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Consider a partition of the real line into intervals by the points of a stationary renewal point process. Sub-
divide the intervals in proportions given by i.i.d. random variables with distribution G supported by [0,1].
We ask ourselves for what interval length distribution F and what division distribution G, the subdivision
points themselves form a renewal process with the same F ? An evident case is that of degenerate F and G.
As we show, the only other possibility is when F is Gamma and G is Beta with related parameters. In
particular, the process of division points of a Poisson process is again Poisson, if the division distribution is
Beta: B(r,1 − r) for some 0 < r < 1.

We show a similar behaviour of random exchange models when a countable number of “agents” ex-
change randomly distributed parts of their “masses” with neighbours. More generally, a Dirichlet distribu-
tion arises in these models as a fixed point distribution preserving independence of the masses at each step.
We also show that for each G there is a unique attractor, a distribution of the infinite sequence of masses,
which is a fixed point of the random exchange and to which iterations of a non-equilibrium configuration
of masses converge weakly. In particular, iteratively applying B(r,1 − r)-divisions to a realisation of any
renewal process with finite second moment of F yields a Poisson process of the same intensity in the limit.

Keywords: adjustment process; attractor; Dirichlet distribution; Gamma distribution; neighbour-dependent
shifts; Poisson process; random exchange; random operator; renewal process

1. Introduction

The Poisson point process is a fundamental object in Probability. Despite being a very well
studied model, recent developments in stochastic calculus, stochastic geometry, differential ge-
ometry of configuration spaces, variational analysis on measures, continue to bring new insights
and deepen our understanding of this seemingly elementary concept, see, for example, [11] and
the references therein. It is hard to overestimate the usefulness of the Poisson process in applica-
tions which are due to its appealing properties often enabling to produce mathematically tractable
models. One of such fundamental properties of the Poisson process on R

d is that whenever we
apply independent random shifts to its points, the resulting process is again Poisson. In particu-
lar, if the shifts are i.i.d., the result of such a transformation of a homogeneous Poisson process
is again a homogeneous Poisson process of the same intensity.
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The fact that random independent shifts preserve the Poisson process distribution reflects “in-
dependence” of its points. However, transformations which depend on two or more neighbouring
points destroy this independence and hence, as one may naturally think, the Poisson process. For
instance, the mid-points of the consecutive segments in a homogeneous Poisson process on the
line do not form a Poisson process, as it can be easily checked. If one considers again the mid-
points of this process, this second iteration of the initial process actually corresponds to the
transformation by which the points move to the centres of their one-dimensional Voronoi cells
(which are also their centres of gravity). Such a transformation, known as the adjustment pro-
cess, can be defined in any dimension with respect to any metric and it forms the basis of a
popular Lloyd’s algorithm in computational geometry. The adjustment process is used to model
behaviour of repulsing particles or animals, see, for example, [10], Chapter 7.3.2, Lloyd’s algo-
rithm and its variations is widely used in image compression and optimisation, see, for example,
[4] and the references therein. It can be shown that the variance of the inter-point distances in
one-dimensional adjustment model on any compact set vanishes, so iterations of the adjustment
procedure converge (in a suitable sense) to a regular array of points, see [5]. A similar phe-
nomenon of convergence to a lattice is observed in a multi-dimensional case, although questions
of the uniqueness of the limiting configuration still remain, see [3].

If dividing the consecutive segments in the Poisson process in half (as well as in any other
given non-random proportion) produces a non-Poisson process, an interesting question arises: is
there a way to divide each of the segments independently of the others in a random proportion
so that the division points still form a Poisson process?

Somewhat surprisingly, the answer is yes: the segments must be divided in Beta-distributed
proportions with parameters (r,1 − r) for some r ∈ (0,1), and this is the only class of division
distributions that preserves the Poisson process!

More generally, in Section 2 we consider a stationary renewal point process, the segments
between its consecutive points having lengths drawn independently from a distribution F . Divide
its every segment in a random proportion independently drawn from a given distribution G on
[0,1]. One may think of the processes of the division points as a transformation of the original
point process by which its every point moves to the closest division point on its right, for instance.
Since the distribution of the division points depends on the distance to the neighbouring point to
the right only, we call such transformation neighbour-dependent shifts. We show in Section 2 that
Beta-distributed shifts are the only non-trivial ones which preserve a renewal process and that a
renewal process preserved by neighbour-dependent shifts is necessarily a process with Gamma-
distributed segments. Poisson process with exponential segment lengths provides an example.

