 2
√

�n. In the latter case, we chose ε depending on
√

�n

since jumps of smaller size may be dominated by the Brownian component resulting in a loss of
efficiency of the CP-Test (see also the results in Figure 3 below). The results in the two tables
reveal a rather precise approximation of the nominal level of the tests (α = 5%) in all scenarios.
In general, KSCP-Test 1 turns out to be slightly more conservative than KSCP-Test 2.

Figure 1. Rejection rate of the CP-Test for pure jump subordinator data (on the left-hand side) and a
subordinator plus a drift and a Brownian motion (on the right-hand side). β changes from 1 to the factor of
jump size.
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Figure 2. Rejection rate of the CP-Test for pure jump subordinator data (left panel) and a subordinator with
a drift plus a Brownian motion (right panel) for different change point locations.

The results presented in Figure 1 consider the CP-Test for alternatives involving one fixed
break point at θ0 = 0.5 and a varying height of the jump size, as measured through the value
of β in (5.1). In contrast to the results in Tables 1 and 2, due to computational reasons, we
subsequently used smaller grids M = {j · 0.2 | j = 1, . . . ,20} for the case bt = σt ≡ 0, resulting
in ε = 0.2, and M = {j · 2.5 · √

�n | j = 1, . . . ,20} for the case bt = σt ≡ 1, resulting in ε =
2.5

√
�n. The left plot is based on the pure jump process (bt = σt ≡ 0), whereas the right one is

based on bt = σt ≡ 1. The dashed red line indicates the nominal level of α = 5%. We observe

Figure 3. Rejection rates of the KSCP-Test 1 and KSCP-Test 2 for different z0. Left panel: pure jump
subordinator, right panel: subordinator with a drift plus Brownian motion.
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Figure 4. Box plots for the estimators θ̃
(z0)
n and θ̂

(ε)
n based on a subordinator with a drift plus Brownian

motion and a change from β = 1 to β = 4 at θ0 = 0.5 (left panel) and θ0 = 0.75 (right panel). The first five
box plots in each panel correspond to five different choices of z0.

that the rejection rate of the test is increasing in β (as to be expected) and in kn. The latter can be
explained by the fact that kn represents the effective sample size (interpretable as the number of
trading days). Finally, the rejection rates turn out to be higher when no continuous component is
involved in the underlying semimartingale.

The graphics in Figure 2 show the rate of rejection of the CP-Test under alternatives involv-
ing one break point from β = 1 to β = 2.5 within the model in (5.1) for varying locations of
the change point θ0 ∈ (0,1). Again, the left and right plots correspond to bt = σt ≡ 0 and ≡ 1,
respectively. Additionally to the general conclusions drawn from the results in Figure 1, we ob-
serve that break points can be detected best if θ0 = 1/2, and that the rejection rates are symmetric
around that point.

Figure 3 shows the rejection rates of the KSCP-Test 1 and KSCP-Test 2, evaluated at different
points z0, for one fixed alternative model involving a single change from β = 1 to β = 2.5 at
the point θ0 = 1/2. The curves in the left plot are based on a pure jump process. We can see
that the rejection rates are decreasing in z0, explainable by the fact that there are only very
few large jumps both for β = 1 and for β = 2.5. In the right plot, involving drift and volatility
(bt = σt ≡ 1), we observe a maximal value of the rejection rates that is increasing in the number
of trading days, kn. For values of z0 smaller than this maximum, the contribution of the Brownian
component (an independent normally distributed term with variance �n within each increment
�n

jX) predominates the jumps of that size and results in a decrease of the rejection rate.

Finally, in Figure 4, we depict box plots for the estimators θ̃
(z0)
n and θ̂

(ε)
n of the change point

for certain values of z0 and for M as specified in the case of Tables 1 and 2. The results are based
on two models, involving a change in β from 1 to 4 at time point θ0 = 0.5 (left panel) and θ0 =
0.75 (right panel) for kn = 250 and �−1

n = 90, and with bt = σt ≡ 1. We observe a reasonable
approximation of the true value (indicated by the red line) with more accurate approximations for
θ0 = 0.5. For θ0 = 0.75, the distribution of the estimator is skewed, giving more weight to the left
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tail directing to θ0 = 0.5. This might be explained by the fact that the distribution of the argmax
absolute value of a tight-down stochastic process indexed by θ ∈ [0,1] gives very small weight
to the boundaries of the unit interval. Moreover, as for the results presented in the right plot of
Figure 3, the plots in Figure 4 reveal that the estimator θ̃

(z0)
n behaves best for an intermediate

choice of z0. Results for bt = σt ≡ 0 are not depicted for the sake of brevity, since they do not
transfer any additional insight.

Appendix

A.1. Proof of Theorem 2.3

Write Xt = Yt + Zt , where

Yt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs (A.1)

is the sum of the first three summands in representation (1.1) while Zt is a pure jump Lévy
process with characteristics (0,0, ν). Let G◦

n ∈ �∞(Aε) denote the process defined in (2.4), but
based on the increments �n

jZ = Zj�n − Z(j−1)�n instead of �n
jX.

First, we will show the claim of Theorem 2.3 for the processes G◦
n and afterwards we will

prove that ‖Gn −G◦
n‖Aε = oP(1) as n → ∞. This yields the assertion by Lemma 1.10.2 in [24].

