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This paper is concerned with statistical inference for infinite range interaction Gibbs point processes, and
in particular for the large class of Ruelle superstable and lower regular pairwise interaction models. We
extend classical statistical methodologies such as the pseudo-likelihood and the logistic regression methods,
originally defined and studied for finite range models. Then we prove that the associated estimators are
strongly consistent and satisfy a central limit theorem, provided the pairwise interaction function tends
sufficiently fast to zero. To this end, we introduce a new central limit theorem for almost conditionally
centered triangular arrays of random fields.
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1. Introduction

Spatial Gibbs point processes are an important class of models used in spatial point pattern
analysis [26,33,41]. Gibbs point processes can be viewed as modifications of the Poisson point
process in order to introduce dependencies, such as attraction or repulsion, between points. These
models initially arise from statistical physics to approximate the interaction between pairs of par-
ticles [21,37,38]. The most well-known example is the Lennard–Jones model [30] which yields
repulsion at short scales and attraction at long scales.

Assuming that the Gibbs model has a parametric form, an important question concerns the
estimation of the parameters from a realization of the point process observed on a finite subset
of Rd . Popular solutions include likelihood (e.g., [25,36]), pseudo-likelihood (e.g., [4,7,29]) and
logistic regression [1]. The two latter methods are more interesting from a practical point of view
as they avoid the computation of the normalizing constant in the likelihood, which is in most
cases inaccessible for Gibbs point processes and must be approximated by simulation-based
methods. We focus in this paper on the pseudo-likelihood and logistic regression methods.

When the Gibbs model is assumed to have a finite range interaction, consistency and asymp-
totic normality of the pseudo-likelihood and logistic regression estimators are established in
[1,8,11,19,28,29], for large families of Gibbs models. The finite range assumption means that
there exists R > 0 such that the particles do not interact at all if they are at a distance greater than
R > 0 apart. For the two aforementioned inference methods, this assumption turns out to be cru-
cial from both a practical point of view and a theoretical point of view, as explained below. How-
ever, this assumption may imply an artificial discontinuity of the interactions between particles,
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where two particles at a distance R−ε apart interact while they do not at a distance R+ε, for any
small ε > 0. This is, for instance, the case for the widely used Strauss model; see, for example,
[33]. In fact, this assumption rules out many interesting Gibbs models from statistical physics
like the Lennard–Jones model. The purpose of this work is to extend the pseudo-likelihood and
logistic regression methods to infinite range interaction Gibbs models.

From a practical point of view, an important issue is edge effects. Assume we observe a Gibbs
point process with finite range interaction R > 0 on a window W ⊂ Rd . Then the pseudo-
likelihood computed on W actually depends on the point process on W ⊕ R, where W ⊕ R

denotes the dilation of W by a ball with radius R. Some border correction is often used to make
the pseudo-likelihood score unbiased. An obvious solution is to compute the pseudo-likelihood
on the eroded set W � R, and in view of (W � R) ⊕ R ⊆ W (see [10]) the observation of the
point process on W is sufficient for the computation. From a theoretical point of view, standard
technical tools for unbiased estimating equations are available to derive the asymptotic proper-
ties of the associated estimator. If the Gibbs point process has infinite range interaction, then the
pseudo-likelihood computed on W depends on the point process over the whole space Rd . It is
in general impossible to apply a border correction that preserves unbiasedness of the pseudo-
likelihood score function. We propose in Section 2 a family of contrast functions that involve
an eroded set, following the previous border correction, and a truncated range of interaction.
The details are exposed in Section 2. However, these contrast functions still lead to biased score
functions and the standard ingredients to derive consistency and asymptotic normality of the
estimators do not apply.

The strong consistency of the maximum pseudo-likelihood estimator was studied by [31] for
pairwise interaction Gibbs point processes, including the infinite range interaction case, but un-
der the assumption that the configuration of points outside W is known. Under the more realistic
setting where the point process is observed only on W , we prove the strong consistency of our
pseudo-likelihood estimator in Proposition 3.1. Our result is valid for a large family of pairwise
Gibbs models, namely the class of Ruelle superstable and lower regular models. The asymp-
totic normality is more challenging to establish. When the pseudo-likelihood score function is
unbiased, the main ingredient is a central limit theorem for conditionally centered random fields
proved and generalized in [12,15,18,23,28]. It allows in particular to avoid mixing assumptions
for Gibbs point process that are only known in restrictive frameworks (see, e.g., [24,27]). In our
infinite range setting where the score function is biased, a new ingredient is needed. We establish
in Appendix A a new central limit theorem for triangular arrays of almost conditionally centered
random fields. This allows us to derive in Theorem 3.3 the asymptotic normality of our pseudo-
likelihood estimator. Assume the potential decreases with a hyperbolic rate with exponent γ2.
While γ2 > d is (in general) required to ensure the existence of a Gibbs measure and the con-
sistency of the pseudo-likelihood estimator, we require the condition γ2 > 2d to ensure a central
limit theorem. The asymptotic normality when d < γ2 < 2d remains an open question. Nonethe-
less, our result includes the important example of the Lennard–Jones model in dimension d = 2,
for which γ2 = 6. Proposition 3.4 discusses similar asymptotic results for the logistic regression
estimator.

The remainder of this paper is organized as follows. In Section 2, we recall some basic facts
about Gibbs point processes and we explain how to generalize inference methods for Gibbs
models with infinite range interaction. We derive in Section 3 the asymptotic properties of our
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estimators. Section 4 contains a simulation study concerning the estimation of the Lennard–Jones
potential, where some recommendations are derived for the practical choice of tuning parameters
in the pseudo-likelihood contrast function. Appendix A contains our main technical tool, namely
a central limit theorem for almost conditionally centered random fields, and Appendix B gathers
auxiliary lemmas.

2. Background and statistical methodology

2.1. Notation

We write � �Rd for a bounded set � in Rd . A configuration of points x is a locally finite subset
of Rd , which means that the set x� := x ∩ � is finite for any set � � Rd . We use the notation
x�c = x \ x� and denote by �0 the space of all locally finite configurations of points in Rd . For a
(p, q) matrix M with real entries, we denote by ‖M‖ = tr(M�M)1/2 its Frobenius norm where
tr is the trace operator and M� is the transpose matrix of M . For a vector z ∈Rp , ‖z‖ reduces to
its Euclidean norm. For a bounded set E ⊂ Zd , |E| denotes the number of elements of E, while
for z ∈ Rp or i ∈ Zp , |z| and |i| stand for the uniform norm.

At many places in the document, we use the notation c to denote a generic positive constant
which may vary from line to line.

2.2. Pairwise interaction Gibbs point processes

We briefly recall the needed background material on point processes and we refer to [16] for
more details. A point process is a probability measure on �0. The reference distribution on �0
is the homogeneous Poisson point process with intensity β > 0, denoted by πβ . For � �Rd , we
write π

β
� for the restriction of πβ to �. For any ��Rd and x ∈ �0, N�(x) denotes the number

of elements of x∩�. Let �i be the unit cube centered at i ∈ Zd . We consider the following space
of tempered configurations:

�T =
{

x ∈ �0; ∃t > 0,∀n ≥ 1,
∑

i∈Zd ,|i|≤n

N2
�i

(x) ≤ t (2n + 1)d
}
.

From the ergodic theorem (see [22]), any second-order stationary measure on �0 is supported
on �T . We denote by 	 : Rd → R ∪ {+∞} a pair potential function, to which we associate the
pairwise energy function H� : �T → R∪ {+∞}, indexed by Borel sets ��Rd and defined by

H�(x) = 1

2

∑
u,v∈x,u �=v,

{u,v}∩x� �=∅

	(u − v) (2.1)

and we let

� = {
x ∈ �T ,∀� �Rd H�(x) < ∞}

.
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Following the Dobrushin–Lanford–Ruelle formalism (see [37]), we say that P is a Gibbs
measure with activity parameter β > 0 for the pair potential function 	 if P(�) = 1 and
for P -almost every configuration x and any � � Rd , the conditional law of P given x�c

is absolutely continuous with respect to π
β
� with the density exp{−H�(x)}/Z�(x�c), where

Z�(x�c) = ∫
�

exp{−H�(x� ∪ x�c)}πβ
�(dx�c) is the normalizing constant.

We use at many places in this paper the GNZ equation, after [20] and [35], recalled below,
which is a characterization of a Gibbs measure. It is given in terms of the Papangelou conditional
intensity λ :Rd × � →R+ defined for any � � u by

λ(u,x) = β
e−H�(x∪u)

e−H�(x)
= βe−∑

v∈x 	(v−u). (2.2)

This quantity does not depend on �, provided u ∈ �, and can be viewed as the conditional
probability to have a point in a vicinity of u, given that the configuration elsewhere is x.

Theorem 2.1 (GNZ formula). A probability measure P on � is a Gibbs measure with activity
parameter β > 0 for the pair potential function 	 if for any measurable function f : �×Rd →R

such that the following expectations are finite:

E

{∑
u∈X

f (u,X \ u)

}
= E

{∫
f (u,X)λ(u,X)du

}
, (2.3)

where E denotes the expectation with respect to P .

This result can be refined by a conditional version stated in the following lemma. Its proof is
actually part of the initial proof of (2.3); see also [8], proof of Theorem 2, for a particular case.
We reproduce the demonstration below.

Lemma 2.2 (Conditional GNZ formula). Let P be a Gibbs measure with activity parameter
β > 0, with pair potential 	 and Papangelou conditional intensity λ. Then for any measurable
function f : � ×Rd → R and for any � �Rd such that the following expectations are finite:

E

{ ∑
u∈X�

f (u,X \ u)

∣∣∣ X�c

}
= E

{∫
�

f (u,X)λ(u,X)

∣∣∣ X�c

}
, (2.4)

where E denotes the expectation with respect to P .

Proof. By definition of the conditional law of P given x′
�c

E

{ ∑
u∈X�

f (u,X \ u)

∣∣∣ X�c = x′
�c

}
=

∫
�

∑
u∈x�

f
(
u,x� ∪ x′

�c \ u
)e−H�(x�∪x′

�c )

Z�(x′
�c)

π
β
�(dx�)

= E
π

β
�

{ ∑
u∈X�

f
(
u,X� ∪ x′

�c \ u
)e−H�(X�∪x′

�c )

Z�(x′
�c)

}
,
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where E
π

β
�

denotes the expectation with respect to π
β
�. From the Slivnyak–Mecke formula [32,

40], we know that for any admissible measurable function h

E
π

β
�

{∑
u∈X

h(u,X \ u)

}
= βE

π
β
�

{∫
Rd

h(u,X)du

}
.

