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We establish the irreducibility of stochastic real Ginzburg–Landau equation with α-stable noises by a max-
imal inequality and solving a control problem. As applications, we prove that the system converges to its
equilibrium measure with exponential rate under a topology stronger than total variation and obeys the
moderate deviation principle by constructing some Lyapunov test functions.
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1. Introduction

Consider the stochastic real Ginzburg–Landau equation driven by α-stable noises on torus T :=
R/Z as follows:

dX − ∂2
ξ X dt − (

X − X3)dt = dLt , (1.1)

where X : [0,+∞)×T×� →R and Lt is an α-stable noise. It is known [22] that equation (1.1)
admits a unique mild solution X in the càdlàg space almost surely. As α ∈ (3/2,2), X is a Markov
process with a unique invariant measure π (see Section 2 below for details). By the uniqueness
(see [4]), π is ergodic in the sense that

lim
T →∞

1

T

∫ T

0
�(Xt)dt =

∫
� dπ, P-a.s.

for all initial state x0 and all continuous and bounded functions � .
The irreducibility is a fundamental concept in stochastic dynamic system, and plays a crucial

role in the research of ergodic theory. See, for instance, the classical work [10] and the books for
stochastic infinite dimensional systems [4,15].

It is well known that one usually solves a control problem to prove the irreducibility for
stochastic partial differential equations (SPDEs) driven by Wiener noises, see [3,4]. For SPDEs
driven by α-stable noises, when the system is linear or Lipschitz, Priola and Zabczyk proved the
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irreducibility in the same line [19]. However, due to the discontinuity of trajectories and the lack
of second moment, the control problem in [19] is much harder than those in the Wiener noises
case. To our knowledge, there seem no other literatures about the irreducibility of stochastic
systems with α-stable noises.

In this paper, we prove that the system (1.1) is irreducible by following the spirit in [3]
and [19]. Due to the non-Lipschitz nonlinearity, the control problem in our setting is much harder
and a maximal inequality is needed.

The ergodicity of the system (1.1) has been proved in [22] in the sense that X converges to a
unique invariant measure under the weak topology, but the convergence speed is not addressed.
In this paper, thanks to the irreducibility and the strong Feller property (established in [22]), we
prove that the system (1.1) converges to the invariant measure exponentially fast under a topology
stronger than total variation by constructing a Lyapunov test function.

Another application of our irreducibility result is to establish moderate deviation principle
(MDP) of (1.1). Thanks to [21], the MDP is obtained by verifying the same Lyapunov condition
as above.

Finally, we recall some literatures on the study of invariant measures and the long time behav-
ior of stochastic systems driven by α-stable type noises. [17,18] studied the exponential mixing
for a family of semi-linear SPDEs with Lipschitz nonlinearity, while [9] obtained the existence
of invariant measures for 2D stochastic Navier–Stokes equations forced by α-stable noises with
α ∈ (1,2). [23] proved the exponential mixing for a family of 2D SDEs forced by degenerate
α-stable noises. For the long term behaviour about stochastic system drive by Lévy noises, we
refer to [6,7,9,12–14] and the literatures therein.

The paper is organized as follows. In Section 2, we first give a brief review of some known
results about the existence and uniqueness of solutions and invariant probability measures for
stochastic Ginzburg–Landau equations. We will also present the main theorems in this section.
In Section 3, we prove that the system X is irreducible. In the last section, we first recall some
results about moderate deviations and exponential convergence for general strong Feller Markov
processes, and then we prove moderate deviations and exponential convergence for X by con-
structing appropriate Lyapunov test functions.

2. Stochastic real Ginzburg–Landau equations

Let T = R/Z be equipped with the usual Riemannian metric, and let dξ denote the Lebesgue
measure on T. For any p ≥ 1, let

Lp(T;R) :=
{
x : T → R; ‖x‖Lp :=

(∫
T

∣∣x(ξ)
∣∣4

dξ

)1/4

< ∞
}
.

Then

H :=
{
x ∈ L2(T;R);

∫
T

x(ξ)dξ = 0

}

is a separable real Hilbert space with inner product

〈x, y〉H :=
∫
T

x(ξ)y(ξ)dξ ∀x, y ∈ H.
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For any x ∈ H , let

‖x‖H := ‖x‖L2 = (〈x, x〉H
)1/2

.

Let Z∗ := Z \ {0}. It is well known that

{
ek; ek = ei2πkξ , k ∈ Z∗

}

is an orthonormal basis of H . For each x ∈ H , it can be represented by Fourier series

x =
∑
k∈Z∗

xkek with xk ∈ C, x−k = xk.

Let � be the Laplace operator on H . It is well known that D(�) = H 2,2(T) ∩ H . In our
setting, � can be determined by the following relations: for all k ∈ Z∗,

�ek = −γkek with γk = 4π2|k|2,
with

H 2,2(T) ∩ H =
{
x ∈ H ;x =

∑
k∈Z∗

xkek,
∑
k∈Z∗

|γk|2|xk|2 < ∞
}
.

Denote

A = −�, D(A) = H 2,2(T) ∩ H.

Define the operator Aσ with σ ≥ 0 by

Aσ x =
∑
k∈Z∗

γ σ
k xkek, x ∈ D

(
Aσ

)
,

where {xk}k∈Z∗ are the Fourier coefficients of x, and

D
(
Aσ

) :=
{
x ∈ H : x =

∑
k∈Z∗

xkek,
∑
k∈Z∗

|γk|2σ |xk|2 < ∞
}
.

Given x ∈ D(Aσ ), its norm is

∥∥Aσ x
∥∥

H
:=

(∑
k∈Z∗

|γk|2σ |xk|2
)1/2

.

Moreover, let

V := D
(
A1/2) and ‖x‖V := ∥∥A1/2x

∥∥
H

. (2.1)

Notice that V is densely and compactly embedded in H .
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We shall study 1D stochastic Ginzburg–Landau equation on T as the following
{

dXt + AXt dt = N(Xt)dt + dLt ,

X0 = x0,
(2.2)

where

(i) the nonlinear term N is defined by

N(u) = u − u3, u ∈ H.

(ii) Lt = ∑
k∈Z∗ βklk(t)ek is an α-stable process on H with {lk(t)}k∈Z∗ being i.i.d.

1-dimensional symmetric α-stable process sequence with α > 1, see [20]. Moreover, we assume
that there exist some C1,C2 > 0 so that C1γ

−β
k ≤ |βk| ≤ C2γ

−β
k with β > 1

2 + 1
2α

.