Weak convergence of the process G◦
n can be deduced from Theorem 11.16 of [18]. Note that

G◦
n can be written as

G◦
n(θ, z) = 1√

kn

�nθ	∑
j=1

{
1{�n

j Z∈I(z)} − P
(
�n

jZ ∈ I(z)
)} =

n∑
j=1

{
fnj (ω; θ, z) −Efnj (·; θ, z)

}

with the triangular array {fnj (ω; θ, z) | n ≥ 1; j = 1, . . . , n; (θ, z) ∈ Aε} consisting of the pro-
cesses

fnj (θ, z) := fnj (ω; θ, z) := 1√
kn

1{j≤�nθ	}1{�n
j Z(ω)∈I(z)},

which are independent within rows. By Theorem 11.16 in [18], the assertion for G◦
n holds if the

following six conditions for {fnj } can be established:

(1) {fnj } is almost measurable Suslin (AMS);
(2) the {fnj } are manageable with envelopes {Fnj | n ∈N, j = 1, . . . , n} given through Fnj :=

k
−1/2
n 1{|�n

j Z|≥ε}, which are also independent within rows;
(3) H(θ1, z1; θ2, z2) = limn→∞ E{G◦

n(θ1, z1)G
◦
n(θ2, z2)} for all (θ1, z1), (θ2, z2) ∈ Aε;

(4) lim supn→∞
∑n

j=1 EF 2
nj < ∞;

(5) limn→∞
∑n

j=1 EF 2
nj1{Fnj >η} = 0 for all η > 0;
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(6) ρ(θ1, z1; θ2, z2) = limn→∞ ρn(θ1, z1; θ2, z2) for every (θ1, z1), (θ2, z2) ∈ Aε , where

ρn(θ1, z1; θ2, z2) :=
{

n∑
j=1

E
∣∣fnj (·; θ1, z1) − fnj (·; θ2, z2)

∣∣2

}1/2

.

Moreover, ρn(θ
(n)
1 , z

(n)
1 ; θ(n)

2 , z
(n)
2 ) → 0 for all sequences (θ

(n)
1 , z

(n)
1 )n∈N and

(θ
(n)
2 , z

(n)
2 )n∈N ⊂ Aε such that ρ(θ

(n)
1 , z

(n)
1 ; θ(n)

2 , z
(n)
2 ) → 0.

Proof of (1). By Lemma 11.15 in [18], the triangular array {fnj } is AMS provided it is separable,
i.e., provided for every n ∈ N, there exists a countable subset Sn ⊂ Aε , such that

P∗
(

sup
(θ1,z1)∈Aε

inf
(θ2,z2)∈Sn

n∑
j=1

{
fnj (ω; θ2, z2) − fnj (ω; θ1, z1)

}2
> 0

)
= 0.

Define Sn := (Q2 ∩ Aε) ∪ ((Q ∩ [0,1]) × {−ε}) ∪ ((Q ∩ [0,1]) × {ε}) for all n ∈ N. Then, for
every element ω of the underlying probability space and for every (θ1, z1) ∈ Aε , there exists a
(θ2, z2) ∈ Sn such that

n∑
j=1

{
fnj (ω; θ2, z2) − fnj (ω; θ1, z1)

}2 = 0.

Proof of (2). The {Fnj } are obviously independent within rows since Z is a Lévy process. There-
fore, according to Theorem 11.17 in [18], it suffices to prove that the triangular arrays{

f̃nj (ω; z) := k
−1/2
n 1{�n

j Z∈I(z)} | n ∈ N; j = 1, . . . , n; |z| ≥ ε
}
,

and {
g̃nj (ω; θ) := 1{j≤�nθ	} | n ∈N; j = 1, . . . , n; θ ∈ [0,1]}

are manageable with envelopes {F̃nj (ω) := k
−1/2
n 1{|�n

j Z|≥ε} | n ∈ N; j = 1, . . . , n} and

{G̃nj (ω) :≡ 1 | n ∈ N; j = 1, . . . , n}, respectively.
Concerning the first triangular array {f̃nj } define, for ω ∈ 
 and n ∈ N,

Fnω := {(
k
−1/2
n 1{�n

1Z(ω)∈I(z)}, . . . , k
−1/2
n 1{�n

nZ(ω)∈I(z)}
) | |z| ≥ ε

} ⊂Rn.

For any j1, j2 ∈ {1, . . . , n}, the projection pj1,j2(Fnω) of Fnω onto the j1th and the j2th coordi-
nate is an element of the set{{

(0,0)
}
,
{
(0,0),

(
k
−1/2
n ,0

)}
,
{
(0,0),

(
0, k

−1/2
n

)}
,{

(0,0),
(
k
−1/2
n , k

−1/2
n

)}
,
{
(0,0),

(
k
−1/2
n ,0

)
,
(
0, k

−1/2
n

)}
,{

(0,0),
(
k
−1/2
n ,0

)
,
(
k
−1/2
n k

−1/2
n

)}
,
{
(0,0),

(
0, k

−1/2
n

)
,
(
k
−1/2
n , k

−1/2
n

)}}
.
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Hence, for every t ∈ R2, no proper coordinate projection of Fnω can surround t in the sense of
Definition 4.2 of [22]. Thus, Fnω is a subset of Rn of pseudodimension at most 1 (Definition 4.3
in [22]). Additionally, Fnω is a bounded set, whence Corollary 4.10 in [22] yields the existence
of constants A and W , depending only on the pseudodimension, such that

D2
(
x
∥∥α � F̃n(ω)

∥∥
2, α �Fnω

) ≤ Ax−W =: λ(x),

for all 0 < x ≤ 1, for every rescaling vector α ∈ Rn with non-negative entries and for all
ω ∈ 
 and n ∈ N. Therein, ‖ · ‖2 denotes the Euclidean distance, D2 denotes the packing
number with respect to the Euclidean distance, � denotes coordinatewise multiplication and
F̃n(ω) := (F̃n1(ω), . . . , F̃nn(ω)) ∈ Rn is the vector of envelopes. Since

∫ 1
0

√
logλ(x)dx < ∞,

the triangular array {f̃nj } is indeed manageable with envelopes {F̃nj }.
Concerning the triangular array {g̃ni}, we proceed similar and consider the set

Gnω := {(
g̃n1(ω; θ), . . . , g̃nn(ω; θ)

) | θ ∈ [0,1]}
(A.2)

= {
(0, . . . ,0), (1,0, . . . ,0), (1,1,0, . . . ,0), . . . , (1, . . . ,1)

}
.

Then, for any j1, j2 ∈ {1, . . . , n}, the projection pj1,j2(Gnω) of Gnω onto the j1th and the j2th
coordinate is either {(0,0), (1,0), (1,1)} or {(0,0), (0,1), (1,1)}. Therefore, the same reasoning
as above shows that Gnω is a set of pseudodimension at most one, whence the triangular array
{g̃nj } is manageable with envelopes {G̃nj }.

