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On the continuity of Lyapunov exponents of
random walk in random potential
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We consider a simple random walk in an i.i.d. nonnegative potential on the d-dimensional cubic lattice Zd ,
d ≥ 3. We prove that the Lyapunov exponents are continuous with respect to the law of the potential. In the
quenched case, we assume that the potentials are integrable whilst there are no additional conditions in the
annealed case.
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1. Introduction

Let Sn,n ∈ N be the simple random walk on Zd . We denote by Px and Ex the probability measure
and the expectation, respectively, of the simple random walk starting from position x. Indepen-
dently of the random walk, we give ourselves a family of independent and identically distributed
random variables V (x,ω), x ∈ Zd taking values in [0,∞] that we call the potentials. They are
defined on a probability space (�,F,P) with associated expectation E.

For y ∈ Zd , let us write H(y) for the hitting time of the walk at site y,

H(y) := inf{n ≥ 0 : Sn = y}, (1.1)

with the convention that inf∅ = +∞. For any x, y ∈ Zd , ω ∈ � we define:

e(x, y,F,ω)
(1.2)

:= Ex

(
exp

(
−

H(y)−1∑
m=0

V (Sm,ω)

)
,H(y) < ∞

) (
e(x, y,F,ω) = 1 if x = y

)
,

where F is the distribution function of V (0). Let us define:

a(x, y,F,ω) := − ln e(x, y,F,ω) ∈ [0,∞[ , (1.3)

and

b(x, y,F ) := − lnE
(
e(x, y,F,ω)

)
. (1.4)

The quantity a(x, y,F,ω) can be interpreted as measuring the cost of traveling from x to y of
the random walk in the potential V . For x = (x1, x2, . . . , xd) ∈ Zd , |x| denotes the �1-norm of x,
|x| = |x1| + |x2| + · · · + |xd |. And |A| is the cardinal of the set A.

1350-7265 © 2017 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/15-BEJ753
mailto:Thi-Thu-Hien.Le@univ-brest.fr


Continuity of Lyapunov exponents 523

Theorem A (Zerner [19]). Let V be a potential such that EV (0) < ∞. Let F be its distribution
function. Then there is a nonrandom norm αF (·) on Rd , such that P-a.s. and in L1(P), for all
x ∈ Zd :

lim
n→∞

1

n
a(0, nx,F,ω) = lim

n→∞
1

n
E

(
a(0, nx,F,ω)

) = inf
n∈N

1

n
E

(
a(0, nx,F,ω)

) = αF (x). (1.5)

The norm αF is called the quenched Lyapunov exponent. Moreover, αF is monotone with respect
to the law of the potential: that is, if F1,F2 are distribution functions with finite means such that
F1 ≥ F2 (that is F1(t) ≥ F2(t) for all t ∈ R), then αF1(x) ≤ αF2(x) for all x ∈ Zd . Moreover, the
norm αF (·) satisfies:

− ln
∫

e−t dF (t) ≤ αF (x)

|x| ≤ ln(2d) +
∫

t dF (t). (1.6)

Theorem B (Flury [5]). Let V be a potential such that P(V = ∞) < 1. Let F be its distribution
function. Then there is a nonrandom norm βF (·) on Rd , such that for all x ∈ Zd :

lim
n→∞

1

n
b(0, nx,F ) = inf

n∈N
1

n
b(0, nx,F ) = βF (x). (1.7)

The norm βF is called the annealed Lyapunov exponent. βF is monotone with respect to the law
of the potential: that is, if F1,F2 are distribution functions such that F1 ≥ F2, then βF1(x) ≤
βF2(x) for all x ∈ Zd . The norm βF inherits from b(0, x) the following upper and lower bounds:

− ln
∫

e−t dF (t) ≤ b(0, x,F )

|x| ≤
(

ln 2d − ln
∫

e−t dF (t)

)
. (1.8)

By Jensen’s equality, βF ≤ αF . Moreover, it was shown by Zygouras [20] that for d ≥ 3, for
every λ > 0 there is γ ∗(λ) > 0 such that for all γ ∈]0, γ ∗(λ)[ : αF (·) ≡ βF (·) (where F is the
distribution function of the potential λ + γV ).

Theorems A and B are analogous to the existence of the time constant in first passage per-
colation. The analogy between first passage percolation and random walk in random potential
was first described by Zerner [19]. Moreover, he also proved an analogue of the shape theorem
of Cox and Durrett [3]. Recently, Sodin [15] proved two theorems on concentration inequalities
for random walk in random potential which are counterparts of Talagrand [18] and Benjamini–
Kalai–Schramm [1]. Although first passage percolation and random walk in random potential
have many similarities, the techniques used in proofs are often very different. In particular, the
use of geodesics is specific to first passage percolation. In this respect, conditions (ii) and (iii) in
the abstract theorem below can be simplified when dealing only with first passage percolation.

Many aspects of the Lyapunov exponents of random walk and of Brownian motion in ran-
dom potential have already been considered. The groundbreaking work appeared in Sznitman’s
book [17]. Kosygina–Mountford–Zerner [9] considered the behavior of the quenched and the
annealed Lyapunov exponents as the potential tends to zero. They showed that both exponents
asymptotically behave in the same way. Mourrat [10] gave optimal conditions for the existence
of Lyapunov exponents, and for appropriate versions of the shape theorem.



524 L.T.T. Hien

In this paper, we study the continuity of Lyapunov exponents for random walk with respect
to the law of the potential assuming independence. The continuity property of the Lyapunov
exponents for Brownian motion in a stationary potential was investigated by Rueß [12]. He also
provided some interesting counter examples. For first passage percolation, Cox and Kesten [2,
4,7] proved the continuity of the time constant with respect to the law of the passage time.
Scholler [13] also studied this question for a random coloring model which is a dependent first
passage percolation model. Random walk in a random potential also shares many similarities
with random polymer although in this model the average is taken over paths of same length. For
random walk in random polymer, when the potential is a function of an ergodic environment
and steps of the walk, Lemma 3.1 of [11] showed the Lp continuity (p > d) of the quenched
point-to-point free energy with respect to the law of the potential.

We now state our main results. We denote by D the set of distribution functions F which
assign probability 1 to [0,+∞[ and such that F(0) < 1. And D1 denotes the subset of D which
contains all distribution functions of finite mean.

