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We study the isoperimetric problem in product spaces equipped with the uniform distance. Our main result
is a characterization of isoperimetric inequalities which, when satisfied on a space, are still valid for the
product spaces, up a to a constant which does not depend on the number of factors. Such dimension free
bounds have applications to the study of influences of variables.
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1. Introduction

Let (X,d,μ) denote a metric probability space, where X is separable and μ is a Borel probability
measure on (X,d). For a Borel subset A of X, we define, for r > 0, the open r-neighbourhood
of A by Ar = {x ∈ X|d(x,A) < r}, and its outer and inner boundary measures (also called
Minkowski contents) by

μ+(A) = lim inf
r→0+

μ(Ar) − μ(A)

r
, μ−(A) = μ+(X \ A).

The isoperimetric problem consists in obtaining sharp lower bounds on the above quantities in
terms of the measure μ(A). The isoperimetric function of (X,d,μ), denoted by I(X,d,μ) (or
simply Iμ when there is no ambiguity on the underlying metric space), is defined for p ∈ [0,1]
as follows:

Iμ(p) = inf
A⊆X;μ(A)=p

min
(
μ+(A),μ−(A)

)
(1)

= inf
A⊆X;μ(A)∈{p,1−p}μ

+(A), (2)

where the infimum is taken over all Borel subsets A of X. As we can see from the definition, Iμ

is the largest function such that, for every A ⊆ X, μ+(A) ≥ Iμ(μ(A)) and for every t ∈ [0,1],
Iμ(t) = Iμ(1 − t). Notice also that Iμ(0) = Iμ(1) = 0.

Given metric probability spaces (Xi, di,μi), i = 1, . . . , n, several metric structures can be
considered on the product probability space (X1 × · · · × Xn,μ1 ⊗ · · · ⊗ μn). Throughout this
paper, we equip this product with the supremum distance d = d

(n)∞ defined by

d(n)∞
(
(x1, . . . , xn), (y1, . . . , yn)

) := max
i

di(xi, yi).
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We shall also say that d
(n)∞ is the �∞-combination of the distances di , 1 ≤ i ≤ n. The isoperimetric

problem has been intensively studied in the Riemannian setting, where the geodesic distance on
a product manifold is the �2-combination of the geodesic distance on the factors. Hence, from
a geometric viewpoint, the choice of the �∞-combination is less natural than the one of the �2-
combination d

(n)
2 ((xi)

n
i=1, (yi)

n
i=1) = (

∑
i d(xi, yi)

2)1/2. Nevertheless, the study of the uniform
enlargement has various motivations. We briefly explain some of them.

Firstly the isoperimetric problem for the uniform enlargement is technically easier to deal
with in the setting of product spaces, due to the product structure of metric balls. This often
allows to work by comparisons. For instance, Bollobás and Leader [8] study this problem for the
uniform measure on the cube in order to solve the discrete isoperimetric problem on the grid.
Since d

(n)∞ ≤ d
(n)
2 ≤ √

nd
(n)∞ , it easily follows that

1√
n
I
(Xn,d

(n)∞ ,μn)
≤ I

(Xn,d
(n)
2 ,μn)

≤ I
(Xn,d

(n)∞ ,μn)
.

This approach was used for example, by Morgan [16] for products of two Riemannian manifolds.
Another motivation for studying the isoperimetric problem for the uniform enlargement is that

it amounts to the study of the usual isoperimetric problem for a special class of sets. Let us
explain this briefly in the setting of Rn equipped with a probability measure dμ(x) = ρ(x)dx

and the �∞ distance. If ρ is continuous and A ⊂ Rn is a domain with Lipschitz boundary, its
outer Minkowski content is

μ+(A) =
∫

∂A

∥∥nA(x)
∥∥

1ρ(x)dHn−1(x),

where nA(x) is a unit outer normal to A at x (unit for the Euclidean length), and Hn−1 is the
n − 1-dimensional Hausdorff measure. Consequently, the boundary measure for the uniform en-
largement coincides with the usual one

∫
∂A

ρ(x)dHn−1(x), for sets A such that almost surely
on ∂A the outer normal is equal to a vector of the canonical basis of Rn (or its opposite). These
so-called rectilinear sets comprise cartesian products of intervals I1 ×· · ·× In, their finite unions
and their complements. Hence, the isoperimetric problem for the uniform enlargement is closely
connected to the usual isoperimetric problem restricted to the class of rectilinear sets (actually,
a smooth domain A can be approximated by rectilinear sets in such a way that their boundary
measures approach the one of A for the uniform enlargement). Note that rectilinear sets natu-
rally appear when studying the supremum of random variables, as {x ∈ Rn|maxi xi ∈ [a, b]} is
rectilinear. This was one of the original motivations of Bobkov [5], Bobkov and Houdré [7] for
studying isoperimetry for the uniform enlargement.

Eventually, let us mention that isoperimetric inequalities for the uniform enlargement naturally
appear in the recent extension by Keller, Mossel and Sen [12] of the theory of influences of
variables to the continuous setting.

Computing exactly the isoperimetric profile is a hard task, even in simple product spaces (see,
e.g., the survey article by Ros [18]). However, various probabilistic questions involve sequences
of independent random variables and require lower estimates on the isoperimetric profile of n-
fold product spaces, which actually do not depend on the value of n. First, observe that for all
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integers n ≥ 1,

I
(Xn+1,d

(n+1)∞ ,μn+1)
≤ I

(Xn,d
(n)∞ ,μn)

,

which holds because for every set A ⊂ Xn, μn+1(A × X) = μn(A) and (μn+1)+(A × X) =
(μn)+(A). Therefore, one may define the so-called infinite dimensional isoperimetric profile of
(X,d,μ) as follows: for t ∈ [0,1],

Iμ∞(t) := inf
n≥1

I
(Xn,d

(n)∞ ,μn)
≤ I(X,d,μ).

This quantity has been investigated by Bobkov [5], Bobkov and Houdré [7] and Barthe [3]. In
particular, Bobkov has put forward a sufficient condition for the equality Iμ∞ = Iμ to hold. This
condition depends only on the function Iμ but it is rather restrictive. However, it allowed to get
a natural family of isoperimetric inequalities for which there exists K > 1 such that Iμ ≥ Iμ∞ ≥
1
K

Iμ. We shall say in this case that the isoperimetric inequality with profile Iμ tensorizes, up to
a factor K .

The goal of this article is to provide a workable necessary and sufficient condition for the latter
property to hold. We were inspired by a sufficient condition for tensorization, given by Milman
[15] in the setting of �2 distances on products. We now describe the plan of the paper.

– In the next section, we recall the known sufficient condition for Iμ∞ = Iμ and propose a new
one (in Theorem 2).

– Section 3 is devoted to approximate isoperimetric inequalities. Building on the results of
Section 2, we provide a sufficient condition for tensorization up to a factor (see Theorem 3).
By a careful study of product sets, we actually show that this condition is also necessary
(Theorem 4). Combining the latter two theorems allows to describe exactly the isoperimet-
ric profiles enjoying the approximate tensorization property. We state the result informally
here, omitting the precise hypotheses on the underlying metric measure space (given in The-
orem 5): there exists a constant K > 1 such that Iμ ≥ Iμ∞ ≥ 1

K
Iμ if and only if there exists

a constant D > 1 such that for all 0 < s < t < 1,

Iμ(s)

s log(1/s)
≤ D

Iμ(t)

t log(1/t)
.

– The final section draws consequences of our isoperimetric inequalities to the theory of in-
fluences of variables: following the argument of Keller, Mossel and Sen [12], we obtain an
extension of the Kahn–Kalai–Linial theorem about the existence of a coordinate with a large
influence (see Theorem 7).

Let us conclude this introduction with some useful notation. If (Y,ρ) is a metric space we
define the modulus of gradient of a locally Lipschitz function f : Y →R by:

|∇f |(x) = lim sup
ρ(x,y)→0+

|f (x) − f (y)|
ρ(x, y)

,

this quantity being zero at isolated points. Note that when the distance is given by a norm on
a vector space, that is ρ(x, y) = ‖x − y‖, and when f is differentiable, then the modulus of
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gradient coincides with ‖Df (x)‖∗. We shall work under the following Hypothesis (H): for every
m,n ∈N∗ and for every locally Lipschitz function f : Xm+n → R, for μm+n-almost every point
(x, y) ∈ Xm × Xn:

|∇f |(x, y) = |∇xf |(x, y) + |∇yf |(x, y).