Since the resulting process has inter-point segments each composed of pieces of two original
segments, one may naturally consider general compositions involving more than two of these.
To this end, in Section 3 we establish correspondence of the neighbour-dependent shifts model
to the so-called random exchange process which allows for such a composition interpretation.
In this process a set of “agents” simultaneously exchange their “masses” with the neighbours
in randomly drawn proportions. We show that independent Gamma-distributed initial masses
are preserved by Dirichlet-distributed proportions. Moreover, we prove that the iterations of the
exchange process starting from any stationary sequence of masses with a finite second moment
weakly converge to a limit which is a sequence of independent Gamma-distributed masses in
the case of Dirichlet-distributed proportions. To our knowledge, so far only the exchange models
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with a finite number of agents were studied in the literature, the main tool here is analysis of
convergence of the product of random matrices, see [9] and the references therein. The rôle of
the agents and masses in our models play the segments and their lengths, respectively, so we have
to deal with the product of infinitely-dimensional linear operators instead. Although the results
of Section 3 are somewhat reminiscent of the finite case, the behaviour in this non-compact
framework is rather different.

Throughout this paper, �(a, γ ) denotes the Gamma distribution with shape parameter α > 0
and rate parameter γ > 0, its density is given by

γ α

�(α)
xα−1e−γ x, x > 0,

and B(α,β) is the Beta distribution, α > 0, β > 0 with density

�(α + β)

�(α)�(β)
xα−1(1 − x)β−1, x ∈ (0,1).

More generally, a random vector X = (X1, . . . ,Xr) with support on a (r − 1)-dimensional
simplex {(x1, x2, . . . , xr ) : x1 +x2 +· · ·+xr = 1}, r ≥ 2 has a Dirichlet distribution with positive
real parameters (α1, α2, . . . , αr) if its multidimensional density is given by

�(
∑r

i=1 αi)∏r
i=1 �(αi)

r∏
i=1

x
αi−1
i .

We write X ∼ Dirichlet(α1, α2, . . . , αr). Note that for a random variable b, b ∼ B(α,β) is
equivalent to (b,1 − b) ∼ Dirichlet(α,β). Furthermore, if Yi, i = 1, . . . , r are independent ran-
dom variables Yi ∼ �(αi, γ ) with a common γ > 0, then the vector (Y1/Y, . . . , Yr/Y ), where
Y = Y1 + · · · + Yr , has Dirichlet(α1, . . . , αr) distribution.

2. Invariance under neighbour-dependent shifts

The main object of our study in this section is a stationary point process without multiple points
T on the real line. Each realisation of T can be associated with a countable set of the intervals
I(T ) = {Ik}k∈Z between its consecutive points. Given a realisation, we are going to introduce its
transformation which involves dividing the segments between its consecutive points in a random
proportion drawn independently from a given distribution and then studying the distribution of
the resulting process of the division points. We fix a division distribution G supported by [0,1]
and define the following (random) operator �G acting on the set of countable subsets of R

without accumulation points:

�GT = T ′ = {
c(I ) : I ∈ I(T )

}
,

where c(I ) = x + bI (y − x) for an interval I = (x, y) ∈ I(T ) and bI is a random variable taken
from the distribution G independently of anything. Geometrically, one may think that every point
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x of T is shifted to a new location c(I ), where I is the interval to the right from x, this is why we
call �G the neighbour-dependent shift operator. Alternatively, the shift operator can be thought
of as a non-stochastic operator �G acting on the distributions of stationary processes since the
stationarity is preserved. Obviously, when G is concentrated on 0 or on 1, the corresponding
operator �G preserves the distribution of any stationary point process.