Proof of (3). For any (θ1, z1), (θ2, z2) ∈ Aε , by independence of {fnj } within rows, we can
write

E
{
G◦

n(θ1, z1)G
◦
n(θ2, z2)

}
=

n∑
j=1

E
[{

fnj (ω; θ1, z1) −Efnj (·; θ1, z1)
}{

fnj (ω; θ2, z2) −Efnj (·; θ2, z2)
}]

(A.3)

= 1

kn

�n(θ1∧θ2)	∑
j=1

{
P
(
�n

jZ ∈ I(z1) ∩ I(z2)
) − P

(
�n

jZ ∈ I(z1)
)
P
(
�n

jZ ∈ I(z2)
)}

.

By Lemma 2.4, we have

P
(
�n

jZ ∈ I(z)
) = �nν

(
I(z)

) + O
(
�2

n

)
, n → ∞ (A.4)

for all |z| ≥ ε and all j = 1, . . . , n, whence the right-hand side of equation (A.3) can be written
as

�n(θ1 ∧ θ2)	
n

{
ν
(
I(z1) ∩ I(z2)

) + O(�n)
} = H(θ1, z1; θ2, z2) + o(1), n → ∞.
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Proof of (4). Recall that Mε = (−∞,−ε] ∪ [ε,∞). Again from (A.4), we have, as n → ∞,

n∑
j=1

EF 2
nj = 1

n�n

n∑
j=1

P
(∣∣�n

jZ
∣∣ ≥ ε

) = ν(Mε) + O(�n) → ν(Mε) < ∞.

Proof of (5). For η > 0 define N := min{n ∈N | k−1/2
m ≤ η for all m ≥ n}. Choose K = K(ε) as

in Lemma 2.4. Then we have

n∑
j=1

EF 2
nj1{Fnj >η} ≤

N∑
j=1

EF 2
nj = 1

n�n

N∑
j=1

P
(
�n

jZ ∈ Mε

)

≤ N

n

{
ν(Mε) + K�n

} → 0, n → ∞.

Proof of (6). For (θ1, z1), (θ2, z2) ∈ Aε , we can write

ρ2
n(θ1, z1; θ2, z2)

=
n∑

j=1

E
∣∣fnj (·; θ1, z1) − fnj (·; θ2, z2)

∣∣2

= 1

n�n

{�n(θ1∧θ2)	∑
j=1

P
(
�n

jZ ∈ I(z1)�I(z2)
) +

�n(θ1∨θ2)	∑
j=�n(θ1∧θ2)	+1

P
(
�n

jZ ∈ I(zL(θ1,θ2))
)}

= {
(θ1 ∧ θ2) + O

(
n−1)} × {

ν
(
I(z1)�I(z2)

) + O(�n)
}

+ {|θ1 − θ2| + O
(
n−1)} × {

ν
(
I(zL(θ1,θ2))

) + O(�n)
}

as n → ∞, where the O-terms are uniform in (θ1, z1), (θ2, z2) ∈ Aε for the same reason as in
equation (A.4). Thus, ρ2

n converges uniformly on each Aε ×Aε to ρ2. Consequently, for any two

sequences (θ
(n)
1 , z

(n)
1 )n∈N, (θ

(n)
2 , z

(n)
2 )n∈N ⊂ Aε such that ρ(θ

(n)
1 , z

(n)
1 ; θ(n)

2 , z
(n)
2 ) → 0, it follows

that ρn(θ
(n)
1 , z

(n)
1 ; θ(n)

2 , z
(n)
2 ) → 0.

Finally, ρ is a semimetric: applying first the triangle inequality in Rn and then the Minkowski
inequality, one sees that each ρn satisfies the triangle inequality. Thus the triangle inequality also
holds for ρ.

It remains to be shown that ‖Gn − G◦
n‖Aε = oP(1). Let U◦

n (θ, z) denote the quantity defined
in (2.3) based on the increments �n

jZ. Then

∥∥Gn −G◦
n

∥∥
Aε

≤ √
kn

∥∥Un − U◦
n

∥∥
Aε

+ √
kn

∥∥E∣∣Un − U◦
n

∣∣∥∥
Aε

, (A.5)

and it suffices to treat both terms separately.
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Let p > 2 and 0 < τ < 1 be the constants of Condition 2.1 and let vn := �
τ/2
n . Distinguishing

the cases |�n
jY | ≥ vn and |�n

jY | < vn, we get that

∣∣Un(θ, z) − U◦
n (θ, z)

∣∣ ≤ k−1
n

n∑
j=1

1{|�n
j Y |≥vn} + k−1

n

n∑
j=1

1{�n
j Z∈(z−vn,z+vn)}

≤ k−1
n

n∑
j=1

1{|�n
j Y |≥vn} + k−1

n

n∑
j=1

1{�n
j Z∈[z−vn,z+vn]} (A.6)

=: Sn1 + Sn2(z)

for any (θ, z) ∈ Aε . In the following, let K > 0 denote a generic constant whose value may
change from line to line. By Hölder’s inequality and the Burkholder–Davis–Gundy inequalities
(see, for instance, page 39 in [14]) we have, for each 1 ≤ j ≤ n,

E

∣∣∣∣
∫ j�n

(j−1)�n

bs ds

∣∣∣∣
p

≤ �
p
nE

(
1

�n

∫ j�n

(j−1)�n

|bs |p ds

)
≤ �

p
nESp ≤ K�

p
n

and

E

∣∣∣∣
∫ j�n

(j−1)�n

σs dWs

∣∣∣∣
p

≤ K�
p/2
n E

(
1

�n

∫ j�n

(j−1)�n

|σs |2 ds

)p/2

≤ K�
p/2
n ESp ≤ K�

p/2
n ,

where S is the bound on the coefficients in Condition 2.1(a). By Markov’s inequality and the
choice of τ in Condition 2.1(d), we get that

√
knESn1 ≤ Kk

−1/2
n n�

p/2−pτ/2
n = O

((
n�1+τ

n

)1/2) = o(1). (A.7)

Similarly, by Lemma 2.4 and Condition 2.1(c),

sup
|z|≥ε

√
knESn2(z) ≤ K

(
k
−1/2
n n�nvn + k

−1/2
n n�2

n

) = O
((

n�1+τ
n

)1/2) = o(1). (A.8)