This assumption holds in various cases: when (X,d) is an open metric subset of a Minkowski
space (Rn,‖ · ‖) and when μ is absolutely continuous with respect to Lebesgue’s measure, or
for Riemannian manifolds when the measure is absolutely continuous with respect to the vol-
ume form (as a consequence of Rademacher’s theorem of almost everywhere differentiability of
Lipschitz functions). On the contrary, this hypothesis often fails in discrete settings.

2. Sharp isoperimetric inequalities

We start by recalling a couple of important results about extremal half-spaces for the isoperi-
metric problem. The first one below is due to Bobkov and Houdré [6] and deals with the real
line. Before stating it, we need to introduce some notations. Let M be the set of Borel proba-
bility measures on R which are concentrated on a possibly unbounded interval (a, b) and have
a density f which is positive and continuous on (a, b). For μ ∈ M, the distribution function
Fμ(x) := μ((−∞, x]) is one-to-one from (a, b) to (0,1) and one may define

Jμ(t) = f
(
F−1

μ (t)
)
, t ∈ (0,1).

We may as well consider Jμ as a function on [0,1] by setting Jμ(0) = Jμ(1) = 0. The value of
Jμ(t) represents the boundary measure of the half-line of measure t starting at −∞. Let L ⊂M
denote the set of (non-Dirac) log-concave probability measures on R (the density f is of the
form e−c for some convex function c).

Proposition 1 (Bobkov and Houdré [6]). The map μ �→ Jμ is one-to-one between the set M
and the set of positive continuous functions on (0,1). It is also one-to-one between the subset L
of log-concave probability measures and the set of positive concave functions on (0,1). Moreover
for μ ∈M, the following properties are equivalent:

(i) Iμ = Jμ (meaning for any p ∈ (0,1), the infimum in (1) is attained for the set
(−∞,F−1

μ (p)]),
(ii) the measure μ is symmetric around its median, that is, Jμ is symmetric around 1

2 , and for
all p,q > 0 such that p + q < 1,

Jμ(p + q) ≤ Jμ(p) + Jμ(q).

The next basic lemma allows to compare the various conditions on isoperimetric profiles that
appear in the rest of the article. In particular, it shows that the above result encompasses a classi-
cal theorem of Borell, asserting that for even log-concave probability measures on R, half-lines
are solutions to the isoperimetric problem.
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Lemma 1. Let T ∈ (0,+∞] and K : [0, T ) → R+ be a non-negative function. Consider the
following properties that K may verify:

(i) K is concave,
(ii) t �→ K(t)/t is non-increasing,

(iii) for all a, b ∈ [0, T ) with a + b < T , it holds K(a + b) ≤ K(a) + K(b).

Then (i) �⇒ (ii) and (ii) �⇒ (iii).

Proof. If K is concave then t �→ (K(t) − K(0))/t is non-increasing. Since t �→ K(0)/t is non-
increasing as well, the first implication follows. Assuming (ii) and without loss of generality
a ≤ b,

K(a + b) ≤ (a + b)
K(b)

b
= a

K(b)

b
+ K(b) ≤ K(a) + K(b). �

The next result provides sharp isoperimetric inequalities in high dimensions. It goes back to
the dissertation thesis of Bobkov.

Theorem 1 (Bobkov [5]). Let J : [0,1] → R+ be a concave function, with J (t) = J (1 − t) for
all t ∈ [0,1]. Assume that for all a, b ∈ [0,1],

J (ab) ≤ aJ (b) + bJ (a). (3)

Then for every space (X,d,μ) verifying Hypothesis (H),

Iμ ≥ J �⇒ Iμ∞ ≥ J.

Moreover, there exists an even log-concave probability measure ν on R such that Iν = Iν∞ = J

and for every n, coordinate half-spaces are solutions of the isoperimetric problem for νn.

Condition (3) may be verified in a few instances as J (t) = t (1− t). However, it is not so easy to
deal with, in particular in conjunction with the symmetry assumption. For these reasons, stronger
conditions of more local nature are useful. In Barthe [3], it is shown that (3) is verified when J is
concave, twice differentiable and −1/J ′′ is concave. Observe that condition (3) amounts to the
subadditivity of the function u �→ euJ (e−u) on R+. Hence, using the second part of Lemma 1,
we obtain that the condition “t �→ J (t)/(t log(1/t)) is non-decreasing” implies (3) as well. By
a tedious but straightforward calculation, this yields a neat variant of one of the main results of
Barthe [3]:

Corollary 1. For β ∈ [0,1], the function Kβ defined for t ∈ [0,1] by

Kβ(t) := t (1 − t) logβ

(
3

t (1 − t)

)
,

satisfies that for every space (X,d,μ) verifying Hypothesis (H) and all c ≥ 0,

Iμ ≥ cKβ �⇒ Iμ∞ ≥ cKβ.
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Let us point out that (3) is not the best sufficient condition for the conclusion of the above
theorem to hold. The optimal condition given by Bobkov’s approach is the following: for every
Borel probability measure N on [0,1],

J

(∫
t dN(t)

)
≤

∫
J (t) dN(t) +

∫ 1

0
J
(
N

([0, t]))dt.

Actually when μ ∈ F is a probability measure on R and J = Jμ = Iμ, it is not hard to check,
considering subgraphs, that the above condition is necessary and sufficient for having Iμ = Iμ∞ .
However this condition is hard to verify in practice, and most of the work in Bobkov’s proof
consists in showing that when J is concave, it boils down to (3).

Next, we develop a different approach to dimension free isoperimetric inequalities. We use
classical methods to make a link between isoperimetric inequalities, and some Beckner-type
functional inequalities, which nicely tensorize.

Lemma 2. Let a ∈ (0,1] and (X,d,μ) be a metric probability space. Let c > 0, then the follow-
ing assertions are equivalent:

(i) For all p ∈ [0,1], cIμ(p) ≥ p − p1/a ,
(ii) For all locally Lipschitz functions f : X → [0,1], c

∫ |∇f |dμ ≥ ∫
f dμ − (

∫
f a dμ)1/a .

Proof. Assuming (i), we apply the co-area inequality to an arbitrary locally Lipschitz function
f (see, e.g., Bobkov and Houdré [6]); next we take advantage of the isoperimetric inequality
for μ:

c

∫
|∇f |dμ ≥ c

∫ 1

0
μ+({f ≥ t})dt

≥
∫ 1

0

(
μ

({f ≥ t}) − μ
({f ≥ t})1/a)

dt

=
∫

f dμ −
∫ 1

0
μ

({f ≥ t})1/a
dt.

In order to conclude that the second assertion is valid, we apply the Minkowski inequality with
exponent 1/a ≥ 1:(∫ 1

0
μ

({f ≥ t})1/a
dt

)a

=
(∫ 1

0

(∫
1f (s)≥t dμ(s)

)1/a

dt

)a

≤
∫ (∫ 1

0
(1f (s)≥t )

1/a dt

)a

dμ(s) =
∫

f a dμ.

The fact that the second assertion implies the first one is rather standard: one applies the
functional inequalities to Lipschitz approximations of the characteristic function of an arbitrary
Borel set A ⊂ X (see Lemma 3.7 in Bobkov and Houdré [6]). This yields cμ+(A) ≥ μ(A) −
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μ(A)1/a . Applying the inequality to 1 − f instead of f and using |∇f | = |∇(1 − f )| and then
taking approximations of 1A gives cμ+(A) ≥ 1 − μ(A) − (1 − μ(A))1/a for all A, which is
equivalent to cμ−(A) ≥ μ(A) − μ(A)1/a for all Borel sets A. �

The following extension of the classical subadditivity property of the variance is due to Latała
and Oleszkiewicz [14]. It allowed them to devise functional inequalities with the tensorization
property. Actually, they focused on Sobolev inequalities involving L2-norms of gradients, with
applications to concentration inequalities. Here we aim at functional inequalities involving L1-
norms of gradients and provide information about isoperimetric inequalities.

Lemma 3. Let (�1,μ1) and (�2,μ2) be probability spaces and consider their product prob-
ability space (�,μ) := (�1 × �2,μ1 ⊗ μ2). For any non-negative random variable Z defined
on (�,μ) and having finite first moment and for any strictly convex function φ on [0,+∞) such
that 1

φ′′ is a concave function, the following inequality holds true:

Eμφ(Z) − φ(EμZ) ≤ Eμ

([
Eμ1φ(Z) − φ(Eμ1Z)

] + [
Eμ2φ(Z) − φ(Eμ2Z)

])
.