By definition of the Papangelou conditional intensity (2.2), we also have for any u ∈ �,
βe−H�(x∪u) = e−H�(x)λ(u,x). Using these two facts, we conclude by

E

{ ∑
u∈X�

f (u,X \ u)

∣∣∣ X�c = x′
�c

}

= βE
π

β
�

{∫
�

f
(
u,X� ∪ x′

�c

)e−H�(X�∪x′
�c∪u)

Z�(x′
�c)

du

}

= E
π

β
�

{∫
�

f
(
u,X� ∪ x′

�c

)
λ
(
u,X� ∪ x′

�c

)e−H�(X�∪x′
�c )

Z�(x′
�c)

du

}

=
∫

�

∫
�

f
(
u,x� ∪ x′

�c

)
λ
(
u,x� ∪ x′

�c

)e−H�(x�∪x′
�c )

Z�(x′
�c)

duπ
β
�(dx�)

= E

{∫
�

f (u,X)λ(u,X)

∣∣∣ X�c = x′
�c

}
. �

The existence of a Gibbs measure P satisfying the above definition and characterization is
a difficult question. Sufficient conditions on the pair potential 	 can be found in [38] and are
also discussed in [37]. The special case of finite range potentials, that is, compactly supported
functions 	, is treated in [6]. As we are mainly interested in this paper by infinite range potentials,
we introduce the following assumption that leads to the existence of at least one stationary Gibbs
measure, as proved in [38].

[�] The potential 	 is bounded from below and there exist 0 < r1 < r2 < ∞, c > 0 and
γ1, γ2 > d such that 	(u) ≥ c‖u‖−γ1 for ‖u‖ ≤ r1 and |	(u)| ≤ c‖u‖−γ2 for ‖u‖ ≥ r2.

Examples of potentials satisfying [�] are 	(u) = ‖u‖−γ with γ > d and 	(u) = e−‖u‖‖u‖−γ

with γ > d , in which cases the assumption is satisfied with γ1 = γ2 = γ . Another important
example is the general Lennard–Jones pair potential defined for some d < γ2 < γ1 and some
A,B > 0 by 	(u) = A‖u‖−γ1 − B‖u‖−γ2 . The standard Lennard–Jones model corresponds to
d = 2, γ1 = 12 and γ2 = 6. The main interest of this model is that it can model repulsion at small
scales and attraction at large scales.

2.3. Inference for infinite range Gibbs point processes

In this section, we extend the usual statistical methodologies available for finite range Gibbs point
processes to the infinite range case. We assume that the Gibbs measure is parametric, in that the
explicit expression of the associated Papangelou conditional intensity (2.2) is entirely determined
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by the knowledge of some parameter θ ∈ �, including the activity parameter β > 0, where � is
an open bounded set of Rp . We stress this assumption by writing λθ instead of λ and 	θ instead
of 	. For brevity, assumption [�] now means that 	θ fulfills this assumption for any θ ∈ �.

Assume that we observe the point process X in Wn where (Wn)n≥1 is a sequence of bounded
domains which converges to Rd as n → ∞. As outlined in the Introduction, the pseudo-
likelihood and the logistic regression methods are popular alternatives to the maximum likeli-
hood as they do not involve the normalizing constant. The associated estimators are respectively
defined as the maximum of

LPLWn(X; θ) =
∑

u∈XWn

logλθ (u,X \ u) −
∫

Wn

λθ (u,X)du, (2.5)

LRLWn(X; θ) =
∑

u∈XWn

log
λθ (u,X \ u)

λθ (u,X \ u) + ρ
−

∫
Wn

ρ log
λθ (u,X) + ρ

ρ
du, (2.6)

where ρ is some fixed positive real number.
A problem however occurs. The integrals in (2.5) and (2.6) are not computable in practice

because for values of u close to the boundary of Wn, λθ (u,X) depends on XWc
n

which is not
observed. When X has a finite range 0 < R < ∞, meaning that 	θ is compactly supported
on the euclidean ball B(0,R) or equivalently that for any u ∈ Rd and any x ∈ �, λθ (u,x) =
λθ (u,xB(u,R)), we can simply substitute Wn by Wn � R in (2.5) and (2.6), where for � � Rd

and some κ ≥ 0 the notation � � κ stands for the domain � eroded by the ball B(0, κ). Using
this border correction, λθ (u,X) can be indeed computed for any u ∈ Wn � R. As a remaining
practical issue, the integrals have to be approximated by some numerical scheme or by Monte-
Carlo; see [1] for an efficient solution.

The asymptotic properties of the pseudo-likelihood and the logistic regression estimators are
well understood in this finite range setting; see the references in Introduction. Maximizing the
log-pseudo-likelihood (or the logistic regression likelihood) on Wn � R is equivalent to cancel
the score, that is, the gradient of LPLWn�R(X; θ) (or LRLWn�R(X; θ)) with respect to θ . The
key-ingredient is that both scores constitute unbiased estimating functions, since by application
of the GNZ formula (2.3) their expectation vanishes when θ corresponds to the true parameter
of the underlying Gibbs measure. Standard theoretical tools for unbiased estimating equations
(see, e.g., [22]) can therefore be used to study the consistency and asymptotic normality of the
associated estimators.

In the infinite range setting, the situation becomes more delicate since for any u, λθ (u,X)

depends on X� for any � ⊂ Rd . In this case, we introduce the following modifications of (2.5)
and (2.6) that depend on two sequences of positive real numbers (αn) and (Rn)

L̃PLWn�αn,Rn(X; θ) =
∑

u∈XWn�αn

logλθ (u,Xu,Rn \ u) −
∫

Wn�αn

λθ (u,Xu,Rn)du, (2.7)

L̃RLWn�αn,Rn(X; θ) =
∑

u∈XWn�αn

log
λθ (u,Xu,Rn \ u)

λθ (u,Xu,Rn \ u) + ρ

(2.8)
−

∫
Wn�αn

ρ log
λθ (u,Xu,Rn) + ρ

ρ
du,
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where we denote Xu,Rn = XB(u,Rn)∩Wn . These expressions are computable from the single ob-
servation of X on Wn, provided the integrals are approximated as usual by numerical scheme or
by Monte-Carlo. Since they depend on two sequences αn and Rn, (2.7) and (2.8) actually form a
general family of contrast functions, important particular cases being the choices:

• αn = Rn, which agrees with the classical border correction for finite range interaction mod-
els with range R taking Rn = R;

• Rn = ∞, accounting for the maximal possible range of interaction;
• Rn = ∞ and αn = 0, which is a particular case of the previous choice where in addition no

erosion is considered.

We study in the next section the asymptotic properties of estimators derived from (2.7) and (2.8)
for a wide class of sequences αn and Rn, and based on a simulation study in Section 4, we give
some recommendations for the choice of these sequences in practice. From a theoretical point
view, these contrast functions introduce new challenges since the gradients of L̃PLWn�αn,Rn(X; θ)

and L̃RLWn�αn,Rn(X; θ) are no longer unbiased estimating equations in the infinite range case.
To overcome this difficulty, we prove a new central limit theorem in Appendix A for almost
conditionally centered random fields.

3. Asymptotic properties

We present asymptotic properties of the maximum pseudo-likelihood estimate, derived
from (2.7), for infinite range Gibbs point process. Similar results for the maximum logistic
regression derived from (2.8) are presented at the end of this section without proof. We assume
the window of observation expands to Rd as follows.

[Wn] (Wn) is an increasing sequence of convex compact sets, such that Wn → Rd as n → ∞.

We focus on exponential family models of pairwise interaction Gibbs point processes and
rewrite the model (2.2) for any u ∈ Rd and x ∈ � as

λθ (u,x) = βe−∑
v∈x 	θ (v−u) = e−θ�t (u,x) (3.1)

with θ1 = − logβ and t = (t1, . . . , tp)� where t1(u,x) = 1 and

tm(u,x) =
∑
v∈x

gm(v − u), m = 2, . . . , p. (3.2)

In that connection, our framework amounts to assume that 	 = ∑p

m=2 θmgm. For convenience,
we let g1 = 0 and we denote by g the p-dimensional vector g = (0, g2, . . . , gp)�. We make the
following assumption on g.

[g] For all m ≥ 2, gm is bounded from below and there exist γ1, γ2 > d and cg, r0 > 0 such
that:

(i) ∀‖x‖ < r0 and ∀θ ∈ �, θ2g2(x) ≥ cg‖x‖−γ1 ,
(ii) ∀m ≥ 3, gm(x) = o(‖x‖−γ1) as ‖x‖ → 0,
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(iii) ∀m ≥ 2 and ∀‖x‖ ≥ r0, |gm(x)| ≤ c‖x‖−γ2 .

Since � is bounded, [g] implies [�] which yields that for any θ ∈ � there exists a Gibbs mea-
sure Pθ . Assumption [g] allows us to specify which function gm is responsible for the behavior at
the origin of 	θ , namely g2. Note that the Lennard–Jones model defined in Section 2.2 (and the
other examples presented in this section) fits this setting with θ2 = A, θ3 = −B , g2(u) = ‖u‖−γ1

and g3(u) = ‖u‖−γ2 . In the sequel, θ� stands for the true parameter vector to estimate. In other
words, we assume observing a realization of a spatial point process X with Gibbs measure Pθ�

on Wn.
For exponential family models (3.1), the score function of the log-pseudo-likelihood defined

by (2.7) writes sWn�αn,Rn(X; θ) where for any � �Rd

s�,Rn(X; θ) =
∫

�

t(u,Xu,Rn)λθ (u,Xu,Rn)du −
∑

u∈X�

t (u,Xu,Rn \ u). (3.3)

Our first result establishes the strong consistency of the maximum pseudo-likelihood based
on (2.7) for infinite range Gibbs point processes and for a wide class of sequences (αn,Rn). In
close relation, [31] proved the strong consistency of estimators derived from (2.5). As pointed
out in Section 2.3, the form (2.5) of log-pseudo-likelihood is however unusable as it can only be
computed if X is observed on Rd . We obtain the same result but for estimators derived from the
computable pseudo-likelihood given by (2.7).

Proposition 3.1. Assume that [Wn] and [g] hold. Then for any x ∈ � the function θ →
−L̃PLWn�αn,Rn(x; θ) is a convex function with Hessian matrix given by

− d

dθ dθ� L̃PLWn�αn,Rn(x; θ) = − d

dθ� sWn�αn,Rn(x; θ)

(3.4)

=
∫

Wn�αn

t (u,xu,Rn)t (u,xu,Rn)
�λθ (u,xu,Rn)du.