Hence, by (A.6), the second summand on the right of (A.5) is o(1).
Consider the first summand on the right of (A.5). From the right-hand side of (A.6), we get

that

∥∥Un − U◦
n

∥∥
Aε

≤ Sn1 + sup
|z|≥ε

k
−1/2
n

∣∣G◦
n(1, z − vn) −G◦

n(1, z + vn)
∣∣ + sup

|z|≥ε

ESn2(z). (A.9)

This expression is oP(k
−1/2
n ) by the previous two displays and by Theorem 1.5.7 and its adden-

dum in [24], applied to the process G◦
n(1, ·). The latter converges weakly by the first part of this

proof. �
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A.2. Proof of Corollary 2.5

By Lemma 1.10.2(i) in [24] and the first part of the proof of Theorem 2.3, it suffices to show that
‖G◦

n − G̃n‖Aε = oP(1). Clearly, for any (θ, z) ∈ Aε ,∣∣G◦
n(θ, z) − G̃n(θ, z)

∣∣ ≤ √
kn

∣∣Un(θ, z) − U◦
n (θ, z)

∣∣ + √
kn

∣∣EU◦
n (θ, z) − θν

(
I(z)

)∣∣.
By (A.9) the first term on the right-hand side of the last equation is a uniform oP(1). For the
second term in the last display, choose K = K(ε) as in Lemma 2.4. Then√

kn

∣∣EU◦
n (θ, z) − θν

(
I(z)

)∣∣
≤ √

kn

∣∣∣∣∣1

n

�nθ	∑
j=1

{
�−1

n P
(
�n

jZ ∈ I(z)
) − ν

(
I(z)

)}∣∣∣∣∣ + √
knν

(
I(z)

)∣∣∣∣�nθ	
n

− θ

∣∣∣∣ (A.10)

≤ K
√

kn�n + ν(Mε)
√

�n/n → 0.

The convergence is uniform in (θ, z) ∈ Aε and this yields the assertion. �

A.3. Proof of Theorem 2.6

We use the extended continuous mapping theorem (Theorem 1.11.1 in [24]). For n ∈ N0, define
gn:�∞(Aε) → �∞(Aε) through

gn(f )(θ, z) = f (θ, z) − �nθ	
n

f (1, z) (n ∈ N), g0(f )(θ, z) = f (θ, z) − θf (1, z).

Note that gn is Lipschitz continuous for any n ∈ N0. Obviously, Tn = gn(Gn) + ETn for each
n ∈N and T = g0(G). We have

ETn(θ, z) = √
knλn(θ)

{
n

�nθ	EUn(θ, z) − n

n − �nθ	
[
EUn(1, z) −EUn(θ, z)

]}
.

Observing that (A.10) and (A.9) together with (A.7) as well as (A.8) imply that√
kn

∣∣EUn(θ, z) − θν
(
I(z)

)∣∣ → 0

in �∞(Aε), we can conclude that also ETn converges to 0 in �∞(Aε). Thus, by Slutsky’s theorem
([24], Example 1.4.7), it suffices to verify gn(Gn) � g0(G).

Due to Theorem 1.11.1 in [24] (note that G is separable as it is tight; see Lemma 1.3.2 in
the last-named reference) this weak convergence is valid, if we can show that, for any sequence
(fn)n∈N ⊂ �∞(Aε) with fn → f0 for some f0 ∈ �∞(Aε), we have gn(fn) → g0(f0). This can
be established by the following calculation:∥∥gn(fn) − g0(f0)

∥∥
Aε

= ∥∥fn(θ, z) − (�nθ	/n
)
fn(1, z) − f0(θ, z) + θf0(1, z)

∥∥
Aε

≤ n−1‖f0‖Aε + 2‖fn − f0‖Aε .
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Obviously, T is a tight, mean-zero Gaussian process. Moreover, from Theorem 2.3,

Cov
{
T(θ1, z1),T(θ2, z2)

} = H(θ1, z1; θ2, z2) − θ1H(1, z1; θ2, z2)

− θ2H(θ1, z1;1, z2) + θ1θ2H(1, z1;1, z2)

= {
(θ1 ∧ θ2) − θ1θ2

}
ν
(
I(z1) ∩ I(z2)

)
for any (θ1, z1), (θ2, z2) ∈ Aε . �

A.4. Proof of Proposition 2.8

Because of Corollary 2.5 (and the continuous mapping theorem) U1:n(z0) = Un(1, z0) con-
verges to ν(I(z0)) > 0 in probability. Therefore, it follows easily that the random variable
{Un(1, z0)}−1/21{Un(1,z0)>0} converges to {ν(I(z0))}−1/2 in probability. Hence, by Slutsky’s the-
orem ([24], Example 1.4.7) we obtain

V(z0)
n (θ) � 1√

ν(I(z0))
T(θ, z0)

in �∞([0,1]). By Theorem 2.6, the process on the right-hand side of this display is a tight mean
zero Gaussian with covariance function k(θ1, θ2) = θ1 ∧ θ2 − θ1θ2. Thus, the law of that process
is the law of a standard Brownian bridge on �∞([0,1]). �

A.5. Proof of Theorem 3.3

Recall the decomposition Xt = Yt + Zt prior to (A.1) and the triangular array {fnj (ω; θ, z) | n ≥
1; j = 1, . . . , n; (θ, z) ∈ Aε} consisting of the processes

fnj (ω; θ, z) := k
−1/2
n 1{j≤�nθ	}1{�n

j Z∈I(z)}.

Set μnj (θ, z) := Efnj (·; θ, z) = k
−1/2
n 1{j≤�nθ	}P(�n

jZ ∈ I(z)) and let

μ̂nj (θ, z) := μ̂nj (ω; θ, z) := k
−1/2
n 1{j≤�nθ	}η◦

n(z)

be an estimator for μnj (θ, z), where η◦
n(z) := n−1 ∑n

i=1 1{�n
i Z∈I(z)}.