Theorem 1.1. Let d ≥ 3. Assume that (Fn) is a sequence of distribution functions in D1 such
that there is a distribution function G ∈D1, G ≤ Fn for all n. If Fn

w→ F , then limn→∞ αFn(x) =
αF (x) for all x ∈ Rd and the convergence is uniform on any compact set of Rd .

Theorem 1.2. Let d ≥ 3. Assume that (Fn) is a sequence of distribution functions in D such that
Fn

w→ F , F ∈ D. Then limn→∞ βFn(x) = βF (x) for all x ∈ Rd and the convergence is uniform
on any compact set of Rd .

Remark 1.1. The simple random walk is transient on Zd when d ≥ 3. This is an important
property in our work (see (2.5)). In Propositions 2.6 and 3.4, we consider the cases d = 1,2.

Now, we extract from the work of Cox [2] a set of sufficient conditions in order to formu-
late his theorem in a very general context. Its proof still holds with some minor modifications.
This abstract theorem is given in Theorem 1.4 below. It combines the results of Proposition 4.4,
Lemma 4.7 and the proof of Theorem 1.14 in [2]. In our applications of the abstract theorem to
Lyapunov exponents, we always take D2 = D1 and the condition (iii) holds for all 0 < c < 1.
Condition (iv) will be trivially satisfied since D2 = D1. But this general formulation allows its
use in first passage percolation. F ∗ G denotes the convolution of F and G. The following three
truncated distribution functions will appear in condition (iv) of Theorem 1.4.

Definition 1.3. For a distribution function F , for ξ > 0, t0 > 0,

Fξ (t) :=
⎧⎨
⎩

0, if t < 0,

F (ξ), if 0 ≤ t < ξ,

F (t), if ξ ≤ t ,
F t0(t) :=

{
0, if t < t0,
F(t), if t ≥ t0
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and for 0 < ξ < t0,

F̂
ξ
t0
(t) :=

⎧⎨
⎩

0, if t < t0 − ξ ,
F(t0 + ξ), if t0 − ξ ≤ t < t0 + ξ ,

F(t), if t0 + ξ ≤ t .

Theorem 1.4 (An abstract theorem). Let μ: D1 −→R+,F 	→ μ(F) be a map that satisfies:

(i) μ(F) ≤ μ(G) for all F,G ∈ D1 such that F ≥ G, and the following three conditions for
some subsets D2 of D1.

(ii) For all F ∈D2, there exist c1(F ) > 0 and f1(F ) > 0 such that:
(1) μ(F ∗ G) ≤ μ(F) + c1(F )f1(F )

∫
t dG(t) for all G ∈D1,

(2) c1(F ) ≤ c1(G) for all F,G ∈ D2 such that F ≥ G,
(3) limn→∞ f1(Fn) = f1(F ) for all Fn,F ∈ D2 such that Fn

w→ F .
(iii) There exists a positive constant c such that for all F ∈ D2 and for all t0 > 0 satisfying

F(t0) < c, there exist c2(F ) > 0 and f2(t0,F ) such that :

(1) |μ(F t0) − μ(F)| ≤ c2(F )f2(t0,F ),
(2) c2(F ) ≤ c2(G) for all F,G ∈D2 such that F ≥ G,
(3) limn→∞ f2(t0,Fn) = 0 for all Fn ∈D2 such that limn→∞ Fn(t0−) = 0.

(iv) If F ∈D2, F̂
ξ
t0

, F t0 , Fξ are in D2 for all t0 > 0 and for ξ > 0 small enough.

Then lim infn→∞ μ(Fn) ≥ μ(F) if Fn
w→ F , Fn,F ∈D2.

We now explain briefly the application of this theorem in first passage percolation. The re-
sult of [2] is the continuity of the time constant μ in F with respect to weak convergence
in Z2. Suppose that Fn

w→ F,Fn,F ∈ D1. If F(0) ≥ pc where pc is the critical probabil-
ity of percolation, obviously, lim infn→∞ μFn ≥ 0 = μF . Let D2 = {F ∈ D1,F (0) < pc}. The
time constant μ verifies all the conditions of Theorem 1.4. Indeed, by Proposition 4.4 in [2],
μF∗G ≤ μF +μF

1
a(U)

∫
t dG(t) for all F , U ∈ D2, F ≤ U , G ∈D1. By Lemma 4.7 in [2], for all

F ∈ D2 and t0 > 0 such that p := F(t0) < 1
r
, we have |μFt0 − μF | ≤ μF

γ −1
p (1/r)

1−γ −1
p (1/r)

where r > 2

is the connectivity constant of Z2 and γp(x) = (
p
x
)x(

1−p
1−x

)1−x . Note that limp→0 γ −1
p (x) = 0 for

0 < x < 1. Thus, (ii) and (iii) of Theorem 1.4 hold with c1(F ) = c2(F ) = μ(F), f1(F ) = 1
a(U)

,

f2(F ) = γ −1
p (1/r)

1−γ −1
p (1/r)

where U ∈ D2 such that Fn,F ≤ U for all n large enough. By the right-

continuity of F , (iv) is verified.
For our model, Mourrat [10] showed that n−1a(0, nx,ω) converges in probability for all x ∈

Zd if and only if V (0) < ∞ a.s. This defines Lyapunov exponents. However, our arguments are
not suitable to prove that they are continuous with respect to the law of V (0). Cox and Kesten
[4,7] also considered first passage percolation on Zd , d ≥ 1 with nonintegrable passage times.
But to prove the continuity of the time constant, they used some techniques specific to this model
and in particular the existence and properties of geodesics (e.g., Lemma 2 of [4], (5.9) of [7]. . .).