Proposition 2. Let (X,d,μ) be a metric probability space verifying hypothesis (H). Let a ∈
[ 1

2 ,1] and c > 0. If for all p ∈ (0,1), Iμ ≥ c(p − p1/a), then for all p ∈ (0,1),

Iμ∞(p) ≥ c
(
p − p1/a

)
.

Proof. By Lemma 2, we know that for every locally Lipschitz function f : X → [0,1]

1

c

∫
|∇f |dμ ≥

∫
f dμ −

(∫
f a dμ

)1/a

. (4)

We shall prove that this functional inequality tensorizes, meaning that for all n the same prop-
erty is verified by μn. Applying Lemma 2 again will give the claimed dimension-free isoperi-
metric inequality.

Checking the tensorization property is done along the same lines as in Latała and Oleszkiewicz
[14]. Assume that (X1, ν1, d1) and (X2, ν2, d2) satisfy (4). Since a ∈ [ 1

2 ,1], Lemma 3 applies to
	(t) = t1/a and gives∫

f dν1 dν2 −
(∫

f a dν1 dν2

)1/a

=
∫

	
(
f a

)
dν1 dν2 − 	

(∫
f a dν1 dν2

)
≤

∫ (∫
	

(
f a

)
dν1 − 	

(∫
f a dν1

))
dν2 +

∫ (∫
	

(
f a

)
dν2 − 	

(∫
f a dν2

))
dν1

≤ 1

c

∫ (|∇1f | + |∇2f |)dν1 dν2,
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where |∇if | is the norm of the gradient of f taken with respect to the ith variable. When ν1 = μm

and ν2 = μn, we may apply Hypothesis (H) to replace the function in the latter integral by the
norm of the full gradient |∇f |. This allows to show by induction that for all n, μn verifies the
claimed functional inequality. �

The later result readily extends as follows.

Theorem 2. Let c : [ 1
2 ,1] →R+, and consider for p ∈ [0,1],

L(p) := sup
a∈[1/2,1]

c(a)max
{
p − p1/a,1 − p − (1 − p)1/a

}
.

If (X,d,μ) satisfies (H) and Iμ ≥ L then

Iμ∞ ≥ L.

Moreover, there exists an even probability measure ν on R such that Iν = Iν∞ = L and such that
for all n, coordinate half-spaces are solutions to the isoperimetric problem for νn.

Proof. Observe that since, by definition, isoperimetric functions of probability measures are
symmetric with respect to 1

2 , the property for all p ∈ [0,1], Iμ ≥ c(p − p1/a) is equivalent to
Iμ(p) ≥ cMa(p), for all p, where

Ma(p) := max
{
p − p1/a,1 − p − (1 − p)1/a

}
.

Hence, the fact that Iμ ≥ L implies Iμ∞ ≥ L is a direct consequence of Proposition 2, applied
for all values of a.

Next, it is not hard to check that for a ∈ [ 1
2 ,1], Ma is subadditive, being a supremum of two

concave functions defined on [0,1]. And, since the property “J (x + y) ≤ J (x) + J (y) for all
x, y” is stable under supremum, it follows that L is also subadditive.

Hence, by Proposition 1, there exists an even probability measure ν on R such that Iν = L and
half-lines solve the isoperimetric problem for ν. As we just proved, Iν ≥ L ensures that Iν∞ ≥ L.
Combining this with L = Iν ≥ Iν∞ yields Iν∞ = L. The coordinate half-space {x ∈ Rn|x1 ≤ t}
has same measure and boundary measure (for νn) as the set (−∞, t] (for ν). It is then clear that
it solves the isoperimetric problem. �

Remark that for a ∈ ( 1
2 ,1), the function Ma(p) = max{p − p1/a,1 − p − (1 − p)1/a} is not

concave, hence the measure νa is not log-concave. Actually, Ma does not even have its max-
imum at 1

2 . Hence, it cannot be obtained as a supremum of concave functions which are in
addition symmetric around 1/2. Therefore, it gives a genuinely new example of a measure for
which coordinate half-spaces solve the isoperimetric problem in any dimension (that could not
be deduced from Theorem 1).
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3. Approximate inequalities

Let us start with some notations. Given two non-negative functions f,g defined on a set S ⊂ R

and D ≥ 1, we write f ≈D g and say that f and g are equivalent up to a factor D if there exists
a > 0 such that for all x ∈ S, ag(x) ≤ f (x) ≤ Dag(x). We write f ≈ g when there exists D

such that f ≈D g.
We say that a non-negative function f defined on a set S ⊂ R is essentially non-decreasing

(with constant D ≥ 1) when there exists a non-decreasing function g on S such that f ≈D g. In
the same way, we may define the notion of essentially non-increasing functions.

Also, a non-negative function f defined on an interval is said to be essentially concave (or
pseudoconcave) if it is equivalent to a concave function.

The next proposition provides workable formulations of the above definitions. The part about
essentially concave functions is due to Peetre [17].

Lemma 4. Let f be a non-negative function defined on S ⊂ R. Then f is essentially non-
decreasing (resp. essentially non-increasing) with constant D ≥ 1 if and only if for every s ≤ t

in S,

f (s) ≤ Df (t)
(
resp. f (t) ≥ Df (s)

)
.

When f is defined on (0,+∞), the following assertions are equivalent:

(i) f is essentially concave with some constant C1,
(ii) There exists C2 ≥ 1 such that for all s, t ∈ R∗+ , f (s) ≤ C2 max(1, s

t
)f (t).

(iii) There exists C3 ≥ 1 such that on R∗+, f is essentially non-decreasing and t �→ f (t)
t

is
essentially non-increasing, both with constant C3.

Moreover, the smallest possible constants verify C1/2 ≤ C2 = C3 ≤ C1.

Proof. The argument for essentially non-decreasing functions is very simple and we skip it. Let
us just point out that it involves the least non-decreasing function above f , which is given by
f́ (t) := sup{f (x) | x ∈ S ∩ (−∞, t]}.

Next, let us focus on concavity issues. The equivalence of the last two statements is obvious.
Assume f is essentially concave on R∗+. Then there exists a concave function h on R∗+ which

is equivalent to f . And as f is positive, h is positive, therefore, being concave, h is necessarily
non-decreasing on R∗+. Moreover, t �→ h(t)

t
is non-increasing on R∗+. So f satisfies the third

condition.
Eventually, let us assume the second condition and show that f is equivalent to a concave

function. The natural guess is the least concave majorant of f , which is explicitly given for t > 0
by

f̂ (t) := sup

{
n∑

i=1

λif (ti)

∣∣∣n ∈N∗, λi ≥ 0, ti > 0,

n∑
i=1

λi = 1 and
n∑

i=1

λiti = t

}
.
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By definition f ≤ f̂ . Let n ∈ N∗, t ∈ R∗+, (λi)1≤i≤n and (ti)1≤i≤n such that, for all i, λi ≥ 0,∑n
i=1 λi = 1 and

∑n
i=1 λiti = t . Using the hypothesis, we obtain

n∑
i=1

λif (ti) ≤ C2

n∑
i=1

λi max

(
1,

ti

t

)
f (t) ≤ C2

(
n∑

i=1

λi +
n∑

i=1

λiti

t

)
f (t) = 2C2f (t).

Therefore f ≤ f̂ ≤ 2C2f and we have shown that f is essentially concave. �

We are now ready to state our main results.

Theorem 3. Let J be a non-negative function defined on [0,1] with J (0) = 0. Assume that it is
symmetric around 1

2 (i.e., for every t ∈ [0,1], J (t) = J (1 − t)) and that the function

t ∈ (0,1) �→ J (t)

t log(1/t)

is essentially non-decreasing with constant D. Then for every metric probability space (X,d,μ)

satisfying Hypothesis (H):

Iμ ≥ J �⇒ Iμ∞ ≥ 1

cD

J,

with cD = 2(D/ log 2)2 ≤ 5D2. Moreover, there exists a symmetric log-concave measure ν on
the real line such that, on [0,1], J ≈ Iν ≈ Iν∞ .

If in addition J is concave, one can take cD = 2D for D > 1 and c1 = 1.

Remark 1. This result should be compared to a theorem of Milman [15], where a similar con-
dition is given for dimension-free isoperimetric inequalities for the �2-combination of distances
on products (in other words for the Euclidean enlargement). His condition involves an essential
monotonicity property of J/Iγ where γ is the one-dimensional standard Gaussian measure. On
(0,1/2] it is known that Iγ (t) ≈ t

√
log(1/t).