Moreover if αn|Wn|−1/d → 0 and Rn → ∞ as n → ∞, and if for any y ∈ Rp \ {0}
P

{
y�t (0,X) �= 0

}
> 0, (3.5)

then the maximum pseudo-likelihood estimator

θ̂L̃PL = argmax
θ∈�

L̃PLWn�αn,Rn(X; θ)

converges almost surely to θ� as n → ∞.

Proof. By [Wn] and the basic assumption on αn, we are ensured that Wn � αn is a sequence
of regular bounded domains of Rd and that |Wn � αn| → ∞ as n → ∞. Since any stationary
Gibbs measure can be represented as a mixture of ergodic measures [37], it is sufficient to prove
consistency for ergodic measures. So, we assume here that Pθ� is ergodic. Since � is an open
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bounded set, and by convexity of θ → −L̃PLWn�αn,Rn(x; θ), then from [22], Theorem 3.4.4, we

only need to prove that Kn(θ, θ�) = |Wn �αn|−1{L̃PLWn�αn,Rn(X; θ�)− L̃PLWn�αn,Rn(X; θ)} →
K(θ, θ�) almost surely as n → ∞, where θ → K(θ, θ�) is a nonnegative function which vanishes
at θ = θ� only. We decompose Kn(θ, θ�) as the sum of the three terms T1 +T2(θ

�)−T2(θ) where
for any θ ∈ �

T1 = |Wn � αn|−1{LPLWn�αn

(
X; θ�

) − LPLWn�αn(X; θ)
}
,

T2(θ) = |Wn � αn|−1{L̃PLWn�αn,Rn(X; θ) − LPLWn�αn(X; θ)
}
.

Lemma B.2 shows in particular that λθ (0,X) and |θ�t (0,X)|λθ�(0,X) have finite expectation
under Pθ� . Hence, using the ergodic theorem for spatial processes of [34], we can follow the
proof of [31] or the proof of [8], Theorem 1, to prove that T1 → K(θ, θ�) almost surely as
n → ∞ where

K
(
θ, θ�

) = E
(
λθ�(0,X)

[
e(θ�−θ)�t (0,X) − {

1 + (
θ� − θ

)�
t (0,X)

}])
which is a nonnegative function that vanishes at θ = θ� only, under the identifiability condi-
tion (3.5). So the rest of the proof consists in proving that T2(θ) → 0 almost surely for any
θ ∈ �. We have T2(θ) = T ′

1 + T ′
2 where

T ′
1 = |Wn � αn|−1

∑
u∈XWn�αn

θ�{
t (u,Xu,Rn \ u) − t (u,X \ u)

}
,

T ′
2 = |Wn � αn|−1

∫
Wn�αn

{
λθ (u,X) − λθ (u,Xu,Rn)

}
du.

Let us first look at T ′
1. By boundedness of �, it is sufficient to prove that |Wn � αn|−1 ×∑

u∈XWn�αn
{tm(u,Xu,Rn \ u) − tm(u,X \ u)} tends to 0 almost surely. Let δn be a sequence of

real numbers such that δn → ∞ and δn|Wn|−1/d → 0 as n → ∞. For brevity, let X(u,Rn)c :=
XRd\{Wn∩B(u,Rn)}.

∑
u∈XWn�αn

{
tm(u,Xu,Rn \ u) − tm(u,X \ u)

}

=
∑

u∈XWn�αn

∑
v∈X(u,Rn)c

gm(v − u) (3.6)

=
∑

u∈XWn�(αn+δn)

∑
v∈X(u,Rn)c

gm(v − u) +
∑

u∈XWn�αn\Wn�(αn+δn)

∑
v∈X(u,Rn)c

gm(v − u).

In the first sum above, ‖u − v‖ ≥ Rn ∧ (αn + δn) and using the same arguments and the same
notation as in (ii) of Lemma B.1 we get that the absolute value of this sum is lower than
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c(Rn ∧ (αn + δn))
−γ ′ ∑

u∈XWn�(αn+δn)
H(u,X \ u) for some γ ′ > 0. Hence,

|Wn � αn|−1
∣∣∣∣ ∑
u∈XWn�(αn+δn)

∑
v∈X(u,Rn)c

gm(v − u)

∣∣∣∣
≤ c

(
Rn ∧ (αn + δn)

)−γ ′ |Wn � (αn + δn)|
|Wn � αn|

∣∣Wn � (αn + δn)
∣∣−1 ∑

u∈XWn�(αn+δn)

H(u,X \ u).

By Lemma B.2, the random variable |H(0,X)|λθ�(0,X) has finite expectation under Pθ� . More-
over, our assumptions ensure that Wn � (αn + δn) is a sequence of regular bounded domains
of Rd with |Wn � (αn + δn)| → ∞ as n → ∞. So by the ergodic theorem |Wn � (αn +
δn)|−1 ∑

u∈XWn�(αn+δn)
H(u,X \ u) → E{H(0,X)λθ�(0,X)} almost surely whereby

|Wn � αn|−1
∣∣∣∣ ∑
u∈XWn�(αn+δn)

∑
v∈X(u,Rn)c

gm(v − u)

∣∣∣∣ → 0 (3.7)

almost surely. For the second sum in (3.6), using the notation |tm|(u,x) = ∑
v∈x |gm(v − u)| we

have

|Wn � αn|−1
∣∣∣∣ ∑
u∈XWn�αn\Wn�(αn+δn)

∑
v∈X(u,Rn)c

gm(v − u)

∣∣∣∣
≤ |Wn � αn|−1

∑
u∈XWn�αn\Wn�(αn+δn)

|tm|(u,X)

= |Wn � αn|−1
∑

u∈XWn�αn

|tm|(u,X) − |Wn � αn|−1
∑

u∈XWn�(αn+δn)

|tm|(u,X)

which tends to 0 almost surely by application of the ergodic theorem, Lemma B.2 and since
|Wn � (α + δn)|/|Wn � αn| → 1 as n → ∞. Combining this result with (3.7) in (3.6) shows that
T ′

1 → 0 almost surely.
Concerning the remaining term T ′

2, we have

T ′
2 = |Wn � αn|−1

∫
Wn�αn

λθ (u,X)
{
1 − e

−θ� ∑
v∈X(u,Rn)c

g(v−u)}
du.

We can use exactly the same decomposition as in (3.6) by introducing δn, then use Lemmas B.1
and B.2 to apply the ergodic theorem, leading to T ′

2 → 0 almost surely. These details are omitted.
Hence, T2(θ) → 0 almost surely for any θ ∈ � and the proof of Proposition 3.1 is completed. �

As a preliminary result toward the asymptotic normality of θ̂L̃PL, we state in the next lemma
general conditions on the sequences αn and Rn leading to the equivalence in probability of the

score functions, up to |Wn|1/2.
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Lemma 3.2. Assume that [Wn] and [g] hold. Let D be the set of all sequences (αn,Rn) such

that αn|Wn|−1/d → 0 and such that there exists 0 < γ ′ < γ2 − d such that α
−γ ′
n |Wn|1/2 → 0 and

R
−γ ′
n |Wn|1/2 → 0. Then, for any (αn,Rn) ∈ D and (α′

n,R
′
n) ∈ D we have

sWn�αn,Rn

(
X; θ∗) − sWn�α′

n,R′
n

(
X; θ∗) = oP

(|Wn|1/2). (3.8)

Proof. For ��Rd , we denote for short s�,Rn := s�,Rn(X; θ∗) and set

s′
�,Rn

=
∫

�

t(u,Xu,Rn)λθ�(u,X)du −
∑

u∈X�

t (u,Xu,Rn \ u). (3.9)

We prove below that for any (αn,Rn) ∈ D, sWn�αn,Rn − s′
Wn,∞ = oP (|Wn|1/2), whereby (3.8) is

an immediate consequence. We have

sWn�αn,Rn − s′
Wn,∞ = A + B + C (3.10)

with A = sWn�αn,Rn − sWn�αn,∞, B = sWn�αn,∞ − s′
Wn�αn,∞ and C = s′

Wn�αn,∞ − s′
Wn,∞. Let

us prove that each of these three terms is oP (|Wn|1/2).
First, we have A = A1 + A2 with

A1 =
∫

Wn�αn

{
t (u,Xu,Rn)λθ�(u,Xu,Rn) − t (u,XWn)λθ�(u,XWn)

}
du,

A2 =
∑

u∈XWn�αn

{
t (u,XWn \ u) − t (u,Xu,Rn \ u)

}
.

Both terms above are handled similarly and we give the details for A2 only. Denoting A2,m

the mth coordinate of A2, we obtain using the same arguments and the same notation as in
Lemma B.1(ii) that for any m

|A2,m| ≤
∑

u∈XWn�αn

∑
v∈XWn\B(u,Rn)

∣∣gm(v − u)
∣∣ ≤ R

−γ ′
n

∑
u∈XWn

H(u,X).

Applying the GNZ formula and Lemma B.2, we deduce that E|A2,m| = O(R
−γ ′
n |Wn|) show-

ing that |Wn|−1/2A2 = oP (1). The same result holds for A1 by the arguments developed in
Lemma B.1(ii)–(iii).

Second,

B =
∫

Wn�αn

t (u,XWn)
{
λθ�(u,XWn) − λθ�(u,X)

}
du.

Note that

∣∣λθ (u,x) − λθ (u,xWn)
∣∣ = λθ (u,x)

∣∣1 − e

∑
v∈x

Wc
n

	θ (v−u)∣∣,
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where in the last sum ‖v − u‖ ≥ αn since u ∈ Wn � αn. The same arguments as in the proof
of Lemma B.1(iii) thus apply and we get for all u ∈ Wn � αn, |λθ (u,x) − λθ (u,xWn)| ≤
cα

−γ ′
n ecG(u,x)λθ (u,x)H(u,x). From Lemma B.1(i) and Lemma B.2, we obtain

E|B| =O
(
α

−γ ′
n |Wn � αn|

) =O
(
α

−γ ′
n |Wn|

)
and thus |Wn|−1/2B = oP (1).

Third,

C = −
∫

Wn\(Wn�αn)

t (u,XWn)λθ�(u,X)du +
∑

u∈XWn\(Wn�αn)

t (u,XWn \ u)

= −
∑
j∈Jn

s′
�n,j ,∞,

where �j is the unit cube centered at j ∈ Zd , �n,j = �j ∩ (Wn \ (Wn � αn)) and Jn ⊂ Zd is
the set such that Wn \ (Wn � αn) = ⋃

j∈Jn
�n,j . We have

Var(C) =
∑

j,k∈Jn

Cov
(
s′
�n,j ,∞, s′

�n,k,∞
)
.

