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While the asymptotic normality of the maximum likelihood estimator under regularity conditions is long
established, this paper derives explicit bounds for the bounded Wasserstein distance between the distribution
of the maximum likelihood estimator (MLE) and the normal distribution. For this task, we employ Stein’s
method. We focus on independent and identically distributed random variables, covering both discrete and
continuous distributions as well as exponential and non-exponential families. In particular, a closed form
expression of the MLE is not required. We also use a perturbation method to treat cases where the MLE has
positive probability of being on the boundary of the parameter space.
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1. Introduction

This paper assesses the bounded Wasserstein distance between the distribution of the maximum
likelihood estimator (MLE) and the normal distribution. We concentrate on independent and
identically distributed (i.i.d.) random variables, with the case that the random variables follow
an exponential family distribution as an example. We also explain how a perturbation of both
the parameter and the data can be useful in specific situations. The treatment includes situations
where the MLE has positive probability to be on the boundary of the parameter space. The paper
also covers cases where there is not an analytic form for the MLE.

Here is the notation which is used throughout the paper. First of all, θ denotes a scalar unknown
parameter found in a parametric statistical model. Let θ0 be the true (still unknown) value of
the parameter θ and let � ⊂ R denote the parameter space, while X = (X1,X2, . . . ,Xn) is the
random sample of n i.i.d. random variables with joint density function f (x|θ). For Xi = xi

being some observed values, the likelihood function is L(θ;x) = f (x|θ). Its natural logarithm,
called the log-likelihood function is denoted by l(θ;x). Having a fixed set of data and a defined
statistical model, a maximum likelihood estimate is a value of the parameter which maximises
the likelihood function. Derivatives of the log-likelihood function, with respect to θ , are denoted
by l′(θ;x), l′′(θ;x), . . . , l(j)(θ;x), for j any integer greater than 2. For many models, the MLE
exists and it is also unique, in which case it is denoted by θ̂n(X); this is known as the “regular”
case. However, uniqueness or even existence of the MLE is not always secured. Unless otherwise
specified, we make the following assumptions:

(i) The log-likelihood function l(θ;x) is a twice continuously differentiable function with re-
spect to θ and the parameter varies in an open interval (a, b), where a, b ∈R∪{−∞,∞}
and a < b.
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(ii) limθ→a,b l(θ;x) = −∞,
(iii) l′′(θ;x) < 0 at every point θ ∈ (a, b) for which l′(θ;x) = 0.

Under the assumptions (i)–(iii) above, the MLE exists and it is unique (Makelainen et al. [10]).
Following now Casella and Berger [2], unless otherwise stated we also make the following as-
sumptions:

(R1) the parameter is identifiable, which means that if θ �= θ ′, then ∃x : f (x|θ) �≡ f (x|θ ′);
(R2) the density f (x|θ) is three times differentiable with respect to θ , the third derivative is

continuous in θ and
∫

f (x|θ)dx can be differentiated three times under the integral sign;
(R3) for any θ0 ∈ � and for X denoting the support of f (x|θ), there exists a positive number

ε and a function M(x) (both of which may depend on θ0) such that

∣∣∣∣ d3

dθ3
logf (x|θ)

∣∣∣∣≤ M(x) ∀x ∈X, θ0 − ε < θ < θ0 + ε,

with Eθ0 [M(X)] < ∞;
(R4) i(θ0) �= 0, where i(θ) is the expected Fisher Information for one random variable.

The requirement (R2) that
∫

f (x|θ)dx can be differentiated three times under the integral sign is
usually substituted in the literature by the assumption that integration of f (x|θ) over x and

differentiation with respect to θ are three times interchangeable, so that
∫
R

dj

dθj f (x|θ)dx =
dj

dθj

∫
R

f (x|θ)dx = 0, j ∈ {1,2,3}. This condition ensures that if the expressions exist, then
Eθ [l′(θ;X)] = 0 and Varθ [l′(θ;X)] = ni(θ). In addition, it is obvious from (R3) that {θ :
|θ − θ0| < ε} ⊂ � is required. The motivation of the work presented in this paper are the re-
sults given in Theorem 1.1. The efficiency and asymptotic normality of the MLE have first been
discussed in Fisher [5]. Here we present the i.i.d. case; see Hoadley [7] for the case of indepen-
dent but not identically distributed random variables.

