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We consider the random design regression model with square loss. We propose a method that aggregates
empirical minimizers (ERM) over appropriately chosen random subsets and reduces to ERM in the extreme
case, and we establish sharp oracle inequalities for its risk. We show that, under the ε−p growth of the
empirical ε-entropy, the excess risk of the proposed method attains the rate n−2/(2+p) for p ∈ (0,2) and
n−1/p for p > 2 where n is the sample size. Furthermore, for p ∈ (0,2), the excess risk rate matches the
behavior of the minimax risk of function estimation in regression problems under the well-specified model.
This yields a conclusion that the rates of statistical estimation in well-specified models (minimax risk) and in
misspecified models (minimax regret) are equivalent in the regime p ∈ (0,2). In other words, for p ∈ (0,2)

the problem of statistical learning enjoys the same minimax rate as the problem of statistical estimation.
On the contrary, for p > 2 we show that the rates of the minimax regret are, in general, slower than for the
minimax risk. Our oracle inequalities also imply the v log(n/v)/n rates for Vapnik–Chervonenkis type
classes of dimension v without the usual convexity assumption on the class; we show that these rates
are optimal. Finally, for a slightly modified method, we derive a bound on the excess risk of s-sparse
convex aggregation improving that of Lounici [Math. Methods Statist. 16 (2007) 246–259] and providing
the optimal rate.
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1. Introduction

Let Dn = {(X1, Y1), . . . , (Xn,Yn)} be an i.i.d. sample from distribution PXY of a pair of random
variables (X,Y ), X ∈ X , Y ∈ Y where X is any set and Y is a subset of R. We consider the
problem of prediction of Y given X. For any measurable function f :X → Y called the predictor,
we define the prediction risk under squared loss:

L(f ) = EXY

[(
f (X) − Y

)2]
,

where EXY is the expectation with respect to PXY . Let now F be a class of functions from X
to Y and assume that the aim is to mimic the best predictor in this class. This means that we want
to find an estimator f̂ based on the sample Dn and having a small excess risk

L(f̂ ) − inf
f ∈F

L(f ) (1)
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in expectation or with high probability. The minimizer of L(f ) over all measurable functions
is the regression function η(x) = EXY [Y |X = x] and it is straightforward to see that for the
expected excess risk we have

EF (f̂ ) � EL(f̂ ) − inf
f ∈F

L(f ) = E‖f̂ − η‖2 − inf
f ∈F

‖f − η‖2, (2)

where E is the generic expectation sign, ‖f ‖2 = ∫
f 2(x)PX(dx), and PX denotes the marginal

distribution of X. The left-hand side of (2) has been studied within Statistical Learning Theory
characterizing the error of “agnostic learning” [15,25,47], while the object on the right-hand side
has been the topic of oracle inequalities in nonparametric statistics [35,42], and in the literature
on aggregation [38,41]. Upper bounds on the right-hand side of (2) are called sharp oracle in-
equalities, which refers to constant 1 in front of the infimum over F . However, some of the key
results in the literature were only obtained with a constant greater than 1, that is, they yield upper
bounds for the difference

E‖f̂ − η‖2 − C inf
f ∈F

‖f − η‖2 (3)

with C > 1 and not for the excess risk. In this paper, we obtain sharp oracle inequalities, which
allows us to consider the excess risk formulation of the problem as described above.

In what follows we assume that Y = [0,1]. For results in expectation, the extension to un-
bounded Y with some condition on the tails of the distribution is straightforward. For high prob-
ability statements, more care has to be taken, and the requirements on the tail behavior are more
stringent. To avoid this extra level of complication, we assume boundedness.

From a minimax point of view, the object of interest in Statistical Learning Theory can be
written as the minimax regret

Vn(F) = inf
f̂

sup
PXY ∈P

{
EL(f̂ ) − inf

f ∈F
L(f )

}
, (4)

where P is the set of all probability distributions on X × Y and inf
f̂

denotes the infimum over
all estimators. We observe that the study of this object leads to a distribution-free theory, as
no model is assumed. Instead, the goal is to achieve predictive performance competitive with a
reference class F . In view of (2), an equivalent way to write Vn(F) is

Vn(F) = inf
f̂

sup
PXY ∈P

{
E‖f̂ − η‖2 − inf

f ∈F
‖f − η‖2

}
. (5)

The minimax regret can be interpreted as a measure of performance of estimators for misspecified
models. The study of Vn(F) will be further referred to as misspecified model setting.

A special instance of the minimax regret has been studied in the context aggregation of estima-
tors, with the aim to characterize optimal rates of aggregation, cf., for example, [38,41]. There,
F is a subclass of the linear span of M given functions f1, . . . , fM , for example, their convex hull
or sparse linear (convex) hull. Functions f1, . . . , fM are interpreted as some initial estimators of
the regression function η based on another sample from the distribution of (X,Y ). This sample is
supposed to be independent from Dn and is considered as frozen when dealing with the minimax
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regret. The aim of aggregation is to construct an estimator f̂ , called the aggregate, that mimics
the best linear combination of f1, . . . , fM with coefficients of the combination lying in a given
set in R

M . Our results below apply to this setting as well. We will provide their consequences for
some important examples of aggregation.

In the standard nonparametric regression setting, it is assumed that the model is well-specified,
that is, we have Yi = f (Xi) + ξi where the random errors ξi satisfy E(ξi |Xi) = 0 and f belongs
to a given functional class F . Then f = η and the infimum on the right-hand side of (2) is zero.
The value of reference characterizing the best estimation in this problem is the minimax risk

Wn(F) = inf
f̂

sup
PXY ∈PF

E‖f̂ − η‖2, (6)

where PF is the set of all distributions PXY on X × Y such that η ∈ F . It is not difficult to see
that

Wn(F) ≤ Vn(F),

yet the minimax risk and the minimax regret are quite different and the question is whether the
two quantities can be of the same order of magnitude for particular F . We show below that
the answer is positive for major cases of interest except for very massive classes F , namely,
those having the empirical ε-entropy of the order ε−p , p > 2, for small ε. We also prove that
this entropy condition is tight in the sense that the minimax regret and the minimax risk can
have different rates of convergence when it is violated. Furthermore, we show that the optimal
rates for the minimax regret and minimax risk are attained by one and the same procedure – the
aggregation-of-leaders estimator – that we introduce below.

Observe a certain duality between Wn(F) and Vn(F). In the former, the assumption about the
reality is placed on the way data are generated. In the latter, no such assumption is made, yet the
assumption is placed in the term that is being subtracted off. As we describe in Section 7, the
study of these two quantities represents two parallel developments: the former has been a subject
mostly studied within nonparametric statistics, while the second – within Statistical Learning
Theory. We aim to bring out a connection between these two objects. In Section 4, we introduce
a more general risk measure that realizes a smooth transition between Wn(F) and Vn(F) de-
pending on the magnitude of the approximation error. The minimax risk and the minimax regret
appear as the two extremes of this scale.

The paper is organized as follows. In Section 3, we present the aggregation-of-leaders estima-
tor and the upper bounds on its risk. These include the main oracle inequality in Theorem 1 and
its consequences for particular classes F in Theorems 2–4. Section 4 discusses a more general
setting allowing for a smooth transition between Wn(F) and Vn(F) in terms of the approxima-
tion error. Lower bounds for the minimax risk and minimax regret are proved in Section 5. In
Section 6, we compare the aggregation-of-leaders estimator with the two closest competitors –
skeleton aggregation and global ERM. Section 7 provides an overview and comparison of our
results to those in the literature. Proofs of the theorems are given in Sections 8–10. The Appendix
contains some technical results and proofs of the lemmas.
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2. Notation

Set Z =X ×Y . For S = {z1, . . . , zn} ∈Zn and a class G of real-valued functions on Z , consider
the Rademacher average of G:

R̂n(G, S) = Eσ

[
sup
g∈G

1

n

n∑
i=1

σig(zi)

]
,

where Eσ denotes the expectation with respect to the joint distribution of i.i.d. random variables
σ1, . . . , σn taking values 1 and −1 with probabilities 1/2. Let

Rn(G) = sup
S∈Zn

R̂n(G, S).

Given r > 0, we denote by G[r, S] the set of functions in G with empirical average at most r

on S:

G[r, S] =
{

g ∈ G:
1

n

n∑
i=1

g(zi) ≤ r

}
.

Any function φn : [0,∞) �→ R satisfying

sup
S∈Zn

R̂n

(
G[r, S], S)≤ φn(r) (7)

for all r > 0 will be called an upper function for the class G. We will sometimes write φn(r) =
φn(r,G) to emphasize the dependence on G. It can be shown (cf., e.g., Lemma 8 below) that any
class of uniformly bounded functions admits an upper function satisfying the sub-root property:
φn is non-negative, non-decreasing, and φn(r)/

√
r is non-increasing. We will denote by r∗ =

r∗(G) the corresponding localization radius, that is, an upper bound on the largest solution of the
equation φn(r) = r . Clearly, r∗ is not uniquely defined since we deal here with upper bounds.

We write � ◦ f for the function (x, y) �→ (f (x) − y)2 and � ◦ F for the class of functions
{� ◦ f : f ∈F}. Thus,

(� ◦F)[r, S] =
{

� ◦ f : f ∈ F,
1

n

n∑
i=1

(� ◦ f )(xi, yi) ≤ r

}

for S = {z1, . . . , zn} with zi = (xi, yi).
For any bounded measurable function g :Z → R, we set Pg = Eg(Z), where Z = (X,Y ),

and Png = 1
n

∑n
i=1 g(Zi), where Zi = (Xi, Yi). For S = {z1, . . . , zn} ∈ Zn with zi = (xi, yi)

consider the empirical �2 pseudo-metric

dS(f, g) =
(

1

n

n∑
i=1

∣∣f (xi) − g(xi)
∣∣2)1/2

,
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and for any ε > 0 denote by N2(F, ε, S) the ε-covering number of a class F of real-valued
functions on X with respect to this pseudo-metric. Recall that a covering number at scale ε is
the smallest number of balls of radius ε required to cover the set. Denote by N∞(F, ε, S) the
ε-covering number of the class F with respect to the supremum norm (over S).

Although not discussed here explicitly, some standard measurability conditions are needed to
apply results from the theory of empirical processes as well as to ensure that the ERM estimators
we consider below are measurable. This can be done in a very general framework and we assume
throughout that these conditions are satisfied. For more details we refer to Chapter 5 of [18], see
also [25], page 17.

The minimum risk on the class of functions F is denoted by

L∗ = inf
f ∈F

L(f ).

Let �x� denote the minimal integer strictly greater than x ∈ R, and |F | the cardinality of F .
Notation C will be used for positive constants that can vary on different occasions; these are
absolute constants unless their dependence on some parameters is explicitly mentioned. We will
also assume throughout that n ≥ 5.