526 L.T.T. Hien

Consider now a Markov chain on the extended state space Zd ∪ {�} where � is an ab-
sorbing state. At each step, the walk jumps to � from x with probability 1 − e−V (x). Oth-
erwise, it behaves as a simple symmetric random walk on Zd . The path measure of this
random walk starting at x in a fixed potential V (x,ω) will be denoted by P̆ F

x,ω . One can
think of e(x, y,F,ω) as the probability that the random walk reaches y before being killed:
e(x, y,F,ω) = P̆ F

x,ω(H(y) < ∞). Let us now introduce as in [8], for ω ∈ � and x, y ∈ Zd ,

the quenched path measure: P̂
y,F
x,ω (·) := P̆ F

x,ω(· | H(y) < ∞) and the annealed path measure

P̂
y,F
x (·) := P̆ F

x (· | H(y) < ∞) where P̆ F
x (·) = EP̆x,ω(·). The expectations with respect to P̂

y,F
x,ω

and P̂
y,F
x are denoted by Ê

y,F
x,ω and Ê

y,F
x , respectively. This means that, for all x, y ∈ Zd , ω ∈ �,

and random variable X,

Ê
y,F
x,ω (X) = Ex[X exp(−∑H(y)−1

m=0 V (Sm,ω)),H(y) < ∞]
e(x, y,ω)

, (1.9)

Ê
y,F
x (X) = EEx[X exp(−∑H(y)−1

m=0 V (Sm,ω)),H(y) < ∞]
Ee(x, y,ω)

. (1.10)

We prove Theorem 1.1 in Section 2. The proof is divided in two parts. The first step is to prove
that lim supαFn(x) ≤ αF (x) and the second step is the proof of lim infαFn(x) ≥ αF (x). The
latter is the most involved. To do so, we will show that the conditions of Theorem 1.4 are actually
verified for our model. This is done successively in Proposition 2.1 and Corollary 2.3 by using
some properties of the quenched path measure.

Theorem 1.2 which is the continuity of the annealed exponents is shown in Section 3. No
condition of finite mean is required here. As in [4], the proof of Theorem 1.2 is done in two steps.
First, in Proposition 3.2, we show the continuity of βF under the hypothesis of Theorem 1.1 and
its proof is similar to the quenched case. Next, to eliminate the condition of finite mean, with
t0 > 0 arbitrary, in Theorem 3.3 of this paper, we prove that βt0 F → βF when t0 → ∞, where
t0F is the distribution function obtained by truncating below at t0.

2. Quenched exponents: Proof of Theorem 1.1

The following proposition is the main ingredient in the proof of the continuity of Lyapunov
exponents. It verifies condition (ii) of Theorem 1.4. Properties of the quenched path measure are
important tools here (see (2.2) for example). In particular, if we attach to each trajectory (Sm)m≥0
which starts at 0, the lattice animal:

A(0, y) =A
(
0, y, (Sm)m≥0

) := {
z ∈ Zd : H(z) < H(y)

}
, (2.1)

by using the strong Markov property and the transience of the simple random walk on Zd , d ≥ 3,
we can bound Ê

nx,F
0,ω (H(nx)) by DÊ

nx,F
0,ω |A(0, nx)| where D is a constant that depends only

on d (see (2.6)). In the continuous setting of a Brownian motion in a Poissonian potential, the
similar question is also considered by [16]. Lemma 3 of [19] will be used to estimate the factor
EÊ

nx,F
0,ω (H(nx)).
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Proposition 2.1. Let d ≥ 3. For any distribution functions F ∈ D1, there exist c1(F ) > 0 and
f1(F ) > 0 such that:

(1) αF∗G(x) ≤ αF (x) + c1(F )f1(F )
∫

t dG(t)|x| for all F,G ∈D1 and x ∈ Zd ,
(2) c1(F ) ≤ c1(G) for all F,G ∈ D1 such that F ≥ G,
(3) limn→∞ f1(Fn) = f1(F ) for Fn ∈D1, Fn

w→ F .

Proof. Let V (x), x ∈ Zd be i.i.d. random potentials with distribution F ; W(x), x ∈ Zd be i.i.d.
random potentials with distribution G such that the two sequences are independent of each other.
Then, (V + W)(x), x ∈ Zd are i.i.d. random potentials with distribution F ∗ G. By Jensen’s
inequality, for x ∈ Zd \ {0}, n ≥ 1, ω ∈ �:

a(0, nx,F ∗ G,ω) = − lnE0

(
exp

(
−

H(nx)−1∑
m=0

V (Sm) −
H(nx)−1∑

m=0

W(Sm)

)
,H(nx) < ∞

)

= − ln Ê
nx,F
0,ω

(
exp

(
−

H(nx)−1∑
m=0

W(Sm)

))
+ a(0, nx,F,ω) (2.2)

≤ Ê
nx,F
0,ω

(
H(nx)−1∑

m=0

W(Sm)

)
+ a(0, nx,F,ω).

We now use Fubini’s theorem and the independence of (W(x)) and (V (x)):

EÊ
nx,F
0,ω

(
H(nx)−1∑

m=0

W(Sm)

)

= E

(
E0

(∑H(nx)−1
m=0 W(Sm) exp(−∑H(nx)−1

m=0 V (Sm)),H(nx) < ∞
e(0, nx,F,ω)

))

= E0

(
E

(
H(nx)−1∑

m=0

W(Sm)

)
E

(
exp(−∑H(nx)−1

m=0 V (Sm)),H(nx) < ∞
e(0, nx,F,ω)

))
(2.3)

= E0

(
H(nx)E

(
W(0)

)
E

(
exp(−∑H(nx)−1

m=0 V (Sm)),H(nx) < ∞
e(0, nx,F,ω)

))

=
∫

t dG(t) ·EÊ
nx,F
0,ω

(
H(nx)

)
.

By using the strong Markov property:

Ê
nx,F
0,ω

(
H(nx)

)

=
∑

z′∈Zd

Ê
nx,F
0,ω

(
H(nx)−1∑

m=0

1{Sm=z′}

)
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=
∑

z′∈Zd

1

e(0, nx,F,ω)
E0

(
H(nx)−1∑

m=0

1{Sm=z′} exp

(
−

H(nx)−1∑
m=0

V (Sm)

)
,H(nx) < ∞

)

=
∑

z′∈Zd

[
1

e(0, nx,F,ω)
E0

(
H

(
z′) < H(nx), exp

(
−

H(z′)−1∑
m=0

V (Sm)

))

× Ez′

(
H(nx)−1∑

m=0

1{Sm=z′} exp

(
−

H(nx)−1∑
m=0

V (Sm)

)
,H(nx) < ∞

)]
(2.4)

=
∑

z′∈Zd

[
1

e(0, nx,F,ω)
E0

(
H

(
z′) < H(nx), exp

(
−

H(z′)−1∑
m=0

V (Sm)

))
e
(
z′, nx,F,ω

)

× 1

e(z′, nx,F,ω)
Ez′

(
H(nx)−1∑

m=0

1{Sm=z′} exp

(
−

H(nx)−1∑
m=0

V (Sm)

)
,H(nx) < ∞

)]

=
∑

z′∈Zd

[
1

e(0, nx,F,ω)
E0

(
exp

(
−

H(nx)−1∑
m=0

V (Sm)

)
,H

(
z′) < H(nx) < ∞

)

× Ê
nx,F
z′,ω

(
H(nx)−1∑

m=0

1{Sm=z′}

)]

=
∑

z′∈Zd

P̂
nx,F
0,ω

(
H

(
z′) < H(nx)

)
Ê

nx,F
z′,ω

(
H(nx)−1∑

m=0

1{Sm=z′}

)
.