Let C > 0 be a constant and let Cp > 0 be a constant depending on the parameter p. We shall
often use the following inequalities [22]:

∥∥Aσ e−At
∥∥

H
≤ Cσ t−σ ∀σ > 0 ∀t > 0; (2.3)∥∥N(x)

∥∥
V

≤ C
(‖x‖V + ‖x‖3

V

) ∀x ∈ V ; (2.4)∥∥AN(x)
∥∥

H
≤ C

(
1 + ‖x‖2

V

)(
1 + ‖Ax‖2

H

); (2.5)

‖x‖4
L4 ≤ ‖x‖2

V ‖x‖2
H ∀x ∈ V. (2.6)

Here we consider a general E-valued càdlàg Markov process,
(
�,

{
F0

t

}
t≥0,F,

{
Xx

t

}
t≥0,x∈E

, (Px)x∈E

)
whose transition probability is denoted by {Pt (x, dy)}t≥0, where � := D([0,+∞);E) is the
space of the càdlàg functions from [0,+∞) to E equipped with the Skorokhod topology, F0

t =
σ {Xs,0 ≤ s ≤ t} is the natural filtration.

For all f ∈ bB(E) (the space of all bounded measurable functions), define

Ptf (x) =
∫

E

Pt (x, dy)f (y) for all t ≥ 0, x ∈ E.

For any t > 0, Pt is said to be strong Feller if Ptϕ ∈ Cb(E) for any ϕ ∈ bB(E); Pt is irreducible
in E if Pt1O(x) > 0 for any x ∈ E and any non-empty open subset O of E.

Definition 2.1. We say that a predictable H -valued stochastic process X = (Xx
t ) is a mild solu-

tion to equation (2.2) if, for any t ≥ 0, x ∈ H , it holds (P-a.s.):

Xx
t (ω) = e−Atx +

∫ t

0
e−A(t−s)N

(
Xx

s (ω)
)

ds +
∫ t

0
e−A(t−s) dLs(ω). (2.7)

The following existence and uniqueness results for the solutions and the invariant measure can
be found in [22].
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Theorem 2.2 ([22]). The following statements hold:

(1) If α ∈ (1,2) and β > 1
2 + 1

2α
, for every x ∈ H and ω ∈ � a.s., equation (2.2) admits a

unique mild solution Xx· (ω) ∈ D([0,∞);H) ∩ D((0,∞);V ).
(2) X = (Xx

t )t≥0,x∈H is a Markov process. If α ∈ (3/2,2) and 1
2 + 1

2α
< β < 3

2 − 1
α

are further
assumed, the transition probability Pt of X is strong Feller in H for any t > 0.

(3) If α ∈ (3/2,2) and 1
2 + 1

2α
< β < 3

2 − 1
α

, X admits a unique invariant measure, and the
invariant measure is supported on V .

Our first main result is the following theorem about the irreducibility.

Theorem 2.3. Assume that α ∈ (1,2) and β > 1
2 + 1

2α
. For any initial value x ∈ H , the Markov

process X = {Xx
t }t≥0,x∈H to the equation (2.2) is irreducible in H .

Remark 2.4. By the well-known Doob’s theorem (see [4]), the strong Feller property and the
irreducibility imply that X admits at most one unique invariant probability measure. This gives
another proof to the uniqueness of invariant measure.

As an application of our irreducibility result (together with strong Feller property), we have
the following exponential ergodicity under a topology stronger than total variation. Recall that
in [22] by ergodicity we mean that X has a unique invariant measure under the weak topology.
Theorem 2.5 below gives not only an ergodic theorem in stronger sense but also exponential
convergence speed.

Theorem 2.5. Assume that α ∈ (3/2,2) and 1
2 + 1

2α
< β < 3

2 − 1
α

. Let π be the unique invariant
probability measure of X. Then there exist some positive constants M > 1, ρ ∈ (0,1), θ > 0
satisfying that

∫
� dπ < +∞, where �(x) := (M + ‖x‖2

H )1/2, and π is exponentially ergodic
in the sense that

sup
|f |≤�

∣∣∣∣Ptf (x) −
∫

f dπ

∣∣∣∣ ≤ θ�(x) · ρt ∀x ∈ H, t ≥ 0. (2.8)

Remark 2.6. Let (B�,‖ · ‖�) be the Banach space of all real measurable functions f on H such
that

‖f ‖� := sup
x∈H

|f (x)|
�(x)

< +∞.

The exponential convergence (2.8) means that
∥∥(Pt − π)(f )

∥∥
�

≤ θ‖f ‖� · ρt ,

that is, Pt has a spectral gap near its largest eigenvalue 1 in B� .

Let Mb(H) be the space of signed σ -additive measures of bounded variation on H equipped
with the Borel σ -field B(H). On Mb(H), we consider the topology σ(Mb(H), bB(H)), the so
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called τ -topology of convergence against all bounded Borel functions which is stronger than the
usual weak convergence topology σ(Mb(H),Cb(H)), see [5], Section 6.2.

Let

Lt (A) := 1

t

∫ t

0
δXs (A)ds for any measurable set A,

where δa is the Dirac measure at a. According to Corollary 2.5 in [21], the system X has the
following exponential ergodicity.

Corollary 2.7. Under the conditions of Theorem 2.5, the following results hold:

(a) Lt converges to π with an exponential rate w.r.t. the τ -topology. More precisely for any
neighborhood N (π) of π in (Mb(H), τ ),

sup
K⊂⊂H

lim sup
t→+∞

1

t
log sup

x∈K

Px

(
Lt /∈ N (π)

)
< 0.

Here K ⊂⊂ H means that K is a compact set in H .
(b) The process X is exponentially recurrent in the sense below: for any compact K in H with

π(K) > 0, there exists some λ0 > 0 such that for any compact K ′ in H ,

sup
x∈K ′

Ex exp
(
λ0τK(T )

)
< +∞,

where τK(T ) = inf{t ≥ T ;Xt ∈ K} for any T > 0.

Another application of our irreducibility result (together with strong Feller property) is to
establish MDP for the system (1.1). To this end, let us first briefly recall MDP as follows.