It is not difficult to check that all results of Lemma B.4(i)–(iii) remain true if the ball Bu,n =
B(u,αn) therein is replaced by Wn, or in other words s′

� is replaced by s′
�,∞. Therefore,

from (iii) of Lemma B.4∥∥Var(C)
∥∥ =O

(|Jn|
) =O

(∣∣Wn \ (Wn � αn)
∣∣) =O

(|Wn|1−1/dαn

)
showing that |Wn|−1‖Var(C)‖ → 0. Hereby |Wn|−1/2C = oP (1) and the proof is completed. �

The next result establishes the asymptotic normality of the score function associated to the
modified pseudo-likelihood L̃PLWn�αn,Rn(X; θ) at the true value of the parameter θ = θ�, when-
ever (αn,Rn) belongs to the set D introduced in Lemma 3.2. The proof relies on a new central
limit theorem stated in Appendix A. As a consequence we deduce the asymptotic normality
of θ̂L̃PL.

These results require the following notation: let �∞ and U∞ the (p,p) matrices

�∞ = E
{
t (0,X)t (0,X)�λθ�(0,X)

}
+

∫
Rd

E
{
t (0,X)t (v,X)�λθ�(0,X)λθ�(v,X)

}{
1 − e−	θ� (v)

}
dv (3.11)

+
∫
Rd

E
{
λθ�(0,X)λθ�(v,X)

}
g(v)g(v)�e−	θ� (v) dv,

U∞ = E
{
t (0,X)t (0,X)�λθ�(0,X)

}
. (3.12)
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These matrices are indeed correctly defined, as [g] implies on the one hand that all the expecta-
tions involved are uniformly bounded in v by Lemmas B.1–B.2, and on the other hand that∫

Rd

∣∣1 − e−	θ� (v)
∣∣dv < ∞ and

∫
Rd

∥∥g(v)g(v)�
∥∥e−	θ� (v) dv < ∞.

We denote by
d→ the convergence in distribution.

Theorem 3.3. Under the assumptions of Lemma 3.2 with γ2 > 2d and the assumption that �∞
is a positive definite matrix, then we have the two following convergences in distribution for any
(αn,Rn) ∈D, as n → ∞:

(i)

|Wn|−1/2sWn�αn,Rn

(
X; θ�

) d→ N (0,�∞),

(ii)

|Wn|1/2(θ̂L̃PL − θ�
) d→ N

(
0,U−1∞ �∞U−1∞

)
.

Some remarks on this theorem are in order. The condition γ2 > 2d is clearly the most re-
strictive one. Nonetheless, it includes the standard Lennard–Jones model in dimension d = 2
for which γ2 = 6. Under [g], existence of the model is ensured if γ2 > d but it remains
an open problem to prove the asymptotic normality of the pseudo-likelihood estimator when
d < γ2 < 2d . Concerning the set D of possible sequences (αn,Rn), it includes the natural choices
(αn,Rn) = (αn,αn) and (αn,Rn) = (αn,∞) discussed in Section 2.3, provided αn tends to infin-
ity at a good rate. However, D does not include the particular case (αn,Rn) = (0,∞), whereas
this choice leads to a consistent estimator as proved in Proposition 3.1. In fact, when the erosion
parameter αn does not tend to infinity, some edge effects occur due to the infinite range of the
process. These edge effects are negligible with respect to |Wn| but not with respect to |Wn|1/2.
Finally, following [14], it is possible to construct a fast estimator of the asymptotic covariance
matrices �∞ and U∞, but its asymptotic properties are out of the scope of the present paper.

Proof of Theorem 3.3. (i) Since γ2 > 2d , there exists ε > 0 and a > 0 such that

d

2(γ2 − d − ε)
< a <

1

2 + ε
. (3.13)

For such ε, a, we let γ ′ = γ2 − d − ε and consider the particular case Rn = αn = |Wn|a/d . Then,

αn|Wn|−1/d → 0 and α
−γ ′
n |Wn|1/2 = R

−γ ′
n |Wn|1/2 = |Wn|(d/2−a(γ2−d−ε))/d → 0. This particular

choice of (αn,Rn) thus belongs to D. From Lemma 3.2, if we prove (i) for this choice, then
the same convergence holds true for all sequences (αn,Rn) in D, completing the proof of (i).
Henceforth, we let Rn = αn = |Wn|a/d where a is such that (3.13) holds.

Denoting by �j the unit cube centered at j ∈ Zd , we let �n,j = �j ∩ (Wn �αn) and In ⊂ Zd

the set such that Wn � αn = ⋃
j∈In

�n,j . At several places in the proof, the sequence ρn =
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|In|1/2/α
γ ′
n is involved. Then

ρn = |In|1/2

α
γ ′
n

=O
{|Wn|(d/2−a(γ2−d−ε))/d

}
(3.14)

tends to 0.
We write for short s�n,j

= s�n,j ,Rn(X; θ�) = s�n,j ,αn(X; θ�) and Bu,n = B(u,αn). Note that
for any u ∈ Wn � αn, t (u,Xu,Rn) = t (u,Xu,αn) = t (u,XBu,n), and similarly λθ�(u,Xu,Rn) =
λθ�(u,Xu,αn) = λθ�(u,XBu,n). Therefore, for any j ∈ In,

s�n,j
=

∫
�n,j

t (u,XBu,n)λθ (u,XBu,n)du −
∑

u∈X�n,j

t (u,XBu,n \ u).

Letting Zn,j = s�n,j
− E(s�n,j

), we have

sWn�αn = Sn + E(sWn�αn),

where Sn = ∑
j∈In

Zn,j . Define

�̂n =
∑
j∈In

∑
k∈In

|k−j |≤αn

Zn,jZ
�
n,k and �n = E�̂n.

The proof of (i) is completed if we show that �
−1/2
n Sn

d→ N (0, Ip), �
−1/2
n E(sWn�αn) → 0 and

|Wn|−1�n → �∞. Let us prove the first convergence by application of Theorem A.1.
By [Wn] and the definition of In, we have |In| =O(|Wn|); see, for example, [13], Lemma A.1.

From (3.13), α
(2+ε)d
n = o(|In|) which, following the remark after Theorem A.1, satisfies the

assumption of Theorem A.1 if Assumption (a) of this theorem is satisfied for any q ≥ 1. The
latter holds by definition of Zn,j and Lemma B.3.

Concerning assumption (b), we use for short the notation s′
� = s′

�,αn
for any � � Rd ;

see (3.9), namely

s′
� =

∫
�

t(u,XBu,n)λθ�(u,X)du −
∑

u∈X�

t (u,XBu,n \ u).

Note that from the GNZ formula Es′
� = 0. We have from Lemma B.4, for any sequence Jn ⊂ In

such that |Jn| → ∞,∑
j,k∈Jn

∥∥E
(
Zn,jZ

�
n,k

)∥∥ =
∑

j,k∈Jn

∥∥Cov(s�n,j
, s�n,k

)
∥∥

≤
∑

j,k∈Jn

∥∥Cov(s�n,j
, s�n,k

) − Cov
(
s′
�n,j

, s′
�n,k

)∥∥
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+
∑

j,k∈Jn

∥∥Cov
(
s′
�n,j

, s′
�n,k

)∥∥

≤
∑

j,k∈Jn

(
c

α
γ ′
n (1 + |k − j |γ2)

+ c

α
2γ ′
n

)
+

∑
j,k∈Jn

|j−k|≤2r0

∥∥Cov
(
s′
�n,j

, s′
�n,k

)∥∥

+
∑

j,k∈Jn

|j−k|>2r0

c|k − j |−γ2

≤ cα
−γ ′
n |Jn| + c|Jn|ρ2

n + c|Jn|
∥∥Var

(
s′
�n,j

)∥∥ + c|Jn|

which is O(|Jn|) by Lemma B.3 and from (3.14).
Since �∞ is assumed to be a positive definite matrix, assumption (c) holds if we prove that

|In|−1�n → �∞ as n → ∞. For this, let

�′
n = Var

(
s′
Wn�αn

) =
∑

j,k∈In

E
{
s′
�n,j

(
s′
�n,k

)�}
and �̂′

n =
∑

j,k∈In

|k−j |≤αn

s′
�n,j

(
s′
�n,k

)�
.

We have ‖|In|−1�n − �∞‖ ≤ T1 + T2 + T3 where

T1 = |In|−1
∥∥E(�̂n) − E

(
�̂′

n

)∥∥, T2 = |In|−1
∥∥E

(
�̂′

n

) − �′
n

∥∥, T3 = ∥∥|In|−1�′
n − �∞

∥∥.

First, applying Lemma B.4

T1 ≤ |In|−1
∑
j∈In

∑
k∈In

|k−j |≤αn

∥∥E
(
Zn,jZ

�
n,k

) − E
{
s′
�n,j

(
s′
�n,k

)�}∥∥

= |In|−1
∑
j∈In

∑
k∈In

|k−j |≤αn

∥∥Cov(s�n,j
, s�n,k

) − Cov
(
s′
�n,j

, s′
�n,k

)∥∥

= O
(
α

−γ ′
n

) +O
(
α

d−2γ ′
n

)
and T1 → 0 since γ2 > 2d implies 2γ ′ − d > 0 as soon as ε < d/2, which can be assumed
without loss of generality. Second, from (iii) in Lemma B.4

T2 ≤ |In|−1
∑
j∈In

∑
k∈In

|k−j |>αn

∥∥E
{
s′
�n,j

(
s′
�n,k

)�}∥∥

≤ c|In|−1
∑
j∈In

∑
k∈In

|k−j |>αn

1

|k − j |γ2
≤ c

∑
|i|>αn

1

|i|γ2
= o(1).
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Finally, T3 → 0 from (ii) in Lemma B.4, which completes the proof of condition (c) of Theo-
rem A.1.

To prove assumption (d), we apply the conditional GNZ formula (2.4) to write, for any j ∈ In,

E(Zn,j | X�n,k
, k �= j)

= E

[∫
�n,j

t (u,XBu,n)
{
λθ�(u,X) − λθ�(u,XBu,n)

}
du

∣∣∣ X�n,k
, k �= j

]

− E
∫

�n,j

t (u,XBu,n)
{
λθ�(u,X) − λθ�(u,XBu,n)

}
du.

From Lemma B.1, we have for any u ∈Rd and x ∈ �∥∥t (u,xBu,n)
∥∥∣∣λθ�(u,x) − λθ�(u,xBu,n)

∣∣ ≤ c

α
γ ′
n

Y (u,x),

where Y(u,x) = ‖{|tm|(u,x)}m≥1‖H(u,x)ecG(u,x)λθ�(u,x) using the notation of the lemma.
Since |�n,j | ≤ 1, we deduce from the stationarity of X and Lemma B.2 that

E
∥∥E(Zn,j | X�n,k

, k �= j)
∥∥ ≤ c

α
γ ′
n

E
{
Y(0,X)

} =O
(
α

−γ ′
n

)
.