By applying the Markov property:

Ê
nx,F
z′,ω

(
H(nx)−1∑

m=0

1{Sm=z′}

)

= 1

e(z′, nx,F,ω)

+∞∑
k=0

Ez′

(
1{Sk=z′} exp

(
−

H(nx)−1∑
m=0

V (Sm)

)
, k < H(nx) < ∞

)
(2.5)

= 1

e(z′, nx,F,ω)

+∞∑
k=0

Ez′

(
1{Sk=z′} exp

(
−

k−1∑
m=0

V (Sm)

)
, k < H(nx)

)
P̆ F

z′,ω
(
H(nx) < ∞)

≤
+∞∑
k=0

Ez′(1{Sk=z′}) := D(d) < ∞,
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since the simple random walk is transient on Zd , d ≥ 3. From (2.1), (2.4) and (2.5):

Ê
nx,F
0,ω

(
H(nx)

) ≤ DÊ
nx,F
0,ω

(∣∣A(0, nx)
∣∣). (2.6)

Thanks to Lemma 3 in Zerner [19], we have:

EÊ
nx,F
0,ω

(∣∣A(0, nx)
∣∣) ≤ (ln 2d + ∫

t dF (t))

− ln(
∫

e−t dF (t))
|nx|. (2.7)

Substitute (2.3) in (2.2) and take the expectation:

E(a(0, nx,F ∗ G,ω))

n
≤ E(a(0, nx,F,ω))

n
+

∫
t dG(t) · EÊ

nx,F
0,ω (H(nx))

n
(2.8)

≤ E(a(0, nx,F,ω))

n
+

∫
t dG(t) · D(ln 2d + ∫

t dF (t))

− ln(
∫

e−t dF (t))
|x|.

Remark that the last inequality is from (2.6) and (2.7). Therefore, Proposition 2.1 holds with
c1(F ) = D(ln 2d + ∫

t dF (t)) and f1(F ) = 1
− ln(

∫
e−t dF (t))

. �

We will use the proposition below whose proof is analogous to that of Proposition 2.1 to check
condition (iii) of Theorem 1.4.

Proposition 2.2. Let d ≥ 3. Let V (x), x ∈ Zd be i.i.d. random variables which have distribution
function F ∈ D1. For all t0 > 0 such that p := P(V (0) < t0) < 1, for all y ∈ Zd, |y| > 1, we
have:

EÊ
y,F

0,ω

(
H(y)−1∑

m=0

1{V (Sm)<t0}

)
(2.9)

≤ D(d)

(
ln 2d +

∫
t dF (t)

)
· 1

ln(1 − (1 − p)e−t0)/p
· |y|,

where D(d) is given in (2.5).

Proof. As in (2.4) and (2.5), we have:

Ê
y,F

0,ω

(
H(y)−1∑

m=0

1{V (Sm)<t0}

)
=

∑
z′:V (z′,ω)<t0

P̂
y,F

0,ω

(
H

(
z′) < H(y)

)
Ê

y,F

z′,ω

(
H(y)−1∑

m=0

1{Sm=z′}

)

(2.10)

≤ DÊ
y,F

0,ω

( ∑
z∈A(0,y)

1{V (z)<t0}
)

.
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Take c = c(t0,F ) := ln 1−(1−p)e−t0

p
. Note that c > 0. We use Jensen’s inequality and indepen-

dence as follows:

cEÊ
y,F

0,ω

( ∑
z∈A(0,y)

1{V (z)<t0}
)

≤ E

(
ln Ê

y,F

0,ω

(
exp

(
c

∑
z∈A(0,y)

1{V (z)<t0}
)))

(2.11)

≤ E

(
a(0, y,F,ω) + lnE0

(
exp

(
c

∑
z∈A(0,y)

1{V (z)<t0} −
∑

z∈A(0,y)

V (z)

)
,H(y) < ∞

))

≤ E
(
a(0, y,F,ω)

) + lnE0

( ∏
z∈A(0,y)

E
(
exp

(
c1{V (z)<t0} − V (z)

)))
.

We remark that, for all z ∈ Zd :

E
(
exp

(
c1{V (z)<t0} − V (z)

)) ≤ E
(
exp(c1{V (z)<t0} − t01{V (z)≥t0})

)
(2.12)

= exp(−t0)E
(
exp

(
(c + t0)1{V (z)<t0}

)) = 1.

From (2.11) and (2.12), cEÊ
y,F

0,ω (
∑

z∈A(0,y) 1{V (z)<t0}) ≤ E(a(0, y,F,ω)). Combining this

with (2.10) and the fact that E(a(0, y,F,ω)) ≤ (ln 2d + ∫ +∞
0 t dF (t))|y| (see Lemma 3 of [19]),

we obtain:

EÊ
y,F

0,ω

(
H(y)−1∑

m=0

1{V (Sm)<t0}

)
≤ DEÊ

y,F

0,ω

( ∑
z∈A(0,y)

1{V (z)<t0}
)

≤ D

c
E

(
a(0, y,F,ω)

)
≤ D

c

(
ln 2d +

∫ +∞

0
t dF (t)

)
|y|. �

We are now ready to verify the condition (iii) of Theorem 1.4. This is done in the corollary
below.