In order to formulate a converse statement, we introduce the following hypothesis: we say that
(X,d,μ) enjoys the regularity property (R) if for all t ∈ (0,1), Iμ(t) < +∞ and for all n ∈ N∗,
t ∈ (0,1) and ε > 0 there exists a Borel set A ⊂ Xn with μn(A) = t , (μn)+(A) ≤ Iμn(t) + ε and

(
μn

)+
(A) = lim

h→0+
μn(Ah \ A)

h
,

where the products Xn are equipped with the uniform distance. This hypothesis means that there
are almost solutions of the isoperimetric problems for which the lim inf in the definition of the
Minkowski content is actually a real limit. Thanks to Theorem 15 in Barthe [2] it is not hard to
check this property for log-concave measures on the real line. We will give more comments on
this hypothesis in Remark 3 below.
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Theorem 4. Let (X,d,μ) satisfy hypothesis (R). Then the map

t ∈ (0,1) �→ Iμ∞(t)

t log(1/t)

is continuous and essentially non-decreasing.

We introduce two functions, both defined on (0,1) by: J0(t) = t and J1(t) = t log 1
t
. Combin-

ing Theorems 3 and 4, we can formulate our results as an equivalence.

Theorem 5. Let (X,d,μ) denote a metric space equipped with a Borel probability measure μ

and satisfying hypothesis (R) and (H). Then the following assertions are equivalent:

(i) There exists a constant C such that Iμ

J1
is essentially non-decreasing on (0,1) with con-

stant C,
(ii) There exists a constant K ≥ 1 such that, on [0,1], 1

K
Iμ ≤ Iμ∞ ≤ Iμ.

The next lemma gives a different formulation of the main condition appearing in the previous
theorems.

Lemma 5. Let K : [0,1] →R+ be a non-negative function such that K is symmetric with respect
to 1

2 (i.e. for t ∈ [0,1], K(t) = K(1 − t)). Then the following assertions are equivalent:

(i) There is a constant C such that K
J1

is essentially non-decreasing on (0,1) with constant C.

(ii) There exist constants C0 and C1 such that K
J0

is essentially non-increasing on (0, 1
2 ] with

constant C0 and K
J1

is essentially non-decreasing on (0, 1
2 ] with constant C1.

Moreover, the smallest possible constants verify C ≤ C0C1
log 2 and C0 ≤ C

log 2 , C1 ≤ C.

Proof. We use the concavity of the map t �→ (1 − t) log 1
1−t

, which yields, for every t ∈ [0, 1
2 ],

t log 2 ≤ (1 − t) log 1
1−t

≤ t . Assuming (i), K
J1

is essentially non-decreasing on (0, 1
2 ] with con-

stant C. For the second part of the assertion, let 0 < s ≤ t ≤ 1
2 . Then,

K(t)

t
≤ K(1 − t)

(1 − t) log(1/(1 − t))
≤ C

K(1 − s)

(1 − s) log(1/(1 − s))
≤ C

log 2

K(s)

s
. (5)

For the converse implication: assuming (ii), we first check that K
J1

is essentially non-decreasing

on [ 1
2 ,1). Let 1

2 ≤ s ≤ t < 1, then

K(s)

s log(1/s)
≤ 1

log 2

K(1 − s)

1 − s
≤ C0

log 2

K(1 − t)

1 − t
≤ C0

log 2

K(t)

t log(1/t)
.

To get the property on the whole interval (0,1), it suffices to use 1
2 as an intermediate point. �

The next corollary describes the possible size of an infinite dimensional isoperimetric profile:
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Corollary 2. Let (X,d,μ) denote a metric space equipped with a Borel probability measure μ

and satisfying hypotheses (R) and (H).
If inf

t∈(0, 1
2 ]

Iμ(t)

t
= 0 then Iμ∞ is identically 0, else there exist α,β > 0 such that for all t ∈

[0,1],

α min(t,1 − t) ≤ Iμ∞(t) ≤ β min

(
t log

1

t
, (1 − t) log

1

1 − t

)
.

Remark 2. The function defined on [0,1] by t �→ min(t,1 − t) is the isoperimetric function
of the double-sided exponential measure on R, e−|x| dx/2. Using the notation and results of
Corollary 1, we observe that it is equivalent to the function K0(t) = t (1 − t). Moreover there is a
log-concave probability measure �0 on the real line for which K0 = I�0 = I�∞

0
(actually, �0 is the

standard logistic measure � with density e−x

(1+e−x )2 with respect to Lebesgue’s measure). Hence,
the lower bound is optimal up to the multiplicative factor.

The upper bound of Iμ∞ given in the above corollary is due to Bobkov and Houdré [6]. A sim-
ilar remark applies to it: the quantity in the upper estimate is equivalent to the function K1 of
Corollary 1, which is also an infinite dimensional isoperimetric profile (of a measure which is
reminiscent of Gumble laws, as its distribution function is of the order of e−βe−y

when y → −∞,
for some β > 0).

The fact that the infinite dimensional isoperimetric profile is either trivial, or at least as big
as the one of the exponential measure was already discovered, in slightly different forms, by
Talagrand [19] and by Bobkov and Houdré [7].

Proof of Corollary 2. By Theorem 4, there exists C ≥ 1 such that for all t ∈ (0,1/2],

Iμ∞(t) ≤ Ct log

(
1

t

)
× 2

log 2
Iμ∞

(
1

2

)
. (6)

Applying Theorem 4 again, together with Lemma 5, we get that there exists D ≥ 1 such that for
all t ∈ (0,1/2],

D
Iμ∞(t)

t
≥ 2Iμ∞

(
1

2

)
.

Therefore, assuming inft∈(0,1/2] Iμ(t)

t
= 0, and using that Iμ ≥ Iμ∞ , we can deduce that Iμ∞( 1

2 ) =
0. Then (6) and the symmetry of isoperimetric functions yield Iμ∞ = 0 pointwise.

Next, assume that there exists κ > 0 such that Iμ(t) ≥ κt for all t ∈ (0,1/2]. Then Theorem 3
applies to J (t) := κ min(t,1− t) (Lemma 5 gives a quick way to check the hypothesis) and gives
Iμ∞ ≥ cJ for some c > 0. �

Remark 3. Our results are stated for general metric spaces, but are devised for continuous set-
tings (e.g., for which the values taken by the measure cover all [0,1]). This is why additional
hypotheses appear in our statements. One may find Hypothesis (H) quite natural (it is related to
a.e. differentiability of Lipschitz functions). On the other hand, Hypothesis (R) is more demand-
ing, as it seems to require approximation theorems by smooth sets.
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Let us point out a possible variant of Theorem 4 where all the hypotheses are incorporated
in the structure of the ambient space: assume that X is a finite dimensional vector space of
dimension p, that the distance d is induced by a norm N on X and that μ has a positive C1

density h with respect to Lebesgue’s measure, μ = h.Lp . We equip the product spaces Xn with
d∞, the �∞-combination of N , that is, for x, y ∈ Xn, d∞(x, y) = max1≤i≤n N(xi, yi). Then,
instead of using the Minkowski content as a definition of the boundary measure, let us choose
the notion of generalized perimeter instead: if A ⊆ Xn is measurable, then

Pμn,∞ = sup

{∫
A

n∑
i=1

∣∣∇i (ϕh)
∣∣dLnp|ϕ ∈ C1

c

(
Xn

)
and sup

x∈Xn

d∞
(
ϕ(x),0

) ≤ 1

}
,

where |∇f | is the modulus of gradient of f .
Since the perimeter is defined as a supremum (recall that the Minkowski content is an inferior

limit), the proof of Lemma 8 below does not require any regularity assumption. Hence the proof
of Theorem 4 applies without any changes and does not require (R). The proof of Theorem 3 also
applies to this new setting, without assuming (H), with the following main modification: instead
of using functional inequalities for locally Lipschitz functions, we work in the class of functions
of bounded variations. We refer the reader to the book of Ambrosio, Fusco and Pallara [1] for
an exhaustive study of this approach in the Euclidean case. This requires to use various results
about these functions: co-area inequality (Theorem 3.40), approximation by smooth functions
(Theorem 3.9), approximate differentiability (Theorem 3.83 and Proposition 3.92 among others).

3.1. Proof of Theorem 3

We start with a few preliminary statements.