Let b(t) : R+ → (0,+∞) be an increasing function verifying

lim
t→∞b(t) = +∞, lim

t→∞
b(t)√

t
= 0, (2.9)

define

Mt := 1

b(t)
√

t

∫ t

0
(δXs − π)ds. (2.10)

Then moderate deviations of Lt from its asymptotic limit π is to estimate

Pμ(Mt ∈ A), (2.11)

where A is some measurable set in (Mb(H), τ ), a given domain of deviation. Here Pμ is the
probability measure of the system X with initial measure μ. When b(t) = 1, this becomes an
estimation of the central limit theorem; and when b(t) = √

t , it is exactly the large deviations.
b(t) satisfying (2.9) is between those two scalings, called scaling of moderate deviations, see [5].

Now we are at the position to state our MDP result.
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Theorem 2.8. In the context of Theorem 2.5, for any initial measure μ verifying μ(�) < +∞,
the measure Pμ(Mt ∈ ·) satisfies the large deviation principle w.r.t. the τ -topology with speed
b2(t) and the rate function

I (ν) := sup

{∫
f dν − 1

2
σ 2(f );f ∈ bB(H)

}
∀ν ∈ Mb(H), (2.12)

where

σ 2(f ) = lim
t→∞

1

t
E

π

(∫ t

0

(
f (Xs) − π(f )

)
ds

)2

(2.13)

exists in R for every f ∈ B� ⊃ bB(H). More precisely, the following three properties hold:

(a1) for any a ≥ 0, {ν ∈Mb(H); I (ν) ≤ a} is compact in (Mb(H), τ );
(a2) (the upper bound) for any closed set F in (Mb(H), τ ),

lim sup
T →∞

1

b2(T )
logPμ(MT ∈ F) ≤ − inf

F
I ;

(a3) (the lower bound) for any open set G in (Mb(H), τ ),

lim inf
T →∞

1

b2(T )
logPμ(MT ∈ G) ≥ − inf

G
I.

3. Irreducibility in H

In this section, we shall prove that X = {Xx
t }t≥0,x∈H in the system (2.2) is irreducible in H .

Together with the strong Feller property established in [22], Theorem 6.1, this gives another
proof to the existence of at most one invariant measure by classical Doob’s theorem.

3.1. Irreducibility of stochastic convolution

Let us first consider the following Ornstein–Uhlenbeck process:

dZt + AZt dt = dLt , Z0 = 0, (3.1)

where Lt = ∑
k∈Z∗ βklk(t)ek is an α-stable process on H . It is well known that

Zt =
∫ t

0
e−A(t−s) dLs =

∑
k∈Z∗

zk(t)ek,

where

zk(t) =
∫ t

0
e−γk(t−s)βk dlk(s).

The following maximal inequality can be found in [22], Lemma 3.1.
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Lemma 3.1. For any T > 0,0 ≤ θ < β − 1
2α

and all 0 < p < α, we have

E sup
0≤t≤T

∥∥AθZt

∥∥p

H
≤ CT p/α,

where C depends on α, θ,β,p.

The following lemma is concerned with the support of the distribution of ({Zt }0≤t≤T ,ZT ).

Lemma 3.2. For any T > 0,0 < p < ∞, the random variable ({Zt }0≤t≤T ,ZT ) has a full sup-
port in Lp([0, T ];V ) × V . More precisely, for any φ ∈ Lp([0, T ];V ), a ∈ V,ε > 0,

P

(∫ T

0
‖Zt − φt‖p

V dt + ‖ZT − a‖V < ε

)
> 0.

Proof. First, by Lemma 3.1, we have Z ∈ L∞([0, T ];V ), a.s. For any N ∈ N, let HN be the
Hilbert space spanned by {ek}1≤k≤N , and let πN : H → HN be the orthogonal projection. Notice
that πN is also an orthogonal projection in V . Define

πN = I − πN, HN = πNH.

By the independence of πNZ and πNZ, for any φt ∈ Lp([0, T ];V ), a ∈ V , we have

P

(∫ T

0
‖Zt − φt‖p

V dt + ‖ZT − a‖V < ε

)

≥ P

(∫ T

0

∥∥πN(Zt − φt )
∥∥p

V
dt + ∥∥πN(ZT − a)

∥∥
V

<
ε

2p+1
,

∫ T

0

∥∥πN(Zt − φt )
∥∥p

V
dt + ∥∥πN(ZT − a)

∥∥
V

<
ε

2p+1

)

= P

(∫ T

0

∥∥πN(Zt − φt )
∥∥p

V
dt + ∥∥πN(ZT − a)

∥∥
V

<
ε

2p+1

)

× P

(∫ T

0

∥∥πN(Zt − φt )
∥∥p

V
dt + ∥∥πN(ZT − a)

∥∥
V

<
ε

2p+1

)
.

By the same argument as in the Section 4.2 of [19], we obtain

P

(∫ T

0

∥∥πN(Zt − φt )
∥∥p

V
dt + ∥∥πN(ZT − a)

∥∥
V

<
ε

2p+1

)
> 0.

To finish the proof, it suffices to show

P

(∫ T

0

∥∥πN(Zt − φt )
∥∥p

V
dt + ∥∥πN(ZT − a)

∥∥
V

<
ε

2p+1

)
> 0.
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For any θ ∈ ( 1
2 , β − 1

2α
), by Lemma 3.1 (with p = 1 therein), the spectral gap inequality and

Chebyshev inequality, we have for any η

P

(
sup

0≤t≤T

∥∥πNZt

∥∥
V

≤ η
)

= 1 − P

(
sup

0≤t≤T

∥∥πNZt

∥∥
V

> η
)

≥ 1 − P

(
sup

0≤t≤T

∥∥πNAθZt

∥∥
H

> ηγ
θ−1/2
N

)

≥ 1 − P

(
sup

0≤t≤T

∥∥AθZt

∥∥
H

> ηγ
θ−1/2
N

)

≥ 1 − Cα,β,T η−1γ
1/2−θ
N ,

where Cα,β,T depends on α,β,T . By the previous inequality, as long as N (depending on ε,p,φ)
is sufficiently large, we have

P

(
sup

0≤t≤T

∥∥πNZt

∥∥
V

≤ ε

22p+2

)
> 0

and ∫ T

0

∥∥πNφt

∥∥p

V
dt + ∥∥πNa

∥∥
V

<
ε

22p+2
.