First, we want to show the assertion of Theorem 3.3 for Ĝ◦
n, the process being defined exactly

as Ĝn but based on the increments �n
jZ. This process can be written as

Ĝ◦
n(θ, z) = Ĝ◦

n(ω; θ, z) =
n∑

j=1

ξj

{
fnj (ω; θ, z) − μ̂nj (ω; θ, z)

}
.

Due to Theorem 3 in [17] the proof for Ĝ◦
n is complete, if we show the following properties for

the triangular array {μ̂nj (ω; θ, z) | n ≥ 1; j = 1, . . . , n; (θ, z) ∈ Aε}:
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(i) {μ̂nj } is almost measurable Suslin.

(ii) sup(θ,z)∈Aε

∑n
j=1{μ̂nj (ω; θ, z) − μnj (θ, z)}2 P∗→ 0.

(iii) The triangular array {μ̂nj } is manageable with envelopes {F̂nj } given through F̂nj (ω) :=
k
−1/2
n n−1 ∑n

i=1 1{|�n
i Z|≥ε}.

(iv) There exists a constant M < ∞ such that M ∨ ∑n
j=1 F̂ 2

nj

P∗→ M .

Proof of (i). As in the proof of (1) in Theorem 2.3, it suffices to verify that the triangular array
{μ̂nj } is separable. This can be seen by taking Sn := (Q2 ∩ Aε) ∪ ((Q∩ [0,1]) × {−ε}) ∪ ((Q∩
[0,1]) × {ε}).

Proof of (ii). We have

sup
(θ,z)∈Aε

n∑
j=1

{
μ̂nj (ω; θ, z) − μnj (θ, z)

}2

= sup
|z|≥ε

n−3�−1
n

n∑
j=1

[
n∑

i=1

{
1{�n

i Z∈I(z)} − P
(
�n

jZ ∈ I(z)
)}]2

= n−1 sup
|z|≥ε

{
G◦

n(1, z)
}2

.

The last quantity in the above display converges to 0 in probability because in the proof of Theo-
rem 2.3 we have seen G◦

n �G.

Proof of (iii). Following (A.2), we have already shown that the triangular array

{
g̃nj (θ) := g̃nj (ω; θ) := 1{j≤�nθ	} | n ∈N; j = 1, . . . , n; θ ∈ [0,1]}

is manageable with envelopes {G̃nj (ω)
def≡ 1 | n ∈ N; j = 1, . . . , n}. Therefore, due to Theo-

rem 11.17 in [18], it suffices to prove that the triangular array

{
h̃nj (ω; z) := 1

n
√

kn

n∑
i=1

1{�n
i Z∈I(z)}

∣∣∣ n ∈N; j = 1, . . . , n; |z| ≥ ε

}

is manageable with envelopes {F̂nj (ω) | n ∈ N; j = 1, . . . , n}. But h̃nj (ω; z) does not depend
on j at all, such that every projection of Hnω := {(h̃n1(ω; z), . . . , h̃nn(ω; z)) | |z| ≥ ε} onto two
coordinates lies in the straight line {(x, y) ∈ R2 | x = y}. Consequently, the set Hnω has a pseu-
dodimension of at most 1 and is bounded. Hence, the same arguments as in the proof of (2) in
Theorem 2.3 show the desired manageability.
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Proof of (iv). A straight forward calculation using (A.4) yields

E

{
n∑

j=1

F̂ 2
nj

}
= n−2�−1

n

n∑
i1=1

n∑
i2=1

E{1{|�n
i1

Z|≥ε}1{|�n
i2

Z|≥ε}} = O(�n).

Thus
∑n

j=1 F̂ 2
nj is oP(1).

So far, we have established Ĝ◦
n �ξ G, and due to Lemma A.1 it suffices to show ‖Ĝn −

Ĝ◦
n‖Aε = oP(1) in order to finish the proof. This can be done following the lines of the proof of

Theorem 2.3. The only difference regards showing that

sup
|z|≥ε

1√
kn

n∑
j=1

|ξj |1{�n
j Z∈(z−vn,z+vn)} (A.11)

is oP(1). Arguing as in (A.9),

sup
|z|≥ε

1√
kn

n∑
i=1

1{�n
i Z∈(z−vn,z+vn)}

≤ sup
|z|≥ε

∣∣G◦
n(1, z − vn) −G◦

n(1, z + vn)
∣∣ + oP(1) = oP(1).

Therefore with the strong law of large numbers the expression inside of the supremum in (A.11)
can be written as

1√
kn

n∑
j=1

{|ξj | −E|ξj |
}
1{�n

j Z∈(z−vn,z+vn)} + oP(1)

= 1√
kn

n∑
j=1

{|ξj | −E|ξj |
}{
1{�n

j Z∈(z−vn,z+vn)} − 1

n

n∑
i=1

1{�n
i Z∈(z−vn,z+vn)}

}
+ oP(1),

where the oP(1)-terms are uniform in |z| ≥ ε. After a standardization of the new multipliers
ξ∗
j := |ξj | − E|ξj |, the main term in the above display can be seen to be oP(1) by asymptotic

uniform ρ-equicontinuity in probability as a consequence of Ĝ◦
n �ξ G and Remark 3.2(ii), see

Theorem 1.5.7 and its addendum in [24] again. �

A.6. Proof of Theorem 3.4

This result follows by the same lines as in the proof of Theorem 2.6, with an application of
Proposition 10.7(i) in [18]. �
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A.7. Proof of Proposition 4.1

The assertion involving V
(z0)
n is trivial. Regarding W

(z0)
n , note that Proposition A.2 and the con-

tinuous mapping theorem imply that, for any fixed B ∈N,(
W(z0)

n , Ŵ
(z0)

n,ξ (1) , . . . , Ŵ
(z0)

n,ξ (B)

)
�

(
W(z0),W(z0),(1), . . . ,W(z0),(B)