Lemma 6. Consider a function K : [0,1] → R+ with K(0) = 0. Assume that K is symmetric
with respect to 1

2 and that K
J1

is essentially non-decreasing on (0,1) with constant D. Then

(i) K is essentially non-decreasing on [0, 1
2 ] with constant 2D

e log 2 ,

(ii) K is essentially concave. More precisely, there exists a concave function I : [0,1] → R+,
which is symmetric with respect to 1

2 , and is equivalent to K up to a factor 2D/ log 2.

Proof. Observe that the function J1(t) = t log(1/t) is increasing on (0,1/e] and decreasing on
[1/e,1). Its maximum is therefore J (1/e) = 1/e.

Assume that 0 ≤ s ≤ t ≤ 1
2 . Then, by hypothesis K(s) ≤ D

J1(s)
J1(t)

K(t). If t ≤ 1
e
, we can con-

clude that K(s) ≤ DK(t). If t ∈ (1/e,1/2], we argue differently

K(s) ≤ D
J1(s)

J1(t)
K(t) ≤ D

J1(1/e)

J1(1/2)
K(t) = 2D

e log 2
K(t).

This concludes the proof of (i).
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Next, let us prove (ii). Consider the map K̃ defined on R+ by:

K̃(t) =
{

K(t), if t ∈ [
0, 1

2

)
,

K
( 1

2

)
, if t ≥ 1

2 .

Combining (i) and the second part of (ii) in Lemma 5, one readily checks that K̃ satisfies the
hypothesis of Assertion (iii) in Lemma 4 with constant D

log 2 (≥ 2D
e log 2 ). Hence there exists a

concave function H which is equivalent to K̃ on (0,+∞), up to a factor 2D/ log 2. Define I to
be the restriction of H to (0, 1

2 ], extended at 0 by I (0) = 0 and to [0,1] by symmetry with respect
to 1

2 . Since H is concave and non-negative on (0,+∞), it is also non-decreasing. Therefore, the
function I is concave as well. As K̃ ≈ H on (0,+∞), we obtain by restriction that K ≈ I on
(0,1/2], up to the same constant. Since K(0) = I (0) = 0, and both I and K are symmetric with
respect to 1/2, we can conclude that I ≈ K on [0,1], up to a factor 2D/ log 2. �

The following result shows how we exploit the essentially monotonicity properties of J/J0

and J/J1 where J0(t) = t and J1(t) = t log(1/t).

Proposition 3. Let J : (0,1) → R+ such that for all t , J (t) = J (1− t). Assume that on (0,1/2],
J/J0 is essentially non-increasing with constant D0 and J/J1 is essentially non-decreasing with
constant D1. Then there exists a function c : [1/2,1) →R+ such that for all t ∈ (0,1),

J (t) ≥ sup
a∈[1/2,1)

c(a)
(
t − t1/a

)
,

and for all t ∈ (0, 1
2 ],

J (t) ≤ 2D0 max(D0,D1) sup
a∈[1/2,1)

c(a)
(
t − t1/a

)
.

The proof of this proposition relies on the following statement, which is related to Barthe,
Cattiaux and Roberto [4], Lemma 19.

Lemma 7. Let 	 : (0, 1
log 2 ] →R+. If 	 is essentially non-increasing with constant C0, then for

all y ∈ (0, 1
2 ],

sup
α∈(0,1]

	(α)
(
1 − yα

) ≥ 1

2C0
	

(
1

log(1/y)

)
.

If, in addition, s �→ s	(s) is essentially non-decreasing with constant C1, then for all y ∈
(0,1/2],

sup
α∈(0,1]

	(α)
(
1 − yα

) ≤ max(C0,C1)	

(
1

log(1/y)

)
.
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Proof. In order to bound the supremum from below, we just select an appropriate value for α: if
y ∈ (0,1/e], choosing α = 1/ log(1/y) ∈ (0,1], we get

sup
α∈(0,1]

	(α)
(
1 − yα

) ≥ (
1 − e−1)	(

1

log(1/y)

)
.

If y ∈ [1/e,1/2], we choose α = 1 and get

sup
α∈(0,1]

	(α)
(
1 − yα

) ≥ (1 − y)	(1) ≥ 1

2
	(1).

However, y ≥ 1/e ensures 1/ log(1/y) ≥ 1. Since 	 is essentially non-increasing, C0	(1) ≥
	(1/ log(1/y)). Hence the first claim is proved, with a constant min(1 − e−1,1/(2C0)) =
1/(2C0).

To prove the converse inequality, we change variables as follows: setting c = α log(1/y),

sup
α∈(0,1]

	(α)
(
1 − yα

) = sup
c∈(0,log(1/y)]

(
1 − e−c

)
	

(
c

log(1/y)

)
.

For c ≥ 1, we know that 	( c
log(1/y)

) ≤ C0	( 1
log(1/y)

) and we bound 1−e−c from above by 1. For
c ∈ (0,1], we take advantage of the hypothesis on x �→ x	(x), in the form c	(cx) ≤ C1	(x)

for x > 0:

(
1 − e−c

)
	

(
c

log(1/y)

)
≤ C1

1 − e−c

c
	

(
1

log(1/y)

)
≤ C1	

(
1

log(1/y)

)
.

These two estimates readily give the claim. �

Proof of Proposition 3. For α ∈ (0,1/ log 2], we define

	(α) := J (e−1/α)

e−1/α
= J

J0

(
e−1/α

)
.

Since e−1/α ∈ (0,1/2], our hypothesis ensures that 	 is essentially non-increasing with constant
D0. Notice that

α	(α) := J (e−1/α)

e−1/α log(1/e−1/α)
= J

J1

(
e−1/α

)
.

Hence by hypothesis, it is essentially non-decreasing with constant D1. Therefore, we may apply
the previous lemma to 	. Since by definition, 	(1/ log(1/y)) = J (y)/y, it gives that for all
y ∈ (0,1/2],

J (y)

y
≥ 1

max(D0,D1)
sup

α∈(0,1]
	(α)

(
1 − yα

)
,
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and for all y ∈ (0,1/2],
J (y)

y
≤ 2D0 sup

α∈(0,1]
	(α)

(
1 − yα

)
.

Multiplying these inequalities by y, and setting a := 1/(1 + α), the former estimate gives for
y ∈ (0,1/2]

J (y) ≥ 1

max(D0,D1)
sup

α∈(0,1]
	(α)

(
y − y1+α

)
(7)

= 1

max(D0,D1)
sup

a∈[1/2,1)

	

(
1

a
− 1

)(
y − y1/a

)
.

Hence, we have prove the claimed lower bound on J with c(a) = 	(a−1 − 1)/max(D0,D1).
We proceed in the same way with the upper bound on J . The ratio of the upper bound to the
lower bound is 2D0 max(D0,D1).

It remains to extend the lower bound (7) to values y ∈ (1/2,1). To do this we use the symmetry
of J and the fact that for all a ∈ [1/2,1] and all s ∈ [1/2,1), 1 − s − (1 − s)1/a ≥ s − s1/a (this
follows from the comparison of second derivatives, observing that equality holds at 1/2 and 1):
for y ∈ (1/2,1),

J (y) = J (1 − y) ≥ c(a)
(
1 − y − (1 − y)1/a

) ≥ c(a)
(
y − y1/a

)
. �

Proof of Theorem 3. Let us denote by D0 ≥ 1 the smallest constant such that J/J0 is essentially
non-increasing on (0,1/2] with constant D0. Similarly, let D1 ≥ 1 be the smallest constant such
that J/J1 is essentially non-decreasing on (0,1/2] with constant D1.

First, we apply Proposition 3. With the notation of the proposition, it follows that for all a ∈
[1/2,1) and all t ∈ [0,1],

Iμ(t) ≥ J (t) ≥ c(a)
(
t − t1/a

)
.

Note that for t = 0 or t = 1 all quantities vanish. Next, Proposition 2 tell us that Iμ∞(t) ≥
c(a)(t − t1/a). This is true for all a and all t , hence applying the second part of Proposition 3,
we deduce that for all t ∈ [0,1/2],

Iμ∞(t) ≥ sup
a∈[1/2,1)

c(a)
(
t − t1/a

) ≥ 1

2D0 max(D0,D1)
J (t).

Since both Iμ∞ and J are symmetric with respect to 1/2, we can conclude that for all t ∈ [0,1],
it holds Iμ∞(t) ≥ J (t)/(2D0 max(D0,D1)).

In the general case, we know by Lemma 5 that D0 ≤ D/ log 2 and D1 ≤ D. Therefore we get
that Iμ∞ ≥ J/cD with cD = 2D2/(log 2)2.