3. Main results

In this section, we introduce the estimator studied along the paper, state the main oracle inequality
for its risk and provide corollaries for the minimax risk and minimax regret. The estimation
procedure comprises three steps. The first step is to construct a random ε-net on F with respect
to the empirical �2 pseudo-metric and to form the induced partition of F . The second step is
to compute empirical risk minimizers (in our case, the least squares estimators) over cells of
this random partition. Finally, the third step is to aggregate these minimizers using a suitable
aggregation procedure. If the radius ε of the initial net is taken to be large enough, the method
reduces to the global empirical risk minimization (ERM) over the class F . While the global
ERM is, in general, suboptimal (cf. the discussion in Sections 6 and 7 below), the proposed
method enjoys the optimal rates. We call our method the aggregation-of-leaders procedure since
it aggregates the best solutions obtained in cells of the partition.

To ease the notation, assume that we have a sample D3n of size 3n and we divide it into three
parts: D3n = S ∪ S′ ∪ S′′, where the subsamples S,S′, S′′ are each of size n. Fix ε > 0. Let
dS(f, g) be the empirical �2 pseudo-metric associated with the subsample S of cardinality n, and

N =N2(F, ε, S).

Clearly, N is finite since F is included in the set of all functions with values in [0,1], which is
totally bounded with respect to dS(·, ·). Let ĉ1, . . . , ĉN be an ε-net on F with respect to dS(·, ·).
We assume without loss of generality that it is proper, that is, ĉi ∈ F for i = 1, . . . ,N , and that
N ≥ 2. Let F̂S

1 , . . . , F̂S
N be the following partition of F induced by ĉi ’s:

F̂S
i = F̂S

i (ε) =
{
f ∈F : i ∈ argmin

j=1,...,N

dS(f, ĉj )
}
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with ties broken in an arbitrary way. Now, for each F̂S
i , define the least squares estimators over

the subsets F̂S
i with respect to the second subsample S′:

f̂
S,S′
i ∈ argmin

f ∈F̂S
i

1

n

∑
(x,y)∈S′

(
f (x) − y

)2
. (8)

We will assume that such a minimizer exists; a simple modification of the results is possible if
f̂

S,S′
i is an approximate solution of (8).

Finally, at the third step we use the subsample S′′ to aggregate the estimators {f̂ S,S′
1 , . . . ,

f̂
S,S′
N }. We call a function f̃ (x,D3n) with values in Y a sharp MS-aggregate1 if it has the fol-

lowing property.

Sharp MS-aggregation property. There exists a constant C > 0 such that, for any δ > 0,

L(f̃ ) ≤ min
i=1,...,N

L
(
f̂

S,S′
i

)+ C
log(N/δ)

n
(9)

with probability at least 1 − δ over the sample S′′, conditionally on S ∪ S′.

Note that, in (9), the subsamples S,S′ are fixed, so that the estimators f̂
S,S′
i � gi can be

considered as fixed (non-random) functions, and f̃ as a function of S′′ only. There exist several
examples of sharp MS-aggregates of fixed functions g1, . . . , gN [2], page 5, [30], Theorem B,
[31], Theorem A. They are realized as mixtures:

f̃ =
N∑

i=1

θigi =
N∑

i=1

θi f̂
S,S′
i , (10)

where θi are some random weights measurable with respect to S′′. Either of the aggregates of
[2,30,31] satisfy the sharp MS-aggregation property and thus can be used at the third step of our
procedure.

Definition 1. We call an aggregation-of-leaders estimator any estimator f̃ defined by the above
three-stage procedure with sharp MS-aggregation at the third step.

The next theorem provides the main oracle inequality for aggregation-of-leaders estimators.

Theorem 1. Let Y = [0,1] and 0 ≤ f ≤ 1 for all f ∈ F . Let r∗ = r∗(G) denote a localization
radius of G = {(f − g)2: f,g ∈ F}. Consider an aggregation-of-leaders estimator f̃ defined by

1Here, MS-aggregate is an abbreviation for model selection type aggregate. The word sharp indicates that (9) is an oracle
inequality with leading constant 1.
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the above three-stage procedure. Then there exists an absolute constant C > 0 such that for any
δ > 0, with probability at least 1 − 2δ,

L(f̃ ) ≤ inf
f ∈F

L(f ) + C

(
log(N2(F, ε, S)/δ)

n
+ 


(
n, ε, S′)), (11)

where



(
n, ε, S′) = γ

√
r∗ + inf

α≥0

{
α + 1√

n

∫ Cγ

α

√
logN2

(
F, ρ, S′)dρ

}
(12)

with γ =√
ε2 + r∗ + β and β = (log(1/δ) + log logn)/n.

Remarks.

1. The term 
(n, ε, S′) in Theorem 1 is a bound on the rate of convergence of the excess risk
of ERM f̂

S,S′
i over the cell F̂S

i . If, in particular instances, there exists a sharper bound for
the rate of ERM, one can readily use this bound instead of the expression for 
(n, ε, S′)
given in Theorem 1.

2. The partition with cells F̂S
i defined above can be viewed as a default option. In some

situations, we may better tailor the (possibly overcomplete) partition to the geometry of F .
For instance, in the aggregation context (cf. Theorem 4 below), F is union of convex sets.
We choose each convex set as an element of the partition, and use the rate for ERM over
individual convex sets instead of the overall rate 
(n, ε, S′). In this case, the partition is
non-random. Another example, when F is isomorphic to a subset of R

M , is a partition
of RM into a union of linear subspaces of all possible dimensions. In this case, the “cells”
are linear subspaces and aggregating the least squares estimators over cells is analogous to
sparsity pattern aggregation considered in [38,39].

3. In Theorem 1 we can use the localization radius r∗ = r∗(Ĝi ) for Ĝi = {(f − g)2: f,g ∈
F̂S

i } instead of the larger quantity r∗(G). Inspection of the proof shows that the oracle
inequality (11) generalizes to

L(f̃ ) ≤ min
i=1,...,N

inf
f ∈F̂S

i

{
L(f ) + C

(
β + 
i

(
n, ε, S′))}, (13)

where 
i(n, ε, S′) is defined in the same way as 
(n, ε, S′) with the only difference that
r∗(G) is replaced by r∗(Ĝi ).

The oracle inequality (11) of Theorem 1 depends on two quantities that should be specified:
the entropy logN2(F, ·, ·), and the localization radius r∗. The crucial role in determining the
rate belongs to the empirical entropies. We further replace in (11) these random entropies by
their upper bound

H2(F, ρ) = sup
S∈Zn

logN2(F, ρ, S),

and refer to the above quantity as the empirical entropy.
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The next theorem is a corollary of Theorem 1 in the case of polynomial growth of the empir-
ical entropy characteristic for nonparametric estimation problems. It gives upper bounds on the
minimax regret and on the minimax risk.

Theorem 2. Let Y = [0,1] and H2(F, ρ) ≤ Aρ−p , ∀ρ > 0, for some constants A < ∞, p > 0.
Let f̃ be an aggregation-of-leaders estimator defined by the above three-stage procedure with
the covering radius ε = n−1/(2+p). There exist constants Cp > 0 depending only on A and p

such that:

(i) Let 0 ≤ f ≤ 1 for all f ∈F . For the estimator f̃ we have:

Vn(F) ≤ sup
PXY ∈P

{
E‖f̃ − η‖2 − inf

f ∈F
‖f − η‖2

}
(14)

≤

⎧⎪⎨
⎪⎩

Cpn−2/(2+p), if p ∈ (0,2),

Cpn−1/2 log(n), if p = 2,

Cpn−1/p, if p ∈ (2,∞).

(ii) When the model is well-specified, then for the estimator f̃ we have:

Wn(F) ≤ sup
PXY ∈PF

E‖f̃ − η‖2 ≤ Cpn−2/(2+p) ∀p > 0. (15)

The proof of Theorem 2 is given in Section 8. The first conclusion of this theorem is that
the minimax risk Wn(F) has the same rate of convergence as the minimax regret Vn(F) for
p ∈ (0,2). For example, if F is a class of functions on R

d with bounded derivative of order k,
the entropy bound required in the theorem holds with exponent p = d/k, as follows from [22].
In this case, Theorem 2 yields that, for k ≥ d/2, both Wn(F) and Vn(F) converge with the usual
nonparametric rate n−2k/(2k+d) while for k < d/2 (corresponding to very irregular functions) the
rate of the minimax regret deteriorates to n−k/d . In Section 5, we will show that the bounds of
Theorem 2 for p < 2 are tight in the sense that there exists a marginal distribution of X and a
class F of regression functions satisfying the above entropy assumptions such that the bounds
(14) and (15) cannot be improved for p < 2.

The second message of Theorem 2 is that Wn(F) has faster rate than Vn(F) for p > 2, that
is, for very massive classes F . Note that here we compare only the upper bounds. However, in
Section 5 we will provide a lower bound showing that the effect indeed occurs. Namely, we will
exhibit a marginal distribution of X and a class F of regression functions satisfying the above
entropy assumptions such that Vn(F) is of the order n−1/(p−1), which is slower than the rate
n−2/(2+p) for Wn(F).

Observe also that in both cases, p ∈ (0,2) and p ∈ [2,∞), we can use the same value ε =
n−1/(2+p) to obtain the rates given in (14). We remark that this ε satisfies the balance relation

nε2 �H2(F, ε).

We will further comment on this choice in Section 6.
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We now turn to the consequences of Theorem 1 for low complexity classes F , such as Vapnik–
Chervonenkis (VC) classes and intersections of balls in finite-dimensional spaces. They roughly
correspond to the case “p ≈ 0”, and the rates for the minimax risk Wn(F) are the same as for the
minimax regret Vn(F).

Assume first that the empirical covering numbers of F exhibit the growth

sup
S∈Zn

N2(F, ρ, S) ≤ (A/ρ)v, (16)

∀ρ > 0, with some constants A < ∞, v > 0. Such classes F are called VC-type classes with
VC-dimension VC(F) = v. We will also call them parametric classes, as opposed to non-
parametric classes considered in Theorem 2. Indeed, entropy bounds as in (16) are associ-
ated to compact subsets of v-dimensional Euclidean space. Other example is given by the
VC-subgraph classes with VC-dimension v, that is, classes of functions f whose subgraphs
Cf = {(x, t) ∈ X ×R: f (x) ≥ t} form a Vapnik–Chervonenkis class with VC-dimension v.

Theorem 3 (Bounds for VC-type classes). Assume that Y = [0,1] and the empirical covering
numbers satisfy (16). Let 0 ≤ f ≤ 1 for all f ∈ F , and let f̃ be an aggregation-of-leaders esti-
mator defined by the above three-stage procedure with ε = n−1/2. If n ≥ CAv for a large enough
constant CA > 1 depending only on A, then there exists a constant C > 0 depending only on A

such that

Vn(F) ≤ sup
PXY ∈P

{
E‖f̃ − η‖2 − inf

f ∈F
‖f − η‖2

}
≤ C

v

n
log

(
en

v

)
. (17)

The rate of convergence of the excess risk as in (17) for VC-type classes has been obtained
previously under the assumption that L∗ = 0 or for convex classes F (see discussion in Section 7
below). Theorem 3 does not rely on either of these assumptions.

In Section 5, we show that the bound of Theorem 3 is tight; there exists a function class
such that, for any estimator, there exists a distribution on which the estimator differs from the
regression function by at least C(v/n) log(en/v) with positive fixed probability. So, the extra
logarithmic factor log(en/v) in the rate is necessary, even when the model is well-specified.