)
in RB+1, where W(z0) := supθ∈[0,1] |T(θ, z0)| with the limit process T of Theorem 2.6 and where
W(z0),(1), . . . ,W(z0),(B) are independent copies of W(z0). According to the corollary to Proposi-
tion 3 in [20], W(z0) has a continuous c.d.f. since ν(I(z0)) > 0. Thus, Proposition F.1 in the
supplement to [6] implies that

lim
B→∞ lim

n→∞P
{
W(z0)

n ≥ q̂
(B)
1−α

(
W(z0)

n

)} = α

for all α ∈ (0,1), as asserted. A similar reasoning gives the claim for T (ε). �

A.8. Proof of Proposition 4.2

This proof is a simple consequence of the auxiliary Propositions A.3 and A.4. �

A.9. Proof of Proposition 4.3

Let X(1)(n) and X(2)(n) denote two independent Itô semimartingales with characteristics
(b

(n)
t , σ

(n)
t , ν1) and (b

(n)
t , σ

(n)
t , ν2), respectively. For n ∈ N and j = 0, . . . , n, set Yj (n) =

X
(1)
j�n

(n) and Zj (n) = X
(2)
j�n

(n). Let U
(1)
n and U

(2)
n denote the quantity defined in (2.3), based

on the observations Yj (n) and Zj (n), respectively, instead on Xj�n . Moreover, define a random
element Sn with values in �∞(Aε) through

Sn(θ, z) := n − �nθ	
n

U(1)
n (θ, z) − �nθ	

n

{
U(1)

n (θ0, z) − U(1)
n (θ, z)

}
− �nθ	

n

{
U(2)

n (1, z) − U(2)
n (θ0, z)

}
,

for (θ, z) ∈ Aε with θ ≤ θ0, whereas for (θ, z) ∈ Aε with θ ≥ θ0,

Sn(θ, z) := n − �nθ	
n

U(1)
n (θ0, z) + n − �nθ	

n

{
U(2)

n (θ, z) − U(2)
n (θ0, z)

}
− �nθ	

n

{
U(2)

n (1, z) − U(2)
n (θ, z)

}
.

Obviously we have the distributional equality(
�n

1X(n), . . . ,�n�nθ0	X(n),�n
�nθ0	+1X(n), . . . ,�n

nX(n)
)

D= (
�n

1X
(1)(n), . . . ,�n�nθ0	X

(1)(n),�n
�nθ0	+1X

(2)(n), . . . ,�n
nX

(2)(n)
)
.
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Hence, for any (θ1, z1), . . . , (θg, zg) ∈ Aε and g ∈ N, we also have that

(
k
−1/2
n Tn(θ1, z1), . . . , k

−1/2
n Tn(θg, zg)

) D= (
Sn(θ1, z1), . . . , Sn(θg, zg)

)
.

Now, from the previous display, and from the fact that the function T is continuous in (θ, z)

and that the functions Tn(θ, z) depend only through �nθ	 on θ and are either left-continuous or
right-continuous in z, we immediately get that

sup
(θ,z)∈Aε

∣∣k−1/2
n Tn(θ, z) − T (θ, z)

∣∣ = sup
(θ,z)∈Aε∩Q2

∣∣k−1/2
n Tn(θ, z) − T (θ, z)

∣∣
D= sup

(θ,z)∈Aε∩Q2

∣∣Sn(θ, z) − T (θ, z)
∣∣.

This expression is in fact oP(1) as a consequence of Corollary 2.5 and the continuous mapping
theorem. Note that Corollary 2.5 is in fact applicable in this setup, because under H1 the charac-
teristics b

(n)
t and σ

(n)
t have a uniform bound S in n ∈ N and t ≥ 0. �

A.10. Proof of Proposition 4.4

Under H1, choose ε > 0 such that there exists a |z0| ≥ ε with ν1(z0) �= ν2(z0). Then,
according to Proposition 4.3 and the continuous mapping theorem, the random functions
θ �→ sup|z|≥ε |k−1/2

n Tn(θ, z)| converge weakly in �∞([0,1]) to the continuous function θ �→
sup|z|≥ε |T (θ, z)|, which has a unique maximum at θ0. Thus, the asserted convergences follow

from the argmax-continuous mapping theorem (Theorem 2.7 in [16]). The claim regarding H(z0)
1

can be shown similarly. �

A.11. Additional auxiliary results

The first auxiliary result is needed for validating the bootstrap procedures defined in Section 3.
It is proved in [4], Lemma A.1.

Lemma A.1. Consider two bootstrapped statistics Ĝn = Ĝn(X1, . . . ,Xn, ξ1, . . . , ξn) and Ĥn =
Ĥn(X1, . . . ,Xn, ξ1, . . . , ξn) in a metric space (D, d) with d(Ĝn, Ĥn)

P∗→ 0. Then, for a tight Borel
measurable process G in D, we have Ĝn �ξ G if and only if Ĥn �ξ G.

The proof of Proposition 4.1 is based on the following auxiliary result, establishing uncondi-
tional weak convergence of the vector of processes (Tn, T̂n,ξ(1) , . . . , T̂n,ξ(B) ).

Proposition A.2. Suppose the conditions from Theorem 3.3 are met. Then, under H0, for all
B ∈N, we have

(Tn, T̂n,ξ(1) , . . . , T̂n,ξ(B) ) �
(
T,T(1), . . . ,T(B)

)
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in (�∞(Aε),‖ · ‖Aε)
B+1, where � denotes (unconditional) weak convergence (with respect to

the probability measure P), and where T(1), . . . ,T(B) are independent copies of T.

Proof. We are going to apply Corollary 1.4.5 in [24]. Therefore, let f (0), f (1), . . . , f (B) ∈
BL1(�

∞(Aε)). Since Tn, T̂n,ξ(1) , . . . , T̂n,ξ(B) are independent conditional on the data, we have

Eξ

{
f (0)(Tn) · f (1)(T̂n,ξ (1) ) · . . . · f (B)(T̂n,ξ (B) )

}
= f (0)(Tn) ·Eξ f

(1)(T̂n,ξ (1) ) · . . . ·Eξ f
(B)(T̂n,ξ (B) ) =: Sn.

By Definition 3.1 and Theorem 3.4, Eξ f
(b)(T̂n,ξ (b) ) converges in outer probability to

E(f (b)(T(b))) =: cb for each b ∈ {1, . . . ,B}. Therefore,

Sn � c1 · . . . · cB · f (0)(T) =: S
by using the continuous mapping theorem, Slutsky’s lemma and Lemma 1.10.2 in [24] several
times.