Hence,

P

(∫ T

0

∥∥πN(Zt − φt )
∥∥p

V
dt + ∥∥πN(ZT − a)

∥∥
V

<
ε

2p+1

)

≥ P

(∫ T

0

∥∥πNZt

∥∥p

V
dt + ∥∥πNZT

∥∥
V

<
ε

22p+2
,

∫ T

0

∥∥πNφt

∥∥p

V
dt + ∥∥πNa

∥∥
V

<
ε

22p+2

)

= P

(∫ T

0

∥∥πNZt

∥∥p

V
dt + ∥∥πNZT

∥∥
V

<
ε

22p+2

)

> 0.

The proof is complete. �

3.2. A control problem for the deterministic system

Consider the deterministic system in H ,

∂tx(t) + Ax(t) = N
(
x(t)

) + u(t), x(0) = x0, (3.2)

where u ∈ L2([0, T ];V ). By using the similar argument in the proof of Lemma 4.2 in [22],
for every x(0) = x0 ∈ H,u ∈ L2([0, T ];V ), the system (3.2) admits a unique solution x(·) ∈
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C([0, T ];H) ∩ C((0, T ];V ). Moreover, {x(t)}t∈[0,T ] has the following form:

x(t) = e−Atx0 +
∫ t

0
e−A(t−s)N

(
x(s)

)
ds +

∫ t

0
e−A(t−s)u(s)ds ∀t ∈ [0, T ]. (3.3)

Next, we shall prove that the deterministic system is approximately controllable in time T > 0.

Lemma 3.3. For any T > 0, ε > 0, a ∈ V , there exists some u ∈ L∞([0, T ];V ) such that the
system (3.2) satisfies that ∥∥x(T ) − a

∥∥
V

< ε.

Proof. We shall prove the lemma by the following three steps.
Step 1. Regularization. For any t0 ∈ (0, T ], let u(t) = 0 for all t ∈ [0, t0]. Then the system (3.2)

admits a unique solution x(·) ∈ C([0, t0];H) ∩ C((0, t0];V ) with the following form:

x(t) = e−Atx0 +
∫ t

0
e−A(t−s)N

(
x(s)

)
ds ∀0 < t ≤ t0.

Step 2. Approximation at time T and linear interpolation. For any a ∈ V,ε > 0, there exists a
constant θ > 0 such that ∥∥e−θAa − a

∥∥
V

≤ ε.

Setting x(t) = t−t0
T −t0

e−θAa + T −t
T −t0

x(t0) for all t ∈ [t0, T ]. Then x(·) ∈ C((0, T ];V ). By (3.2), we
have

u(t) = e−θAa − x(t0)

T − t0
− Ax(t) − N

(
x(t)

) ∀t ∈ [t0, T ].
Step 3. It remains to show that u ∈ L∞([0, T ];V ). By (2.3), (2.4) and the constructions

of {x(t)}t∈[0,T ] and {u(t)}t∈[0,T ] above, it is sufficient to show that Ax(t0) ∈ V . For any
t ∈ [t0/2, t0],

x(t) = e−(t−t0/3)Ax(t0/3) +
∫ t

t0/3
e−(t−s)AN

(
x(s)

)
ds

= e−(t−t0/2)Ax(t0/2) +
∫ t

t0/2
e−(t−s)AN

(
x(s)

)
ds.

By (2.3), we have for t >
t0
2 ,

∥∥Ax(t)
∥∥

H
= ∥∥Ae−(t−t0/3)Ax(t0/3)

∥∥
H

+
∥∥∥∥A

∫ t

t0/3
e−(t−s)AN

(
x(s)

)
ds

∥∥∥∥
H

≤ ∥∥Ae−(t−t0/3)Ax(t0/3)
∥∥

H
+

∫ t

t0/3

∥∥A1/2e−(t−s)A
∥∥ · ∥∥A1/2N

(
x(s)

)∥∥
H

ds (3.4)

≤ C1(t − t0/3)−1
∥∥x(t0/3)

∥∥
H

+
∫ t

t0/3
C1/2(t − s)−1/2

∥∥N
(
x(s)

)∥∥
V

ds.
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Since x(·) ∈ C((0, t0];V ), supt∈[t0/3,t0] ‖x(s)‖V < ∞. Together with (2.4) and (3.4), we obtain
that

sup
t∈[t0/2,t0]

∥∥Ax(t)
∥∥

H
< ∞.

By the previous inequality and (2.5), we have

∥∥A3/2x(t0)
∥∥

H
=

∥∥∥∥A3/2e(t0/2)Ax(t0/2) + A3/2
∫ t0

t0/2
e−(t−s)AN

(
x(s)

)
ds

∥∥∥∥
H

≤ ∥∥A3/2e−(t0/2)Ax(t0/2)
∥∥

H
+

∫ t0

t0/2

∥∥A1/2e−(t0−s)A
∥∥ · ∥∥AN

(
x(s)

)∥∥
H

ds

≤ C3/2(t0/2)−3/2
∥∥x(t0/2)

∥∥
H

+
∫ t0

t0/2
C1/2(t0 − s)−1/2

∥∥AN
(
x(s)

)∥∥
H

ds

≤ C3/2(t0/2)−3/2
∥∥x(t0/2)

∥∥
H

+ C sup
s∈[t0/2,t0]

(
1 + ∥∥x(s)

∥∥2
V

) · (1 + ∥∥Ax(s)
∥∥2

H

)

< ∞,

which means that Ax(t0) ∈ V . The proof is complete. �

3.3. Irreducibility in H

Now we prove Theorem 2.3 by following the idea in [19], Theorem 5.4.

Proof of Theorem 2.3. For any x0 ∈ H, t > 0, we have X
x0
t ∈ V a.s. by Theorem 2.2. Since X

is Markov in H , for any a ∈ H,T > 0, ε > 0,

P
(∥∥X

x0
T − a

∥∥
H

< ε
) =

∫
V

P
(∥∥X

x0
T − a

∥∥
H

< ε|Xx0
t = v

)
P
(
X

x0
t ∈ dv

)

=
∫

V

P
(∥∥Xv

T −t − a
∥∥

H
< ε

)
P
(
X

x0
t ∈ dv

)
.

To prove that

P
(∥∥X

x0
T − a

∥∥
H

< ε
)
> 0,

it is sufficient to prove that for any T > 0,

P
(∥∥X

x0
T − a

∥∥
H

< ε
)
> 0 for all x0 ∈ V.