Hence,

|In|−1/2
∑
j∈In

E
∥∥E(Zn,j | X�n,k

, k �= j)
∥∥ =O(ρn)

tends to 0 from (3.14). All conditions of Theorem A.1 are therefore satisfied, which yields that

�
−1/2
n Sn

d→ N (0, Ip). The convergence |Wn|−1�n → �∞ is an immediate consequence of as-

sumption (c) checked above. It remains to prove that �
−1/2
n E(sWn�αn) → 0. This is a conse-

quence of the GNZ formula, (A.3), Lemma B.1 and the condition (3.13) since∥∥�
−1/2
n E(sWn�αn)

∥∥ ≤ ∥∥�
−1/2
n

∥∥∥∥E(sWn�αn)
∥∥

≤ c|In|−1/2α
−γ ′
n E

∫
Wn�αn

Y (u,X)du =O(ρn) = o(1).

(ii) It is worth repeating that θ → −L̃PLWn�αn,Rn(x; θ) is a convex function with Hessian
matrix given by (3.4). Following Lemmas B.1–B.2 and arguments developed in the proof of
Proposition 3.1, we leave the reader to check that almost surely

|Wn � αn|−1
{

d

dθ dθ� L̃PLWn�αn,Rn(X; θ) − d

dθ dθ� LPLWn�αn(X; θ)

}
→ 0

and

−|Wn � αn|−1 d

dθ dθ� LPLWn�αn(X; θ) → E
{
t (0,X)t (0,X)�λθ (0,X)

}
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as n → ∞, which equals to U∞ when θ = θ�. We also note that (3.5) implies that U∞ is a
positive definite matrix. These facts and (i) allow us to apply [22], Theorem 3.4.5, to deduce the
result. �

The following proposition focuses on the maximum logistic regression and states its strong
consistency and asymptotic normality. The result is given without proof, but we claim that it fol-
lows by the same arguments as those involved in the proofs of Proposition 3.1 and Theorem 3.3.

Proposition 3.4. Under the assumptions of Proposition 3.1, the maximum logistic regression
estimator defined by

θ̂L̃RL = argmax
θ∈�

L̃RLWn�αn(X; θ)

converges almost surely to θ� as n → ∞ and under the assumptions of Theorem 3.3 it satisfies
the following convergence in distribution:

|Wn|1/2(θ̂L̃RL − θ�
) d→ N

(
0,V −1∞ �∞V −1∞

)
,

where denoting h(u,x) = ρt(u,x)/{λθ�(u,x) + ρ} for any u ∈ Rd,x ∈ �,

�∞ = E
{
h(0,X)h(0,X)�λθ�(0,X)

}
+

∫
Rd

E
{
h(0,X)h(v,X)�λθ�(0,X)λθ�(v,X)

}{
1 − e−	θ� (v)

}
dv

+
∫
Rd

E
{
λθ�(0,X)λθ�(v,X)�vh(0,X)�0h(v,X)�

}
e−	θ� (v) dv,

V∞ = 1

ρ
E
{
h(0,X)h(0,X)�λθ�(0,X)

}
with �vh(u,x) = h(u,x ∪ v) − h(u,x) for any u,v ∈Rd and x ∈ �.

4. Simulation study

In this section, we present results of simulation experiments assessing the performance estimation
of maximum pseudo-likelihood estimators in the Lennard–Jones model, given by

logλθ (u,x) = log(β) −
∑
v∈x

	(v − u) with 	(u) = 4ε

{(
σ

‖u‖
)6

−
(

σ

‖u‖
)12}

. (4.1)

We chose β = 100 and σ = 0.1 and considered three cases where ε takes the values 0.1,0.5
and 1, respectively, which, following [2] we call low, moderate and high rigidity models. The re-
alizations are generated using the Metropolis–Hastings algorithm, implemented in the R package
spatstat [3,5], on Wn = [−n,n]2 and for n = 1/2,1,2. To take into account the infinite range
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Figure 1. Typical realizations on [−1,1]2 of a Lennard–Jones model with parameters β = 100, σ = 0.1
and ε = 0.1 (left), 0.5 (middle) and 1 (right).

characteristic of the Lennard–Jones model, the processes are simulated on [−n − 2, n + 2]2 and
then clipped to Wn. Figure 1 depicts some typical realizations on [−1,1]2.

For each model and each observation window, we considered three versions of maximum
pseudo-likelihood estimators given by (2.7) of the parameter vector {log(β), σ, ε}�: (i) αn =
Rn ∈ [0.05,0.3], (ii) αn ∈ [0.05,0.3] and Rn = ∞, (iii) αn = 0, Rn = ∞. We remind that
the values αn = 0 and Rn = ∞, respectively, mean that no border erosion is considered (i.e.,
Wn � αn = Wn) and the maximal possible range of interaction in Wn is taken into account (i.e.,
λ(u,xu,Rn) = λ(u,xWn)). Writing αn and/or Rn ∈ [0.05,0.3] means that we evaluated the esti-
mates for 30 values regularly sampled in [0.05,0.3].

We computed the pseudo-likelihood estimator by using a 100 × 100 grid of quadrature points
to discretize the integral involved in (2.7). We did not use the Berman–Turner approximation,
implemented in spatstat for a large class of models excluding (4.1) (see [4]), because the
latter may artificially lead to biased estimates for very repulsive patterns. As suggested by [2], to
minimise numerical problems (overflow, instability, slow convergence) we rescaled the interpoint
distances to a unit equal to the true value of σ .

We define the weighted mean squared error WMSE by

WMSE = Ê{(l̂ogβ − logβ)2}
(logβ)2

+ Ê{(̂σ − σ)2}
σ 2

+ Ê{(̂ε − ε)2}
ε2

and we consider in the following its root RWMSE = √
WMSE. Similarly, we define the root-

weighted squared bias and the root-weighted variance, respectively, denoted by RWSQ and
RWV.

Tables 1 and 2 summarize the simulation study based on 100 replications, where we report the
values of RWMSE, RWSB and RWV. When αn and/or Rn vary, we report in Table 1 the smallest
value of RWMSE and the associated value αopt of αn between brackets. To be consistent, we
report in Table 2 the values of RWSB and RWV associated to αopt. We observe that the three
versions of the estimates have a RWMSE decreasing with n for the three Lennard–Jones models.
In case (i) where αn = Rn, the optimal value seems to be around αn = 0.15. A closer look at the
estimates showed us that their average behavior (sample mean and standard deviation) fluctuate
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Table 1. Root-weighted mean squared errors (RWMSE) of parameters estimates for different Lennard–
Jones models. The results are based on 100 replications. The realizations are generated on [−n− 2, n+ 2]2
for n = 1/2,1,2 and the window of observation corresponds to [−n,n]2. When it makes sense, we indicate
between brackets the value αopt of αn leading to the minimal value of RWMSE

RWMSE

[−1/2,1/2]2 [−1,1]2 [−2,2]2

Low (ε = 0.1)
αn = Rn ∈ [0.05,0.3] 3.26 (0.13) 1.25 (0.13) 0.62 (0.12)
αn ∈ [0.05,0.3], Rn = ∞ 3.72 (0.05) 1.79 (0.05) 0.63 (0.06)
αn = 0, Rn = ∞ 3.5 1.66 0.69

Moderate (ε = 0.5)
αn = Rn ∈ [0.05,0.3] 0.65 (0.12) 0.34 (0.14) 0.2 (0.15)
αn ∈ [0.05,0.3], Rn = ∞ 0.68 (0.05) 0.38 (0.05) 0.19 (0.05)
αn = 0, Rn = ∞ 0.59 0.33 0.18

High (ε = 1)
αn = Rn ∈ [0.05,0.3] 1.04 (0.08) 0.42 (0.16) 0.13 (0.16)
αn ∈ [0.05,0.3], Rn = ∞ 1.34 (0.05) 0.36 (0.05) 0.16 (0.05)
αn = 0, Rn = ∞ 1.23 0.27 0.17

Table 2. Root-weighted squared biases (RWSB) and variances (RWS) of parameters estimates for different
Lennard–Jones models. The setting is the same as in Table 1. When αn and Rn vary, we report the values
leading to the minimal RWMSE, that is, the values associated to αn = αopt as given in Table 1

RWSB and RWV

[−1/2,1/2]2 [−1,1]2 [−2,2]2

Low (ε = 0.1)
αn = Rn ∈ [0.05,0.3] 1.82 2.70 0.57 1.11 0.07 0.62
αn ∈ [0.05,0.3], Rn = ∞ 2.49 2.76 0.82 1.59 0.03 0.63
αn = 0, Rn = ∞ 2.36 2.59 0.78 1.46 0.20 0.66

Moderate (ε = 0.5)
αn = Rn ∈ [0.05,0.3] 0.23 0.60 0.16 0.30 0.07 0.19
αn ∈ [0.05,0.3], Rn = ∞ 0.04 0.66 0.10 0.37 0.02 0.19
αn = 0, Rn = ∞ 0.07 0.58 0.02 0.33 0.02 0.18

High (ε = 1)
αn = Rn ∈ [0.05,0.3] 0.43 0.71 0.16 0.39 0.07 0.12
αn ∈ [0.05,0.3], Rn = ∞ 0.11 1.27 0.13 0.34 0.12 0.10
αn = 0, Rn = ∞ 0.06 1.23 0.05 0.26 0.12 0.11
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quite a lot with αn. In case (ii) where Rn = ∞, we observed that the biases of the estimates do not
fluctuate that much with αn. Since the estimates had smaller standard deviation when the amount
of information is maximal, that is, when αn is low, this explains why the smallest value of αn

led in almost all cases to the smallest RWMSE. Surprisingly, the third situation corresponding to
αn = 0 and Rn = ∞ produced very interesting results which are optimal or close to the optimal
ones in all cases considered. This estimator may be very time consuming to evaluate for very
large datasets since all the points are involved in the evaluations of the Papangelou conditional
intensity. Nonetheless, for the setting considered in this simulation study the computational time
differences were negligible. The situation αn = 0 and Rn = ∞ is supported by Proposition 3.1
(consistency) but not by Theorem 3.3 (asymptotic normality). However, the normal QQ-plots
in Figures 2–4 seem to show a convergence to a Gaussian behavior for all our choices of αn

and Rn, with approximatively the same rate of convergence, that is, |Wn|−1/2, if we refer to the
decreasing rate of the slopes in each QQ-plot. Note that the Gaussian behavior is less clear in the
low rigidity Lennard–Jones model than in the moderate and high rigidity cases, but this seems
specific to the model rather than to the estimators. In conclusion, to estimate the parameters of
a Lennard–Jones model using the pseudo-likelihood method, we recommend to use no erosion
and no finite range correction.