Choose an M > 0 with |Sn| ∨ |S| ≤ M for all ω ∈ 
, n ∈ N and let g:R −→ R be a bounded
and continuous function with g(x) = x on [−M,M]. Then

E∗
X

[
E∗

ξ

{
f (0)(Tn) · f (1)(T̂n,ξ(1) ) · . . . · f (B)(T̂n,ξ(B) )

}]
= E∗

XSn = E∗
Xg(Sn)

(1)−→ E
(
g(S)

) = ES (A.12)

(2)= E
{
f (0)(T) · f (1)

(
T(1)

) · . . . · f (B)
(
T(B)

)}
.

Note that (1) uses the fact that a coordinate projection on a product probability space is perfect
(Lemma 1.2.5 in [24]). Moreover, (2) holds because the limit processes are independent.

By Theorem 2.6, Remark 3.2(ii), Theorem 3.4 and Lemma 1.3.8 and Lemma 1.4.4 in [24]
the vector of processes (Tn, T̂n,ξ(1) , . . . , T̂n,ξ(B) ) is (jointly) asymptotically measurable. Conse-
quently, equation (A.12), Fubini’s theorem (Lemma 1.2.6 in [24]) and Corollary 1.4.5 in this
reference yield the desired weak convergence. Note that the limit process (T,T(1), . . . ,T(B)) is
separable because it is tight (Lemma 1.3.2 in the previously mentioned reference). �

Proposition A.3. Under H1, there exists an ε > 0 such that, for all K > 0,

lim
n→∞P

(
T (ε)

n ≥ K
) = 1.

If H(z0)
1 is true, the same assertion holds for V

(z0)
n and W

(z0)
n .

Proof. Choose ε > 0 such that there exists a |ẑ| ≥ ε with ν1(ẑ) �= ν2(ẑ). Then c :=
supθ∈[0,1] sup|z|≥ε |T (θ, z)| ∈ (0,∞), with the function T defined in Proposition 4.3. But Propo-

sition 4.3 and the continuous mapping theorem show that k
−1/2
n T

(ε)
n = c + oP(1) and this yields

the assertion for T
(ε)
n . The same argument implies the claim for W

(z0)
n .
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Finally, let us prove the claim for V
(z0)
n . As in the proof of Proposition 4.3, let X(1)(n) and

X(2)(n) be independent Itô semimartingales with characteristics (b
(n)
t , σ

(n)
t , ν1) and

(b
(n)
t , σ

(n)
t , ν2), respectively. For n ∈ N and j = 0, . . . , n, set Yj (n) = X

(1)
j�n

(n) and Zj(n) =
X

(2)
j�n

(n). Let U
(1)
n and U

(2)
n denote the quantity defined in (2.3), based on the observations

Yj (n) and Zj (n), respectively, instead on Xj�n .

Then the quantities V
(z0)
n and W

(z0)
n differ only by a factor A

−1/2
n 1{An>0}, with An being equal

in distribution to

U(1)
n (θ0, z0) + U(2)

n (1, z0) − U(2)
n (θ0, z0).

This expression converges to θ0ν1(z0)+ (1 − θ0)ν2(z0) > 0, in probability, which in turn implies
the assertion regarding V

(z0)
n . �

Proposition A.4. Under H1, for all ε > 0 and all b ∈ {1, . . . ,B},
T̂

(ε)

n,ξ (b) = OP(1), that is lim
K→∞ lim sup

n→∞
P
(
T̂

(ε)

n,ξ (b) > K
) = 0.

Moreover, under H(z0)
1 , for all b ∈ {1, . . . ,B},

Ŵ
(z0)

n,ξ (b) = OP(1), that is lim
K→∞ lim sup

n→∞
P
(
Ŵ

(z0)

n,ξ (b) > K
) = 0.

Proof. Since the results are independent of b, we omit this index throughout the proof. Also note
that, for both assertions, it suffices to show that supθ∈[0,1] sup|z|≥ε |Ĝn(θ, z)| = OP(1) under H1.

For n ∈ N and j = 0, . . . , n, let Yj (n) = X
(1)
j�n

(n) and Zj (n) = X
(2)
j�n

(n) be defined as in the

proof of Proposition 4.3. Let U
(1)
n , η

(1)
n and U

(2)
n , η

(2)
n denote the corresponding quantities, based

on the observations Yj (n) and Zj (n), respectively.
Then, for θ ≤ θ0, we can write Ĝn(θ, z) as

1√
kn

�nθ	∑
j=1

ξj

{
1{�n

j Y∈I(z)} − η(1)
n (z)

} +
{

1√
n

�nθ	∑
j=1

ξj

}
× {

�
−1/2
n

(
η(1)

n (z) − ηn(z)
)}

.

The first term of this display is OP(1), uniformly in θ ≤ θ0 and |z| ≥ ε, by Theorem 3.3 and Re-
mark 3.2(ii). By the classical Donsker theorem, the term in curly brackets on the right-hand side
is also OP(1) uniformly in θ ≤ θ0. The quantity �

−1/2
n η

(1)
n (z) = �

1/2
n U

(1)
n (1, z) is oP(1) uni-

formly in |z| ≥ ε by Corollary 2.5. Finally, the same argument as in the proof of Proposition 4.3
yields

�
−1/2
n sup

|z|≥ε

∣∣ηn(z)
∣∣ = √

�n sup
|z|≥ε

∣∣U(1)
n (θ0, z) + U(2)

n (1, z) − U(2)
n (θ0, z)

∣∣ = oP(1).

To conclude,

sup
θ≤θ0

sup
|z|≥ε

∣∣Ĝ(θ, z)
∣∣ = OP(1).



Tests for detecting breaks in the jump behaviour of a time-continuous process 1363

The supremum over θ > θ0 and |z| ≥ ε can be treated similarly. �

Acknowledgements

The authors would like to thank an unknown referee and an Associate Editor for helpful com-
ments on an earlier version of this manuscript, which led to a substantial improvement of the
paper. This work has been supported by the Collaborative Research Center “Statistical modeling
of nonlinear dynamic processes” (SFB 823, Teilprojekt A1, A7, C1) of the German Research
Foundation (DFG) which is gratefully acknowledged.