Next, we prove the theorem under the assumption of the initial value x0 ∈ V in the following two
steps.
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Step 1. For any a ∈ H,ε > 0, there exists some θ > 0 such that e−θAa ∈ V and

∥∥a − e−θAa
∥∥

H
≤ ε

4
. (3.5)

For any T > 0, by Lemma 3.3 and the spectral gap inequality, there exists some u ∈
L∞([0, T ];V ) such that the system

ẋ + Ax = N(x) + u, x(0) = x0,

satisfies that ∥∥x(T ) − e−θAa
∥∥

H
≤ ∥∥x(T ) − e−θAa

∥∥
V

<
ε

4
. (3.6)

Putting (3.5) and (3.6) together, we have

∥∥x(T ) − a
∥∥

H
<

ε

2
. (3.7)

Step 2. We shall consider the systems (3.8) and (3.9) as follows:

{
ż + Az = u, z(0) = 0,

ẏ + Ay = N(y + z), y(0) = x0 ∈ V,
(3.8)

and {
dZt + AZt dt = dLt , Z0 = 0;
dYt + AYt dt = N(Yt + Zt)dt, Y0 = x0 ∈ V.

(3.9)

By the arguments in the proof of Lemma 4.2 in [22], for any x0 ∈ V,u ∈ L2([0, T ];V ), the
systems (3.8) and (3.9) admit the unique solutions (y(·), z(·)) ∈ C([0, T ];V )2 and (Y·,Z·) ∈
C([0, T ];V )2, a.s. Furthermore, denote

x(t) = y(t) + z(t), Xt = Yt + Zt ∀t ≥ 0.

For any 0 ≤ t ≤ T ,

∥∥Yt − y(t)
∥∥2

H
+ 2

∫ t

0

∥∥Ys − y(s)
∥∥2

V
ds

= 2
∫ t

0

〈
Ys − y(s),N(Xs) − N

(
x(s)

)〉
H

ds

= 2
∫ t

0

∥∥Ys − y(s)
∥∥2

H
ds + 2

∫ t

0

〈
Ys − y(s),Zs − z(s)

〉
H

ds

− 2
∫ t

0

〈
Ys − y(s),X3

s − x3(s)
〉
H

ds.
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Let us estimate the third term of the right-hand side. Denoting �Ys = Ys − y(s) and �Zs =
Zs − z(s), we have

∫ t

0

〈
Ys − y(s),X3

s − x3(s)
〉
H

ds

=
∫ t

0

〈
�Ys,

[
�Ys + �Zs + x(s)

]3 − x3(s)
〉
H

ds

=
∫ t

0

〈
�Ys, [�Ys + �Zs]3 + 3[�Ys + �Zs]2x(s)

+ 3[�Ys + �Zs]x2(s)
〉
H

ds

=
∫ t

0

〈
�Ys, (�Ys)

3 + 3(�Ys)
2�Zs + 3�Ys(�Zs)

2 + (�Zs)
3〉

H
ds

+ 3
∫ t

0

〈
�Ys,

[
(�Ys)

2 + 2�Ys�Zs + (�Zs)
2]x(s)

〉
H

ds

+ 3
∫ t

0

〈
�Ys, [�Ys + �Zs]x2(s)

〉
H

ds.

Since 3
4 (�Ys)

4 + 3(�Ys)
3x(s) + 3(�Ys)

2x2(s) ≥ 0, from the above relation we have

∫ t

0

〈
Ys − y(s),X3

s − x3(s)
〉
H

ds

≥
∫ t

0

〈
�Ys,3(�Ys)

2�Zs + 3�Ys(�Zs)
2 + (�Zs)

3〉
H

ds

+ 3
∫ t

0

〈
�Ys,

[
2�Ys�Zs + (�Zs)

2]x(s)
〉
H

ds

+ 3
∫ t

0

〈
�Ys,�Zsx

2(s)
〉
H

ds + 1

4

∫ t

0
‖�Ys‖4

L4 ds.

Using the following Young inequalities: for all y, z ∈ L4(T;R),

∣∣〈y, z〉H
∣∣ =

∣∣∣∣
∫
T

y(ξ)z(ξ)dξ

∣∣∣∣ ≤
∫
T

y4(ξ)dξ

80
+ C

∫
T

z4/3(ξ)dξ,

∣∣〈y2, z
〉
H

∣∣ =
∣∣∣∣
∫
T

y2(ξ)z(ξ)dξ

∣∣∣∣ ≤
∫
T

y4(ξ)dξ

80
+ C

∫
T

z2(ξ)dξ,

∣∣〈y3, z
〉
H

∣∣ =
∣∣∣∣
∫
T

y3(ξ)z(ξ)dξ

∣∣∣∣ ≤
∫
T

y4(ξ)dξ

80
+ C

∫
T

z4(ξ)dξ,
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and the Hölder inequality, we further get

∫ t

0

〈
Ys − y(s),X3

s − x3(s)
〉
H

ds

≥ 1

80

∫ t

0
‖�Ys‖4

L4 ds − 7C

∫ t

0
‖�Zs‖4

L4 ds

− 6C

∫ t

0

∥∥�Zsx(s)
∥∥2

L2 ds − 3C

∫ t

0

∥∥(�Zs)
2x(s)

∥∥4/3
L4/3 ds

− 3C

∫ t

0

∥∥�Zsx
2(s)

∥∥4/3
L4/3 ds

≥ 1

80

∫ t

0
‖�Ys‖4

L4 ds − 7C

∫ t

0
‖�Zs‖4

L4 ds

− 6C

∫ t

0
‖�Zs‖2

L4

∥∥x(s)
∥∥2

L4 ds − 3C

∫ t

0
‖�Zs‖8/3

L4

∥∥x(s)
∥∥4/3

L4 ds

− 3C

∫ t

0
‖�Zs‖4/3

L4

∥∥x(s)
∥∥8/3

L4 ds.

Since x(t) = y(t) + z(t) ∈ C([0, T ];V ), by (2.6), there exists a constant CT such that

sup
s∈[0,T ]

∥∥y(s) + z(s)
∥∥

L4 ≤ sup
s∈[0,T ]

∥∥y(s) + z(s)
∥∥1/2

H
· ∥∥y(s) + z(s)

∥∥1/2
V

≤ CT .

Consequently, there is some constant CT > 0 satisfying that

∥∥Yt − y(t)
∥∥2

H
+ 2

∫ t

0

∥∥Ys − y(s)
∥∥2

V
ds

≤ 3
∫ t

0

∥∥Ys − y(s)
∥∥2

H
ds +

∫ t

0

∥∥Zs − z(s)
∥∥2

H
ds

+ CT

∫ t

0

(∥∥Zs − z(s)
∥∥4

L4 + ∥∥Zs − z(s)
∥∥2

L4 + ∥∥Zs − z(s)
∥∥8/3

L4 + ∥∥Zs − z(s)
∥∥4/3

L4 ds
)

ds.