In the particular case where J is concave, we know that J (t)/t is non-increasing, so that
D0 = 1 and Iμ∞ ≥ J/(2D1) ≥ J/(2D). The paragraph after Theorem 1 explains that when
J is concave, symmetric and such that J/J1 is non-decreasing, the inequality Iμ ≥ J implies
Iμ∞ ≥ J . Hence, in this case the conclusion of Theorem 3 is valid with c1 = 1.
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Our final task is to find a log-concave measure ν on the real line such that J ≈ Iν ≈ Iν∞ . By
the second point in Lemma 6, there exists a function I : [0,1] → R+ such that I ≈ J and I is
concave and symmetric with respect to 1

2 . By a well known result of Bobkov and Houdré, any
such function I is the isoperimetric profile of an even log-concave measure on the real line (this
follows from Proposition 1 and Lemma 1). Let ν be an even log-concave measure on R such that
Iν = I ≈ J . Obviously Iν

J1
is also essentially non-decreasing. Hence Iν fulfils the assumption of

the first part of the theorem. Therefore,

Iν ≥ Iν∞ ≥ 1

cD

Iν.

Putting everything together, we conclude that J ≈ Iν ≈ Iν∞ . �

3.2. Proof of Theorem 4

First, we recall a classical property of infinite dimensional profiles, which comes from testing
isoperimetric inequalities on product sets. It was put forward by Bobkov [5].

Lemma 8. Let (X,d,μ) be a metric space equipped with a Borel probability measure μ and
satisfying the regularity property (R). Then the infinite-dimensional isoperimetric profile of
(X,d,μ) satisfies, for every a, b ∈ [0,1]:

Iμ∞(ab) ≤ aIμ∞(b) + bIμ∞(a). (8)

Proof. The inequality is obvious if a or b is equal to 1, or to 0 since Iμ∞(0) = 0. Let a, b ∈ (0,1)

and ε > 0. Let m,n ∈ N∗. Let A ⊂ Xm be any set with μm(A) = a. Let B ⊂ Xn be any set with
μn(B) = b, (μn)+(B) ≤ Iμn(b) + ε and

(
μn

)+
(B) = lim

h→0

μn(Bh \ B)

h
,

which is possible thanks to Hypothesis (R).
Then consider A × B ⊆ Rm+n. Obviously, μm+n(A × B) = ab. The uniform enlargement of

a product set is still a product: (A × B)h = Ah × Bh for any h > 0. Therefore

1

h
μm+n

(
(A × B)h \ (A × B)

) = μm(Ah)μ
n(Bh) − μm(A)μn(B)

h

= μm(Ah \ A)

h
μn(Bh) + μm(A)

μn(Bh \ B)

h
.

Since by hypothesis limh→0(μ
n(Bh) − μn(B))/h < +∞, we know that limh→0 μn(Bh) =

μn(B) (note the convergence holds by monotonicity). Taking upper limits in h → 0, and ob-
serving that two of the three terms have limits, we deduce from the latter inequality that(

μm+n
)+

(A × B) ≤ (
μm

)+
(A)μn(B) + μm(A)

(
μn

)+
(B). (9)
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Since Iμm+n(ab) ≤ (μm+n)+(A × B), we obtain after optimizing on sets A of measure a and
using the hypothesis on the boundary measure of B:

Iμm+n(ab) ≤ Iμm(a)b + a
(
Iμn(b) + ε

)
.

Letting ε tend to 0, and m,n tend to +∞ gives the claim (8). �

The symmetry property (Iμ∞(t) = Iμ∞(1− t) for all t ∈ 0,1]) and the two-points inequality (8)
are enough to deduce Theorem 4, as the next statement shows:

Proposition 4. Let I : [0,1] → [0,+∞] be an application satisfying that for all a, b ∈ [0,1]
I (a) = I (1 − a) and I (ab) ≤ aI (b) + bI (a), (10)

with the convention that +∞ × 0 = 0.
If there exists x0 ∈ [0,1] such that lim supx→x0

I (x) < +∞, then I is continuous and t �→
I (t)/(t log(1/t)) is essentially non-decreasing on (0,1).

The condition of local boundedness around some point cannot be removed as shown by the
following example: I (t) = 0 if t ∈Q and I (t) = +∞ otherwise.

The proof of the proposition uses the next two easy lemmas.

Lemma 9. Let S ⊂ (0,1) be a set with the following stability property:

(x ∈ S and y ∈ S) �⇒ (1 − x ∈ S and xy ∈ S).

If S is not empty, then it is dense in (0,1). Moreover, if S has non-empty interior then S = (0,1).

In other words, if S is neither ∅ nor (0,1) then S and (0,1) \ S are dense in (0,1). This is the
case for instance of S =Q∩ (0,1).

Proof of Lemma 9. Let t ∈ (0,1) be an element of S, then for all n ∈ N∗, xn := 1 − tn belongs
to S and the sequence (xn) tends to 1. Given 0 < a < b < 1, let us show that there is a point
of S between a and b. Choose k large enough such that xk > max(b, a/b). Then for all n ≥ 1,
(xk)

n ∈ S. Obviously xk ≥ b and limn(xk)
n = 0. Let n0 be maximal with (xk)

n0 ≥ b. Then

b > x
n0+1
k = x

n0
k xk > b × a

b
= a.

Hence, x
n0+1
k ∈ S ∩ (a, b). This completes the proof of the density of S.

Assume now that (a, b) ⊂ S for some 0 < a < b < 1. Consider an arbitrary x ∈ (0,1) and let
us show that x ∈ S. If x ∈ (a, b), we have nothing to prove. If x ∈ (0, a], we use the fact that
S being non-empty is dense: there exists y ∈ S ∩ (x/b, x/a). Since S contains y and (a, b), the
stability by product ensures that S also contains (ya, yb). Hence x ∈ (ya, yb) ⊂ S. Eventually,
if x ∈ [b,1), we consider 1 − x ∈ (0,1 − b]. By the symmetry assumption (1 − b,1 − a) ⊂ S, so
the latter argument yields 1 − x ∈ S. Using symmetry again, we may conclude that x ∈ S. �
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The next lemma is a classical result about subadditive functions on R+ (see, e.g., Kuczma [13]).

Lemma 10. Let K : R+ →R be a subadditive function with lim0 K = 0. Then

lim
h→0+

K(h)

h
= sup

t>0

K(t)

t
.

Proof. Denote S = supt>0
K(t)

t
. Given any u < S, there exists x0 ∈ R∗+ such that K(x0) > ux0.

For any h ∈ (0, x0), write x0 = nh + δ with n = � x0
h

� and δ ∈ [0, h). By subadditivity of K ,

ux0 < K(x0) ≤ nK(h) + K(δ) = (x0 − δ)
K(h)

h
+ K(δ).

Next, we let h tend to 0+. In this case δ → 0+ and K(δ) → 0, hence (for any u < S)

u ≤ lim inf
h→0+

K(h)

h
.

Therefore, S ≤ lim infh→0+ K(h)
h

. On the other hand, lim suph→0+ K(h)
h

≤ S holds by defini-
tion. �

Proof of Proposition 4. There is nothing to prove if I is identically 0, so we assume that I does
not vanish everywhere. Observe that the two-points inequality in (10), applied for a = b = 0,
yields I (0) = 0.

Consider the subset S1 of (0,1) of points x such that the function I is bounded on a neigh-
bourhood of x. Our hypothesis lim supx→x0

I (x) < +∞ ensures that S1 has non-empty interior.
Thanks to (10), one readily checks that S1 is stable by product and by symmetry with respect
to 1/2. Hence, Lemma 9 applies to S1 and shows that S1 = (0,1). This means that I is locally
bounded at every point of (0,1). By compactness, we deduce that I is bounded on any segment
[a, b] ⊂ (0,1).

The next step of the proof is an argument of Bobkov and Houdré, that we include for com-
pleteness. The two-points inequality implies by induction that for all a ∈ [0,1] and any integer
k ≥ 1, I (ak) ≤ kak−1I (a). Let t ∈ (0,1/e]. Choosing k = �log(1/t)� ≥ 1 and a = t1/k in the
latter inequality leads to

I (t) ≤ kt1−1/kI
(
t1/k

) = t
⌊

log(1/t)
⌋I (t1/k)

t1/k
.

Using that for x ≥ 1, x/�x� ∈ [1,2], we obtain that t1/k = exp(− log(1/t)/�log(1/t)�) ∈
[e−2, e−1]. Hence for t ∈ (0, e−1], I (t) ≤ Ct log(1/t) where C = e2 sup{I (s); s ∈ [e−2, e−1]} is
finite (by the previous point). In particular, this estimate implies that I (t) tends to 0 when t �= 0
tends to 0. Since I (0) = 0, the function I is continuous at 0. By symmetry, it is also continuous
at 1, with I (1) = 0.