References

[1] Aït-Sahalia, Y. and Jacod, J. (2009). Estimating the degree of activity of jumps in high frequency data.
Ann. Statist. 37 2202–2244. MR2543690

[2] Aït-Sahalia, Y. and Jacod, J. (2009). Testing for jumps in a discretely observed process. Ann. Statist.
37 184–222. MR2488349

[3] Aït-Sahalia, Y. and Jacod, J. (2014). High-Frecuency Financial Econometrics. Princeton: Princeton
Univ. Press.

[4] Bücher, A. (2011). Statistical inference for copulas and extremes. Ph.D. thesis, Ruhr-Universität
Bochum.

[5] Bücher, A., Hoffmann, M., Vetter, M. and Dette, H. (2014). Nonparametric tests for detecting breaks
in the jump behaviour of a time-continuous process. Preprint. Available at arXiv:1412.5376v1.

[6] Bücher, A. and Kojadinovic, I. (2014). A dependent multiplier bootstrap for the sequential empirical
copula process under strong mixing. Bernoulli 22 927–968.

[7] Bücher, A. and Vetter, M. (2013). Nonparametric inference on Lévy measures and copulas. Ann.
Statist. 41 1485–1515. MR3113819

[8] Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC
Financial Mathematics Series. Boca Raton, FL: Chapman & Hall/CRC. MR2042661

[9] Delbaen, F. and Schachermayer, W. (1994). A general version of the fundamental theorem of asset
pricing. Math. Ann. 300 463–520. MR1304434

[10] Figueroa-López, J.E. (2008). Small-time moment asymptotics for Lévy processes. Statist. Probab.
Lett. 78 3355–3365. MR2479503

[11] Figueroa-López, J.E. and Houdré, C. (2009). Small-time expansions for the transition distributions of
Lévy processes. Stochastic Process. Appl. 119 3862–3889. MR2552308

[12] Iacus, S.M. and Yoshida, N. (2012). Estimation for the change point of volatility in a stochastic dif-
ferential equation. Stochastic Process. Appl. 122 1068–1092. MR2891447

[13] Inoue, A. (2001). Testing for distributional change in time series. Econometric Theory 17 156–187.
MR1863569

[14] Jacod, J. and Protter, P. (2012). Discretization of Processes. Stochastic Modelling and Applied Prob-
ability 67. Heidelberg: Springer. MR2859096

[15] Jacod, J. and Shiryaev, A.N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Berlin: Springer.
MR1943877

[16] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191–219. MR1041391
[17] Kosorok, M.R. (2003). Bootstraps of sums of independent but not identically distributed stochastic

processes. J. Multivariate Anal. 84 299–318. MR1965224

http://www.ams.org/mathscinet-getitem?mr=2543690
http://www.ams.org/mathscinet-getitem?mr=2488349
http://arxiv.org/abs/arXiv:1412.5376v1
http://www.ams.org/mathscinet-getitem?mr=3113819
http://www.ams.org/mathscinet-getitem?mr=2042661
http://www.ams.org/mathscinet-getitem?mr=1304434
http://www.ams.org/mathscinet-getitem?mr=2479503
http://www.ams.org/mathscinet-getitem?mr=2552308
http://www.ams.org/mathscinet-getitem?mr=2891447
http://www.ams.org/mathscinet-getitem?mr=1863569
http://www.ams.org/mathscinet-getitem?mr=2859096
http://www.ams.org/mathscinet-getitem?mr=1943877
http://www.ams.org/mathscinet-getitem?mr=1041391
http://www.ams.org/mathscinet-getitem?mr=1965224


1364 Bücher, Hoffmann, Vetter and Dette

[18] Kosorok, M.R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer
Series in Statistics. New York: Springer. MR2724368

[19] Lee, S., Nishiyama, Y. and Yoshida, N. (2006). Test for parameter change in diffusion processes by
cusum statistics based on one-step estimators. Ann. Inst. Statist. Math. 58 211–222. MR2246154

[20] Lifshits, M.A. (1982). Absolute continuity of functionals of “supremum” type for Gaussian processes.
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 119 154–166. MR0666093

[21] Mykland, P.A. and Zhang, L. (2012). The econometrics of high-frequency data. In Statistical Methods
for Stochastic Differential Equations. Monogr. Statist. Appl. Probab. 124 (M. Kessler, A. Lindner and
M. Sørensen, eds.) 109–190. Boca Raton, FL: CRC Press. MR2976983

[22] Pollard, D. (1990). Empirical Processes: Theory and Applications. Hayward, CA: IMS. MR1089429
[23] Rüschendorf, L. and Woerner, J.H.C. (2002). Expansion of transition distributions of Lévy processes

in small time. Bernoulli 8 81–96. MR1884159
[24] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes. Springer

Series in Statistics. New York: Springer. MR1385671
[25] Vetter, M. (2014). Inference on the Lévy measure in case of noisy observations. Statist. Probab. Lett.

87 125–133. MR3168946
[26] Vostrikova, L. (1981). Detecting disorder in multidimensional random processes. Sov. Math., Dokl. 24

55–59.

Received December 2014 and revised September 2015

http://www.ams.org/mathscinet-getitem?mr=2724368
http://www.ams.org/mathscinet-getitem?mr=2246154
http://www.ams.org/mathscinet-getitem?mr=0666093
http://www.ams.org/mathscinet-getitem?mr=2976983
http://www.ams.org/mathscinet-getitem?mr=1089429
http://www.ams.org/mathscinet-getitem?mr=1884159
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=3168946

	Introduction
	Functional weak convergence of the sequential empirical tail integral
	Bootstrap approximations for the sequential empirical tail integral
	The testing procedures
	Hypotheses
	The tests and their asymptotic properties
	Locating the change point

	Finite-sample performance
	Appendix
	Proof of Theorem 2.3
	Proof of Corollary 2.5
	Proof of Theorem 2.6
	Proof of Proposition 2.8
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3
	Proof of Proposition 4.4
	Additional auxiliary results

	Acknowledgements
	References