Corollary 2.3. Let d ≥ 3. For all F ∈D1 and t0 > 0 such that F(t0−) < 1, there exist c2(F ) > 0
and f2(t0,F ) > 0 such that, for x ∈ Zd :

(1) |αF t0 (x) − αF (x)| ≤ c2(F )f2(t0,F )|x|, where F t0 is given in the Definition 1.3,
(2) c2(F ) ≤ c2(G) for all distributions F,G ∈ D1 such that F ≥ G,
(3) limn→∞ f2(t0,Fn) = 0 for Fn ∈ D1 such that limn→∞ Fn(t0−) = 0.
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Proof. Let {V (x)}x∈Zd be i.i.d. random variables with distribution function F . Define:

W(x) = V (x)1{V (x)≥t0} + t01{V (x)<t0}.

Then {W(x)}x∈Zd are i.i.d. random variables with distribution function F t0 .
For x ∈ Zd and ω ∈ �, we have:

a
(
0, nx,F t0 ,ω

)
= − ln

[
E0(exp(−∑H(nx)−1

m=0 [V (Sm)1{V (Sm)≥t0} + t01{V (Sm)<t0}]),H(nx) < ∞)

e(0, nx,F,ω)

]
+ a(0, nx,F,ω)

≤ − ln Ê
nx,F
0,ω

(
exp

(
−

H(nx)−1∑
m=0

t01{V (Sm)<t0}

))
+ a(0, nx,F,ω)

≤ t0Ê
nx,F
0,ω

(
H(nx)−1∑

m=0

1{V (Sm)<t0}

)
+ a(0, nx,F,ω).

Taking expectations, we obtain:

Ea(0, nx,F t0,ω)

n
≤ t0

EÊ
nx,F
0,ω (

∑H(nx)−1
m=0 1{V (Sm)<t0})

n
+ Ea(0, nx,F,ω)

n
,

(2.13)

αF t0 (x) ≤ t0|x|D
(

ln 2d +
∫

t dF (t)

)
1

ln(1 − (1 − p)e−t0)/p
+ αF (x).

The last inequality above follows from Proposition 2.2. Recall here p = F(t0−). Since
F t0 ≤ F , by the monotonicity of Lyapunov exponents, we have: αF t0 ≥ αF . Combining
this with (2.13), we obtain that Corollary 2.3 holds with c2(F ) = D(ln 2d + ∫

t dF (t)) and
f2(t0,F ) = t0

ln(1−(1−p)e−t0 )/p
. �

The inverse of a distribution function G is defined in the usual way, G−1(t) = inf{u ∈ R :
G(u) > t}, t ∈R. We will need the following Lemma 2.1 from [2].

Lemma 2.4. If (Fn) ∈ D such that Fn ≤ F and Fn
w→ F , then F−1

n → F−1 point-wise on [0,1).

The proof of the following proposition is analogous to the proof of Theorem 1.13 in [2].

Proposition 2.5. Let d ≥ 1. Let (Fn) ∈ D such that Fn ≥ G for all n and for some G ∈ D1. If
Fn

w→ F , then lim supn→∞ αFn(x) ≤ αF (x) for all x ∈ Zd .

Proof. Because of the monotonicity property of Lyapunov exponents, when dealing with Fn
w→

F , it suffices to consider only two cases: Fn ≤ F for all n and Fn ≥ F for all n. To see this,
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define Fn(t) = min{Fn(t),F (t)} and Fn(t) = max{Fn(t),F (t)}, so that Fn(t) ≤ Fn(t) ≤ Fn(t).

Then αFn
≤ αFn ≤ αFn

, αFn
≤ αF ≤ αFn

and both Fn,Fn
w→ F whenever Fn

w→ F . If Fn ≥ F ,
αFn(x) ≤ αF (x) for all n, hence lim supαFn(x) ≤ αF (x). For the rest of the proof, we shall
assume that Fn ≤ F . Let ξ(x), x ∈ Zd be an i.i.d. family of uniform random variables on (0,1).
Let V (x) := F−1(ξ(x)), Vn(x) := F−1

n (ξ(x)) and W(x) = G−1(ξ(x)). Then V (x),Vn(x) and
W(x) are independent families of i.i.d. random variables with distribution function F , Fn and G,
respectively. Furthermore, for each x ∈ Zd :

V (x) ≤ Vn(x) ≤ W(x) a.s.

and by Lemma 2.4:

lim
n→∞Vn(x) = V (x) a.s.

By definition (1.3), we can see easily that a(0, kx,Fn,ω) → a(0, kx,F,ω) when n → ∞ and
a(0, kx,Fn,ω) ≤ a(0, kx,G,ω) for all n. Moreover,

E
(
a(0, kx,G,ω)

)
< k|x|

(
ln 2d +

∫
t dG(t)

)
< ∞.

Apply the dominated convergence theorem:

Ea(0, kx,Fn,ω)
n→∞−→ Ea(0, kx,F,ω). (2.14)

Now fix ε > 0. From (1.5), we can choose Kε large enough such that:

0 ≤ Ea(0,Kεx,F,ω)

Kε

− αF (x) < ε.

From (2.14), choose Nε such that for all n ≥ Nε:

0 ≤ Ea(0,Kεx,Fn,ω)

Kε

− Ea(0,Kεx,F,ω)

Kε

< ε.

We have hence for all n ≥ Nε:

0 ≤ αFn(x) − αF (x) (since Fn ≤ F )

≤ Ea(0,Kεx,Fn,ω)

Kε

− αF (x)

(
since αFn(x) = inf

k≥1

Ea(0, kx,Fn,ω)

k

)

≤ Ea(0,Kεx,Fn,ω)

Kε

− Ea(0,Kεx,F,ω)

Kε

+ Ea(0,Kεx,F,ω)

Kε

− αF (x)

≤ ε + ε.