Theorem 1.1 (Casella and Berger [2], page 472). Let X1,X2, . . . ,Xn be i.i.d. random vari-
ables with probability density (or mass) function f (xi |θ), where θ is the scalar parameter. As-
sume that the MLE exists and it is unique and (R1)–(R4) are satisfied. Then for Z ∼ N(0,1),

(a)
1√
n
l′(θ0;X)

d−→
n→∞

√
i(θ0)Z, (b)

√
ni(θ0)

(
θ̂n(X) − θ0

) d−→
n→∞Z. (1.1)

Theorem 1.1 gives only a qualitative result as n → ∞, but in approximations the sample size,
n, is always finite and it is not clear when n is “large enough” for the limiting behaviour to be
a good approximation to the finite-n behaviour. The rate of convergence may also depend on
the true parameter θ0. Hence, it is of interest to obtain explicit bounds for a distributional dis-
tance related to (a) and (b) in (1.1). These bounds are given in Proposition 2.2 and Theorem 2.1,
respectively. The tools we use are mainly Taylor expansions, conditional expectations, a pertur-
bation method and a result from Stein’s method as given in Lemma 1.1. Bounds are also derived
in Geyer [6], using the framework of locally asymptotically mixed normal (LAMN) models, but
these bounds are of asymptotic nature.
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As distance, we mainly use the bounded Wasserstein distance. If F,G are two random vari-
ables with values in R and H is a class of separating functions, then a Zolotarev-type distance
between the laws of F and G, induced by H , is given by the quantity

dH (F,G) = sup
{∣∣E[h(F )

]− E
[
h(G)

]∣∣ : h ∈ H
}
. (1.2)

From now on, ‖ · ‖ denotes the supremum norm (‖ · ‖∞) and

H = {
h : R→R : ‖h‖Lip + ‖h‖ ≤ 1

}
, (1.3)

where

‖h‖Lip = sup
x,y∈R
x �=y

|h(x) − h(y)|
|x − y| .

Using Rademacher’s theorem, since ‖h‖Lip ≤ 1, then h is differentiable almost everywhere, with
h′ denoting its derivative.

Using this class of test functions, (1.2) gives the bounded Wasserstein (or Fortet–Mourier)
distance between two random variables F and G, denoted from now on by

dbW (F,G) = sup
{∣∣E[h(F )

]− E
[
h(G)

]∣∣ : h ∈ H
}
, (1.4)

with H as in (1.3); see, for example, Nourdin and Peccati [11]. Rachev [12] also gives a con-
nection to the Kantorovich–Rubinstein problem. To obtain such bounds, we use the following
lemma from Reinert [13] which is based on Stein’s method (Stein [14]).

Lemma 1.1. Let Y1, Y2, . . . , Yn be independent random variables with E(Yi) = 0, Var(Yi) =
σ 2 > 0 and E|Yi |3 < ∞. Let W = 1√

n

∑n
i=1 Yi and K ∼ N(0, σ 2). Then for any function h ∈ H ,

with H given in (1.3)

dbW (W,K) ≤ 1√
n

(
2 + 1

σ 3

[
E|Y1|3

])
. (1.5)

Using Yi = l′(θ0;Xi), we see that (1.5) is closely related to (a) in (1.1). For a bound of (b), we
employ Taylor expansion.

The paper is organised as follows. Section 2 gives an upper bound on the distributional dis-
tance between the distribution of the MLE and the normal distribution in the case of i.i.d. random
variables. In Section 3, the results are applied to the class of one-parameter exponential family
distributions. In Section 4, we use a perturbation to treat the special case of having a random
vector from a distribution where the parameter space is not an open interval and there is positive
probability of the MLE to lie on the boundary of the parameter space. An example is the Poisson
distribution with mean θ ∈ [0,∞); the MLE could take on the value zero with positive probabil-
ity, but the log-likelihood function is not differentiable at zero. In Section 5, we obtain an upper
bound on the Mean Squared Error of the MLE. We use this bound in order to get an upper bound
on the distributional distance to the normal distribution, even when no analytic expression of the
MLE is available. We assess the quality of our results through a simulation-based study related
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to the Beta distribution. The R-code for the simulations and the simulation output are available
at the Oxford University Research Archive (ORA). The DOI is: 10.5287/bodleian:s4655h876.

2. Bounds on the distance to normal for the MLE

In this section, we briefly relate the Kolmogorov and the bounded Wasserstein distance and we
give upper bounds on the distributional distance between the distribution of the MLE and the
normal distribution in terms of the bounded Wasserstein distance.