We do not specify how exactly the indexing of the intervals is done. A common way to define
I0 as the zero-interval, that is, the one containing the origin, introduces a size bias. In addition,
the zero-interval I ′

0 of T ′ may be composed either of pieces of I0 and I1 or of I−1 and I0. To
avoid unnecessary technicalities involving either reindexing of T ′ or a point-stationary indexing
of T , we choose to work with the Palm version of the underlying point process instead.

It is well known that there is one-to-one correspondence between the distributions of a sta-
tionary point process with finite intensity and of a stationary sequence T = (τk)k∈Z of positive
random variables with finite mean. This sequence is related to the Palm version of the point pro-
cess: under the Palm distribution there is almost surely a point T0 = 0 of the process at the origin,
and if Tn denotes the |n|th closest process point to the origin on the positive semi-axis for n ≥ 1
and on the negative semi-axis for n < 0, then τk = Tk − Tk−1, k ∈ Z, represents the lengths of
the kth inter-point interval Ik . In the case of a renewal process, the sequence T is i.i.d. drawn
from a distribution F with finite mean. Relation between the distributions of the point process
and the corresponding stationary sequence is given in general by the Ryll–Nardzewski exchange
formula, see, for example, [2], Section 13.3, for details.

This allows us to define a stochastic exchange operator �G acting realisationwise on T as
follows: take an i.i.d. sequence {bk}k∈Z of G-distributed random variables and set

�GT = T ′ = (
τ ′
k

)
k∈Z where τ ′

k = (1 − bk)τk + bk+1τk+1. (1)

The main result of this section is a characterisation of the class of fixed points of the exchange
operator �G, and thus of the random shift operator �G (more exactly, of the operator �G). The
degenerate distribution concentrated at point x is denoted by δx .

Theorem 1. Let T be an i.i.d. sequence of positive integrable random variables with the distri-
bution F corresponding to a stationary renewal process T and �G be the exchange operator (1).

Then �G(T )
D= T , and thus �G(T )

D= T , if and only if one of the following alternatives is true:

(i) F = �(α,γ ) and G = B(rα, (1 − r)α) for some constants α > 0, γ > 0 and r ∈ (0,1),
(ii) F = δs for some s ∈ (0,∞) and G = δb for some b ∈ [0,1].

Proof. Necessity. Considering three consecutive elements X,Y,Z in T , we note that �G(T ) =
T ′ D= T implies, in particular, that the two consecutive elements in T ′ they contribute to, should
also be independent, identically distributed with F , which in turn implies the following condition:

If X,Y,Z are independent F -distributed random variables and a, b, c are independent G-distributed, then the
random variables

(1 − a)X + bY, (1 − b)Y + cZ

are also independent and F -distributed.
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In terms of the Laplace transforms, for x1, x2 < 0 we obtain:

φ(1−a)X+bY,(1−b)Y+cZ(x1, x2) = E exp
{
x1

(
(1 − a)X + bY

) + x2
(
(1 − b)Y + cZ

)}
= E exp

{
x1(1 − a)X

}
E exp{x2cZ}E exp

{
x1bY + x2(1 − b)Y

}
= φ(1−a)X(x1)φcZ(x2)φbY,(1−b)Y (x1, x2).

On the other hand, the independence of (1 − a)X + bY and (1 − b)Y + cZ implies

φ(1−a)X+bY,(1−b)Y+cZ(x1, x2) = φ(1−a)X+bY (x1)φ(1−b)Y+cZ(x2)

= φ(1−a)X(x1)φbY (x1)φ(1−b)Y (x2)φcZ(x2),

and hence

φ(1−b)Y,bY (x1, x2) = φ(1−b)Y (x1)φbY (x2),

so the random variables η1 = bY and η2 = (1 − b)Y are independent.
Let us first suppose Y ∼ F is degenerate. Then the only case when Y is a sum of the two

independent random variables bY and (1 − b)Y is when both of them are degenerate, too. That
means, the random variable b ∼ G must be degenerate, leading us to alternative (ii).