Therefore, by the spectral gap inequality and Gronwall’s inequality, we have

∥∥YT − y(T )
∥∥2

H
≤ CT

∑
i∈�

∫ T

0

∥∥Zs − z(s)
∥∥i

V
ds, (3.10)

where � := {4/3,2,8/3,4}. This inequality, together with Lemma 3.2, (3.7), implies

P
(‖XT − a‖H < ε

)
= P

(∥∥YT − y(T ) + ZT − z(T ) + x(T ) − a
∥∥

H
< ε

)
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≥ P
(∥∥YT − y(T )

∥∥
H

≤ ε/4,
∥∥ZT − z(T )

∥∥
H

≤ ε/4,
∥∥x(T ) − a

∥∥
H

< ε/2
)

= P
(∥∥YT − y(T )

∥∥
H

≤ ε/4,
∥∥ZT − z(T )

∥∥
H

≤ ε/4
)

≥ P

(∑
i∈�

∫ T

0

∥∥Zs − z(s)
∥∥i

V
ds + ∥∥ZT − z(T )

∥∥
V

≤ CT,ε

)

> 0.

The proof is complete. �

4. The proofs of Theorems 2.5 and 2.8

4.1. Several general results for strong Feller Markov processes

In this subsection, we recall some general results about moderate deviations and exponential
convergence for general strong Feller Markov processes, borrowed from [21].

We say that a measurable function f : H → R belongs to the extended domain De(L) of
the generator L of (Pt ), if there is a measurable function g : H → R so that

∫ t

0 |g|(Xs)ds <

+∞,∀t > 0,Px -a.s. and

f (Xt ) − f (X0) −
∫ t

0
g(Xs)ds, t ≥ 0

is a càdlàg Px -local martingale for all x ∈ H . In that case, g := Lf .

Theorem 4.1 ([11], Theorem 5.2c, or [21], Theorem 2.4). Assume that the process (Xt ) is
strong Feller, irreducible and aperiodic (see [11] for definition, that is the case if PT (·,K) > 0
over H for some compact K verifying π(K) > 0). If there are some continuous function 1 ≤ � ∈
De(L), compact subset K ⊂ H and constants ε,C > 0 such that

−L�

�
≥ ε1Kc − C1K, (4.1)

then there is a unique invariant probability measure π satisfying
∫

� dπ < +∞,

and there are some constants θ > 0 and 0 < ρ < 1 such that for all t ≥ 0,

sup
|f |≤�

∣∣∣∣Ptf (z) −
∫

f dπ

∣∣∣∣ ≤ θ�(z) · ρt , z ∈ H. (4.2)

For the measure-valued process Mt defined in (2.10), we have the following large deviations
result.
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Theorem 4.2 ([21], Theorem 2.6). Assume that the process (Xt ) is strong Feller, irreducible,
aperiodic and satisfies (4.1). For any initial measure μ verifying μ(�) < +∞, the measure
Pμ(Mt ∈ ·) satisfies the large deviation principle w.r.t. the τ -topology with the speed b2(t) and
the rate function

I (ν) := sup

{∫
f dν − 1

2
σ 2(f );f ∈ bB(H)

}
∀ν ∈ Mb(H), (4.3)

where

σ 2(f ) = lim
t→∞

1

t
Eπ

(∫ t

0

(
f (Xs) − π(f )

)
ds

)2

(4.4)

exists in R for every f ∈ B� ⊃ bB(H).

4.2. The proofs of main results

In this subsection, we shall prove Theorems 2.5 and 2.8 based on the above theorems. The main
technique is to construct a suitable Lyapunov test function.

Proofs of Theorems 2.5 and 2.8. By Theorems 2.2 and 2.3, the system (2.2) is strong Feller,
irreducible and aperiodic in H . Indeed, as the invariant measure π is supported on V , there
exists a bounded closed ball F ⊂ V satisfying π(F) > 0. Notice that F is compact in H . Since
the system X is strong Feller and irreducible in H , by [4], Theorem 4.2.1, the invariant measure
π is equivalent to all measures Pt (x, ·), for all x ∈ H, t > 0. Consequently, Pt (x,F ) > 0 for all
x ∈ H, t > 0, which implies that the system is aperiodic.

By Theorems 4.1 and 4.2, we now construct a suitable Lyapunov function � satisfying (4.1).
Take

�(x) := (
M + ‖x‖2

H

)1/2
, (4.5)

where M is a large constant to be determined later. By Lemma 4.3 below, we have � ∈ De(L).
Recall xm = πmx, we have

L�
(
xm

) = 〈−Axm,D�
(
xm

)〉 + 〈
N

(
xm

)
,D�

(
xm

)〉

+
∑
|i|≤m

∫
|yi |≤1

[
�

(
xm + βiyiei

) − �
(
xm

) − βiyiDei
�

(
xm

)]
ν(dyi)

(4.6)

+
∑
|i|≤m

∫
|yi |>1

[
�

(
xm + βiyiei

) − �
(
xm

)]
ν(dyi)

=: Jm
1 + Jm

2 + Jm
3 + Jm

4 .

Here

Dei
�

(
xm

) := xi

�(xm)
, D�

(
xm

) :=
∑
|i|≤m

(
Dei

�
(
xm

))
ei = xm

�(xm)
.
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For the first term, using the integration by parts formula, we have

〈−Axm,D�
(
xm

)〉 =
〈
−Axm,

xm

�(xm)

〉
= −‖xm‖2

V

�(xm)
. (4.7)

For the second term, by (2.5) in [22] (note that N(x) here equals −N(x) in [22]), we have

〈
N

(
xm

)
,D�

(
xm

)〉 =
〈
N

(
xm

)
,

xm

�(xm)

〉
≤ 1

4�(xm)
. (4.8)

For any h ∈ H ,

∣∣〈h,D2�
(
xm

)
h
〉∣∣ = ‖hm‖2

H√
M + ‖xm‖2

− |〈hm,xm〉|2
(M + ‖xm‖2

H )3/2
≤ ‖h‖2

H√
M + ‖xm‖2

H

.

This inequality, together with Taylor’s formula, implies that

∣∣�(
xm + βiyiei

) − �
(
xm

) − βiyiDei
�

(
xm

)∣∣ ≤ β2
i y2

i√
M + ‖xm‖2

H

.