2.1. The bounded Wasserstein and the Kolmogorov distance

For Z ∼ N(0,1), the aim is to bound

dbW

(√
ni(θ0)

(
θ̂n(X) − θ0

)
,Z
)
, (2.1)

with dbW (·, ·) as defined in (1.4). Using H = {1[·≤x], x ∈ R} as the class of functions in (1.2),
yields the Kolmogorov distance,

dK

(√
ni(θ0)

(
θ̂n(X) − θ0

)
,Z
)
.

The next proposition links these two distances.

Proposition 2.1. If G is any real-valued random variable and Z ∼ N(0,1), then

dK(G,Z) ≤ 2
√

dbW (G,Z).

Proof. The proof of this proposition follows the proof of Theorem 3.3 of Chen et al. [3], page 48.
Let z ∈ R and for α = √

dbW (G,Z)(2π)1/4, z ∈ R, let

hα(w) =

⎧⎪⎨
⎪⎩

1, if w ≤ z,

1 + z − w

α
, if z < w ≤ z + α,

0, if w > z + α

so that hα is bounded Lipschitz with ‖hα‖ ≤ 1 and ‖h′
α‖ ≤ 1

α
. By the triangle inequality,

P(G ≤ z) − P(Z ≤ z) ≤ E
[
hα(G)

]− E
[
hα(Z)

]+ E
[
hα(Z)

]− P(Z ≤ z)

≤ dbW (G,Z)

α
+ P(z ≤ Z ≤ z + α)

≤ dbW (G,Z)

α
+ α√

2π
≤ 2

√
dbW (G,Z).

Similarly P(G ≤ z) − P(Z ≤ z) ≥ −2
√

dbW (G,Z), which completes the proof. �

http://dx.doi.org/10.5287/bodleian:s4655h876
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The Kolmogorov distance relates directly to exact conservative confidence intervals. Our re-
sults on the bounded Wasserstein distance and Proposition 2.1 give that

dK

(√
ni(θ0)

(
θ̂n(X) − θ0

)
,Z
)≤ 2

√
BbW =: BK,

where BbW denotes the bound for the bounded Wasserstein distance from Proposition 2.1. There-
fore, for y ∈ R: ∣∣P(√ni(θ0)

(
θ̂n(X) − θ0

)≤ y
)− P(Z ≤ y)

∣∣≤ BK
(2.2)

⇔ −BK ≤ P
(√

ni(θ0)
(
θ̂n(X) − θ0

)≤ y
)− P(Z ≤ y) ≤ BK.

For �−1(·) the quantile function for the standard normal distribution, applying (2.2) to y =
�−1(α

2 − BK) and to y = �−1(1 − α
2 + BK) yields

P

(
�−1

(
α

2
− BK

)
≤√

ni(θ0)
(
θ̂n(X) − θ0

)≤ �−1
(

1 − α

2
+ BK

))
≥ 1 − α.

Hence, if the expected Fisher Information number for one random variable, i(θ0), is known, then(
θ̂n(X) − �−1(1 − α/2 + BK)√

ni(θ0)
, θ̂n(X) − �−1(α/2 − BK)√

ni(θ0)

)

is a conservative 100(1 − α)% confidence interval for θ0.

2.2. Bounds in terms of the bounded Wasserstein distance

The bounded Wasserstein distance links in well with Stein’s method because the Lips-
chitz test functions are differentiable almost everywhere. From now on, d

dθ
logf (X1|θ0) :=

d
dθ

logf (X1|θ)|θ=θ0 . The next two results provide a bound for (a) and (b) in (1.1), respectively.

Proposition 2.2. Suppose X1,X2, . . . ,Xn are i.i.d. random variables with density or frequency
function f (xi |θ). Assume that (R1)–(R4) are satisfied, Z ∼ N(0,1) and E| d

dθ
logf (X1|θ0)|3

exists. Then for h :R →R, such that h is absolutely continuous and bounded∣∣∣∣E
[
h

(
l′(θ0;X)√

ni(θ0)

)]
− E

[
h(Z)

]∣∣∣∣≤ ‖h′‖√
n

(
2 + 1

[i(θ0)]3/2

[
E

∣∣∣∣ d

dθ
logf (X1|θ0)

∣∣∣∣
3])

. (2.3)

In particular,

dbW

(
l′(θ0;X)√

ni(θ0)
,Z

)
≤ 1√

n

(
2 + 1

[i(θ0)]3/2

[
E

∣∣∣∣ d

dθ
logf (X1|θ0)