The next theorem deals with classes of functions

F =F� �
{

fθ =
M∑
i=1

θjfj : θ = (θ1, . . . , θM) ∈ �

}
,

where {f1, . . . , fM} is a given collection of M functions on X with values in Y , and � ⊆ R
M

is a given set of possible mixing coefficients θ . Such classes arise in the context of aggregation,
cf., for example, [38,41], where the main problem is to study the behavior of the minimax regret
Vn(F�) based on the geometry of �. For the case of fixed rather than random design, we refer
to [38] for a comprehensive treatment. Here, we deal with the random design case and consider
the sets � defined as intersections of �0-balls with the simplex. For an integer 1 ≤ s ≤ M , the
�0-ball with radius s is defined by

B0(s) = {
θ ∈R

M : |θ |0 ≤ s
}
,
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where |θ |0 denotes the number of non-zero components of θ . We will also consider the simplex

�M =
{

θ ∈R
M :

M∑
j=1

θj = 1, θj ≥ 0, j = 1, . . . ,M

}
.

Then, model selection type aggregation (or MS-aggregation) consists in constructing an esti-
mator f̃ that mimics the best function among f1, . . . , fM , that is, the function that attains the
minimum minj=1,...,M ‖fj − η‖2. In this case, F� = {f1, . . . , fM} or equivalently � = �MS �
{e1, . . . , eM} = �M ∩ B0(1), where e1, . . . , eM are the canonical basis vectors in R

M . Convex
aggregation (or C-aggregation) consists in constructing an estimator f̃ that mimics the best
function in the convex hull F = conv(f1, . . . , fM), that is, the function that attains the mini-
mum minθ∈�M

‖fθ − η‖2. In this case, F = F� with � = �C � �M . Finally, given an integer
1 ≤ s ≤ M , the s-convex aggregation consists in mimicking the best convex combination of
at most s among the functions f1, . . . , fM . This corresponds to the set �C(s) = �M ∩ B0(s).
Note that MS-aggregation and convex aggregation are particular cases of s-convex aggregation:
�MS = �C(1) and �C = �C(M).

For the aggregation setting, we modify the definition of cells F̂S
i as discussed in Remark 2.

Consider the partition �C(s) = ⋃s
m=1

⋃
ν∈Im

Fν,m where Im is the set of all subsets ν of
{1, . . . ,M} of cardinality |ν| = m, and Fν,m is the convex hull of fj ’s with indices j ∈ ν. We use
the deterministic cells

{F1, . . . ,FN } = {Fν,m,m = 1, . . . , s, ν ∈ Im}

instead of random ones F̂S
i . Note that the subsample S is not involved in this construction. We

keep all the other ingredients of the estimation procedure as described at the beginning of this
section, and we denote the resulting estimator f̃ . Then, using the subsample S, we complete the
construction by aggregating (via a sharp MS-aggregation procedure) only two estimators, f̃ and
the least squares estimator on �M . The resulting aggregate is denoted by f̃ ∗.

Theorem 4 (Bounds for s-convex aggregation). Let Y = [0,1], and 0 ≤ fj ≤ 1 for j =
1, . . . ,M . Then there exists an absolute constant C > 0 such that

Vn(F�C(s)) ≤ sup
PXY ∈P

{
E
∥∥f̃ ∗ − η

∥∥2 − inf
θ∈�C(s)

‖fθ − η‖2
}

≤ Cψn,M(s), (18)

where

ψn,M(s) = s

n
log

(
eM

s

)
∧
√

1

n
log

(
1 + M√

n

)
∧ 1

for s ∈ {1, . . . ,M}.

This theorem improves upon the rate of s-convex aggregation given in Lounici [33] by re-
moving a redundant (s/n) logn term present there. Note that [33] considers the random design
regression model with Gaussian errors. Theorem 4 is distribution-free and deals with bounded
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errors as all the results of this paper; it can be readily extended to the case of sub-exponential
errors. By an easy modification of the minimax lower bound given in [33], we get that ψn,M(s)

is the optimal rate for the minimax regret on F�C(s) in our setting. Analogous result for Gaussian
regression with fixed design is proved in [38].

Remark 4. Inspection of the proofs shows that Theorems 2–4 as well as Theorem 5 below pro-
vide bounds on the risk not only in expectation but also in deviation. For example, under the
assumptions of Theorem 3, along with (17) we obtain that there exists a constant C > 0 depend-
ing only on A such that, for any t > 0,

sup
PXY ∈P

P

{
‖f̃ − η‖2 − inf

f ∈F
‖f − η‖2 ≥ C

(
v

n
log

(
en

v

)
+ t

n

)}
≤ e−t . (19)

The “in deviation” versions of Theorems 2, 4 and 5 are analogous and we skip them for brevity.
We also note that all the results trivially extend to the case Y = [a, b], F ⊆ {f : a ≤ f ≤ b},
where −∞ < a < b < ∞.

4. Adapting to approximation error rate of function class

In Theorem 2, we have shown that for p > 2 our estimator has the rate of n−2/(2+p) when η ∈ F
and achieves the rate of n−1/p if not. A natural question one can ask is what happens if η /∈ F but
the approximation error inff ∈F ‖η − f ‖2 is small. This can be viewed as an intermediate setting
between the pure statistical learning and pure estimation. In such situation, one would expect to
achieve rates varying between n−1/p and n−2/(2+p) depending on how small the approximation
error is. This is indeed the case as described in the next theorem.

Theorem 5. Let Y = [0,1], F ⊆ {f : 0 ≤ f ≤ 1}, and H2(F, ρ) ≤ Aρ−p , ∀ρ > 0, for some
constants A < ∞, p ≥ 2. Consider an aggregation-of-leaders estimator f̃ with the covering
radius set as ε = n−1/(2+p). For this estimator and for any joint distribution PXY we have:

E‖f̃ − η‖2 − inf
f ∈F

‖f − η‖2 ≤ Cpψ̄n,p(�), (20)

where �2 = inff ∈F ‖f − η‖2, Cp > 0 is a constant depending only on p and A, and

ψ̄n,p(�) =

⎧⎪⎨
⎪⎩

n−2/(2+p), if �2 ≤ n−2/(2+p),

�2, if n−2/(2+p) ≤ �2 ≤ n−1/p,

n−1/p, if �2 ≥ n−1/p

(21)

for p > 2. At p = 2 the rate ψ̄n,p(�) is n−1/2 logn independently of �.

The proof of this theorem is given in Section 8.
For particular cases � = 0 (well-specified model) or � = 1 (misspecified model), we recover

the result of Theorem 2 for p > 2. Theorem 5 reveals that there is a smooth transition in terms
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of approximation error rate in the intermediate regime between these two extremes. Note also
that the estimator f̃ in Theorem 5 is the same in all the cases; it is defined by the aggregation-of-
leaders procedure with ε fixed as n−1/(2+p). Thus, the estimator is adaptive to the approximation
error.

Theorem 5 naturally suggests to study a minimax problem which is more general than those
considered in Statistical Learning Theory or Nonparametric Estimation. Introduce the class of
�-misspecified models

P�(F) =
{
PXY ∈ P : inf

f ∈F
‖f − η‖ ≤ �

}
, � ≥ 0,

and define the �-misspecified regret as

V �
n (F) = inf

f̂

sup
PXY ∈P�(F)

{
E‖f̂ − η‖2 − inf

f ∈F
‖f − η‖2

}
.

Note that by definition, V �
n (F) = Wn(F) when � = 0 and V �

n (F) = Vn(F) when � = 1 (the
diameter of F ). In general, V �

n (F) measures the minimax regret when we consider the statistical
estimation problem with approximation error at most �. Theorem 5 implies that the rate of
convergence of �-misspecified regret admits the bound V �

n (F) ≤ Cpψ̄n,p(�).

5. Lower bounds

In this section, we show that the upper bounds obtained in Theorems 2, 3, and 5 cannot be
improved. First, we exhibit a VC-subgraph class F with VC-dimension at most d such that

Wn(F) ≥ C
d

n
log

(
en

d

)
,

where C > 0 is a numerical constant. In fact, we will prove a more general lower bound, for the
risk in probability rather than in expectation.

In the next theorem, X = {x1, x2, . . .} is a countable set of elements and F is the following set
of binary-valued functions on X :

F = {
f : f (x) = a1{x ∈ W } for some W ⊂X with |W | ≤ d

}
,

where a > 0, 1{·} denotes the indicator function, |W | is the cardinality of W , and d is an integer.
It is easy to check that F is a VC-subgraph class with VC-dimension at most d .

Theorem 6. Let d be any integer such that n ≥ d , and a = 3/4. Let the random pair (X,Y )

take values in X × {0,1}. Then there exist a marginal distribution μX and numerical constants
c, c′ > 0 such that

inf
f̂

sup
η∈F

Pη

(
‖f̂ − η‖2 ≥ c

d

n
log

(
en

d

))
≥ c′,

where Pη denotes the distribution of the n-sample Dn when E(Y |X = x) = η(x).
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The proof of Theorem 6 is given in Section 10.
We now exhibit a class F with polynomial growth of the empirical entropy, for which the

rates of minimax risk and minimax regret given in Theorems 2 and 5 cannot be improved on
any estimators. To state the result, we need some notation. Let � be the set of all real-valued
sequences (fk, k = 1,2, . . .). Denote by ej the unit vectors in �: ej = (1{k = j}, k = 1,2, . . .),
j = 1,2, . . . . For p > 0, consider the set Bp � {f ∈ �: |fj | ≤ j−1/p, j = 1,2, . . .}.

The next theorem provides lower bounds on Vn(F) and Wn(F) when the ε-entropy of F
behaves as ε−p . It implies that the rates for Vn(F) and Wn(F) in Theorem 2 are tight when
p < 2.

Theorem 7. Fix any p > 0. Let F = {f ∈ �: fj = (1 + gj )/2, {gj } ∈ Bp} and let X =
{e1, e2, . . .} be the set of all unit vectors in �. For any ε > 0 we have

H2(F, ε) ≤
(

A

ε

)p

, (22)

where A is a constant depending only on p. Furthermore, for this F , there exists an absolute
positive constant c such that the minimax risk satisfies, for any n ≥ 1,

Wn(F) ≥ cn−2/(2+p), (23)

and the minimax regret satisfies, for any p ≥ 2 and any n ≥ 1,

Vn(F) ≥ cn−1/(p−1). (24)

The proof of Theorem 7 is given in Section 10. We remark that the lower bound (24) (for
p > 2) holds, up to logarithmic factors, for any class satisfying the entropy growth �(ε−p), but
we omit the longer proof of this fact. We also remark that for p > 2, the n−1/p lower bound can
be shown for any estimator taking values within the class F . Obtaining such a lower bound for
any estimator remains an open problem.

6. Comparison with global ERM and with skeleton aggregation

Among the methods of estimation designed to work under general entropy assumptions on F ,
the global ERM or the ERM on ε-nets [9,14,34] hold a dominant place in the literature (see
an overview in Section 7). Somewhat less studied method is skeleton aggregation [49]. In this
section, we discuss the deficiencies of these two previously known methods that motivated us to
introduce aggregation-of-leaders.