Appendix A: A new central limit theorem

When the Gibbs point process has a finite range, the asymptotic normality of the pseudo-
likelihood or the logistic regression estimators are essentially derived from a central limit theorem
for conditionally centered random fields; see the references in the Introduction. This connection
comes from the fact that in the finite range case, the score function of the pseudo-likelihood
(or the logistic regression) is conditionally centered, by application of the conditional GNZ for-
mula (2.4). In the infinite range case, the score functions of the log-pseudo-likelihood and the
logistic regression are neither centered, nor conditionally centered. In the following theorem, the
conditional centering condition is replaced by condition (d), which turns out to be sufficient for
our application to sWn�αn,Rn(X; θ�) in Theorem 3.3. The other conditions are mainly due to the
non-stationary setting induced by the presence of αn and Rn. They allow in particular to control
the asymptotic behavior of the empirical covariance matrix in (A.1). For two square matrices
A,B , we write A ≥ B when A − B is a positive semi-definite matrix.

Theorem A.1. For n ∈N and j ∈ Zd , let Xn,j be a triangular array field in a measurable space
S. For n ∈ N, let In ⊂ Zd and αn ∈ R+ such that |In| → ∞ and αn → ∞ as n → ∞. Define
Sn = ∑

j∈In
Zn,j where Zn,j = fn,j (Xn,k, k ∈ Kn,j ) with Kn,j = {k ∈ Zd, |k − j | ≤ αn} and

where fn,j : SKn,j → Rp is a measurable function. We define �̂n and �n by

�̂n =
∑
j∈In

∑
k∈In

|k−j |≤αn

Zn,jZ
�
n,k and �n = E�̂n.

We assume that:
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Figure 2. Normal QQ-plots for estimates of the parameter ε (left) and σ (right) for the low interaction
Lennard–Jones model, that is, (log(β), ε, σ ) = (log(100),0.1,0.1). The first row (resp., the second and
third) corresponds to estimates obtained with αn = Rn = αopt (resp., with αn = αopt,Rn = ∞ and with
αn = 0,Rn = ∞). The optimal values αopt are given in Table 1.
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Figure 3. Normal QQ-plots for estimates of the parameter ε (left) and σ (right) for the moderate interaction
Lennard–Jones model, that is, (log(β), ε, σ ) = (log(100),0.5,0.1). The first row (resp., the second and
third) corresponds to estimates obtained with αn = Rn = αopt (resp., with αn = αopt,Rn = ∞ and with
αn = 0,Rn = ∞). The optimal values αopt are given in Table 1.



Estimation of Gibbs point processes with infinite range interaction 1321

Figure 4. Normal QQ-plots for estimates of the parameter ε (left) and σ (right) for the high interaction
Lennard–Jones model, that is, (log(β), ε, σ ) = (log(100),1,0.1). The first row (resp., the second and
third) corresponds to estimates obtained with αn = Rn = αopt (resp., with αn = αopt,Rn = ∞ and with
αn = 0,Rn = ∞). The optimal values αopt are given in Table 1.
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(a) EZn,j = 0 and there exists q ≥ 1 such that supn≥1 supj∈In
E‖Zn,j‖4q < ∞,

(b) for any sequence Jn ⊂ In such that |Jn| → ∞ as n → ∞,

|Jn|−1
∑

j,k∈Jn

∥∥E
(
Zn,jZ

�
n,k

)∥∥ =O(1).

Then if α
((4q−1)/(2q−1))d
n = o(|In|) as n → ∞,

|In|−1(�̂n − �n) → 0 in L2q . (A.1)

If, in addition:

(c) there exists a positive definite matrix Q such that |In|−1�n ≥ Q for n sufficiently large,
(d) as n → ∞

|In|−1/2
∑
j∈In

E
∥∥E(Zn,j | Xn,k, k �= j)

∥∥ → 0,

then

�
−1/2
n Sn

d→ N (0, Ip). (A.2)

Before detailing the proof, let us remark that if assumption (a) is valid for any q ≥ 1 then the
result remains true if α

(2+ε)d
n = o(|In|) for any ε > 0.

Proof of Theorem A.1. For m,m′ = 1, . . . , p, let �mm′ = (�̂n − �n)mm′ . Let q ≥ 1 be as in
assumption (a), the assertion (A.1) will be proved if we prove that E(|In|−2q�

2q

mm′) = o(1). We
have �mm′ = ∑

j∈In
Un,j where

Un,j =
∑

k∈In,j

{
Zn,jZ

�
n,k − E

(
Zn,jZ

�
n,k

)}
mm′

and In,j = {k ∈ In : |k − j | ≤ αn}. Let j1, . . . , j2q ∈ In such that |jk − j1| > 4αn for k =
2, . . . ,2q . It is clear that for any j ∈ In, Un,j depends only on Xn,k for |k − j | ≤ 2αn. So,

E(Un,j1 · · ·Un,j2q
) = E

{
E
(
Un,j1 · · ·Un,j2q

| Xn,k, |k − j1| > 2αn

)}
= E

{
Un,j2 · · ·Un,j2q

E
(
Un,j1 | Xn,k, |k − j1| > 2αn

)}
= E

{
Un,j2 · · ·Un,j2q

E(Un,j1)
} = 0,

whereby we deduce that

E
(
�

2q

mm′
) =

∑
j1,...,j2q∈In

|jk−j1|≤4αn,k=2,...,2q

E(Un,j1 · · ·Un,j2q
).
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Now, by condition (a) and Hölder’s inequality, we have for any j ∈ In

EU
2q
n,j =

∑
k1,...,k2q∈In,j

E
[{

Zn,jZ
�
n,k1

− E
(
Zn,jZ

�
n,k1

)}
mm′ · · ·

{
Zn,jZ

�
n,k2q

− E
(
Zn,jZ

�
n,k2q

)}
mm′

]

≤ c
∑

k1,...,k2q∈In,j

μ4q

≤ c
(

sup
j∈In

#
{
k ∈ In, |k − j | ≤ αn

})2q =O
(
α

2qd
n

)
.

From Hölder’s inequality, we continue with

E
(
�

2q

mm′
) ≤

∑
j1,...,j2q∈In

|jk−j1|≤4αn,k=2,...,2q

E
(
U

2q
n,j1

)1/2qE
(
U

2q
n,j2q

)1/2q =O
{
α

(4q−1)d
n |In|

}

leading to

E
(|In|−2q�

2q

mm′
) =O

(
α

(4q−1)d
n

|In|2q−1

)
= o(1)

by assumption on αn, which completes the proof of (A.1).
We now focus on (A.2) and we let

Sn = �
−1/2
n Sn, Sn,j =

∑
k∈In,j

Zn,k and Sn,j = �
−1/2
n Sn,j ,

where we recall the notation In,j =Kn,j ∩ In. According to Stein’s method (see [9]), in order to
show (A.2) it suffices to prove that for all u ∈Rp such that ‖u‖ = 1 and for all ω ∈ R

E
{(

iω − u�Sn

)
eiωu�Sn

} → 0

as n → ∞ where i = √−1. Letting v = ωu, this is equivalent to show that for all v ∈ Rp ,
‖E(An)‖ → 0 where An = (iv − Sn)e

iv�Sn . We decompose the term An in the same spirit as [9]:
An = An,1 − An,2 − An,3 where

An,1 = ieiv�Sn

(
Ip − �

−1/2
n

∑
j∈In

Zn,j S
�
n,j�

−1/2
n

)
v

= ieiv�Sn
(
Ip − �

−1/2
n �̂n�

−1/2
n

)
v,

An,2 = eiv�Sn�
−1/2
n

∑
j∈In

Zn,j

(
1 − iv�Sn,j − e−iv�Sn,j

)
,

An,3 = �
−1/2
n

∑
j∈In

Zn,j e
iv�(Sn−Sn,j )
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and prove in the following that ‖EAn,r‖ → 0 for r = 1,2,3 as n → ∞.
First, assumption (c) implies that |In|−1�n is a positive definite matrix for n sufficiently large,

which is now assumed in the following. By �, we denote the constant p/λmin(Q) where λmin(M)

stands for the smallest eigenvalue of a positive definite squared matrix M . For n sufficiently large,
λmin(|In|−1�n) ≥ λmin(Q) > 0 whereby we deduce∥∥�

−1/2
n

∥∥ = |In|−1/2 tr
(|In|�−1

n

)1/2 ≤ �1/2|In|−1/2. (A.3)

Using this result, Jensen’s inequality and the sub-multiplicative property of the Frobenius norm,
we get for q ≥ 1 satisfying (a) and the assumption on αn

‖EAn,1‖2q ≤ ‖v‖2qE
∥∥Ip − �

−1/2
n �̂n�

−1/2
n

∥∥2q

≤ ‖v‖2q
∥∥�

−1/2
n

∥∥4qE‖�̂n − �n‖2q

≤ �2q‖v‖2q |In|−2qE‖�̂n − �n‖2q,

whereby we deduce that ‖EAn,1‖ → 0 from (A.1).
Second, since |1 − e−iz − iz| ≤ z2/2 for any z ∈ R, we have

‖An,2‖ ≤ 1

2

∥∥�
−1/2
n

∥∥ ∑
j∈In

‖Zn,j‖
(
v�Sn,j

)2

≤ ‖v‖2

2

∥∥�
−1/2
n

∥∥3 ∑
j∈In

Bn,j ≤ �3/2‖v‖2

2
|In|−3/2

∑
j∈In

Bn,j ,

where

Bn,j = ‖Zn,j‖
∥∥∥∥ ∑

k∈In,j

Zn,k

∥∥∥∥2

= ‖Zn,j‖
∑

k,k′∈In,j

Z�
n,kZn,k′ ≥ 0.