∣∣∣∣
3])

. (2.4)

Proof. Let

Yi = Yi(Xi; θ0) =
(

d

dθ
logf (Xi |θ0)

)/√
i(θ0), i = 1,2, . . . , n,
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which are i.i.d. random variables as X1,X2, . . . ,Xn are i.i.d. The regularity conditions (R1)–(R4)

ensure that Eθ0[Yi] = 0 and Varθ0 [Yi] = 1. Then letting W = W(X; θ0) = 1√
n

∑n
i=1 Yi = l′(θ0;X)√

ni(θ0)
,

gives that Eθ0 [W ] = 0 and Varθ0 [W ] = 1. Applying Lemma 1.1 to K = Z ∼ N(0,1) yields the
result. �

Theorem 2.1. Let X1,X2, . . . ,Xn be i.i.d. random variables with density or frequency function
f (xi |θ) such that the regularity conditions (R1)–(R4) are satisfied and that the MLE, θ̂n(X),
exists and it is unique. Assume that E| d

dθ
logf (X1|θ0)|3 < ∞ and that E(θ̂n(X) − θ0)

4 < ∞. Let
0 < ε = ε(θ0) be such that (θ0 − ε, θ0 + ε) ⊂ � as in (R3) and let Z ∼ N(0,1). Then

dbW

(√
ni(θ0)

(
θ̂n(X) − θ0

)
,Z
)

≤ 1√
n

(
2 + 1

[i(θ0)]3/2

[
E

∣∣∣∣ d

dθ
logf (X1|θ0)

∣∣∣∣
3])

(2.5)

+ 2
E(θ̂n(X) − θ0)

2

ε2
+ 1√

ni(θ0)

{
E
(∣∣R2(θ0;X)

∣∣|∣∣θ̂n(X) − θ0
∣∣≤ ε

)

+ 1

2

[
E
((

sup
θ :|θ−θ0|≤ε

∣∣l(3)(θ;X)
∣∣)2∣∣∣∣θ̂n(X) − θ0

∣∣≤ ε
)]1/2[

E
(
θ̂n(X) − θ0

)4]1/2
}
,

where

R2(θ0,x) = (
θ̂n(x) − θ0

)(
l′′(θ0;x) + ni(θ0)

)
. (2.6)

The following lemma is useful for the conditional expectations in (2.5); the proof is in the
Appendix.

Lemma 2.1. Let M ≥ 0 be a random variable and ε > 0. For every continuous function f such
that f (m) is increasing and f (m) ≥ 0, for m > 0,

E
[
f (M)|M ≤ ε

]≤ E
[
f (M)

]
.

Proof of Theorem 2.1. For the sake of presentation, we drop the subscript θ0 from the expecta-
tion. The regularity conditions ensure that 0 = l′(θ̂n(x);x). A second order Taylor expansion of
l′(θ̂n(x);x) about θ0 gives

l′′(θ0;x)
(
θ̂n(x) − θ0

)= −l′(θ0;x) − R1(θ0;x), (2.7)

where

R1(θ0;x) = 1
2

(
θ̂n(x) − θ0

)2
l(3)

(
θ∗;x

)
is the remainder term with θ∗ lying between θ̂n(x) and θ0. The result in (2.7) gives

−ni(θ0)
(
θ̂n(x) − θ0

)= −l′(θ0;x) − R1(θ0;x) − (
θ̂n(x) − θ0

)[
l′′(θ0;x) + ni(θ0)

]
.
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As i(θ0) �= 0

θ̂n(x) − θ0 = l′(θ0;x) + R1(θ0;x) + R2(θ0,x)

ni(θ0)
,

with R2(θ0,x) as in (2.6). For Z ∼ N(0,1) and h ∈ H given in (1.3), we obtain∣∣E[h((θ̂n(X) − θ0
)√

ni(θ0)
)]− E

[
h(Z)

]∣∣
≤
∣∣∣∣E
[
h

(
l′(θ0;X) + R1(θ0;X) + R2(θ0;X)√

ni(θ0)

)
− h

(
l′(θ0;X)√

ni(θ0)

)]∣∣∣∣ (2.8)

+
∣∣∣∣E
[
h

(
l′(θ0;X)√

ni(θ0)

)]
− E

[
h(Z)

]∣∣∣∣. (2.9)

The upper bound for (2.9) is given in Proposition 2.2. To bound (2.8), note that the term R1(θ0;X)

is in general not uniformly bounded. For ease of presentation, let

C1 = C1(h, θ0;X) = h

(
l′(θ0;X) + R1(θ0;X) + R2(θ0;X)√

ni(θ0)

)
− h

(
l′(θ0;X)√

ni(θ0)

)
.