Now let ε → 0, we have the result. �

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1. In our setting, we take D2 = D1. Then, by the monotonicity property
of Lyapunov exponents, Proposition 2.1 and Corollary 2.3, we see that all conditions of The-
orem 1.4 are satisfied, we have then lim infn→∞ αFn(x) ≥ αF (x) for all x ∈ Zd . Combine this
with lim supn→∞ αFn(x) ≤ αF (x), x ∈ Zd given by Proposition 2.5 to obtain for all x ∈ Zd ,

lim
n→∞αFn(x) = αF (x) if Fn

w→ F. (2.15)

Moreover, it is easy to see that (2.15) holds for all x ∈ Qd . Using (1.6) of Theorem A and
the fact that α is a norm on Rd , we can extend (2.15) to x ∈ Rd . Now, we will show that
limn→∞ αFn(x) = αF (x) uniformly on every compact set of Rd if Fn

w→ F . By contradiction,
assume there exists some ε > 0, R > 0, y ∈ B(0,R) and two sequences nk → ∞ and xnk

→ y

such that |αFnk
(xk) − αF (xk)| > ε. Using (1.6) of Theorem A, for k large enough,

ε <
∣∣αFnk

(xk) − αF (xk)
∣∣ <

∣∣αFnk
(xk) − αFnk

(y)
∣∣ + ∣∣αFnk

(y) − αF (y)
∣∣ + ∣∣αF (y) − αF (xk)

∣∣
≤ |xk − y|

(
ln 2d +

∫ ∞

0
t dG(t)

)
+ ∣∣αFnk

(y) − αF (y)
∣∣ + |xk − y|

(
ln 2d +

∫ ∞

0
t dF (t)

)

≤ ε

3
+ ε

3
+ ε

3
,

where we recall that G is the distribution function that appears in the hypothesis of Theorem 1.1,
G ∈ D1 and Fn ≥ G for all n. This is a contradiction. �

Proposition 2.6. (i) Theorem 1.1 also holds when d = 1.
(ii) Let d = 2. Let λ > 0, Dλ = {F ∈ D1,F (λ) = 0}. Then, Theorem 1.1 also holds if we

replace D1 by Dλ.

Proof. (i) If d = 1, the continuity of the Lyapunov exponents of random walk on the line Z in
a random potential readily follows from Zerner’s work. Indeed, thanks to Proposition 10 in [19]
and the proof of Proposition 2.5 (see (2.14)), we have for all m ∈N:

αF (m) = E
(
a(0,m,F,ω)

) = lim
n→∞E

(
a(0,m,Fn,ω)

) = lim
n→∞αFn(m).

(ii) In this case, we have Vn(x),V (x) ≥ λ for all n > 0, x ∈ Zd where Vn,V are the potentials
with distribution functions Fn and F , respectively. As in (2.5), we also have,

Ê
y,F
z,ω

(
H(y)−1∑

m=0

1{Sm=z}

)
=

+∞∑
k=0

Ez

(
1{Sk=z} exp

(
−

k−1∑
m=0

V (Sm)

)
, k < H(nx)

)
(2.16)

≤
+∞∑
k=0

exp(−kλ) = 1

1 − e−λ
:= D(λ) < ∞.

Then, we can follow the same argument as in the case of d ≥ 3 to obtain the continuity of the
quenched Lyapunov exponents. �
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3. Annealed Lyapunov exponents: Proof of Theorem 1.2

We start this section by the following proposition about the ballisticity of the random walk under

the conditional annealed path measure. Two different proofs that lim sup|y|→∞
Ê

y,F
0 (H(y))

|y| is finite
can be found in [8] (see Theorem 1) and [6] (see Theorem C). Here when d ≥ 3, we give a simple
argument which provides an explicit expression for the upper bound that will be needed in the
proof of Theorem 1.2.

Proposition 3.1. Let d ≥ 3. Let F be a distribution function whose potential satisfies P(V (0) =
∞) < 1. Then there exists a constant D(d) such that for all y ∈ Zd , y = 0:

Ê
y,F

0 H(y) ≤ D(d)
1

− ln
∫

exp(−t) dF (t)

(
ln 2d − ln

∫
exp(−t) dF (t)

)
|y|. (3.1)

Proof. As in (2.4), with D given in (2.5), we have:

E0

(
H(y) exp

(
−

H(y)−1∑
m=0

V (Sm)

)
,H(y) < ∞

)

=
∑

z′∈Zd

E0

(
H

(
z′) < H(y), exp

(
−

H(y)−1∑
m=0

V (Sm)

)
,H(y) < ∞

)
(3.2)

× Ê
y,F

z′,ω

(
H(y)−1∑

m=0

1{Sm=z′}

)

≤ D · E0

(∣∣A(0, y)
∣∣ exp

(
−

H(y)−1∑
m=0

V (Sm)

)
,H(y) < ∞

)
.

Then,

Ê
y,F

0

(
H(y)

) = EE0(H(y) exp(−∑H(y)−1
m=0 V (Sm)),H(y) < ∞)

Ee(0, y,F,ω)
≤ DÊ

y,F

0

(∣∣A(0, y)
∣∣). (3.3)

Take d1 := − ln
∫

e−t dF (t) = − lnE(e−V (0)). By Jensen’s equality and independence of V (x),
x ∈ Zd :

d1Ê
y,F

0

(∣∣A(0, y)
∣∣)

≤ ln Êy,F

0

(
exp

(
d1

∣∣A(0, y)
∣∣))

(3.4)

≤ b(0, y,F ) + lnEE0

(
exp

(
d1

∣∣A(0, y)
∣∣ −

∑
s∈A(0,y)

V (s)

)
,H(y) < ∞

)

≤ b(0, y,F ) + lnE0

( ∏
s∈A(0,y)

E
(
exp

(
d1 − V (s)

))) = b(0, y,F ).
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From (1.8), (3.3) and (3.4), for all y ∈Rd, y = 0:

Ê
y,F

0

(
H(y)

) ≤ D

d1
b(0, y,F ) ≤ D

− ln
∫

exp(−t) dF (t)

(
ln 2d − ln

∫
exp(−t) dF (t)

)
|y|. (3.5)

�

Proposition 3.2. Let d ≥ 3. Assume that (Fn) is a sequence of distribution functions such that
Fn ∈D1, Fn

w→ F and F ∈ D1. Then limn→∞ βFn(x) = βF (x) for all x ∈ Zd .

Proof. With the same arguments as in Proposition 2.5, we can obtain that for all x ∈ Zd :

If (Fn) ∈D such that Fn
w→ F, then lim sup

n→∞
βFn(x) ≤ βF (x). (3.6)

Note that in this case, the condition of finite mean is not required because the sequence of real
numbers b(0, kx,Fn) always converges to b(0, kx,F ) for any k and x fixed when n → ∞.