Thus, for the third term, we have

∑
|i|≤m

∫
|yi |≤1

∣∣�(
xm + βiyiei

) − �
(
xm

) − βiyiDei
�

(
xm

)∣∣ν(dyi)

≤
∑
|i|≤m

∫
|yi |≤1

β2
i y2

i√
M + ‖xm‖2

H

ν(dyi)

(4.9)

=
∑

|i|≤m β2
i√

M + ‖xm‖2
H

∫
|y|≤1

|y|1−α

Cα

dy

= 2
∑

|i|≤m β2
i

Cα(2 − α)

√
M + ‖xm‖2

H

<
2
∑

i∈Z∗ β2
i

Cα(2 − α)

√
M + ‖xm‖2

H

< +∞,

where ν is the Lévy measure of 1-dimensional α-stable process and we have used the assumption
of βi in (ii) in the last inequality.

By Taylor’s formula again, there exists x̃m ∈ H satisfying that

∣∣�(
xm + βiyiei

) − �
(
xm

)∣∣ = ∣∣〈Dei
�

(
x̃m

)
, βiyiei

〉∣∣ = |x̃iβiyi |√
M + ‖x̃m‖2

H

≤ |βiyi |.
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For the fourth term, we have

∣∣∣∣
∑
|i|≤m

∫
|yi |>1

[
�

(
xm + βiyiei

) − �
(
xm

)]
ν(dyi)

∣∣∣∣

≤
∑
|i|≤m

∫
|yi |>1

|βiyi |ν(dyi) (4.10)

=
∑
|i|≤m

∫
|yi |>1

|βiyi |
Cα|yi |1+α

dyi = 2
∑

|i|≤m |βi |
Cα(α − 1)

<
2
∑

i∈Z∗ |βi |
Cα(α − 1)

< +∞,

where we have used the assumption of βi in (ii) again.
Putting (4.6)–(4.10) together, we obtain that for any x ∈ H ,

−L�(xm)

�(xm)
= −Jm

1 + Jm
2 + Jm

3 + Jm
4

�(xm)

≥ ‖xm‖2
V

M + ‖xm‖2
H

− 1

4(M + ‖xm‖2
H )

− 2
∑

i∈Z∗ β2
i

Cα(2 − α)(M + ‖xm‖2
H )

(4.11)

− 2
∑

i∈Z∗ |βi |
Cα(α − 1)

√
M + ‖xm‖2

H

.

Let

K := {
x ∈ V ; ‖x‖2

V ≤ M
}
.

Then K is compact in H . By (3) in Theorem 2.2, choose M large enough such that π(K) > 0
and

1

4M
+ 2

∑
i∈Z∗ β2

i

Cα(2 − α)M
+ 2

∑
i∈Z∗ |βi |

Cα(α − 1)
√

M
≤ 1

4
∀x ∈ H. (4.12)

Since limm→∞ �(xm) = �(x) and limm→∞ L�(xm) has limit for x ∈ V , by the closable prop-
erty of L, we immediately get L�(x) = limm→∞ L�(xm) and thus

−L�(x)

�(x)
≥ −1

4
, x ∈ K. (4.13)

For any x ∈ Kc , by (4.11) and (4.12), we have

−L�(xm)

�(xm)
≥ ‖xm‖2

V

M + ‖xm‖2
H

− 1

4
≥ 1

4
.
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This implies

−L�(x)

�(x)
≥ ‖xm‖2

V

M + ‖xm‖2
H

− 1

4
≥ 1

4
∀x ∈ V ∩ Kc (4.14)

and

−L�(x)

�(x)
= ∞ ∀x ∈ H \ (

V ∩ Kc
)
. (4.15)

Putting (4.13)–(4.15) together, we immediately obtain

−L�(x)

�(x)
≥ 1

4
1Kc − 1

4
1K.

The proof is complete. �

Lemma 4.3. For � defined in (4.5), we have � ∈ De(L).

Before proving � ∈ De(L), let us first briefly review some well known facts about α-stable
process for using Itô formula. Let {lj (t)}j≥1 be a sequence of i.i.d. 1-dimensional α-stable pro-
cesses. The Poisson random measure associated with lj (t) is defined by

N(j)(t,�) :=
∑

s∈(0,t]
1�

(
lj (s) − lj (s−)

) ∀t > 0,∀� ∈ B
(
R \ {0}).

By Lévy–Itô’s decomposition (cf. [1], page 126, Theorem 2.4.16), one has

lj (t) =
∫

|x|≤1
xÑ(j)(t,dx) +

∫
|x|>1

xN(j)(t,dx),

where Ñ (j) is the compensated Poisson random measure defined by

Ñ (j)(t,�) = N(j)(t,�) − tν(�).

Proof of Lemma 4.3. The proof follows from [8], Section 3, in spirit. Let T > 0 be an arbi-
trary but finite number, we shall consider the stochastic system in [0, T ]. Consider the Galerkin
approximation of (2.2):

dXm
t + AXm

t dt = Nm
(
Xm

t

)
dt + dLm

t , Xm
0 = xm, (4.16)

where Xm
t = πmXt , Nm(Xm

t ) = πm[N(Xm
t )], Lm

t = ∑
|k|≤m βklk(t)ek , πm is the orthogonal pro-

jection defined in the proof of Lemma 3.2. By a standard argument [2,16], for all x ∈ W with
W = H or W = V we have

E

[
sup

0≤t≤T

∥∥Xm
t

(
xm

)∥∥
W

]
≤ CW(x,T ), (4.17)
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lim
m→∞E

[
sup

0≤t≤T

∥∥Xm
t

(
xm

) − Xt(x)
∥∥

W

]
= 0, (4.18)

where CW(x,T ) > 0 is finite.
Write �(u) := (M + ‖u‖2

H )1/2 for all u ∈ H , it follows from Itô formula [1] that

�
(
Xm

t

) − �
(
xm

) + Im
1 (t) − Im

2 (t) = Im
3 (t) + Im

4 (t), (4.19)

where

Im
1 (t) :=

∫ t

0

‖Xm
s ‖2

V

(M + ‖Xm
s ‖2

H )1/2
ds −

∫ t

0

〈Xm
s ,N(Xm

s )〉H
(M + ‖Xm

s ‖2
H )1/2

ds,

Im
2 (t) :=

∑
|j |≤m

∫ t

0

∫
R

[
�

(
Xm

s + yβj ej

) − �
(
Xm

s

) − 〈Xm
s , yβj ej 〉

(M + ‖Xm
s ‖2

H )1/2
1{|y|≤1}

]
ν(dy)ds,

Im
3 (t) :=

∑
|j |≤m

∫ t

0

∫
|y|≤1

[
�

(
Xm

s + yβj ej

) − �
(
Xm

s

)]
Ñ (j)(ds,dy),

Im
4 (t) :=

∑
|j |≤m

∫ t

0

∫
|y|>1

[
�

(
Xm

s + yβj ej

) − �
(
Xm

s

)]
Ñ (j)(ds,dy).