Recall that the aggregation-of-leaders procedure has three steps. The first one is to find an
empirical ε-net (that we will call a skeleton) from the first subsample and partition the function
class based on the skeleton using the empirical distance on this subsample. In the next step,
using the second subsample we find empirical risk minimizers within each cell of the partition.
Finally, we use the third sample to aggregate these ERM’s. A simpler and seemingly intuitive
procedure that we will call the skeleton aggregation consists of steps one and three, but not two.
This method directly aggregates centers of the cells F̂S

i (ε), that is, the elements ĉi of the ε-net
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obtained from the first subsample S. Such kind of procedure was studied by Yang and Barron
[49] in the context of well-specified models. The setting in [49] is different from ours since in that
paper the ε-net is taken with respect to a non-random metric and the bounds on the minimax risk
Wn(F) are obtained when the regression errors are Gaussian. Under this model, [49] provides
the bounds not for skeleton aggregation but for a more complex procedure that comprises an
additional projection in Hellinger metric. We argue that, while the skeleton aggregation achieves
the desired rates for well-specified models (i.e., for the minimax risk), one cannot expect it to
be successful for the misspecified setting. This will explain why aggregating ERM’s in cells of
the partition, and not simply aggregating the centers of cells, is crucial for the success of the
aggregation-of-leaders procedure.

Let us first show why the skeleton aggregation yields the correct rates for well-specified mod-
els (i.e., when η ∈ F ). Similarly to (10), we define the skeleton aggregate f̃ sk = ∑N

i=1 θi ĉi as a
sharp MS-aggregate satisfying a bound analogous to (9): there exists a constant C > 0 such that,
for any δ > 0,

L
(
f̃ sk)≤ min

i=1,...,N
L(ĉi) + C

log(N/δ)

n
(25)

with probability at least 1 − δ over the sample S′′, conditionally on S (the subsample S′ is not
used here). If the model is well-specified, L∗ = L(η), and ‖f − η‖2 = L(f ) − L∗, ∀f ∈ F .
Hence, with probability 1 − 5δ,∥∥f̃ sk − η

∥∥2 = L
(
f̃ sk)− L∗

≤ min
i=1,...,N

L(ĉi) − L∗ + C
log(N/δ)

n
(26)

= min
i=1,...,N

‖ĉi − η‖2 + C
log(N/δ)

n

≤ 2ε2 + C

(H2(F, ε)

n
+ log(1/δ)

n
+ r∗ + β

)

for β = (log(1/δ)+ log logn)/n, and r∗ = r∗(G) with G = {(f −g)2: f,g ∈F}, where we have
used Lemma 9 with f = ĉi , f ′ = η and the fact that mini=1,...,N dS(ĉi , η) ≤ ε for any η ∈ F . The
optimal choice of ε in (26) is given by the balance relation nε2 �H2(F, ε) and it can be deduced
from Lemma 8 that r∗ + β is negligible as compared to the leading part O(ε2 + H2(F, ε)/n)

with this optimal ε. In particular, we get from (26) combined with (30) and (33), (41) that, under
the assumptions of Theorem 2, supη∈F E‖f̃ sk − η‖2 ≤ Cn−2/(2+p), ∀p > 0.

Let us now consider the misspecified model setting (i.e., the statistical learning framework).
Here, the balance relation for the skeleton aggregation takes the form nε � H2(F, ε), which
yields suboptimal rates unless the class F is finite. Indeed, without the assumption that the re-
gression function η is in F , we only obtain the bounds

L(ĉi) − L∗ = ‖ĉi − η‖2 − inf
f ∈F

‖f − η‖2

(27)
≤ 2

(‖ĉi − η‖ − ‖ηF − η‖)+ 1

n
≤ 2‖ĉi − ηF‖ + 1

n
,
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where ηF ∈ F is such that ‖ηF − η‖2 ≤ inff ∈F ‖f − η‖2 + 1/n. The crucial difference from
(26) is that here L(ĉi) − L∗ behaves itself as a norm ‖ĉi − ηF‖ and not as a squared norm
‖ĉi − η‖2. Using (27) and arguing analogously to (26), we find that for misspecified models,
with probability 1 − 5δ,

L
(
f̃ sk)− L∗ ≤ 2 min

i=1,...,N
‖ĉi − ηF‖ + C

log(N/δ)

n

≤ 2
√

2ε2 + C
(
r∗ + β

)+ C
log(N/δ)

n
(28)

≤ 2
√

2ε + C

(H2(F, ε)

n
+ log(1/δ)

n
+√

r∗ + β

)
.

Here, the optimal ε is obtained from the tradeoff of ε with H2(F, ε)/n. As a result, we only get
the suboptimal rate n−1/(p+1) + O(

√
r∗ + β) for the excess risk of f̃ sk under the assumptions

of Theorem 2. While the above argument is based on upper bounds, it is possible to construct a
simple scenario where η,ηF and some ĉi are on a line, ‖ηF − ĉi‖ = O(ε), and no other element
ĉj is closer to η than ĉi . For such a setup, L(ĉi) − L∗ is of the order of ε and no convex com-
bination of ĉj can improve upon ĉi . This indicates that introducing least squares estimators over
cells of the partition (the second step of our procedure) is crucial in getting the right rates.

We can now compare the following three estimators. First, we consider the global ERM over
F defined by

f̂ erm ∈ argmin
f ∈F

1

n

∑
(x,y)∈S′

(
f (x) − y

)2
, (29)

second – the skeleton aggregate f̃ sk and, finally, the proposed aggregation-of-leaders esti-
mator f̃ . Table 1 summarizes the convergence rates of the expected excess risk EF (f̂ ) for
f̂ ∈ {f̃ , f̃ sk, f̂ erm} in misspecified model setting, that is, upper bounds on the minimax regret.

The rates for finite F in Table 1 are obtained in a trivial way by taking the skeleton that
coincides with the M functions in the class F . In parametric and nonparametric regime, the rates
for the proposed method are taken from Theorems 2 and 3, while for the skeleton aggregate

Table 1. Summary of rates for misspecified case

Aggregation-
Regime of-leaders Skeleton aggregation ERM

Finite: |F | = M
logM

n
logM

n

√
logM

n

Parametric: VC(F) = v ≤ n
v log(en/v)

n

√
v log(en/v)

n

√
v
n

Nonparametric: H2(F , ε) = ε−p,

p ∈ (0,2) n−2/(2+p) n−1/(p+1) ∨ n−1/2(logn)3/2 n−1/2

p ∈ (2,∞) n−1/p n−1/(p+1) n−1/p
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they follow from (28) with optimized ε combined with the bounds on r∗ in Lemma 8 and in
(33), (41) below. The rate

√
v/n for the excess risk of ERM in parametric case is well-known,

cf., for example, [3,7]. For the nonparametric regime, the rates for ERM in Table 1 follow from
Lemma 11 and the bounds on Rn(F) in (33) and (41) below. Moreover, for finite F , it can be

shown that the slow rate
√

logM
n

cannot be improved neither for ERM, nor for any other selector,
that is, any estimator with values in F , cf. [21].

In conclusion, for finite class F aggregation-of-leaders and skeleton aggregation achieve the
excess risk rate logM

n
, which is known to be optimal [41], whereas the global ERM has a subop-

timal rate. For a very massive class F , when the empirical entropy grows polynomially as ε−p

with p ≥ 2 both ERM and aggregation-of-leaders enjoy similar guarantees of rates of order n−1/p

while the skeleton aggregation only gets a suboptimal rate of n−1/(p+1). For all other cases, while
aggregation-of-leaders is optimal, both ERM and skeleton aggregation are suboptimal. Thus, in
the misspecified case, skeleton aggregation is good only for very meager (finite) classes while
ERM enjoys optimality only for the other extreme – massive nonparametric classes. Note also
that, unless F is finite, skeleton aggregation does not improve upon ERM in the misspecified
case.

Turning to the well-specified case, both aggregation-of-leaders and skeleton aggregation
achieve the optimal rate for the minimax risk while the global ERM is, in general, suboptimal.

7. Historical remarks and comparison with previous work

The role of entropy and capacity [22] in establishing rates of estimation has been recognized
for a long time, since the work of Le Cam [27], Ibragimov and Has’minskiı̆ [20] and Birgé [6].
This was also emphasized by Devroye [14] and Devroye et al. [15] in the study ERM on ε-nets.
The common point is that optimal rate is obtained as a solution to the balance equation nε2 =
H(ε), with an appropriately chosen non-random entropy H(·). Yang and Barron [49] present a
general approach to obtain lower bounds from global (rather than local) capacity properties of
the parameter set. Once again, the optimal rate is shown to be a solution to the bias-variance
balance equation described above, with a generic notion of a metric on the parameter space
and non-random entropy. Under the assumption that the regression errors are Gaussian, [49]
also provides an achievability result via a skeleton aggregation procedure complemented by a
Hellinger projection step. Van de Geer [43] invokes the empirical entropy rather than the non-
random entropy to derive rates of estimation in regression problems.

In all these studies, it is assumed that the unknown density, regression function, or parame-
ter belongs to the given class, that is, the model is well-specified. In parallel to these develop-
ments, a line of work on pattern recognition that can be traced back to Aizerman, Braverman
and Rozonoer [1] and Vapnik and Chervonenkis [47] focused on a different objective, which is
characteristic for Statistical Learning. Without assuming a form of the distribution that encodes
the relationship between the predictors and outputs, the goal is formulated as that of performing
as well as the best within a given set of rules, with the excess risk as the measure of perfor-
mance (rather than distance to the true underlying function). Thus, no assumption is placed on
the underlying distribution. In this form, the problem can be cast as a special case of stochastic
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optimization and can be solved either via recurrent (e.g., gradient descent) methods or via em-
pirical risk minimization. The latter approach leads to the question of uniform convergence of
averages to expectations, also called the uniform Glivenko–Cantelli property. This property is,
once again, closely related to entropy of the class, and sufficient conditions have been extensively
studied (see [16–19,36] and references therein).

For parametric classes with a polynomial growth of covering numbers, uniform convergence of
averages to expectations with the

√
(logn)/n rate has been proved by Vapnik and Chervonenkis

[45–47]. In the context of classification, they also obtained a faster rate showing O((logn)/n)

convergence when the minimal risk L∗ = 0. For regression problems, similar fast rate when
L∗ = 0 can be shown (it can be deduced after some argument from Assertion 2 on page 204
in [44]; an exact formulation is available, e.g., in [40]). Lee, Bartlett and Williamson [32] showed
that the excess risk of the least squares estimator on F can attain the rate O((logn)/n) without
the assumption L∗ = 0. Instead, they assumed that the class F is convex and has finite pseudo-
dimension. Additionally, it was shown that the n−1/2 rate cannot be improved if the class is non-
convex and the estimator is a selector (i.e., forced to take values in F ). In particular, the excess
risk of ERM and of any selector on a finite class F cannot decrease faster than

√
(log |F |)/n

[21]. Optimality of ERM for certain problems is still an open question.
Independently of this work on the excess risk in the distribution-free setting of statistical learn-

ing, Nemirovskii [35] proposed to study the problem of aggregation, or mimicking the best func-
tion in the given class, for regression models. Nemirovskii [35] outlined three problems: model
selection, convex aggregation, and linear aggregation. The notion of optimal rates of aggregation
based on the minimax regret is introduced in [41], along with the derivation of the optimal rates
for the three problems. In the following decade, much work has been done on understanding
these and related aggregation problems [21,33,38,48,50]. For recent developments and a survey
we refer to [28,39].