To show that lim infn→∞ βFn(x) ≥ βF (x), we verify the conditions of Theorem 1.4 with
D2 := D1. Condition (i) is the monotonicity property of the annealed Lyapunov exponents re-
ferred to in Theorem B. Condition (ii) is verified as in Proposition 2.1 by using the inequal-
ity (3.1) of Proposition 3.1. Then we can choose here c1(F ) = D(ln 2d − ln

∫
e−t dF (t)) and

f1(F ) = 1
− ln(

∫
e−t dF (t))

. And the verification of condition (iii) is analogous to the proofs of

Proposition 2.2 and Corollary 2.3. But here we relay on the fact that

Ê
y,F

0

( ∑
z∈A(0,y)

1{V (z)<t0}
)

≤ t0
b(0, y,F )

ln(1 − (1 − p)e−t0)/p
≤ t0

(ln 2d − ln
∫

e−t dF (t))

ln(1 − (1 − p)e−t0)/p
|y|,

whose demonstration combines the idea of (2.11) and (3.4). Then, the constants are chosen as
c2(F ) = D(ln 2d − ln

∫
e−t dF (t)) and f2(t0,F ) = t0

ln(1−(1−p)e−t0 )/p
. �

We now eliminate the condition of finite mean in the annealed case. To do so, we first prove
convergence of truncated potentials in Theorem 3.3. The proof is inspired from Theorem 7.12 of
[14] and requires only F ∈ D. Proposition 3.1 is useful for our argument.

Theorem 3.3. Let d ≥ 3, F ∈ D. Then for all x ∈ Zd : limt0→∞ βt0 F (x) = βF (x), where t0F is
defined by:

t0F(t) :=
{

F(t), if t < t0,
1, if t ≥ t0. (3.7)

Proof. Let V1(x) and V2(x), x ∈ Zd be two families of i.i.d. random potentials with distribu-
tion F , independent of one another. Then, Wt0(x) := min{V1(x); t0}, x ∈ Zd are i.i.d. random
potentials with distribution function t0F . Define a distribution function t0 F̂ by:

t0 F̂ :=
⎧⎨
⎩

0, if t < 0,
F(t0), if 0 ≤ t ≤ t0,

F(t), if t > t0.
(3.8)
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First t0F ≥ F ≥ t0F ∗ t0 F̂ . Indeed, t0F ∗ t0 F̂ (t) = ∫ t

0
t0F(t − y)dt0 F̂ (y). If t ≤ t0,

t0F ∗ t0 F̂ (t) ≤∫ t

0 F(t − y)dt0 F̂ (y) ≤ F(t). If t ≥ t0,
t0F ∗ t0 F̂ (t) ≤ ∫ t

0 dt0 F̂ (y) = F(t). Then for all x ∈ Zd :

βt0 F (x) ≤ βF (x) ≤ βt0 F∗t0 F̂
(x). (3.9)

Take Ut0(x) = V2(x)1{V2(x)>t0}. Hence, Ut0(x), x ∈ Zd is an i.i.d. family of random potentials
with distribution function t0 F̂ . (Wt0 + Ut0)(x), x ∈ Zd are i.i.d. random potentials with distribu-
tion function t0F ∗ t0 F̂ . Moreover,

b
(
0, nx, t0F ∗ t0 F̂

)
= − ln

EE0(exp(−∑H(nx)−1
m=0 Wt0(Sm) − ∑H(nx)−1

m=0 Ut0(Sm)),H(nx) < ∞)

Ee(0, nx,ω, t0F)
(3.10)

+ b
(
0, nx, t0F

)
.

As in [5], we now define for z ∈ Zd, n ∈ N the number of visits to the site z by the random walk
up to time n:

�z(n) := ∣∣{m ∈N0 : m < n,Sm = z}∣∣.
Since the two sequences (Wt0(x))x∈Zd and (Ut0(x))x∈Zd are independent of each other, the first
term on the right-hand side of (3.10) is equal to:

− ln
E0(E(exp(−∑H(nx)−1

m=0 Ut0(Sm)))E(exp(−∑H(nx)−1
m=0 Wt0(Sm))),H(nx) < ∞)

Ee(0, nx,ω, t0F)

= − ln
E0(

∏
z∈Zd E(exp(−�z(H(nx))Ut0(z)))E(exp(−∑H(nx)−1

m=0 Wt0(Sm))),H(nx) < ∞)

Ee(0, nx,ω, t0F)

(3.11)

≤ − ln
E0(

∏
z∈Zd (E exp(−Ut0(z)))

�z(H(nx))E(exp(−∑H(nx)−1
m=0 Wt0(Sm))),H(nx) < ∞)

Ee(0, nx,ω, t0F)

= − ln Ênx,t0 F
0

(
E

(
exp

(−Ut0(0)
))H(nx)) ≤ − lnE exp

(−Ut0(0)
)
Ê

nx,t0 F
0

(
H(nx)

)
.

We remark that Jensen’s inequality has been used for the first and last inequalities of (3.11).
From (3.5) of Proposition 3.1:

Ê
nx,t0 F
0

(
H(nx)

) ≤ D

− lnE exp(−Wt0(0))
b
(
0, nx, t0F

)
. (3.12)

From (3.10), (3.11) and (3.12), for all x ∈ Zd :

b(0, nx, t0F ∗ t0 F̂ )

n
≤ − lnE exp

(−Ut0(0)
) · D

− lnE exp(−Wt0(0))

b(0, nx, t0F)

n

+ b(0, nx, t0F)

n
, (3.13)
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βt0 F∗t0 F̂
(x) ≤ − lnE exp

(−Ut0(0)
) · D

− lnE exp(−Wt0(0))
βt0F (x) + βt0F (x).