By a Taylor expansion argument similar to (4.9) and (4.10) below, for all T > 0 we have

E

[
sup

0≤t≤T

∣∣Im
2 (t)

∣∣] ≤ CT,

E

[
sup

0≤t≤T

∣∣Im
3 (t)

∣∣2
]

≤ CT,

E

[
sup

0≤t≤T

∣∣Im
4 (t)

∣∣] ≤ CT .

Moreover, by a Taylor expansion argument similar to (4.9) and (4.10) below again, we get that
as m1 → ∞,m2 → ∞,

E

[
sup

0≤t≤T

∣∣Im1
2 (t) − I

m2
2 (t)

∣∣] → 0,

E

[
sup

0≤t≤T

∣∣Im1
3 (t) − I

m2
3 (t)

∣∣2
]

→ 0,

E

[
sup

0≤t≤T

∣∣Im1
4 (t) − I

m2
4 (t)

∣∣p]
→ 0,

for all 1 ≤ p < α. Hence, there exist I2, I3 and I4 such that

lim
m→∞E

[
sup

0≤t≤T

∣∣Im
2 (t) − I2(t)

∣∣] = 0, (4.20)
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lim
m→∞E

[
sup

0≤t≤T

∣∣Im
3 (t) − I3(t)

∣∣2
]

= 0, (4.21)

lim
m→∞E

[
sup

0≤t≤T

∣∣Im
4 (t) − I4(t)

∣∣p]
= 0, (4.22)

where I2, I3 and I4 have the same forms as Im
2 , Im

3 and Im
4 but with

∑
|i|≤m replaced by

∑
i∈Z∗

and Xm replaced by X. It is also easy to verify that I3 is an L2 martingale and that I4 is an L1

martingale.
Next we shall show below, taking a subsequence if necessary, that

lim
m→∞ Im

1 (t) = I1(t) ∀0 ≤ t ≤ T , a.s., (4.23)

where I1(t) has the same form as Im
1 (t) but with Xm replaced by X. Collecting (4.20)–(4.23),

taking a subsequence if necessary and letting m → ∞ in (4.19), we obtain

�(Xt) − �(x) + I1(t) − I2(t) = I3(t) + I4(t). (4.24)

Since I3 and I4 are L2 and L1 martingales respectively, taking

g(t) = −
∫ t

0

‖Xs‖2
V

(M + ‖Xs‖2
H )1/2

ds +
∫ t

0

〈Xs,N(Xs)〉H
(M + ‖Xs‖2

H )1/2
ds

+
∑
j∈Z∗

∫ t

0

∫
R

[
�(Xs + yβj ej ) − �(Xs) − 〈Xs,yβj ej 〉H

(M + ‖Xs‖2
H )1/2

1{|y|≤1}
]
ν(dy)ds,

we immediately verify that � ∈ De(L) for t ∈ [0, T ]. Since T > 0 is arbitrary, � ∈ De(L) for
t ∈ [0,∞).

It remains to prove (4.23). Taking a subsequence if necessary and letting m → ∞ in (4.19), by
Fatou lemma and the fact 〈x,N(x)〉 ≤ 1

4 from [22] we have

E

[
sup

t∈[0,T ]
(
M + ‖Xt‖2

H

)1/2
]
+E

[∫ T

0

‖Xs‖2
V

(M + ‖Xs‖2
H )1/2

ds

]
≤ (

M + ‖x‖2
H

)1/2 + CT + CT 1/2.

This implies
∫ t

0

‖Xs‖2
V

(M + ‖Xs‖2
H )1/2

ds < ∞ ∀t ∈ [0, T ], a.s. (4.25)

It is easy to check
‖Xm

s ‖2
V

(M+‖Xm
s ‖2

H )1/2 is increasing in m for every s > 0 and

‖Xm
s ‖2

V

(M + ‖Xm
s ‖2

H )1/2
≤ ‖Xs‖2

V

(M + ‖Xs‖2
H )1/2

, s > 0.
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Hence, by (4.18) and the Lesbegue dominated convergence theorem, taking a subsequence if
necessary, we get

lim
m→∞

∫ t

0

‖Xm
s ‖2

V

(M + ‖Xm
s ‖2

H )1/2
ds =

∫ t

0

‖Xs‖2
V

(M + ‖Xs‖2
H )1/2

ds a.s. (4.26)

Furthermore, observe that

∣∣〈x,N(x)
〉
H

∣∣ ≤
∫
T

∣∣x(ξ)
∣∣2 dξ +

∫
T

∣∣x(ξ)
∣∣4 dξ

≤ ‖x‖2
H + ‖x‖2∞‖x‖2

H ≤ ‖x‖2
H + C̃‖x‖2

V ‖x‖2
H ,

where the last inequality is by Sobolev embedding. Note that for all s ∈ (0, T ]
∣∣∣∣ 〈Xm

s ,N(Xm
s )〉H

(M + ‖Xm
s ‖2

H )1/2

∣∣∣∣ ≤ (sup0≤t≤T ‖Xm
t ‖2

H )(1 + C̃‖Xm
s ‖2

V )

(M + ‖Xm
s ‖2

H )1/2

≤ (sup0≤t≤T ‖Xm
t ‖2

H )(1 + C̃‖Xs‖2
V )

(M + ‖Xs‖2
H )1/2

a.s.

Hence, taking a subsequence if necessary, by (4.17), (4.18) and (4.25) with the Lesbegue domi-
nated convergence theorem, we obtain

lim
m→∞

∫ t

0

〈Xm
s ,N(Xm

s )〉H
(M + ‖Xm

s ‖2
H )1/2

ds =
∫ t

0

〈Xs,N(Xs)〉H
(M + ‖Xm

s ‖2
H )1/2

ds a.s. (4.27)

Combining (4.26) and (4.27), we immediately get the desired equation (4.23). �
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