Suppose now that Y ∼ F is non-degenerate. Then so are η1 and η2. In that case, if we put b =
η1/(η1 +η2) and Y = η1 +η2, then (b,1−b) and Y can be understood as a shape vector and a size
variable of the random vector (η1, η2). Note that b and Y are independent by construction, that
is, the shape is independent of the size. Therefore, the only possibility for the joint distributions
of η1, η2 is for them to be independent, Gamma-distributed with some positive shape parameters
a1, a2 and a common rate γ , as given by the Lukacs theorem [8]. Put r = a1/(a1 + a2) and
α = a1 + a2. Then b becomes B(rα, (1 − r)α)-distributed and Y conforms to �(α,γ ), proving
the alternative (i).

Sufficiency. The alternative (ii) trivially leads to the invariance.
For the sufficiency in case (i) it is enough to notice that due to the Lukacs theorem [8], for

every k ∈ Z the random variables τkbk and τk(1 − bk) are independent, distributed as �(rα, γ )

and �((1 − r)α, γ ), respectively. Hence, the random variable τ ′
k = (1 − bk)τk + bk+1τk+1 is

again Gamma-distributed, and moreover, it is independent of τ ′
k+1 = (1−bk+1)τk+1 +bk+2τk+2,

since all their summands are mutually independent. Hence, the sequence {τ ′
k}k∈Z is again i.i.d.,

τ ′
0 ∼ �(α,γ ), thus finishing the proof. �

Remark 1. Since a homogeneous Poisson process with rate γ has exponential �(1, γ ) dis-
tributed inter-point distances, the Beta division point distribution G = B(r,1 − r) for some
0 < r < 1 is the only non-degenerate distribution preserving the Poisson process.

Remark 2. The process formed by every second point in a homogeneous Poisson process is a
renewal process with �(2, γ )-distributed inter-point distances. Thus a uniform division distri-
bution which is also G = B(1,1) preserves it. This also follows from a known elementary fact
that if X,Y are independent Exponentially-distributed random variables and U is a uniform vari-
able independent of them, then U(X + Y) and (1 − U)(X + Y) are independent Exponentially-
distributed random variables.
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3. Random exchange model: Fixed points and convergence

As we have shown in the previous section, Beta division distribution G defines a neighbour-
dependent shift operator which preserves a renewal process with gamma-distributed inter-point
distances. Two immediate questions arise. Suppose we start from a renewal process realisation
T which is not Gamma and apply the operator �G to it iteratively. Will the iterations �

(n)
G (T ) =

�G(�
(n−1)
G (T )) converge to a Gamma renewal process? The answer is yes, provided the inter-

point distances have a finite second moment. Another question: if the “new” inter-point intervals
are composed of more than two “old” ones, how much of the previous results still hold? We show
below that Gamma-distributed renewal process appears again, but the rôle of the Beta distribution
is now played by the Dirichlet distribution.

Recall that at each iteration of �G each inter-point segment, independently of everything else,
cuts a G-distributed proportion of its length and passes it to the segment to the right of it, while
at the same time receiving a portion of length from the interval to the left of it.

If we regard the intervals as “agents”, and their lengths as “masses”, then the shift procedure
defined by (1) can be interpreted as a simultaneous random exchange, where at each application
of �G every agent i splits its current mass τi into two random pieces in proportion bi : 1−bi and
shares it between itself and its neighbour to the right, while at the same time receiving a piece of
length of its neighbour to the left. More generally, we define a random mass exchange model in
discrete time as follows.

Consider a countable collection of agents, labelled by a sequence of integers i ∈ Z. Each agent
is supplied with a non-negative entity called its mass. Assume that at the beginning of step n the
ith agent has mass τn

i , starting from some initial mass (row-)vector τ 0 = (τ 0
i )i∈Z at n = 0. Then

each agent i samples a new vector of proportions (πi,j (n + 1))j∈Z,
∑

j πi,j (n + 1) = 1, and
distributes all of its mass between itself and other agents accordingly, so that agent j gets a
portion τn

i πi,j (n + 1) of its mass from i, or, in the vector form,

τn+1 = τn(n + 1), n = 0,1,2, . . . . (2)

Here

(n) = (
πij (n)

)
i,j∈Z, n = 1,2, . . .

is a mass exchange (two-side infinite) matrix, with proportion vectors (πi,j (n))j∈Z as its rows.
Obviously for every n, (n) is row-stochastic:

• πij (n) ≥ 0, i, j ∈ Z, n = 1,2, . . . .