Note that limt0→∞ − lnE exp(−Ut0(0)) = 0 and limt0→∞ − lnE exp(−Wt0(0)) = − lnE ×
exp(−V1(0)) = const. From (3.9) and (3.13):

lim sup
t0→∞

βt0F (x) ≤ βF (x)

≤ lim
t0→∞

(
− lnE exp

(−Ut0(0)
) · D

− lnE exp(−Wt0(0))

)
βF (x) + lim inf

t0→∞ βt0 F (x) (3.14)

≤ lim inf
t0→∞ βt0 F (x). �

Proof of Theorem 1.2. Fix t0 > 0. By Proposition 3.2, limn→∞ βt0 Fn
= βt0 F . Furthermore,

lim infn→∞ βFn ≥ lim infn→∞ βt0 Fn
= βt0 F since t0Fn ≥ Fn for all n. Now let t0 → ∞ and apply

Theorem 3.3, lim infn→∞ βFn ≥ limt0→∞ βt0 F = βF . Combine this with lim supn→∞ βFn ≤ βF

given by (3.6) in Proposition 3.2 to obtain that limn→∞ βFn(x) = βF (x) for all x ∈ Zd when

Fn
w→ F , Fn,F ∈ D. The convergence in Rd and the uniform convergence on any compact set

of Rd follow from an argument as in Theorem 1.1 combined with (1.8). �

The following proposition and its proof are analogous to the quenched case of Proposition 2.6.

Proposition 3.4. (i) Theorem 1.2 also holds when d = 1.
(ii) Let d = 2. Let λ > 0, Dλ = {F ∈ D1,F (λ) = 0}. Then, Theorem 1.2 also holds if we

replace D by Dλ.

Acknowledgements

I would like to thank my Ph.D. supervisor Daniel Boivin for many helpful discussions and sug-
gestions about this work. Also, I thank an anonymous referee for his/her many valuable com-
ments and remarks on a previous version of this work. This research was supported by the French
ANR project MEMEMO2, 2010 BLAN 0125 04.

References

[1] Benjamini, I., Kalai, G. and Schramm, O. (2003). First passage percolation has sublinear distance
variance. Ann. Probab. 31 1970–1978. MR2016607

[2] Cox, J.T. (1980). The time constant of first-passage percolation on the square lattice. Adv. in Appl.
Probab. 12 864–879. MR0588407

[3] Cox, J.T. and Durrett, R. (1981). Some limit theorems for percolation processes with necessary and
sufficient conditions. Ann. Probab. 9 583–603. MR0624685

[4] Cox, J.T. and Kesten, H. (1981). On the continuity of the time constant of first-passage percolation.
J. Appl. Probab. 18 809–819. MR0633228

http://www.ams.org/mathscinet-getitem?mr=2016607
http://www.ams.org/mathscinet-getitem?mr=0588407
http://www.ams.org/mathscinet-getitem?mr=0624685
http://www.ams.org/mathscinet-getitem?mr=0633228


538 L.T.T. Hien

[5] Flury, M. (2007). Large deviations and phase transition for random walks in random nonnegative
potentials. Stochastic Process. Appl. 117 596–612. MR2320951

[6] Ioffe, D. and Velenik, Y. (2012). Self-attractive random walks: The case of critical drifts. Comm. Math.
Phys. 313 209–235. MR2928223

[7] Kesten, H. (1986). Aspects of first passage percolation. In École D’été de Probabilités de Saint-Flour,
XIV—1984. Lecture Notes in Math. 1180 125–264. Berlin: Springer. MR0876084

[8] Kosygina, E. and Mountford, T. (2012). Crossing velocities for an annealed random walk in a random
potential. Stochastic Process. Appl. 122 277–304. MR2860450

[9] Kosygina, E., Mountford, T.S. and Zerner, M.P.W. (2011). Lyapunov exponents of Green’s functions
for random potentials tending to zero. Probab. Theory Related Fields 150 43–59. MR2800903

[10] Mourrat, J.-C. (2012). Lyapunov exponents, shape theorems and large deviations for the random walk
in random potential. ALEA Lat. Am. J. Probab. Math. Stat. 9 165–211. MR2923190

[11] Rassoul-Agha, F. and Seppäläinen, T. (2014). Quenched point-to-point free energy for random walks
in random potentials. Probab. Theory Related Fields 158 711–750. MR3176363

[12] Rueß, J. (2014). Continuity results and estimates for the lyapunov exponent of brownian motion in
random potential. Preprint. Available at arXiv:1404.1273.

[13] Scholler, J. (2014). On the time constant in a dependent first passage percolation model. ESAIM
Probab. Stat. 18 171–184. MR3230873

[14] Smythe, R.T. and Wierman, J.C. (1978). First-Passage Percolation on the Square Lattice. Lecture
Notes in Math. 671. Berlin: Springer. MR0513421

[15] Sodin, S. (2014). Positive temperature versions of two theorems on first-passage percolation. In Geo-
metric Aspects of Functional Analysis 441–453. Berlin: Springer.

[16] Sznitman, A.-S. (1995). Crossing velocities and random lattice animals. Ann. Probab. 23 1006–1023.
MR1349160

[17] Sznitman, A.-S. (1998). Brownian Motion, Obstacles and Random Media. Springer Monographs in
Mathematics. Berlin: Springer. MR1717054

[18] Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Inst.
Hautes Études Sci. Publ. Math. 81 73–205. MR1361756

[19] Zerner, M.P.W. (1998). Directional decay of the Green’s function for a random nonnegative potential
on Zd . Ann. Appl. Probab. 8 246–280. MR1620370

[20] Zygouras, N. (2009). Lyapounov norms for random walks in low disorder and dimension greater than
three. Probab. Theory Related Fields 143 615–642. MR2475675

Received September 2014 and revised March 2015

http://www.ams.org/mathscinet-getitem?mr=2320951
http://www.ams.org/mathscinet-getitem?mr=2928223
http://www.ams.org/mathscinet-getitem?mr=0876084
http://www.ams.org/mathscinet-getitem?mr=2860450
http://www.ams.org/mathscinet-getitem?mr=2800903
http://www.ams.org/mathscinet-getitem?mr=2923190
http://www.ams.org/mathscinet-getitem?mr=3176363
http://arxiv.org/abs/arXiv:1404.1273
http://www.ams.org/mathscinet-getitem?mr=3230873
http://www.ams.org/mathscinet-getitem?mr=0513421
http://www.ams.org/mathscinet-getitem?mr=1349160
http://www.ams.org/mathscinet-getitem?mr=1717054
http://www.ams.org/mathscinet-getitem?mr=1361756
http://www.ams.org/mathscinet-getitem?mr=1620370
http://www.ams.org/mathscinet-getitem?mr=2475675

	Introduction
	Quenched exponents: Proof of Theorem 1.1
	Annealed Lyapunov exponents: Proof of Theorem 1.2
	Acknowledgements
	References