In parallel with this research, the study of the excess risk blossomed with the introduction of
Rademacher and local Rademacher complexities [4,5,8,23,24,26]. These techniques provided a
good understanding of the behavior of the ERM method. In particular, if F is a convex subset of
d-dimensional space, Koltchinskii [24,25] obtained a sharp oracle inequality with the correct rate
d/n for the excess risk of least squares estimator on F . Also, for convex F and p ∈ (0,2), the
least squares estimator on F attains the correct excess risk rate n−2/(p+2) under the assumptions
of Theorem 2. This can be deduced from Theorem 5.1 in [25], remarks after it and in Exam-
ple 4 on page 87 of [25]. However, the convexity assumption appears to be crucial; without this
assumption Koltchinskii [25], Theorem 5.2, obtains for the least squares estimator only a non-
sharp inequality with leading constant C > 1, cf. (3). As follows from the results in Section 3 our
procedure overcomes this problem.

Among a few of the estimators considered in the literature for general classes F , empirical
risk minimization on F has been one of the most studied. As mentioned above, ERM and other
selector methods are suboptimal when the class F is finite. For the regression setting with fi-
nite F , the approach that was found to achieve the optimal rate for the excess risk in expectation
is through exponential weights with averaging of the trajectory [10,13,21,49]. However, Audib-
ert [2] showed that, for the regression with random design, exponential weighting is suboptimal
when the error is measured by the probability of deviation rather than by the expected risk. He
proposed an alternative method, optimal both in probability and in deviation, which involves
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finding an ERM on a star connecting a global ERM and the other |F | − 1 functions. In [30], the
authors exhibited another deviation optimal method which involves sample splitting. The first
part of the sample is used to localize a convex subset around ERM and the second – to find an
ERM within this subset. Recently yet another procedure achieving the deviation optimality has
been proposed in [31]. It is based on a penalized version of exponential weighting and extends
the method of [12] originally proposed for regression with fixed design. The methods of [2,30,
31] provide examples of sharp MS-aggregates that can be used at the third step of our procedure.

We close this short summary with a connection to a different literature. In the context of
prediction of deterministic individual sequences with logarithmic loss, Cesa-Bianchi and Lugosi
[11] considered regret with respect to rich classes of “experts”. They showed that mixture of
densities is suboptimal and proposed a two-level method where the rich set of distributions is
divided into small balls, the optimal algorithm is run on each of these balls, and then the overall
output is an aggregate of outputs on the balls. They derived a bound where the upper limit of the
Dudley integral is the radius of the balls. This method served as an inspiration for the present
work.

8. Proofs of Theorems 2–4 and 5

We first state some auxiliary lemmas.

Lemma 8. The following values can be taken as localization radii r∗ = r∗(G) for G = {(f −
g)2: f,g ∈F}.

(i) For any class F ⊆ {f : 0 ≤ f ≤ 1}, and n ≥ 2,

r∗ = C log3(n)R2
n(F). (30)

(ii) If F ⊆ {f : 0 ≤ f ≤ 1} and the empirical covering numbers exhibit polynomial growth
supS∈Zn N2(F, ρ, S) ≤ (A

ρ
)v for some constants A < ∞, v > 0, then

r∗ = C
v

n
log

(
en

v

)

whenever n ≥ CAv with CA > 1 large enough depending only on A.
(iii) If F is a finite class with |F | ≥ 2,

r∗ = C
log |F |

n
.

The proof of this lemma is given in the Appendix. The following lemma is a direct conse-
quence of Theorem 14 proved in the Appendix.

Lemma 9. For any class F ⊆ {f : 0 ≤ f ≤ 1} and δ > 0, with probability at least 1 − 4δ,

∥∥f − f ′∥∥2 ≤ 2d2
S

(
f,f ′)+ C

(
r∗ + β

) ∀f,f ′ ∈F, (31)
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where β = (log(1/δ) + log logn)/n, and r∗ = r∗(G) for G = {(f − g)2: f,g ∈F}.

We will also use the following bound on the Rademacher average in terms of the empirical
entropy [3,40].

Lemma 10. For any class F ⊆ {f : 0 ≤ f ≤ 1},

R̂n(F, S) ≤ inf
α≥0

{
4α + 12√

n

∫ 1

α

√
logN2(F, ρ, S)dρ

}
. (32)

Proof of Theorem 2. Consider the case p ∈ (0,2). Assume without loss of generality that A = 1,
that is, supS∈Zn logN2(F, ρ, S) ≤ ρ−p . For p ∈ (0,2), the bound (32) with α = 0 combined
with (30) yields

Rn(F) ≤ 12√
n(1 − p/2)

, r∗ ≤ C
(logn)3

n
(33)

for some absolute constant C. Thus,

γ ≤ C

(
ε + (logn)3/2

√
n

+
√

log(1/δ)

n

)
, (34)

γ
√

r∗ ≤ C(logn)3/2
(

ε√
n

+ (logn)3/2

n
+

√
log(1/δ)

n

)
. (35)

These inequalities together with (11) and (12) yield that for 0 < δ < 1/2, with probability at least
1 − 2δ,

L(f̃ ) − L∗ ≤ C

(
ε−p

n
+ log(1/δ)

n
+ γ

√
r∗ + γ 1−p/2

√
n

)
. (36)

The value of ε minimizing the right-hand side in (36) is ε = n−1/(2+p), which justifies the choice
made in the theorem. Notably, the logarithmic factor arising from r∗ only appears together with
the lower order terms and the summand γ

√
r∗ does not affect the rate. For ε = n−1/(2+p) the

right-hand side of (36) is bounded by Cn−2/(2+p) ignoring the terms with log(1/δ) that disappear
when passing from the bound in probability to that in expectation. Thus, the expected excess risk
is bounded by Cn−2/(2+p), which proves (14) for p ∈ (0,2).

Next, consider the case p > 2. From (32) with α = n−1/p , R̂n(F, S) ≤ Cn−1/p and r∗ =
(logn)3n−2/p . Choosing ε = n−1/(2+p),

γ
√

r∗ ≤ C
(
ε
√

r∗ + r∗ +√
βr∗)≤ Cn−1/p.

The first statement of the theorem follows from (12) with the choice α = n−1/p and by noting
that ε−p

n
is of the lower order than n−1/p . The case of p = 2 follows similarly (see proof of

Theorem 5). The second part of the theorem follows from Theorem 5. �
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Proof of Theorem 3. Throughout this proof, C is a generic notation for positive constants
that may depend only on A. Since ε = n−1/2 the expression for r∗ in Lemma 8(ii) leads to

the bounds γ ≤ C(

√
v log(en/v)

n
+
√

log(1/δ)
n

), and γ
√

r∗ ≤ C(
v log(en/v)

n
+ log(1/δ)

n
). Next, since

N2(F, ρ, S′) ≤ max{1, (A/ρ)v} we get

1√
n

∫ Cγ

0

√
logN2

(
F, ρ, S′)dρ ≤

√
v

n

∫ Cγ/A∧1

0

√
log(1/t)dt

≤ C

√
v

n
γ
√

log(C/γ ) ∨ 1,

where the last inequality is due to (A.9). We assume w.l.o.g. that in the last expression C is large
enough to guarantee that the function γ �→ γ

√
log(C/γ ) ∨ 1 is increasing, so that we can replace

γ by the previous upper bound. This yields, after some algebra,

γ
√

log(C/γ ) ∨ 1 ≤ C

(√
v log(en/v)√

n
+

√
log(1/δ) log(en/v)√

n

)

if n ≥ Cv for C large enough. The above inequalities together with (11) and (12) imply that, with
probability at least 1 − 2δ,

L(f̃ ) − L∗ ≤ C

(
logN2(F, ε, S)

n
+ v log(en/v)

n
+ log(1/δ)

n

)
.

Using that logN2(F, ε, S) ≤ max{1, (A/ε)v} and integrating over δ we get the desired bound for
the expected excess risk EL(f̃ ) − L∗. �

Proof of Theorem 4. By definition of the estimator, for any fixed integer m ≤ s and ν such that
|ν| = m we first construct the least squares estimators over the cells Fν,m:

f̂ S,S′
ν,m ∈ argmin

f ∈Fν,m

1

n

∑
(x,y)∈S′

(
f (x) − y

)2
. (37)

Since Fν,m is a convex hull of m functions we can apply [29] to get that for any t > 0, with
probability at least 1 − e−t ,

L
(
f̂ S,S′

ν,m

)≤ inf
f ∈Fν,m

L(f ) + C(ψ̃m,n + t/n), (38)

where

ψ̃m,n �
m

n
∧
√

1

n
log

(
1 + m√

n

)
.

Thus, the event E where (38) holds simultaneously for all (m,ν) ∈ I = {(m,ν): m =
1, . . . , s, |ν| = m} is of probability at least 1 − Ne−t . Here, N = |I|. Choose now t = log(N/δ).
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Then, on the intersection of E with the event where (9) holds we have that, with probability at
least 1 − 2δ,

L(f̃ ) ≤ inf
f ∈F

�C(s)

L(f ) + C

(
ψ̃s,n + log(N/δ)

n

)
(39)

≤ inf
f ∈F

�C(s)

L(f ) + C

(
s

n
log

(
eM

s

)
+ log(1/δ)

n

)
,

where we have used the inequalities ψ̃m,n ≤ ψ̃s,n, ∀m ≤ s, and N =∑s
m=1

(
M
m

)≤ ( eM
s

)s . On the

other hand, for the least squares estimator f̂ C on the convex hull of all f1, . . . , fM , using again
the result of [29] we have that for any u > 0, with probability at least 1 − e−u,

L
(
f̂ C) ≤ inf

f ∈F
�C

L(f ) + C(ψ̃M,n + u/n)

(40)

≤ inf
f ∈F

�C(s)

L(f ) + C

(√
1

n
log

(
1 + M√

n

)
+ u

n

)
.

Now, we aggregate only two estimators, f̃ and f̂ C to obtain the final aggregate f̃ ∗. This yields,
in view of (9) with N = 2, (39), and (40) with u = log(1/δ), that with probability at least 1 − 4δ,

L
(
f̃ ∗) ≤ min

{
L(f̃ ),L

(
f̂ C)}+ C

log(2/δ)

n

≤ inf
f ∈F

�C(s)

L(f ) + C

(
min

{
s

n
log

(
eM

s

)
,

√
1

n
log

(
1 + M√

n

)}
+ log(1/δ)

n

)
,

which immediately implies the desired bound for the expected excess risk EL(f̃ ∗) −
inff ∈F

�C(s)
L(f ). �

Proof of Theorem 5. Without loss of generality assume in this proof that A = 1, that is, that
supS∈Zn logN2(F, ρ, S) ≤ ρ−p . Using (32) we bound Rn(F) for p > 2 as follows:

Rn(F) ≤ inf
α≥0

{
4α + 12√

n

∫ 1

α

ρ−p/2 dρ

}
≤ inf

α≥0

{
4α + 24√

n(p − 2)
α−(p−2)/2

}
.