• ∑
j∈Z πij (n) = 1, i ∈ Z, n = 1,2, . . . .

The mass exchange model can be regarded as a discrete version of a randomised Potlatch
process first defined in [6,7], where instead of having a Poisson clock at each site, all of the sites’
transitions are synchronised.

For the sequel we assume two conditions on the initial mass configuration τ 0:

(A1) τ 0
i are non-negative i.i.d. random variables for different i ∈ Z with μ = Eτ 0

i < ∞;
(A2) The second moments of initial masses are finite: σ 2 = var τ 0

i < ∞.
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To stay in the stationary framework, we will also assume that the random exchange model is
translation invariant on Z:

(B) There exists a random probability sharing distribution (πj )j∈Z on Z such that the vectors
(πi,i+j (n))j∈Z for different i ∈ Z, and n = 1,2, . . . are i.i.d. copies of (πj )j∈Z.

Introduce pij = Eπij (n) and pi = Eπi, i, j ∈ Z, n = 1,2, . . . . Condition (B) implies that the
matrix of proportions’ expected values

P = (pij )i,j∈Z

does not depend on n and the following local balance condition is satisfied for all n ∈ N and
j ∈ Z:

E
∑

i

πij (n) =
∑

i

p0,j−i =
∑

k

pk = 1. (3)

Here and below the indices in the sums run over all integers, unless specified otherwise.
We will also use the following notation for matrix products:

(1 : n) = (1) · · ·(n), (n : 1) = (n) · · ·(1).

Note that the neighbour-dependent shifts in the previous section can be regarded as a random
exchange model with the two-diagonal exchange matrix (n) = (πi,j (n))i,j∈Z given by

πi,j (n) =
⎧⎨⎩

1 − bi(n), i = j ,

bi(n), i = j + 1,

0, otherwise,

where bi(n), i ∈ Z, n = 1,2, . . . are i.i.d. with distribution G.
Random walk in random environment (RWRE). There is a correspondence between the random

exchange (2) and a certain version of RWRE which we define here.
Assume the translation invariance condition (B). Introduce {Wn}n≥0, a random walk in a ran-

dom environment (RWRE) on Z, governed by the random transition probabilities πi,i+j (n), con-
ditional on the environment E = σ({(n)}n≥1):

P
(
Wn+1 = i + j |Wn = i,E

) = πi,i+j (n + 1)
D= πj .

Then its n-step transition matrix is given by (1 : n).
In this interpretation of RWRE, the environment is resampled on every step n = 1,2, . . . .

Note that if we integrate out the environment, then due to independence of (n) we can regard a
single random walker’s trajectory as a usual time-homogeneous random walk on Z with transition
probabilities given by

P
(
Wn+1 = i + j |Wn = i

) = Eπi,i+j (n + 1) = pj , i, j ∈ Z,n = 1,2, . . . .

However if there is more than one random walker, the joint dynamics are more involved.
Below we will be interested in running several copies of Wn together in the same realisation
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of the environment {πi,i+j (n)}. In particular, we are going to consider the process Zn of the
difference between two conditionally on E independent copies Wn, W̃n of such a random walk:

Zn = Wn − W̃n, n = 1,2, . . . .

Note that given E , Zn is not a random walk, and not even a Markov chain, since we have to
know the positions of both walkers to determine the conditional probabilities for the next step
of Zn. However, if we integrate out the environment, Zn becomes a Markov chain on Z with the
transition probabilities

P
(
Zn+1 = i + j |Zn = i

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

j1−j2=j

Eπj1πj2, i = 0,

∑
j1−j2=j

pj1pj2 , i �= 0.
(4)

Having this machinery at hand, we are ready to prove the sufficient conditions for existence
and uniqueness of an equilibrium point of a random exchange model. Below we use notation
“⇒” to denote the weak convergence of a sequence of infinite random sequences, meaning the
weak convergence of all of their finite-dimensional sub-vectors.