For all x the rather crude bound |C1| ≤ 2‖h‖ is valid. If |θ̂n(X) − θ0| ≤ ε then a better bound is
available. Hence, we condition on whether |θ̂n(X)− θ0| > ε or |θ̂n(X)− θ0| ≤ ε, with ε > 0 such
that (θ0 − ε, θ0 + ε) ⊂ �, as condition (R3) requires. Moreover, by Markov’s inequality

Pθ0

(∣∣θ̂n(X) − θ0
∣∣> ε

)≤ E[θ̂n(X) − θ0]2

ε2
. (2.10)

Using the law of total expectation,∣∣E[C1]
∣∣ ≤ E

(|C1||
∣∣θ̂n(X) − θ0

∣∣> ε
)
P
(∣∣θ̂n(X) − θ0

∣∣> ε
)

+ E
(|C1||

∣∣θ̂n(X) − θ0
∣∣≤ ε

)
P
(∣∣θ̂n(X) − θ0

∣∣≤ ε
)
.

Using (2.10) for the first term and a first order Taylor expansion of h(
l′(θ0;X)+R1(θ0;X)+R2(θ0;X)√

ni(θ0)
)

about l′(θ0)√
ni(θ0)

for the second term gives

∣∣E[C1]
∣∣ ≤ 2‖h‖E(θ̂n(X) − θ0)

2

ε2

+
∣∣∣∣E
(

R1(θ0,X) + R2(θ0,X)√
ni(θ0)

h′(t (X)
)∣∣∣∣∣θ̂n(X) − θ0

∣∣≤ ε

)∣∣∣∣
≤ 2‖h‖E(θ̂n(X) − θ0)

2

ε2
+ ‖h′‖√

ni(θ0)
E
(∣∣R2(θ0;X)

∣∣|∣∣θ̂n(X) − θ0
∣∣≤ ε

)

+ ‖h′‖√
ni(θ0)

E

(
1

2

(
θ̂n(X) − θ0

)2∣∣l(3)
(
θ∗;X

)∣∣∣∣∣∣∣θ̂n(X) − θ0
∣∣≤ ε

)
,
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where t (X) lies between l′(θ0;X)√
ni(θ0)

and l′(θ0;X)+R1(θ0;x)+R2(θ0;X)√
ni(θ0)

. Since for |θ̂n(X) − θ0| ≤ ε,

|R1(θ0;x)| ≤ 1
2 (θ̂n(X) − θ0)

2supθ :|θ−θ0|≤ε|l(3)(θ;X)|,

∣∣E[C1]
∣∣ ≤ 2‖h‖E(θ̂n(X) − θ0)

2

ε2
+ ‖h′‖√

ni(θ0)
E
(∣∣R2(θ0;X)

∣∣|∣∣θ̂n(X) − θ0
∣∣≤ ε

)

+ ‖h′‖
2
√

ni(θ0)
E
[

sup
θ :|θ−θ0|≤ε

∣∣l(3)(θ;X)
∣∣(θ̂n(X) − θ0

)2∣∣∣∣θ̂n(X) − θ0
∣∣≤ ε

]
.

The next step is based on the Cauchy–Schwarz inequality and the fact that

E
[(

θ̂n(X) − θ0
)4|∣∣θ̂n(X) − θ0

∣∣≤ ε
]≤ E

[(
θ̂n(X) − θ0

)4]
, (2.11)

due to Lemma 2.1, giving

∣∣E[C1]
∣∣ ≤ 2‖h‖E(θ̂n(X) − θ0)

2

ε2
+ ‖h′‖√

ni(θ0)

{
E
(∣∣R2(θ0;X)

∣∣|∣∣θ̂n(X) − θ0
∣∣≤ ε

)

+ 1

2

[
E
((

sup
θ :|θ−θ0|≤ε

∣∣l(3)(θ;X)
∣∣)2∣∣∣∣θ̂n(X) − θ0

∣∣≤ ε
)]1/2

(2.12)

× [
E
(
θ̂n(X) − θ0

)4]1/2
}
.