Consider the map K :R+ → R+ defined by K(x) = exI (e−x). Then for all x, y ∈R+, by (10)

K(x + y) = I (e−xe−y)

e−xe−y
≤ e−xI (e−y) + e−xI (e−y)

e−xe−y
= K(y) + K(x),
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which means that K is subadditive. Moreover, since I is continuous at 1, K is continuous at 0,
with K(0) = I (1) = 0.

For all a > ε > 0, we have by subadditivity K(a + ε) ≤ K(a)+K(ε) and K(a) ≤ K(a − ε)+
K(ε). Letting ε tend to zero, we obtain for all a > 0

lim sup
x→a+

K(x) ≤ K(a) ≤ lim inf
x→a− K(x).

In words, on (0,+∞), the function K is right-upper-semicontinuous and left-lower-semi-
continuous. Since for all t ∈ (0,1), I (t) = tK(log(1/t)), if follows that on (0,1) the func-
tion I is left-upper-semicontinuous and right-lower-semicontinuous. Note that “left” and “right”
were exchanged, since t �→ log(1/t) is continuous and decreasing. The symmetry assumption
I (t) = I (1 − t) allows to exchange once more: so I is also right-upper-semicontinuous and left-
lower-semicontinuous on (0,1). Thus I is continuous on (0,1), and actually on [0,1]. Indeed,
the continuity at the endpoints has already been established.

Next, let us draw another consequence of the above properties of K . Lemma 10 directly applies
and gives that

lim
h→0+

K(h)

h
= sup

x>0

K(x)

x
= sup

x>0

exI (e−x)

x
.

Since we assume that I is not identically 0, the above limit, denoted by L, belongs to (0,+∞].
We now translate this convergence in terms of I : using symmetry, for t ∈ (0,1),

I (t)

t
= I (1 − t)

t
= 1 − t

t
K

(
log

(
1

1 − t

))
= (1 − t) log(1/(1 − t))

t
× K(log(1/(1 − t)))

log(1/(1 − t))
.

When t > 0 tends to 0, the first ratio tends to 1, and the second to L = limh→0+ K(h)/h. There-
fore, we can deduce that limt→0+ I (t)/t = L ∈ (0,+∞].

In order to turn this limit into a lower bound on I (t)/t for t ∈ (0,1/2], we need to check
that I does not vanish in (0,1). To do this, let us consider the set S0 = {x ∈ (0,1); I (x) = 0}.
By (10), it is stable by product and symmetry around 1/2. If it were non-empty, the first part of
Lemma 9 would imply that S0 is dense in (0,1). By continuity of I , we would conclude that I is
identically 0. Since we assumed that I does not vanish everywhere, it follows that S0 = ∅. As a
conclusion, the function I vanishes only at 0 and 1.

On (0,1/2] the map t �→ I (t)/t is continuous, with positive values. Moreover, it has a positive
(maybe infinite) limit at 0+. As a consequence, there exists c > 0 such that I (t) ≥ ct for all
t ≤ 1/2.

Let us deduce that I is essentially non-decreasing on [0,1/2]. Let 0 ≤ s < t ≤ 1
2 . Using the

two-points inequality (10)

I (s) = I

(
t × s

t

)
≤ s

t
I (t) + tI

(
s

t

)
≤ I (t) + t max I ≤

(
1 + max I

c

)
I (t),

where we have used that I is continuous on [0,1] and I (t) ≥ ct .
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Eventually, let us prove that I
J1

is essentially non-decreasing on (0,1). Let 0 < s < t < 1. Then

one can write s = tk+α with k = � log 1/s
log 1/t

� ∈N∗ and α ∈ [0,1). By the two-points inequality for I :

I (s)

s
= I (tk+α)

tk+α
≤ k

I (t)

t
+ I (tα)

tα
. (11)

Assume first that t ≥ 1
2 . Then tα ≥ t ≥ 1

2 . We have shown that I is essentially non-decreasing
on [0, 1

2 ] (with a constant denoted by D). By symmetry, it follows that I is essentially non-
increasing on [ 1

2 ,1] with constant D. Hence,

I (tα)

tα
≤ D

I (t)

tα
≤ D

I (t)

t
.

Combining this estimate with (11) gives

I (s)

s
≤ (k + D)

I (t)

t
≤ (1 + D)k

I (t)

t
≤ (1 + D)

log 1/s

log 1/t

I (t)

t
,

that is I (s)
J1(s)

≤ (1 + D)
I (t)
J1(t)

. In particular, we have shown that I/J1 is essentially non-decreasing
on [1/2,1]. Using the symmetry of I , this implies that on [0,1/2] the function I (t)/J0(t) =
I (t)/t is essentially non-increasing. This is actually explained in the first part of the proof of
Lemma 5, see Equation (5). We have already shown that I is essentially non-decreasing on
(0,1/2]. Thus by symmetry, I is essentially non-increasing on [1/2,1], and so is the map t �→
I (t)/t = I (t)/J0(t). Therefore, I/J0 is essentially non-increasing on the whole interval (0,1].
Let us denote by D0 the corresponding constant.

The latter fact allows to conclude: Let 0 < s < t < 1. Since tα ≥ t , we know that I (tα)
tα

≤
D0

I (t)
t

. Combining this estimate with (11) gives,

I (s)

s
≤ k

I (t)

t
+ I (tα)

tα
≤ (k + D0)

I (t)

t
≤ (1 + D0)k

I (t)

t
≤ (1 + D0)

log 1/s

log 1/t

I (t)

t
.

The proof is now complete. �

4. An application to geometric influences

This section is devoted to an application of Theorem 3 to geometric influences. The notion of
influence of a variable on a boolean function plays an important role in discrete harmonic anal-
ysis, with applications to various fields (see, e.g., the survey article by Kalai and Safra [10] on
threshold phenomena). Let us recall the definition: for a function f : {0,1}n → {0,1}, which can
be viewed as a subset A = {x;f (x) = 1} of {0,1}n, the influence of the ith variable with respect
to a probability measure ν on the discrete cube {0,1}n is

Ii(f ) = Ii(A) := Px∼ν

(
f (x) �= f

(
τi(x)

)) = Px∼ν

(
x ∈ A xor τi(x) ∈ A

)
,
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where τi(x) is the neighbour of x having different ith coordinate, (τi(x))i = 1 − xi . Geometri-
cally speaking, Ii(A) measures the size of the edge boundary of A in the ith direction. A seminal
result in the theory of influences is the KKL theorem (by Kahn, Kalai and Linial [9]). Based on
the hypercontractivity inequality, it ensures the existence of a coordinate with a large influence
for non-constant boolean functions.

Recent papers have developped the theory of influences in the case of a continuous space.
They propose two different definitions: the h-influences of Keller [11] involve the measures of
the intersections of a given set with all lines in the ith canonical direction, while the geometric
influences of Keller, Mossel and Sen [12] involve the boundary measures of the intersections
with lines in the ith direction.

Definition. Let n ∈N∗, i ∈ {1, . . . , n}, x ∈ Rn and A a Borel subset of Rn. For z ∈Rn−1, we set

Az
i = {

y ∈R|(z1, . . . , zi−1, y, zi, . . . , zn−1) ∈ A
}
.

Let ν = ν1 ⊗ · · · ⊗ νn be a product probability measure on Rn.
If h : [0,1] → R+ is a measurable function, the h-influence of the ith coordinate on A with

respect to ν is defined by

Ih
ν,i(A) =

∫
Rn−1

h
(
νi

(
Az

i

))
dν̂i(z),

where ν̂i = ν1 ⊗ · · · ⊗ νi−1 ⊗ νi+1 ⊗ · · · ⊗ νn.
The geometric influence of the ith coordinate on A with respect to the measure ν is given by

IGν,i(A) =
∫
Rn−1

(νi)
+(

Az
i

)
dν̂i(z).

When the choice of the underlying measure is obvious, we simply write Ih
i (A) and IGi (A).

Keller was able to prove an analogue of the KKL theorem for h-influences provided h is larger
than the entropy function Ent defined by Ent(x) = x log 1

x
+ (1 − x) log 1

1−x
for x ∈ (0,1) and

Ent(0) = Ent(1) = 0. His result is stated for functions on the unit cube, equipped with Lebesgue’s
measure. Using a standard transportation argument yields the following formulation:

Theorem 6 (Keller [11]). Let μ be a probability measure on R. Then, for every Borel set A ⊆Rn

max
1≤i≤n

IEnt
i (A) ≥ γμn(A)μn

(
Ac

) logn

n
,

where γ > 0 is a universal constant.