For p > 2, the balance equation α = n−1/2α−(p−2)/2 yields α = n−1/p . This and (30) lead to the
bounds

Rn(F) ≤ Cn−1/p, r∗ ≤ C(logn)3n−2/p. (41)

For p = 2, choosing α = n−1/2,

Rn(F) ≤ Cn−1/2 logn, r∗ ≤ C(logn)5n−2/p. (42)
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Consider the case p > 2. Let ηF ∈ F be such that ‖ηF − η‖2 ≤ inff ∈F ‖f − η‖2 + 1/n.
Lemma 9, (30) and (41) imply that, with probability at least 1 − 4δ, for all i = 1, . . . ,N ,

∥∥f̂ S,S′
i − η

∥∥2 − inf
f ∈F

‖f − η‖2 ≤ 2
∥∥f̂ S,S′

i − ηF
∥∥2 + ‖ηF − η‖2 + 1/n

≤ 4d2
S

(
f̂

S,S′
i , ηF

)+ ‖ηF − η‖2 + C
(
r∗ + β

)+ 1/n

≤ 4d2
S

(
f̂

S,S′
i , ηF

)+ �2 + C

(
(logn)3

n2/p
+ log(1/δ)

n

)
.

Since mini=1,...,N dS(f̂
S,S′
i , ηF ) ≤ 2ε and ε = n−1/(2+p) we get that, with probability at least

1 − 4δ,

min
i=1,...,N

L
(
f̂

S,S′
i

)− L∗ = min
i=1,...,N

∥∥f̂ S,S′
i − η

∥∥2 − inf
f ∈F

‖f − η‖2

(43)

≤ �2 + C

(
n−2/(2+p) + log(1/δ)

n

)
.

Further, Lemma 11 and (41) imply that, with probability at least 1 − 2δ,

∥∥f̂ S,S′
i − η

∥∥2 − inf
f ∈F̂S

i

‖f − η‖2 ≤ C

(
Rn

(
F̂S

i

)+ log(1/δ)

n

)

≤ C

(
n−1/p + log(1/δ)

n

)
.

Combining this bound with (43) we can conclude that, with probability at least 1 − 6δ,

min
i=1,...,N

L
(
f̂

S,S′
i

)− L∗ = min
i=1,...,N

∥∥f̂ S,S′
i − η

∥∥2 − inf
f ∈F

‖f − η‖2

≤ C

(
min

(
n−2/(2+p) + �2, n−1/p

)+ log(1/δ)

n

)
.

Together with (9), this yields the next bound that holds with probability at least 1 − 7δ:

‖f̃ − η‖2 − inf
f ∈F

‖f − η‖2 = L(f̃ ) − L∗

≤ C

(
Aε−p

n
+ min

(
n−2/(2+p) + �2, n−1/p

)+ log(1/δ)

n

)

≤ C

(
n−2/(2+p) + min

(
n−2/(2+p) + �2, n−1/p

)+ log(1/δ)

n

)
,

and (20) follows. For p = 2, the above bound gains a factor logn in front of n−1/p only. �
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9. Proof of Theorem 1

We start with the following bound on the risk of least squares estimators in terms of Rademacher
complexity.

Lemma 11. Let F be a class of measurable functions from X to [0,1]. Then, for any t > 0, with
probability at least 1 − 2e−t , the least squares estimator f̂ erm on F based on a sample S′ of
size n (cf. (29)) satisfies

L
(
f̂ erm)≤ L∗ + CR̂n

(
� ◦F, S′)+ Ct

n
.

The proof of this lemma is given in the Appendix and is based on combination of results
from [4]. Note that here we have both the remainder term of the order 1/n and the leading
constant 1, which is crucial for our purposes.

Using Lemma 11 with F = F̂S
i and the union bound, we obtain that, with probability at least

1 − 2Ne−t , for all i = 1, . . . ,N ,

L
(
f̂

S,S′
i

)≤ inf
f ∈F̂S

i

L(f ) + CR̂n

(
� ◦ F̂S

i , S′)+ Ct/n. (44)

Recall that N = N2(F, ε, S). Setting t = log(4N/δ) and using (44) and (9) we obtain that, with
probability at least 1 − (3/2)δ,

L(f̃ ) ≤ L∗ + C

(
log(N2(F, ε, S)/δ)

n
+ max

i=1,...,N
R̂n

(
� ◦ F̂S

i , S′)). (45)

To complete the proof of (12) we need to evaluate the Rademacher complexities appearing
in (45):

R̂n

(
� ◦ F̂S

i , S′)= Eσ

[
sup

f ∈F̂S
i

1

n

∑
(x,y)∈S′

σi

(
f (x) − y

)2
]
.

The difficulty here is that the set F̂S
i = F̂S

i (ε) is defined via the pseudo-metric dS based on
sample S while the empirical Rademacher complexity is evaluated on another sample S′. To
match the metrics, we embed F̂S

i (ε) into dS′ -balls with properly chosen radius γ̄ :

F̂S,S′
i (γ̄ ) �

{
f ∈ F : dS′(f, ĉi) ≤ γ̄

}
, i = 1, . . . ,N,

where the pseudo-metric dS′ is taken with respect to the set S′ while the ε-net ĉ1, . . . , ĉN is
constructed with respect to dS . The next lemma shows that, with high probability, F̂S

i (ε) is

included into F̂S,S′
i (γ̄ ) for an appropriate choice of γ̄ .

Lemma 12. Fix t > 0, ε > 0. Let r∗ = r∗(G) for G = {(f − g)2: f,g ∈ F}. Define r0 = (t +
6 log logn)/n and γ̄ = √

4ε2 + 284r∗ + 120r0. Then, with probability at least 1 − 8Ne−t with
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respect to the distribution of S ∪ S′, we have the inclusions

F̂S
i (ε) ⊆ F̂S,S′

i (γ̄ ), i = 1, . . . ,N,

and hence, with the same probability,

R̂n

(
� ◦ F̂S

i (ε), S′)≤ R̂n

(
� ◦ F̂S,S′

i (γ̄ ), S′), i = 1, . . . ,N.

Proof. Let Pn and P ′
n denote the empirical averages over the samples S and S′, respectively. By

Theorem 14, with probability at least 1 − 4e−t ,

P(f − g)2 ≤ 2Pn(f − g)2 + 106r∗ + 48r0 ∀f,g ∈F,

and, with the same probability,

P ′
n(f − g)2 ≤ 2P(f − g)2 + 72r∗ + 24r0 ∀f,g ∈ F .

Therefore, with probability at least 1 − 8e−t ,

P ′
n(f − g)2 ≤ 4Pn(f − g)2 + 284r∗ + 120r0 ∀f,g ∈F .

Applying this to g = ĉi and taking a union bound over i = 1, . . . ,N , completes the proof. �

The next lemma gives an upper bound on the Rademacher complexity of the set � ◦ F̂S,S′
i (γ̄ ).

Lemma 13. Let r∗ = r∗(G) for G = {(f − g)2: f,g ∈F}. Then, for any γ̄ ≥ √
r∗ we have

R̂n

(
� ◦ F̂S,S′

i (γ̄ ), S′)≤ γ̄
√

r∗ + inf
α≥0

{
4α + 24√

n

∫ γ̄

α

√
logN2

(
F, ρ, S′)dρ

}
.

Proof. Throughout the proof, we fix the samples S and S′. We have

R̂n

(
� ◦ F̂S,S′

i (γ̄ ), S′) = Eσ sup
f ∈F̂S,S′

i (γ̄ )

1

n

∑
(xj ,yj )∈S′

σj

(
f (xj ) − yj

)2

= Eσ sup
f ∈F̂S,S′

i (γ̄ )

1

n

∑
(xj ,yj )∈S′

σj

(
f (xj ) − ĉi (xj )

)2 (46)

+ 2Eσ sup
f ∈F̂S,S′

i (γ̄ )

1

n

∑
(xj ,yj )∈S′

σj

(
f (xj ) − ĉi (xj )

)(
ĉi (xj ) − yj

)
,

where we have used the decomposition (f (x)−y)2 = (f (x)− ĉi (x))2 +(ĉi(x)−y)2 +2(f (x)−
ĉi (x))(ĉi (x) − y), ∀x, y, and the fact that (ĉi (x) − y)2 does not depend on f . Conditionally on
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the sample S, the functions ĉi are fixed. Consider the sets of functions

G′
i = {

(f − ĉi )
2: f ∈ F̂S,S′

i (γ̄ )
}

=
{
(f − ĉi )

2: f ∈F,
1

n

∑
(x,y)∈S′

(
f (x) − ĉi (x)

)2 ≤ γ̄ 2
}
.

Recall that we assume ĉi ∈F (the ε-net is proper). Thus G ′
i ⊆ G[γ̄ 2, S′] for G = {(f −g)2: f,g ∈

F}, which implies

Eσ sup
f ∈F̂S,S′

i (γ̄ )

1

n

∑
(xj ,yj )∈S′

σj

(
f (xj ) − ĉi (xj )

)2 ≤ R̂n

(
G
[
γ̄ 2, S′], S′)

(47)
≤ φn

(
γ̄ 2)≤ γ̄

√
r∗,

where φn(γ̄
2) = φn(γ̄

2,G) and the last inequality is due to the assumption γ̄ 2 > r∗ and the fact
that φn(r)/

√
r is non-increasing.

We now turn to the cross-product term in (46). Define the following sets of functions on X ×Y :

GS,S′
i = {

gf (x, y) = (
f (x) − ĉi (x)

)(
ĉi (x) − y

)
: f ∈ F̂S,S′

i (γ̄ )
}
.

Then,

Eσ sup
f ∈F̂S,S′

i (γ̄ )

1

n

∑
(xj ,yj )∈S′

σj

(
f (xj ) − ĉi (xj )

)(
ĉi (xj ) − yj

) = R̂n

(
GS,S′

i , S′). (48)

Observe that, for any gf ∈ GS,S′
i ,

1

n

∑
(x,y)∈S′

gf (x, y)2 = 1

n

∑
(x,y)∈S′

(
f (x) − ĉi (x)

)2(
ĉi (x) − y

)2 (49)

≤ 1

n

∑
(x,y)∈S′

(
f (x) − ĉi (x)

)2 ≤ γ̄ 2 (50)

since ĉi and y take values in Y = [0,1]. For the same reason,

1

n

∑
(x,y)∈S′

(
gf (x, y) − gh(x, y)

)2 = 1

n

∑
(x,y)∈S′

(
f (x) − h(x)

)2(
ĉi (x) − y

)2

≤ 1

n

∑
(x,y)∈S′

(
f (x) − h(x)

)2
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implying N2(GS,S′
i , ρ, S′) ≤ N2(F̂S,S′

i (γ̄ ), ρ, S′) for all ρ > 0. Hence, by Lemma 10,

R̂n

(
GS,S′

i , S′) ≤ inf
α≥0

{
4α + 12√

n

∫ γ̄

α

√
logN2

(
F̂S,S′

i (γ̄ ), ρ, S′)dρ

}
(51)

≤ inf
α≥0

{
4α + 12√

n

∫ γ̄

α

√
logN2

(
F, ρ, S′)dρ

}
,

where the integration goes to γ̄ in view of (49). The lemma now follows from (46)–(48)
and (51). �

Combining (45), Lemma 12 with t = log(16N/δ), and Lemma 13 we find that, with probabil-
ity at least 1 − 2δ,

L(f̃ ) ≤ L∗ + C

(
log(N2(F, ε, S)/δ)

n
+ γ̄

√
r∗

(52)

+ inf
α≥0

{
α + 1√

n

∫ γ̄

α

√
logN2

(
F, ρ, S′)dρ

})
,

which yields the bound (11).