The result of the theorem is obtained using (2.4) and (2.12) and the fact that ‖h‖ ≤ 1 and
‖h′‖ ≤ 1. �

Remark 2.1. (1) If l′′(θ0;x) ≡ −ni(θ0) then in (2.6), R2(θ0;x) ≡ 0 and the bound given in
Theorem 2.1 simplifies.

(2) The rate of convergence of the Mean Squared Error, E(θ̂n(X) − θ0)
2, is O( 1

n
). This result

is obtained using that

E
(
θ̂n(X) − θ0

)2 = Var
[
θ̂n(X)

]+ bias2[θ̂n(X)
]
. (2.13)

Under the standard asymptotics (from the regularity conditions (R1)–(R4)) the MLE is asymp-
totically efficient,

nVar
[
θ̂n(X)

] −→
n→∞

[
i(θ0)

]−1
,

and hence the variance of the MLE is of order 1
n

. In addition, from Theorem 1.1 the bias of
the MLE is of order 1√

n
; see also Cox and Snell [4], where no explicit conditions are given.

Combining these two results and using (2.13) shows that the Mean Squared Error of the MLE is
of order 1

n
. In the examples that follow, the remaining terms in the bound are of order at most

1√
n

.
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(3) When the calculation of E(| d
dθ

logf (X1|θ0)|3) is awkward, Hölder’s inequality can be
used, giving E(| d

dθ
logf (X1|θ0)|3) ≤ [E( d

dθ
logf (X1|θ0))

4]3/4.

3. One-parameter exponential families

This section specifies Theorem 2.1 for the distribution of the MLE for one-parameter exponential
family distributions. Many popular distributions which have the same underlying structure based
on relatively simple properties are exponential families, such as the normal, Gamma and Laplace
distributions. The case of the Poisson distribution with θ ∈ [0,∞) is treated in Section 4.2. Gen-
eralisations of exponential families can be found in Lauritzen [9] and Berk [1]. The density or
frequency function is of the form

f (x|θ) = exp
{
k(θ)T (x) − A(θ) + S(x)

}
1{x∈B},

where the set B = {x : f (x|θ) > 0} is the support of X and does not depend on θ ; k(θ) and
A(θ) are functions of the parameter; T (x) and S(x) are functions only of the data. The choice
of the functions k(θ) and T (X) is not unique. The case k(θ) = θ is the so-called canonical case.
In this case, θ and T (X) are called the natural parameter and natural observation (Casella and
Berger [2]). We make the following assumptions, where (Ass.Ex.1)–(Ass.Ex.3) are necessary for
the existence and uniqueness of the MLE and (A1)–(A4) follow from the regularity conditions
in Section 1.

(Ass.Ex.1) � ⊂R is open and connected;
(Ass.Ex.2) limθ→∂� k(θ)

∑n
i=1 T (xi) − nA(θ) +∑n

i=1 S(xi) = −∞;
(Ass.Ex.3) We have k′′(θ)

∑n
i=1 T (xi) − nA′′(θ) < 0 at every point θ ∈ � for which it holds

that k′(θ)
∑n

i=1 T (xi) − nA′(θ) = 0;

(A1) k′(θ) �= 0,∀θ ∈ � and D(θ) = A′(θ)
k′(θ)

is invertible;
(A2) l(θ;x) is thrice continuously differentiable with respect to θ , meaning that both

k(3)(θ) and A(3)(θ) exist and they are continuous. In addition, integration of the
density function over x and differentiation with respect to θ are three times inter-
changeable;

(A3) for any θ0 ∈ �, there exists a positive number ε and a function M(x) (both of
which may depend on θ0) such that∣∣k(3)(θ)T (x) − A(3)(θ)

∣∣≤ M(x) ∀x ∈ B,θ0 − ε < θ < θ0 + ε,

with E[M(X)] < ∞;
(A4) Var[T (X)] > 0;
(A5) E|T (X) − D(θ0)|3 exists. This assumption is required for meaningful bounds.