Theorem 2. Under condition (B), there exists a unique (up to a distributional copy and scal-
ing by a constant factor) fixed point for dynamics (2), i.e. a sequence τ∞ = (τ∞

i )i∈Z of (not
necessarily independent) random variables, independent of {(n)}n≥1 such that:

(i) τ∞(1)
D= τ∞,

(ii) for any τ 0 satisfying (A1)–(A2), independent of {(n)}n≥1,

τ 0(1 : n) ⇒ τ∞ as n → ∞. (5)

Proof. Introduce a dual version of the process:

τ̃ n = τ 0(n : 1).

The proof is based on the distributional equality:

τ̃ n D= τn,

that holds for any fixed n = 1,2, . . . .

First, prove the theorem for the constant initial conditions θ0 = 1, where 1 is the sequence of
ones: θ0

j = 1 for all j ∈ Z. Denote by π̃n
ij the elements of the matrix (n : 1) and by Bn the

σ -algebra generated by {(k), k = 1, . . . , n}. Denoting θn = θ0(n : 1), we have that

E
[
θn+1
j |Bn

] = E
[∑

i

π̃n+1
ij

∣∣∣Bn

]
= E

[∑
i

∑
k

πik(n + 1)π̃n
kj

∣∣∣Bn

]
(6)

=
∑

k

π̃n
kj E

∑
i

πik(n + 1).
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Due to (3), E
∑

i πik(n + 1) = 1 for any k ∈ Z, so we continue (6) with∑
k

π̃n
kj E

∑
i

πik(n + 1) =
∑

k

π̃n
kj = θn

j .

Thus, for every j , the sequence {θn
j }n≥0 is a non-negative martingale, therefore it has an almost

sure limit, call it θ∞
j . The sequence θ∞ = (θ∞

j )j∈Z obviously satisfies (i) as well as (ii) for the

initial condition θ0 = 1. Moreover,

var θn
j = var

∑
i

π̃n
ij ≤ E

(∑
i

π̃n
ij

)2

= E
∑

i

(
π̃n

ij

)2 + E
∑

k,l,k �=l

π̃n
kj π̃

n
lj

≤
∑

i

E
(
π̃n

ij

)2 +
∑
k �=l

pkpl ≤
∑

i

E
(
π̃n

ij

)2 + 1.

Below in (10) we show that
∑

i E(π̃n
ij )

2 vanishes as n → ∞, so for any j the martingale {θn
j }n≥0

is bounded in L2 and hence it converges in L2. Therefore any finite subvector of θn converges in
L2 as well.

Moving to the general case, assume τ 0 is arbitary, satisfying (A1), (A2). Define

�n = �0(n : 1) where �0 = τ 0 − μ1.

Now we can rewrite τ̃ n as the sum:

τ̃ n = �n + μθn. (7)

The second term on the right-hand side converges to the limit μθ∞ := τ∞ coordinate-wise al-
most surely and in L2 as n → ∞. Now show that each coordinate of the first term vanishes in L2

as n → ∞, this will imply the desired weak convergence in (ii).
The variance of �n

j is given by the following expression:

var�n
j = var

∑
i

�0
i π̃

n
ij =

∑
i

var�0
i π̃

n
ij +

∑
i �=k

cov
(
�0

i π̃
n
ij ,�

0
kπ̃

n
kj

)
(8)

=
∑

i

E
(
π̃n

ij

)2E
(
�0

i

)2 = σ 2
∑

i

E
(
πn

ij

)2
.

Here the third equality is based on the following fact that can be checked directly: if ξ, η,X,Y

are random variables such that (X,Y ) is independent of (ξ, η) and cov(X,Y ) = 0, then

cov(ξX,ηY ) = EXEY cov(ξ, η),

implying all the covariance terms in (8) are 0.
We now prove that E

∑
i (π

n
ij )

2 → 0, n → ∞ by making use of the RWRE construction intro-

duced earlier in this section. Let Wn, W̃n,n = 0,1, . . . be the two copies of conditionally inde-
pendent (given E ) RWRE with transition probabilities (n), and let Zn = Wn−W̃n, n = 0,1, . . .

with W 0 = W̃ 0 = j . As already noted, Zn is a Markov chain, with transition probabilities (4).
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The key observation is the following:

P
(
Zn = 0

) = E
∑

i

P
(
Wn = W̃n = i + j |E) = E

∑
i

(
πn

j,i+j

)2
, (9)

where the last equality follows from the conditional independence of Wn, W̃n. Now, use the
translation invariance (B) to continue:

E
∑

i

(
πn

j,i+j

)2 =
∑

i

E
(
πn

j−i,j

)2 =
∑

i

E
(
π̃n

ij

)2
.