Let us decompose Bn,j = B
(1)
n,j + B

(2)
n,j where B

(1)
n,j = Bn,j 1(‖Zn,j‖ ≤ |In|τ ) and B

(2)
n,j =

Bn,j 1(‖Zn,j‖ > |In|τ ) with 1/τ = 2(4p − 1). By assumption (b), we have∥∥EB
(1)
n,j

∥∥ ≤ |In|τ
∑

k,k′∈In,j

∣∣E(
Z�

n,kZn,k′
)∣∣ =O

(|In|τ |In,j |
) =O

(|In|τ αd
n

)
. (A.4)

By assumption (a), using Hölder and Bienaymé–Chebyshev inequalities, we continue with

EB
(2)
n,j ≤

∑
k,k′∈In,j

E
{‖Zn,j‖‖Zn,k‖‖Zn,k′ ‖1

(∥∥Zn,j > |In|τ
∥∥)}

≤ α2d
n μ

3/(4q)

4q P
(‖Zn,j‖ > |In|τ

)(4q−3)/(4q)

(A.5)
≤ α2d

n μ
3/(4q)

4q

(|In|−4qτ E‖Zn,j‖4q
)(4q−3)/(4q)

≤ μ4qα2d
n |In|−(4q−3)τ .
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Combining (A.4)–(A.5), we deduce that as n → ∞

‖EAn,2‖ ≤ E‖An,2‖ = O
(

αd
n

|In|1/2
|In|τ

)
+O

(
α2d

n

|In|1/2
|In|−(4q−3)τ

)
= o(1)

by definition of τ and αn.
Third, for any j ∈ In, Sn − Sn,j does not depend on Xn,j . This yields

EAn,3 = �
−1/2
n

∑
j∈In

E
{
eiv�(Sn−Sn,j )E(Zn,j | Xn,k, k �= j)

}
,

whereby we deduce, in view of (A.3), that

‖EAn,3‖ ≤ c|In|−1/2
∑
j∈In

E
∥∥E(Zn,j | Xn,k, k �= j)

∥∥
which tends to 0 by assumption (d). �

Appendix B: Auxiliary results

We gather in this section several auxiliary results. They are established under the setting, assump-
tions and notation of Section 3. In particular, we recall that �j is the cube centered at j ∈ Zd

with volume 1, �n,j = �j ∩ (Wn � αn), In ⊂ Zd is the set such that Wn � αn = ⋃
j∈In

�n,j ,

Bu,n = B(u,αn) and for any ��Rd

s� = s�
(
X; θ�

) =
∫

�

t(u,XBu,n)λθ�(u,XBu,n)du −
∑

u∈X�

t (u,XBu,n \ u), (B.1)

s′
� = s′

�

(
X; θ�

) =
∫

�

t(u,XBu,n)λθ�(u,X)du −
∑

u∈X�

t (u,XBu,n \ u). (B.2)

Lemma B.1. Let j ∈ In and u ∈ �n,j , assume [g], set γ ′ = γ2 − d − ε where 0 < ε < γ2 − d

and define

|tm|(u,x) =
∑
v∈x

∣∣gm(v − u)
∣∣,

G(u,x) =
∑
v∈x

‖v − u‖−γ2 1
(‖v − u‖ ≥ r0

)
,

H(u,x) =
∑
v∈x

‖v − u‖−d−ε1
(‖v − u‖ ≥ r0

)
.

Then, if αn ≥ r0:

(i) |tm|(u,xBu,n) |≤ |tm|(u,x),
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(ii) |tm(u,x) − tm(u,xBu,n)| ≤ c min{G(u,x), α
−γ ′
n H(u,x)},

(iii) ∀θ ∈ �, |λθ (u,x) − λθ (u,xBu,n)| ≤ cecG(u,x)λθ (u,x)min{G(u,x), α
−γ ′
n H(u,x)}.

Proof. The first statement is straightforward from the definition. For the second one, from [g] and
since αn ≥ r0,

∣∣tm(u,x) − tm(u,xBu,n)
∣∣ =

∣∣∣∣∑
v∈x

gm(v − u)1
(‖v − u‖ ≥ αn

)∣∣∣∣
≤ c

∑
v∈x

‖v − u‖−γ2 1
(‖v − u‖ ≥ αn

)
,

which is clearly lower than cG(u,x). Pushing one step further, we get∣∣tm(u,x) − tm(u,xBu,n)
∣∣ ≤ cα

−γ ′
n

∑
v∈x

‖v − u‖−d−ε1
(‖v − u‖ ≥ αn

) ≤ cα
−γ ′
n H(u,x),

which proves (ii). For the third statement, since for all x, |1 − ex | < |x|e|x|, we have

∣∣λθ (u,x) − λθ (u,xBu,n)
∣∣ = λθ (u,x)

∣∣1 − e

∑
v∈x

Bc
u,n

	θ (v−u)∣∣
≤ λθ (u,x)

∣∣∣∣ ∑
v∈xBc

u,n

	θ (v − u)

∣∣∣∣e|∑v∈x
Bc

u,n
	θ (v−u)|

.

The result follows from the same inequalities as before, noting that

∣∣∣∣ ∑
v∈xBc

u,n

	θ (v − u)

∣∣∣∣ =
∣∣∣∣∣

p∑
m=2

θm

∑
v∈xBc

u,n

gm(v − u)

∣∣∣∣∣ ≤ c
∑
v∈x

∣∣gm(v − u)
∣∣1(‖v − u‖ ≥ αn

)
,

where c = (p − 1) supθ∈� supm |θm| < ∞, since � is bounded. �

Lemma B.2. Under the assumption [g], then for any θ ∈ � we have the following statements
where E denotes the expectation with respect to Pθ� :

(i) For any q ≥ 0, E{λθ (0,X)q} < ∞.
(ii) Let f : Rd → R be a measurable function such that |f (u)| ≤ c(1 + ‖u‖)−γ with γ > d ,

then for any q ≥ 0

E
{
eq|∑u∈X f (‖u‖)|} < ∞.

(iii) For any q ≥ 0, q ′ > 0 and θ ∈ �, E{|tm|(0,X)qλθ (0,X)q
′ } < ∞.

(iv) Let f1 and f2 be two functions as in (ii), then for any q1, q2, q3 ≥ 0 and q ′ > 0,

E

{
|tm|(0,X)q1

∣∣∣∣∑
u∈X

f1
(‖u‖)∣∣∣∣q2

eq3|∑u∈X f2(‖u‖)|λθ (0,X)q
′
}

< ∞.
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Proof. The first statement is a consequence of Proposition 5.2(a) in [39]. It relies on the fol-
lowing property; see also [31], Lemma 2. If ψ : R+ → R+ is a decreasing function with∫ ∞

0 ψ(t)td−1 dt < ∞, then for any q ≥ 0,

E
(
eq

∑
u∈X ψ(‖u‖)) < ∞.

The proof of (ii) is an easy consequence of this property. We deduce in particular that all mo-
ments of

∑
u∈X f (‖u‖) exist and are finite. Assuming (iii) is true, then (iv) is a straightforward

consequence of the previous properties and Hölder’s inequality. Let us prove (iii). For any ε > 0,
using the fact that for any q ≥ 0, κ > 0, x �→ xqe−κx is bounded on [0,∞), we have

|tm|(0,x)qλθ (0,x)q
′ = |tm|(0,x)qe−q ′ ∑p

k=2 θktk(0,x)

= |tm|(0,x)qe−q ′ε|θmtm(0,x)|eq ′ε|θmtm(0,x)|−q ′ ∑p
k=2 θktk(0,x)

≤ ce−q ′ ∑
u∈x 	̃θ (u),

where 	̃θ (u) = ∑p

k=2 θkgk(u) − ε|θmgm(u)|. The proof of (iii) is completed in view of (i) if we
show that 	̃θ satisfies [�] for any θ . Write 	̃θ (u) = 	̃1(u) + 	̃2(u) with

	̃1(u) = θ2

2
g2(u) +

p∑
k=3

θkgk(u),

	̃2(u) = θ2

2
g2(u) − ε

∣∣θmgm(u)
∣∣.

From [g], we deduce that there exists r > 0 such that ‖u‖ < r implies 	̃1(u) > c‖u‖−γ1 .
Moreover, if m = 2, 	̃2(u) > 0 for all ‖u‖ < r0, provided ε < 1/2. If m ≥ 3, there exists r ′
such that ‖u‖ < r ′ implies |θmgm(u)| < cg‖u‖−γ1/(4ε) where cg is the constant in [g], yield-
ing 	̃2(u) > (cg/4)‖u‖−γ1 . In all cases, we obtain that for some r1 > 0, ‖u‖ < r1 implies
	̃(u) > c‖u‖−γ1 . On the other hand, it is clear that if ‖u‖ > r0 then |	̃(u)| ≤ c‖u‖−γ2 and
that 	̃θ is bounded from below, proving that it satisfies [�]. �

Lemma B.3. Let j ∈ In and sm = (s�n,j
)m, respectively, s′

m = (s′
�n,j

)m, be the mth coordinate

of s�n,j
given by (B.1), respectively, s′

�n,j
given by (B.2). Under [g], if αn ≥ r0 then, for any

q ∈N, E(|sm|q) < ∞ and E(|s′
m|q) < ∞.

Proof. The proof being similar for sm and s′
m, we only give the details concerning sm. From (B.1)

and the binomial formula, the statement is a consequence of

E

{∣∣∣∣ ∑
u∈X�n,j

tm(u,XBu,n \ u)

∣∣∣∣p1
∣∣∣∣
∫

�n,j

tm(u,XBu,n)λθ�(u,XBu,n)du

∣∣∣∣p2
}

< ∞
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for any p1,p2 ∈ N. Applying the Cauchy–Schwarz’s inequality, we consider each term above
separately. First, for any p ∈N, by Hölder’s inequality and using Lemma B.1 we get

E

{∣∣∣∣
∫

�n,j

tm(u,XBu,n)λθ�(u,XBu,n)du

∣∣∣∣p
}

≤ c

∫
�n,j

E
{∣∣tm(u,XBu,n)

∣∣pλθ�(u,XBu,n)
p
}

du

≤ c

∫
�n,j

E
[∣∣tm(u,X)

∣∣p{
λθ�(u,X)p + ∣∣λθ�(u,XBu,n) − λθ�(u,X)

∣∣p}]
du

≤ c

∫
�n,j

E
[∣∣tm(u,X)

∣∣pλθ�(u,X)p
{
1 + Gp(u,x)ecpG(u,x)

}]
du

which is finite by Lemma B.2 and the stationarity of X.
Second, we can prove by induction and successive application of the GNZ formula; see Corol-

lary 3.1 in [17], that

E

[{ ∑
u∈X�n,j

tm(u,XBu,n \ u)

}p]

=
p∑

k=1

∑
(P1,...,Pk)∈T k

p

E
∫

�k
n,j

λθ�

({u1, . . . , uk},X
) k∏

�=1

t |P�|
m

(
u�,XBu,n ∪ {u \ u�}

)
du,

where T k
p is the set of all partitions of {1, . . . , p} into k subsets, |P| is the cardinality of P ,

u = (u1, . . . , uk) and u \ u� = (u1, . . . , u�−1, u�+1, . . . , uk). Since

λθ�

({u1, . . . , uk},X
) =

k∏
�=1

λθ�(u�,X)

k∏
i=1,i �=�

e−	θ� (ui−u�),

we obtain by application of Hölder’s inequality,

E

{∣∣∣∣ ∑
u∈X�n,j

tm(u,XBu,n \ u)

∣∣∣∣p
}

≤
p∑

k=1

∑
P∈T k

p

k∏
�=1

E1/k

∫
�k

n,j

λθ�(u�,X)k
∣∣tm(

u�,XBu,n ∪ {u \ u�}
)∣∣k|P |

k∏
i=1,i �=�

e−k	θ� (ui−u�) du.