Corollary 3.1. Let X1,X2, . . . ,Xn be i.i.d. random variables with the density or frequency
function of a single-parameter exponential family. Assume that (A1)–(A5) are satisfied and
that (Ass.Ex.1)–(Ass.Ex.3) also hold. With Z ∼ N(0,1), h ∈ H , R2(θ0;X) as in (2.6) and also
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0 < ε = ε(θ0) such that (θ0 − ε, θ0 + ε) ⊂ � as in (A3), it holds that

dbW

(√
ni(θ0)

(
θ̂n(X) − θ0

)
,Z
)

≤ 1√
n

(
2 + E|T (X1) − D(θ0)|3

[Var[T (X1)]]3/2

)
(3.1)

+ 2
E(θ̂n(X) − θ0)

2

ε2
+ 1√

ni(θ0)

{
E
(∣∣R2(θ0;X)

∣∣|∣∣θ̂n(X) − θ0
∣∣≤ ε

)

+ 1

2

[
E
((

sup
θ :|θ−θ0|≤ε

∣∣l(3)(θ;X)
∣∣)2∣∣∣∣θ̂n(X) − θ0

∣∣≤ ε
)]1/2[

E
(
θ̂n(X) − θ0

)4]1/2
}
.

Proof. For the first term of the bound, let

Yi = Yi(Xi; θ0) =
(

d

dθ
logf (Xi |θ0)

)/√
i(θ0), i = 1,2, . . . , n.

Using Proposition 2.2, we calculate E|Y1|3. Now

d

dθ
logf (Xi |θ)

∣∣∣
θ=θ0

= k′(θ0)T (Xi) − A′(θ0)

yields

E

∣∣∣∣ d

dθ
logf (Xi |θ0)

∣∣∣∣
3

= E
∣∣k′(θ0)T (Xi) − A′(θ0)

∣∣3 = E
∣∣k′(θ0)

(
T (Xi) − D(θ0)

)∣∣3
= ∣∣k′(θ0)

∣∣3E
∣∣T (Xi) − D(θ0)

∣∣3 ∀i ∈ {1,2, . . . , n}.
In addition, i(θ0) = Var[ d

dθ
logf (Xi |θ0)] = [k′(θ0)]2 Var[T (Xi)] > 0 from (A1) and (A4). These

quantities can now be applied to get the first term of the bound in (3.1) while the rest of the terms
are as in Theorem 2.1. �

Remark 3.1. In the canonical case, ni(θ0) ≡ nA′′(θ0) ≡ −l′′(θ0;x). So R2(θ0;x) ≡ 0.

3.1. Example: The exponentially distributed random variable

In this section, we consider two examples using the exponential distribution, first, its canonical
form, and then under a change of parameterisation.

3.1.1. The canonical case

In the case of X1,X2, . . . ,Xn exponentially distributed, Exp(θ), i.i.d. random variables where
θ > 0 the probability density function is

f (x|θ) = θ exp{−θx} = exp{log θ − θx} = exp
{
k(θ)T (x) − A(θ) + S(x)

}
1{x∈B},
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where B = (0,∞), θ ∈ � = (0,∞), T (x) = −x, k(θ) = θ , A(θ) = − log θ and S(x) = 0. Hence,
Exp(θ) is a single-parameter canonical exponential family. Moreover,

l′(θ;x) = n

θ
−

n∑
i=1

xi, l′′(θ;x) = − n

θ2
.

Thus, it is easy to see that the MLE exists, it is unique, equal to θ̂n(X) = 1
X̄

and (A1)–(A5) are
satisfied. Corollary 3.1 gives

dbW

(√
ni(θ0)

(
θ̂n(X) − θ0

)
,Z
) ≤ 4.41456√

n
+ 8(n + 2)

(n − 1)(n − 2)
(3.2)

+ 8
√

n(n + 2)

(n − 1)(n − 2)
.

For ε > 0, since � = (0,∞) simple calculations yield that 0 < ε < θ0 to apply (A3) and more-
over supθ :|θ−θ0|≤ε|l(3)(θ;x)| = 2n

(θ0−ε)3 . Choosing ε = θ0
2 , gives that supθ :|θ−θ0|≤ε|l(3)(θ;x)| =

16n

θ3
0

. In addition, since Xi ∼ Exp(θ),∀i ∈ {1,2, . . . , n} then X̄ ∼ G(n,nθ), with G(α,β) being

the Gamma distribution with shape parameter α and rate parameter β . Basic calculations of in-
tegrals show that E|T (X) − D(θ0)|3 = E| 1

θ0
− X|3 ≤ 2.41456

θ3
0

and

E
[(

θ̂n(X) − θ0
)2]= (nθ0)

2

(n − 1)(n − 2)
− 2nθ2

0

n − 1
+ θ2

0 = (n + 2)θ2
0

(n − 1)(n − 2)
.