10. Proofs of the lower bounds

Proof of Theorem 6. Fix some 0 < α < 1 and set k = �d/α�. Let C be the set of all binary
sequences ω ∈ {0,1}k with at most d non-zero components. By the d-selection lemma (see, e.g.,
Lemma 4 in [37]), for k ≥ 2d there exists of a subset C′ of C with the following properties:
(a) log |C′| ≥ (d/4) log(k/(6d)) and (b) ρH (ω,ω′) ≥ d for any ω,ω′ ∈ C′. Here, ρH (ω,ω′) =∑

j 1{ωj �= ω′
j } denotes the Hamming distance where ωj ,ω

′
j are the components of ω,ω′. To

any ω ∈ C′ we associate a function gω on X defined by gω(xi) = ωi for i = 1, . . . , k and gω(xi) =
0, i ≥ k + 1, where ωi is the ith component of ω.

Let μX be the distribution on X which is uniform on {x1, . . . , xk}, putting probability 1/k on
each of these xj and probability 0 on all xj with j ≥ k +1. Denote by Pω the joint distribution of
(X,Y ) having this marginal μX and Y ∈ {0,1} with the conditional distribution E(Y |X = x) =
P(Y = 1|X = x) = 1/2 + gω(x)/4 � ηω(x) for all x ∈X .

Consider now a set of functions F ′ = {ηω: ω ∈ C′} ⊂F . Observe that, by construction,

‖ηω − ηω′ ‖2 = ρH

(
ω,ω′)/(16k) ≥ α/32 ∀ω,ω′ ∈ C′. (53)

On the other hand, the Kullback–Leibler divergence between Pω and Pω′ has the form

K(Pω,Pω′) = nE

(
ηω(X) log

ηω(X)

ηω′(X)
+ (

1 − ηω(X)
)

log
(1 − ηω(X))

(1 − ηω′(X))

)
.
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Using the inequality − log(1 + u) ≤ −u + u2/2, ∀u > −1, and the fact that 1/2 ≤ ηω(X) ≤ 3/4
for all ω ∈ C′ we obtain that the expression under the expectation in the previous display is
bounded by 2(ηω(X) − ηω′(X))2, which implies

K(Pω,Pω′) ≤ 2nE
(
ηω(X) − ηω′(X)

)2 ≤ n‖gω − gω′ ‖2

8
≤ nd

8k
≤ nα

8
∀ω,ω′ ∈ C′. (54)

From (53), (54) and Theorem 2.7 in [42], the result of Theorem 6 follows if we show that

nα/8 ≤ log
(∣∣F ′∣∣− 1

)
/16 (55)

with

α = C1
d

n
log

C2n

d
,

where C1,C2 > 0 are constants. Assume first that d ≥ 4. Then, using the inequalities log(|F ′| −
1) ≥ log(|C′|/2 ≥ (d/4) log(k/(6d)) − log 2 ≥ (d/4) log(1/(12α)) it is enough to show that

nα ≤ d

8
log

1

12α
.

Using that x ≥ 2 logx for x ≥ 0 it is easy to check that the inequality in the last display holds if
we choose, for example, C1 = 1/16,C2 = 1/(12C1). In the case d ≤ 3, it is enough to consider
α = (C1/n) log(C2n) and (55) is also satisfied for suitable C1,C2. �

Proof of Theorem 7. We first prove the entropy bound (22). It suffices to obtain the same bound
for Bp in place of F . Fix ε > 0 and set J = (2/ε)p . Without loss of generality, assume that J is
an integer. Let M be an ε-net on Bp in �∞ metric constructed as follows. For all v ∈ M , the
coordinate vj of v takes discrete values with step ε within the interval [−j−1/p, j−1/p] if j ≤ J ,
and vj = 0 for all j > J . Then,

|M| ≤
J∏

j=1

(
2

εj1/p

)
.

One can check that

log

(
J∏

j=1

j−1/p

)
= − 1

p

J∑
j=1

log j ≤ − 1

p

∫ J

2
(log t)dt ≤ −J

p
(logJ − 1),

which implies that |M| ≤ exp(J/p). Thus (22) follows.
Proof of (23). Fix d = �np/(2+p)�. Let �d = {0,1}d be the set of all binary sequences of

length d . Define μX as the distribution on X which is uniform on {e1, . . . , ed}, putting probability
1/d on each of these ej and probability 0 on all ej with j ≥ d + 1. For any ω ∈ �d , denote by
Pω the joint distribution of (X,Y ) having this marginal μX and Y ∈ {0,1} with the conditional
distribution defined by the relation

ηω(ei )� E(Y |X = ei ) = P(Y = 1|X = ei ) = 1

2
+ ωi

4d1/p
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for i = 1, . . . , d , and ηω(ei ) = 1/2 for i ≥ d + 1. The regression function corresponding to Pω is
then ηω = {ηω(ej )} ∈ �. It is easy to see that since ωi ∈ {0,1} for any estimator f̂ = {f̂j } ∈ � we
have ∣∣f̂i − ηω(ei )

∣∣≥ 1

2

∣∣∣∣12 + ω̂i

4d1/p
− ηω(ei )

∣∣∣∣= |ω̂i − ωi |
8d1/p

, i = 1, . . . , d,

where ω̂i is the closest to 4d1/p(f̂i − 1/2) element of the set {0,1}. Therefore,

‖f̂ − ηω‖2 ≥ 1

d

d∑
i=1

|ω̂i − ωi |2
64d2/p

= ρH (ω̂,ω)

64d1+2/p
, (56)

where ρH (·, ·) is the Hamming distance. From Assouad’s lemma (cf. Theorem 2.12(iv) in [42]),

inf
ω̂

max
ω∈�d

E(n)
ω ρH (ω̂,ω) ≥ d

4
exp(−α), (57)

where α = max{K(Pω,Pω′): ω,ω′ ∈ �d,ρH (ω,ω′) = 1}. Here, E(n)
ω denotes the distribution of

the n-sample Dn when (Xi, Yi) ∼ Pω for all i. Since 1/2 ≤ ηω(X) ≤ 3/4, the Kullback–Leibler
divergence can be bounded in the same way as in (54):

K(Pω,Pω′) ≤ 2nE
(
ηω(X) − ηω′(X)

)2 = 2n

d

d∑
i=1

(ωi − ω′
i )

2

64d2/p
= nρH (ω̂,ω)

32d1+2/p
≤ 1

32

for all ω,ω′ ∈ �d such that ρH (ω,ω′) = 1. Combining this result with (56) and (57), we find

inf
f̂

max
ω∈�d

E(n)
ω ‖f̂ − ηω‖2 ≥ e−1/32

128d2/p
≥ c∗n−2/(2+p) (58)

for some absolute constant c∗ > 0. Now, the set {ηω: ω ∈ �d} is contained in F , so that

Wn(F) ≥ inf
f̂

max
ω∈�d

E(n)
ω ‖f̂ − ηω‖2 (59)

and (23) follows immediately from (58) and (59).
Proof of (24). Set d = 2�np/(p−1)� and define the joint distribution Pω of (X,Y ) as in the

proof of (23) with the difference that now we choose the conditional probabilities as follows:

ηω(ej ) = 1

2
+ ωj

4
, j = 1, . . . , d and ηω(ej ) = 1

2
, j ≥ d + 1,

where ω = (ω1, . . . ,ωd) ∈ �′
d = {−1,1}d . Set ηω = {ηω(ej )} ∈ � with ω ∈ �′

d . Then

inf
f ∈F

‖f − ηω‖2 ≤ ‖fω − ηω‖2 = 1

16

(
1 − d−1/p

)2
,
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where fω = {fω(ej )} ∈F is a sequence with components

fω(ej ) = 1

2
+ ωj

4d1/p
, j = 1, . . . , n and fω(ej ) = 1

2
, j ≥ d + 1.

Hence,

Vn(F) = inf
f̂

sup
PXY ∈P

{
E‖f̂ − η‖2 − inf

f ∈F
‖f − η‖2

}

≥ inf
f̂

max
ω∈�′

d

{
E(n)

ω ‖f̂ − ηω‖2 − inf
f ∈F

‖f − ηω‖2
}

≥ inf
f̂

∫
�′

d

E(n)
ω ‖f̂ − ηω‖2ν(dω) − 1

16

(
1 − d−1/p

)2
,

where ν is the probability measure on �′
d under which ω1, . . . ,ωd are i.i.d. Rademacher random

variables. Passing to sequences ¯̂
f , η̄ω in � with components ¯̂

f j = f̂j − 1/2, η̄ω(ej ) = ηω(ej ) −
1/2, respectively, we may write

Vn(F) ≥ inf¯̂
f

∫
�′

d

E(n)
ω ‖ ¯̂

f − η̄ω‖2ν(dω) − 1

16

(
1 − d−1/p

)2
.

For j = 1, . . . , d , denote by f̂ [j ] and rj the components of ¯̂
f and of η̄ω, respectively. We

will sometimes write f̂ [j ] = f̂ [j,Dn] to emphasize the dependence on the sample Dn =
{(X1, Y1), . . . , (Xn,Yn)}. Then, we can rewrite the above integral in the form

∫
�′

d

E(n)
ω ‖ ¯̂

f − η̄ω‖2ν(dω) = Er1,...,rdEDn

[
1

d

d∑
j=1

(
rj − f̂ [j ])2

]
,

where Er1,...,rd and EDn denote the expectation over the joint distribution of r1, . . . , rd and over
the distribution of Dn given r1, . . . , rd , respectively.

Consider the random vector composed of indicators ζ = (I (X1 = ej ), . . . , I (Xn = ej )). For
any j and any fixed r1, . . . , rd ,

EDn

[(
rj − f̂ [j,Dn]

)2] = EζEDn

[(
rj − f̂ [j,Dn]

)2|ζ ]
≥ P(ζ = 0)EDn

[(
rj − f̂ [j,Dn]

)2|ζ = 0
]

≥ P(ζ = 0)
(
rj −EDn

[
f̂ [j,Dn]|ζ = 0

])2
,

where we have used Jensen’s inequality. We may write EDn[f̂ [j,Dn]|ζ = 0] in the form

EDn

[
f̂ [j,Dn]|ζ = 0

]= G
({rk: k �= j}),



818 A. Rakhlin, K. Sridharan and A.B. Tsybakov

where G is some measurable function. Indeed, under the condition ζ = 0 the distribution of Dn

coincides with that of {(Xi, Yi): Xi �= ej }, which is entirely defined by {rk: k �= j}. Thus,

ErjEDn

[(
rj − f̂ [j,Dn]

)2]
≥ P(ζ = 0)Erj

[(
rj − G

({rk: k �= j}))2]
= P(ζ = 0)

[
1

2

(
1

4
− G

({rk: k �= j}))2

+ 1

2

(
−1

4
− G

({rk: k �= j}))2]

≥ 1

16
P(ζ = 0) = 1

16

(
1 − 1

d

)n

,

where Erj denotes the expectation over the distribution of rj and we have used that rj takes
values 1/4 and −1/4 with probabilities 1/2. This implies

inf
f̂

Er1,...,rdEDn

[
1

d

d∑
j=1

(
rj − f̂ [j ])2

]
≥ 1

16

(
1 − 1

d

)n

,

so that

Vn(F) ≥ 1

16

[(
1 − 1

d

)n

− (
1 − d−1/p

)2
]
.