It is easy to see that 0 is a null state of the Markov chain Zn. Indeed, starting from 0, Zn leaves
0 after a geometrically distributed with parameter (1 − ∑

i Eπ2
i ) number of steps, and while out

of 0, Zn behaves as a symmetrical random walk on integers, therefore

P
(
Zn = 0

) =
∑

i

E
(
π̃n

ij

)2 → 0, n → ∞, (10)

hence by (8), �n
j tends to 0 in L2 for any j .

We have shown that both terms in the decomposition (7) converge in L2 coordinate-wise:

τ̃ n
j

L2→ τ∞
j for all j ∈ Z, which in turn implies the weak convergence τn ⇒ τ∞, as well as the

uniqueness of the distribution of τ∞, thus finishing the proof. �

The finite second moment condition (A2) is essential for the convergence (5) even in much
more restrictive settings than ours as the following example shows.

Example 1. Assume that all exchange proportions are non-random πi,i+j (n) = pj with p−1 =
1 − p0 = p ∈ (0,1) and pj = 0, j ∈ Z \ {0,−1}. Then

τn
0 =

n∑
j=0

τ 0
j pj (1 − p)n−j

(
n

j

)
(11)

and the (almost sure) limit of the latter expression when n goes to infinity, if it exists, is called
the Euler sum of the sequence τ 0 = (τ 0

j )j∈Z with parameter p. If τ 0 is a sequence of i.i.d.

random variables, the almost sure limit of (11) exists if and only if the second moment of τ 0
0

is finite, see [1], Theorem 1, and the references therein. In that case the limit is equal to μ =
Eτ 0

0 .

Corollary 1. If the vector of proportions π is distributed as π
D= (η(i))i∈Z, where η is a Dirichlet

process on Z with a parameter non-negative measure α, α(Z) = a < ∞, then the fixed point of a
random exchange process is a vector τ∞ of independent �(a, γ )-distributed random variables.
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In particular, if τ 0 satisfies the conditions (A1), (A2), then

τ 0(1 : n) ⇒ τ∞,

where the components of τ∞ are independent, with distribution �(a, γ ) where γ = a/μ =
a/Eτ 0

0 .

When α0 = (1 − r)α and α1 = rα for some α > 0 and r ∈ (0,1), the statement of the last
corollary is the sufficiency part of Theorem 1(i). It is still an open question, whether the necessity
statement holds for the sharing proportion distribution π with the support on more than two
neighbours.

A partial answer is provided by the next theorem: in the case when π is exchangeable on some
finite subset of Z, the only scenario for which the masses of different agents in the equilibrium
are independent is indeed when π has a Dirichlet distribution.

Theorem 3. Assume the conditions (A1), (A2), (B) are satisfied. Assume additionally, that the
support of π is almost surely in a compact set: |K| = |{i ∈ Z : P(πi > 0) > 0}| < ∞, and that
every non-zero subvector of π is exchangeable. Then

τ ′ = τ
D= τ (12)

if and only if the components of τ are Gamma-distributed: τj ∼ �(a, γ ) for some a, γ > 0 and
π is Dirichlet-distributed: (πi)i∈K ∼ Dirichlet((a/|K|)i∈K).

Proof. For the simplicity of the presentation, take K = {0,1,2, . . . ,m}, m ≥ 1.
The “if” part follows directly from the shape vs. size independence property of Gamma ran-

dom vectors, as in the proof of Theorem 1. Now prove the “only if” part.
First, consider the joint distribution of the two components of τ ′ which are at distance m:

(τ ′
0, τ

′
m). By the invariance assumption they are independent, that is, in terms of Laplace trans-

forms we have:

φτ ′
0,τ

′
m
(x1, x2) = φτ ′

0
(x1)φτ ′

m
(x2)

(13)

=
0∏

i=−m

φτiπi0(x1) ×
m∏

j=0

φτj πjm
(x2).