The proof is completed if we show that all expectations above are finite. To that end, note that

tm
(
u�,XBu,n ∪ {u \ u�}

) = tm(u�,XBu,n) +
k∑

h=1,h�=�

gm(uh − u�),
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whereby, denoting q = k|P|

E
∫

�k
n,j

λθ�(u�,X)k
∣∣tm(

u�,XBu,n ∪ {u \ u�}
)∣∣q k∏

i=1,i �=�

e−k	θ� (ui−u�) du

≤
q∑

r=0

(
q

r

)∫
�k

n,j

∣∣∣∣∣
k∑

h=1,h�=�

gm(uh − u�)

∣∣∣∣∣
r

×
k∏

i=1,i �=�

e−k	θ� (ui−u�)E
{∣∣tm(u�,XBu,n)

∣∣q−r
λθ�(u�,X)k

}
du

≤ c

q∑
r=0

k∑
h=1,h�=�

∫
�k

n,j

∣∣gm(uh − u�)
∣∣r

×
k∏

i=1,i �=�

e−k	θ� (ui−u�)E
{∣∣tm(u�,XBu,n)

∣∣q−r
λθ�(u�,X)k

}
du.

The last expectation is finite in view of Lemma B.2, so the above expression is lower than

c

q∑
r=0

k∑
h=1,h�=�

∫
�k

n,j

∣∣gm(uh − u�)
∣∣r k∏

i=1,i �=�

e−k	θ� (ui−u�) du

≤ c

{∫
Rd

e−k	θ� (v) dv

}k−2 q∑
r=0

∫
Rd

∣∣gm(v)
∣∣re−k	θ� (v) dv,

which is finite from [g]. �

Lemma B.4. The following properties hold under the assumption [g]:

(i) For �1,�2 two bounded Borel sets of Rd

Cov
(
s′
�1

, s′
�2

)
= E

∫
�1∩�2

t (u,XBu,n)t (u,XBu,n)
�λθ�(u,X)du

+ E
∫

�1

∫
�2

t (u,XBu,n)t (v,XBv,n)
�{

λθ�(u,X)λθ�(v,X) − λθ�

({u,v},X
)}

dudv

+ E
∫

�1

∫
�2

�vt(u,XBu,n)
{
�ut(v,XBv,n)

}�
λθ�

({u,v},X
)

dudv,

where for any u,v ∈ Rd , x ∈ � and any measurable function f : Rd × � → Rp , the difference
operator �v is defined by �vf (u,x) = f (u,x ∪ v) − f (u,x).
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(ii) Let (�n) be a sequence of increasing domains such that �n → Rd as n → ∞, then

|�n|−1 Var
(
s′
�n

) → �∞,

where �∞ is defined by (3.11).
(iii) Let j, k ∈ In. Then if |k − j | > 2r0,∥∥Cov

(
s′
�n,j

, s′
�n,k

)∥∥ ≤ c|k − j |−γ2 .

(iv) For any j, k ∈ In, if αn ≥ r0, then∥∥Cov(s�n,j
, s�n,k

) − Cov
(
s′
�n,j

, s′
�n,k

)∥∥ ≤ c

α
γ ′
n (1 + |k − j |γ2)

+ c

α
2γ ′
n

as n → ∞, where we recall that γ ′ = γ2 − d − ε with 0 < ε < γ2 − d .

Proof. (i) is a slight extension of [14], Lemma 3.1, where the case �1 = �2 was considered.
The proof is omitted.

For (ii), we note that for any u,v ∈ Rd , m ≥ 1 and x ∈ �

λθ�(u,x)λθ�(v,x) − λθ�

({u,v},x
) = λθ�(u,x)λθ�(v,x)

{
1 − e−	θ� (v−u)

}
(B.3)

and

�vtm(u,x) = tm(u,x ∪ v) − tm(u,x) =
{

0, if m = 1,
gm(v), if m ≥ 2

(B.4)

which leads to �ut(v,x) = g(v). Letting |t |(u,x) = {|tm|(u,x)}m≥1 for any u ∈ Rd and x ∈ �,
we have for any u,v ∈Rd∥∥t (u,XBu,n)t (v,XBv,n)

�∥∥ ≤ ∥∥|t |(u,X)|t |(v,X)�
∥∥.

The result is derived using the dominated convergence theorem, the stationarity of X and since
from Lemma B.2 the random variables∥∥|t |(0,X)|t |(0,X)�

∥∥λθ�(0,X) and
∥∥|t |(0,X)|t |(v,X)�

∥∥λθ�(0,X)λθ�(v,X)

have expectation uniformly bounded in v while by [g]∫
Rd

∣∣1 − e−	θ� (v)
∣∣dv < ∞ and

∫
Rd

∥∥g(v)g(v)�
∥∥e−	θ� (v) dv < ∞.

To prove (iii), we apply (i) to the disjoint sets �n,j , �n,k and relations (B.3)–(B.4) to get∥∥Cov
(
s′
�n,j

, s′
�n,k

)∥∥
≤ E

∫
�n,j

∫
�n,k

∥∥|t |(u,X)|t |(v,X)�
∥∥λθ�(u,X)λθ�(v,X)

∣∣1 − e−	θ� (v−u)
∣∣dudv (B.5)

+ E
∫

�n,j

∫
�n,k

∥∥g(v − u)g(v − u)�
∥∥λθ�(u,X)λθ�(v,X)e−	θ� (v−u) dudv.
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Since |k − j | > 2r0, we deduce from [g] that for any (u, v) ∈ �n,j × �n,k and any m ≥ 2,
|gm(v − u)| ≤ c|k − j |−γ2 . This leads to∥∥g(v − u)g(v − u)�

∥∥ ≤ c|k − j |−γ2 .

Similarly, since 	θ� = ∑p

m=2 θ�
mgm, for any (u, v) ∈ �n,j × �n,k , e−	θ� (v−u) ≤ e|	θ� (v−u)| ≤ c

and ∣∣1 − e−	θ� (v−u)
∣∣ ≤ ∣∣	θ�(v − u)

∣∣e|	θ� (v−u)| ≤ c|k − j |−γ2 . (B.6)

Plugging these inequalities in (B.5) shows (iii), as the remaining terms have finite expectations
from Lemma B.2.

We now focus on (iv). Let us write s�n,j
= s′

�n,j
+ Ij where Ij = ∫

�n,j
πn(u,x)du and

πn(u,x) = t (u,xBu,n)
{
λθ�(u,xBu,n) − λθ�(u,x)

}
.

We have

Cov(s�n,j
, s�n,k

) − Cov
(
s′
�n,j

, s′
�n,k

)
(B.7)

= E
(
s′
�n,j

I�
k

) + E
(
s′
�n,k

I�
j

) + E
(
Ij I

�
k

) − E(s�n,j
)E(s�n,k

)�.

Let us control each term in (B.7). From the GNZ formula,

E
(
s′
�n,j

I�
k

) = E
∫

�n,j

∫
�n,k

t (u,X)λθ�(u,X)
{
πn(v,X) − πn(v,X ∪ u)

}� dudv.

By definition of λθ� and t (see (2.2) and (3.2)), we have for any u,v ∈Rd and x ∈ �

πn(v,x ∪ u) = e−	θ� (v−u)
[
πn(v,x) + g(v − u)

{
λθ�(v,xBv,n) − λθ�(v,x)

}]
,

whereby

E
(
s′
�n,j

I�
k

)
= E

∫
�n,j

∫
�n,k

t (u,X)λθ�(u,X)
{
1 − e−	θ� (v−u)

}
πn(v,X)� dudv (B.8)

− E
∫

�n,j

∫
�n,k

t (u,X)λθ�(u,X)e−	θ� (v−u)g(v − u)�
{
λθ�(v,XBv,n) − λθ�(v,X)

}
dudv.

[g] implies [�] which in turn yields |1 − e−	θ� (v−u)| ≤ 1 + e−	θ� (v−u) ≤ c since 	θ� is bounded
from below. On the other hand, for any m ≥ 2, denoting 	̃θ� = 	θ� − ε|θ�

mgm| for some ε > 0,

we have |gm|e−	θ� = |gm|e−ε|θ�
mgm|e−	̃θ� ≤ c since x �→ xe−κx is bounded on [0,∞) for any

κ > 0 and 	̃θ� satisfies [�] as seen in the proof of Lemma B.2. This proves that for any u,v,
‖e−	θ� (v−u)g(v − u)�‖ is bounded. Moreover, from (B.6), we know that if |k − j | > 2r0, then
|1 − e−	θ� (v−u)| ≤ c|k − j |−γ2 , and similarly ‖e−	θ� (v−u)g(v −u)�‖ ≤ c|k − j |−γ2 . We deduce
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that for any u ∈ �n,j , any v ∈ �n,k and any j, k, |1 − e−	θ� (v−u)| ≤ c(1 + |k − j |)−γ2 and
‖e−	θ� (v−u)g(v − u)�‖ ≤ c(1 + |k − j |)−γ2 . Plugging these inequalities in (B.8) and applying
Lemmas B.1–B.2 to the remaining terms shows that for any j, k∥∥E

(
s′
�n,j

I�
k

)∥∥ ≤ c

α
γ ′
n (1 + |k − j |γ2)

. (B.9)

The same inequality obviously holds for ‖E(s′
�n,k

I�
j )‖. For the two last terms in the right-hand

side of (B.7), namely

E
(
Ij I

�
k

) = E
∫

�n,j

∫
�n,k

πn(u,X)πn(v,X)� dudv

and, after application of the GNZ formula,

E(s�n,j
)E(s�n,k

)� =
∫

�n,j

∫
�n,k

Eπn(u,X)Eπn(v,X)� dudv,

we deduce from Lemmas B.1–B.2 that their norm is bounded by α
−2γ ′
n for any j, k, up to a

positive constant. The latter and (B.9) prove (iv). �
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