Using that 1 − x ≥ exp(−3x/2) for 0 < x ≤ 1/2 we have (1 − 1
d
)n ≥ exp(−3n/(2d)) ≥ 1 −

3n/(2d) for d ≥ 2n. Since d = 2�np/(p−1)� we find

Vn(F) ≥ 1 − 3n/(2d) − (
1 − d−1/p

)2 = −3n/(2d) + 2d−1/p − d−2/p

≥ −3n/(2d) − d−1/p ≥ d−1/p/4 ≥ cn−1/(p−1)

for some absolute constant c > 0. �

Appendix

The following result is a modification of Theorem 6.1 in [7].

Theorem 14. Let G be a class of non-negative functions bounded by b and admitting a localiza-
tion radius r∗ = r∗(G). Then for all n ≥ 5 and t > 0, with probability at least 1 − 4e−t , for all
g ∈ G we have

Pg ≤ 2Png + 106r∗ + 48r0, (A.1)

Png ≤ 2Pg + 72r∗ + 24r0, (A.2)

where r0 = b(t + 6 log logn)/n.
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Proof of Theorem 14. The fact that for n ≥ 5 inequality (A.1) holds with probability at least
1 − e−t for all g ∈ G is proved in Theorem 6.1 in [7]. Moreover, it is shown in the proof of that
theorem that, on the same event of probability at least 1 − e−t (denote this event by B),

Pg ≤ Png +√
Pg

(√
8r∗ +√

4r0
)+ 45r∗ + 20r0 ∀g ∈

k0⋃
k=0

Gk, (A.3)

where Gk = {g ∈ G: δk+1 ≤ Pg ≤ δk}, δk = b2−k for k ≥ 0, and k0 > 0 be the largest integer
such that δk0+1 ≥ b/n. A straightforward modification of the argument in [7] leading to (A.3)
yields that, on the event B,

|Pg − Png| ≤√
Pg

(√
8r∗ +√

4r0
)+ 45r∗ + 20r0 ∀g ∈

k0⋃
k=0

Gk, (A.4)

so that

Png ≤ Pg +√
Pg

(√
8r∗ +√

4r0
)+ 45r∗ + 20r0

(A.5)

≤ 2Pg + 53r∗ + 24r0 ∀g ∈
k0⋃

k=0

Gk,

proving (A.2) for g ∈⋃k0
k=0 Gk with probability at least 1 − e−t .

Now, consider g ∈ G∗ = G \ ⋃k0
k=0 Gk . First, for any g ∈ G∗, Pg ≤ δk ≤ δk0 ≤ 4b/n. Hence

G∗ ⊆ G′ = {g ∈ G: Pg < 4b/n}. By Lemma 6.1 in [7], with probability at least 1 − 3e−t ,

|Png − Pg| ≤ 6R̂n

(
G′, S

)+ b

n
(
√

2t + 6t)

(A.6)

≤ 6R̂n

(
G′, S

)+ b(7t + 1)

n
∀g ∈ G′.

Denote the event where (A.6) holds by B′, and define

U ′ = 6R̂n

(
G′, S

)+ Pg + b(7t + 1)

n
.

On the event B′ we have Png ≤ U ′ for any g ∈ G′, so that

R̂n

(
G′, S

)≤ R̂n

({
g ∈ G: Png ≤ U ′}, S)≤ φn

(
U ′),

where φn(·) = φn(·,G) is an upper function for G satisfying the sub-root property. In view of this
property,

U ′ ≤ 6φn

(
U ′)+ Pg + b(7t + 1)

n
≤ 6

√
U ′√r∗ + Pg + b(7t + 1)

n
.
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Solving for
√

U ′ we get

√
U ′ ≤ 6

√
r∗ +

√
Pg + b(7t + 1)

n

and thus, on the event B′,

Png ≤ U ′ ≤ 2Pg + 72r∗ + 2b(7t + 1)

n
≤ 2Pg + 72r∗ + 14r0 ∀g ∈ G′, (A.7)

where the last inequality is due to the fact that 7t + 1 ≤ 7(t + 6 log logn) for all n ≥ 3. Combin-
ing (A.5) and (A.7), we then obtain (A.2) holds for all g ∈ G on the event B ∩ B′ of probability
at least 1 − 4e−t . �

Proof of Lemma 8. Proof of (i). We apply Lemma 2.2 in [40] for the loss function defined by
ϕ(t, y) = t2,∀t, y ∈ R. The second derivative of this function with respect to the first argument
is H = 2, that is, the function is 2-smooth in the terminology of [40]. Consider the class of
differences H = {f −g: f,g ∈F}. Then Lemma 2.2 in [40] provides the following bound for the
Rademacher complexity of the set L = {(x, y) �→ ϕ(h(x), y): h ∈H, n−1 ∑

(x,y)∈S h2(x) ≤ r}:

R̂n(L, S) ≤ 21
√

12r log3/2(64n)Rn(H).

On the other hand, L = G[r, S], and Rn(H) ≤ 2Rn(F), so that

R̂n

(
G[r, S], S)≤ 42

√
12r log3/2(64n)Rn(F).

Now define the function φn(r) as the right-hand side of this inequality. This immediately yields
a localization radius

r∗ = 12 · 422 log3(64n)R2
n(F),

and (30) follows.
Proof of (ii). Let (f − g)2 and (f̄ − ḡ)2 be two elements of G, where f,g, f̄ , ḡ ∈ F . Since all

these functions take values in [0,1] we get that, for any x ∈X ,

((
f (x) − g(x)

)2 − (
f̄ (x) − ḡ(x)

)2)2 ≤ 8
((

f (x) − f̄ (x)
)2 + (

g(x) − ḡ(x)
)2)

.

Thus, if dS(f, f̄ ) ≤ ε and dS(g, ḡ) ≤ ε for some ε > 0, then dS((f − g)2, (f̄ − ḡ)2) ≤ 4ε. This
implies the relation between the empirical entropies: N2(G, ρ, S) ≤N2(F, ρ/4, S) for all ρ > 0.
Using it together with the bound N2(F, ρ/4, S) ≤ max{1, (4A/ρ)v} and applying Lemma 10 we
obtain

R̂n

(
G[r, S], S) ≤ 12√

n

∫ √
r

0

√
logN2(G, ρ, S)dρ

≤ 12√
n

∫ √
r∧1/(4A)

0

√
v log(4A/ρ)dρ (A.8)
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≤ 48A
√

v√
n

∫ √
r/(4A)∧1

0

√
log(1/t)dt

≤ 24

√
vr

n

(
log(4eA/

√
r) ∨ 1

)1/2
,

where we have used that, integrating by parts,∫ b

0

√
log(e/t)dt = b

√
log(e/b) + (b/2)

(
log(e/b)

)−1/2

(A.9)
≤ 2b

√
log(e/b) ∀0 < b ≤ 1.

In view of (A.8), we can take φn(r) = 24
√

vr
n

(log(4eA/
√

r) ∨ 1)1/2 as an upper function in (7).

Now, we are looking for r∗, which is an upper bound on the solution of the equation φn(r) = r .
Since the function u �→ (a/u)(log(b/u) ∨ 1)1/2, for a, b > 0, is decreasing when u > 0 one
can check that u∗ = a(log(b/a) ∨ 1)1/2 as an upper bound on the solution of (a/u)(log(b/u) ∨
1)1/2 = 1 whenever b ≥ ea > 0. That is, for n ≥ Cv with C > 0 large enough depending only on
A, we can take

r∗ =
[

24

√
v

n

(
log

(
eA

6

√
n

v

)
∨ 1

)1/2]2

≤ C
v

n
log

(
en

v

)
(A.10)

for some constant C > 0 depending only on A.
Proof of (iii). For a finite class F , the covering numbers satisfy N2(F, ε, S) ≤ |F | for all ε > 0

and, along the lines of (A.8),

R̂n

(
G[r, S], S)≤ 12√

n

∫ √
r

0

√
logN2(F, ρ/4, S)dρ ≤ 12

√
r log |F |√

n
� φn(r),

so that we can take r∗ = 144(log |F |)/n. �

Proof of Lemma 11. Assume that there exists f ∗ ∈ F such that L(f ∗) = minf ∈F L(f ) (if
this is not the case, an easy modification of the proof is possible by considering an approximate
minimizer). We apply Theorem 3.3 in [4] to the class of functions G = � ◦F − � ◦ f ∗. Observe
that, for any f ∈ F , the variance of the random variable � ◦ f (X,Y ) − � ◦ f ∗(X,Y ) satisfies

Var
(
� ◦ f − � ◦ f ∗)≤ E

[((
f (X) − Y

)2 − (
f ∗(X) − Y

)2)2]≤ 2
(
L(f ) − L

(
f ∗))

and thus the assumption of Theorem 3.3 in [4] holds with B = 2. Applying that theorem with
K = 2 we get that, for any t > 0, with probability at least 1 − e−t , for any g ∈ G,

Pg ≤ 2Png + c′′
1 r̄∗ + t (22 + c′′

2)

n
,

where c′′
1 = 704, c′′

2 = 104, and r̄∗ is the solution of fixed point equation ψ(r) = r , for a function

ψ satisfying the sub-root property and the inequality ψ(r) ≥ 2ER̂n(G ∩ {2Pg ≤ r}, S′). Choose
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now a constant function ψ(r) ≡ 2ER̂n(G, S′), which trivially satisfies the sub-root property and
has the fixed point r̄∗ = 2ER̂n(G, S′). Since ER̂n(G, S′) = ER̂n(� ◦ F, S′), and Png ≤ 0 for
g = � ◦ f̂ emp − � ◦ f ∗, we obtain that, with probability at least 1 − e−t ,

L
(
f̂ emp)− L

(
f ∗)≤ 2c′′

1ER̂n

(
� ◦F, S′)+ t (22 + c′′

2)

n
,

where we have used that L(f ) = P(� ◦ f ). Next, by Lemma A.4 in [4], with probability at least
1 − e−t ,

ER̂n

(
� ◦F, S′)≤ 2R̂n

(
� ◦F, S′)+ t

n
.

Combining the results of the last two displays we find that, with probability at least 1 − 2e−t ,

L
(
f̂ emp)− L

(
f ∗)≤ 4c′′

1R̂n

(
� ◦F, S′)+ t (22 + c′′

2 + 2c′′
1)

n
. �
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