Alternatively, we can express the Laplace transform of the pair (τ ′
0, τ

′
m) directly, taking into

account the independence of τiπij for different i:

φτ ′
0,τ

′
m
(x1, x2) = E exp

{
x1τ

′
0 + x2τ

′
m

}
= E exp

{
x1

0∑
i=−m

τiπi0 + x2

m∑
j=0

τjπjm

}
(14)
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=
−1∏

i=−m

E exp{x1τiπi0} × E exp{x1τ0π00 + x2τ0π0m} ×
m∏

j=1

E exp{x2τjπjm}

=
−1∏

i=−m

φτiπi0(x1) × φτ0π00,τ0π0m
(x1, x2) ×

m∏
j=1

φτj πjm
(x2).

Comparing (13) and (14), we conclude that the two quantities τ0π00, τ0π0m are independent.
Since the distribution of the vector (π00,π01, . . . , π0m) is exchangeable, the random variables
τ0π00, τ0π01, . . . , τ0π0m are pairwise independent.

Next, consider the joint Laplace transform of the three components in τ ′: say, τ ′
0, τ ′

1 and τ ′
m.

We can repeat the previous argument to arrive at the conclusion that the joint Laplace transform
of the three quantities τ0π00, τ0π01, τ0π0m factorises into the product of their marginal Laplace
transforms, making them mutually independent. Using the exchangeability assumption, we con-
clude that the random variables τ0π00, τ0π01, . . . , τ0π0m are 3-independent.

Repeating this argument m times yields the joint independence of all the components of the
random vector (τ0π00, τ0π01, . . . , τ0π0m). Notice that (π00,π01, . . . , π0m) is its shape vector and
τ0 is its size variable. Moreover, τ0 is independent of (π00,π01, . . . , π0m) by construction, so the
application of the Lukacs theorem [8] finishes the proof. �

4. Open problems and generalisations

The models we have considered here admit a variety of generalisations and raise many intriguing
questions. First of all, the already mentioned extension of Theorem 3 to a non-exchangeable shar-
ing distribution would give a generalisation of Theorem 1. We conjecture that a non-degenerate
i.i.d. limiting sequence τ∞ is possible only for a Dirichlet sharing distribution π , but a counterex-
ample may well exist. If, however, the conjecture is true, there are arguments that a more general
statement may hold without assuming shift-invariance of  = (πij ). For instance, the agents may
be indexed by another countable group such as Z

d with d ≥ 2 rather than by Z. Assume there
exists a sequence q = (qk)k∈Z satisfying the balance equation qP = q for the matrix P of the
expectations pij = Eπij . Using the same relations between Gamma and Dirichlet distributions,
one can show that the distribution of the vector of masses τ 0 with independent components τ 0

i

distributed as �(aqi, γ ) with some a, γ > 0 is left invariant by the following sharing distributions
now depending on the node k: (πki)i∈Z ∼ Dirichlet((aqkpki)i∈Z), k ∈ Z. In the shift-invariant
case πij = πj−i for all i, j ∈ Z, the unit sequence 1 satisfies the balance equation and we obtain
Corollary 1. It is interesting if this is the only possibility to have non-trivial independent masses
as a fixed point.

Finally, an intriguing question is, if there exists a fixed point for multi-dimensional analog
of the neighbour-dependent shifts models. For a point process in R

d, d ≥ 2 neighbouring rela-
tion can be defined in many different ways, for instance, neighbours can be declared the nodes
connected by en edge in any stationary graph having the process points as vertices. We already
mentioned in the Introduction the adjustment process where the nodes move to the centre of
mass of their Voronoi cells. This provides an example of a shift depending on the Delaunay
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graph neighbours with a hexagon lattice vertices in R
2 left intact. If there are any non-degenerate

point processes preserved by these neighbouring shifts is an open question, as well as if there are
neighbour-dependent shifts of any kind preserving a multi-dimensional Poisson process. Note
in this respect that even the balance equation is hard to satisfy on stationary graphs in R

d , the
reason being typically unbounded degree of their vertices.
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