Keller, Mossel and Sen [12] establish an analogue of the KKL theorem for geometric influ-
ences for Boltzmann measures dμρ(t) = exp(−|t |ρ) dt/Zρ dt with ρ ≥ 1 (and under mild as-
sumptions for log-concave measures enjoying the same isoperimetric inequality as μρ ). Thanks
to Theorem 3 we can propose a more general result.
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Theorem 7. Let μ be an even log-concave probability measure on R, with positive and C1-
bounded density ϕμ. Assume that Iμ ≥ J where J is a non-negative function on [0,1], which
is symmetric with respect to 1/2, verifies J (0) = 0 and is such that t �→ J (t)/(t log(1/t)) is
essentially non-decreasing on (0,1) with constant D. Then for every Borel set A ⊂Rn,

max
1≤i≤n

IGi (A) ≥ αDμn(A)μn
(
Ac

)
J

(
1

n

)
,

where αD ≥ κ

D3 and κ > 0 is a universal constant.

Remark 4. Actually the conclusion of Theorem 7 holds under less restrictive conditions on the
measure. In particular the log-concavity assumption can be removed, either by using a differ-
ent symmetrization argument than in Keller, Mossel and Sen [12] or by introducing another
definition of the geometric influence based on notions of geometric measure theory. These mod-
ifications require a substantial and technical work that will appear in the PhD dissertation of the
second-named author. In the present paper, we simply explain how the argument of Keller, Mos-
sel and Sen can be adapted, putting forward the parts of the reasoning where the conditions on J

are used.

The next lemma follows from Proposition 1.3 in Keller, Mossel and Sen [12]. It explains the
connection between geometric influences and boundary measure for the uniform enlargement.

Lemma 11 (Keller, Mossel and Sen [12]). Let μ be as in Theorem 7. Let A ⊆Rn be a monotone
increasing set (in the following sense: if x ∈ A and for all i, xi ≤ yi , then y ∈ A). Then

n∑
i=1

IGi (A) = (
μn

)+
(A).

Proof of Theorem 7. We follow the argument of Keller, Mossel and Sen. Assume n ≥ 2. Let
A ⊆Rn be as in the statement of the theorem. Lemma 3.7 of Keller, Mossel and Sen [12] ensures
that, without loss of generality, one can assume that A is increasing. Set t = μn(A). Since A

and Ac have the same influences, we may assume that t ≤ 1/2 (Ac is monotone decreasing, but
passing to its image by the symmetry with respect to the origin we may ensure that we work with
an increasing set of measure at most 1/2). We distinguish two cases:

First case: t ≤ 1/n. Thanks to Lemma 11 and to the isoperimetric inequality of Theorem 3

n∑
i=1

IGi (A) = (
μn

)+
(A) ≥ 1

cD

J
(
μn(A)

) = 1

cD

J (t),

with cD = 2D2

(log 2)2 . Lemma 5 asserts that s �→ J (s)/s is essentially non-increasing on (0,1/2]
with constant D/ log 2, therefore J (t)/t ≥ nJ (1/n) log 2/D. Consequently

max
i

IGi (A) ≥ 1

n

n∑
i=1

IGi (A) ≥ log 2

DcD

tJ

(
1

n

)
≥ (log 2)3

2D3
t (1 − t)J

(
1

n

)
.
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Second case: t ∈ (1/n,1/2]. The argument uses three main ingredients. The first one is the
isoperimetric inequality Iμ ≥ J , which implies that for all i ≤ n,

IGi (A) =
∫
Rn−1

μ+(
Az

i

)
dμn−1(z) ≥

∫
Rn−1

J
(
μ

(
Az

i

))
dμn−1(z) = IJ

i (A). (12)

The second ingredient is a comparison between J -influences and Ent-influences: observe that
Ent is symmetric with respect to 1/2 and is increasing and one-to-one on [0,1/2]. Let Ent−1 :
[0, log 2] → [0,1/2] be its reciprocal function. Then for all i ≤ n,

IJ
i (A) ≥ J (s)

2D
with s := Ent−1

(IEnt
i (A)

2

)
∈

[
0,

1

2

]
. (13)

We postpone the proof of this inequality, and explain how to conclude. The last ingredient is
Keller’s version of the KKL inequality (Theorem 6). It provides an index i such that IEnt

i (A) ≥
γ t (1 − t) log(n)/n, where γ > 0 is a universal constant. Observe for further use that necessarily
γ < 8 (indeed, Ent ≤ log 2 and one can choose n = 2 and t = 1/2 in Keller’s theorem). Let us
show that the ith coordinate has a large geometric influence.

Observe that for every y ∈ [0, 1
2 ] ⊂ [0, log 2], θ(y) := y

2 log 1/y
≤ Ent−1(y). Since IEnt

i (A)/2 ≤
log(2)/2 ≤ 1/2, and θ is increasing on (0,1),

s = Ent−1
(IEnt

i (A)

2

)
≥ θ

(IEnt
i (A)

2

)
≥ θ

(
γ

2
t (1 − t)

logn

n

)
= γ t (1 − t)

4n

logn

log(2n/(γ t (1 − t) logn))
≥ γ t (1 − t)

4n
× logn

log(4n2/(γ logn))
,

where the latter inequality relies on t (1 − t) ≥ (1 − t)/n ≥ 1/(2n). Since γ ≤ 8, the last fraction
in the lower bound of s is a positive function of n ≥ 2 with a positive limit when n tends to
infinity. Hence there exists c = c(γ ) > 0 such that s ≥ ct (1 − t)/n. It remains to combine this
estimate with IGi (A) ≥ J (s)/(2D), a consequence of (12) and (13):

If s ≤ 1
n

, then we also use Lemma 5, which asserts that u �→ J (u)/u is essentially non-
increasing on (0, 1

2 ] with constant D
log 2 :

IGi (A) ≥ J (s)

2D
≥ log 2

2D2
s
J (1/n)

1/n
≥ log 2

2D2
ct (1 − t)J

(
1

n

)
.

If s > 1
n

then, using the fact that J is essentially non-decreasing on (0, 1
2 ) with constant 2D

e log 2
(see Lemma 6), we get

IGi (A) ≥ J (s)

2D
≥ e log 2

4D2
J

(
1

n

)
≥ e log 2

D2
t (1 − t)J

(
1

n

)
.

Eventually, we give a proof for (13). By hypothesis, J/J1 is essentially non-decreasing with
constant D, where J1(x) = x log(1/x). Observe that for x ∈ [0, 1

2 ],
J1(x) ≤ Ent(x) = J1(x) + J1(1 − x) ≤ 2J1(x).
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It follows that J
Ent is essentially non-decreasing on (0, 1

2 ] with constant 2D. Recall that s ∈ (0, 1
2 )

verifies Ent(s) = IEnt
i (A)/2. Note that, if x /∈ [s,1 − s], then Ent(x) < IEnt

i (A)/2. This yields∫
μ(Az

i )∈[s,1−s]
Ent

(
μ

(
Az

i

))
dμn−1(z) = IEnt

i (A) −
∫

μ(Az
i )/∈[s,1−s]

Ent
(
μ

(
Az

i

))
dμn−1(z)

≥ IEnt
i (A)

2
.

Therefore, using in addition the symmetry with respect to 1/2 of J and Ent and the fact that J
Ent

is essentially non-decreasing on (0,1/2] with constant 2D, we get

IJ
i (A) ≥

∫
μ(Az

i )∈[s,1−s]
J
(
μ

(
Az

i

))
dμn−1(z)

=
∫

μ(Az
i )∈[s,1−s]

J
(
min

(
μ

(
Az

i

)
,1 − μ

(
Az

i

)))
dμn−1(z)

≥ 1

2D

J(s)

Ent(s)

∫
μ(Az

i )∈[s,1−s]
Ent

(
min

(
μ

(
Az

i

)
,1 − μ

(
Az

i

)))
dμn−1(z)

= 1

2D

J(s)

Ent(s)

∫
μ(Az

i )∈[s,1−s]
Ent

(
μ

(
Az

i

))
dμn−1(z)

≥ 1

2D

J(s)

Ent(s)

IEnt
i (A)

2
= J (s)

2D
.

The proof is complete. �
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