Since supθ :|θ−θ0|≤ε|l(3)(θ)| does not depend on the sample, it is not necessary to use (2.11). Thus,

ε = θ0
2 yields the result in (3.2).

Remark 3.2. (1) The rate of convergence of the bound is O( 1√
n
). Note also that the bound does

not depend on the value of θ0.
(2) Note that the calculation of E| 1

θ0
− X|3 requires a significant amount of steps. Therefore,

one could use Hölder’s inequality with E| 1
θ0

− X|3 ≤ [E( 1
θ0

− X)4]3/4 = 93/4

θ3
0

using the results in

pages 70–73 of Kendall and Stuart [8].

3.1.2. The non-canonical case

Let X1,X2, . . . ,Xn be i.i.d. random variables from Exp( 1
θ
), with p.d.f.

f (x|θ) = 1

θ
exp

{
−1

θ
x

}
= exp

{
− log θ − 1

θ
x

}
(3.3)

= exp
{
k(θ)T (x) − A(θ) + S(x)

}
1{x∈B},

where B = (0,∞), θ ∈ � = (0,∞), T (x) = −x, k(θ) = 1
θ

, A(θ) = log θ and S(x) = 0. Again, it

is easy to show that the MLE exists, it is unique, equal to θ̂n(X) = X̄ and (A1)–(A5) are satisfied.
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For ε as before and h ∈ H , Corollary 3.1 gives

dbW

(√
ni(θ0)

(
θ̂n(X) − θ0

)
,Z
) ≤ 4.41456√

n
+ 8

n
+ 2√

n
(3.4)

+ 1√
n

(
80

[
3

(
2

n
+ 1

)]1/2)
.

The Mean Squared Error is found to be E(θ̂n(X)− θ0)
2 = E(X̄ − θ0)

2 = θ2
0
n

. Also (3.3) gives that

l(3)(θ;X) = − 2n

θ3 + 6
θ4

∑n
i=1 Xi = 2n

θ4 (3θ̂n(X) − θ) and the triangle inequality yields

sup
θ :|θ−θ0|≤ε

∣∣l(3)(θ;X)
∣∣≤ sup

θ :|θ−θ0|≤ε

[∣∣∣∣6nθ̂n(X)

θ4

∣∣∣∣+
∣∣∣∣2n

θ3

∣∣∣∣
]

= 2n

(θ0 − ε)4

(
3θ̂n(X) + θ0 − ε

)
.

Therefore,

[
E
((

sup
θ :|θ−θ0|≤ε

∣∣l(3)(θ;X)
∣∣)2∣∣∣∣θ̂n(X) − θ0

∣∣≤ ε
)]1/2

≤
[

E

((
2n

(θ0 − ε)4

(
3θ̂n(X) + θ0 − ε

))2∣∣∣∣∣θ̂n(X) − θ0
∣∣≤ ε

)]1/2

≤ 2n

(θ0 − ε)4

[
E
((

3
∣∣θ̂n(X) − θ0

∣∣+ 4θ0 − ε
)2|∣∣θ̂n(X) − θ0

∣∣≤ ε
)]1/2

≤ 2n

(θ0 − ε)4

[
(2ε + 4θ0)

2]1/2 = 4n(2θ0 + ε)

(θ0 − ε)4
.

The quantity [E(θ̂n(X) − θ0)
4]1/2 is calculated using the results in page 73 and the equa-

tions (3.38), page 70 of Kendall and Stuart [8] along with the fact that θ̂n(X) = X̄ ∼ G(n, n
θ0

),

yielding that E(θ̂n(X) − θ0)
4 = 3θ4

0
n2 ( 2

n
+ 1). Therefore,

[
E
((

sup
θ :|θ−θ0|≤ε

∣∣l(3)(θ;X)
∣∣)2∣∣∣∣θ̂n(X) − θ0

∣∣≤ ε
)]1/2[

E
(
θ̂n(X) − θ0

)4]1/2

≤ 4n(2θ0 + ε)

(θ0 − ε)4

[
3θ4

0

n2

(
2

n
+ 1

)]1/2

= 4(2θ0 + ε)

(θ0 − ε)4

[
3θ4

0

(
2

n
+ 1

)]1/2

.

To find an upper bound for E(|R2(θ0;X)|||θ̂n(X) − θ0| ≤ ε),

R2(θ0;X) = (
θ̂n(X) − θ0

)( n

θ2
0

− 2nX̄

θ3
0

+ n

θ2
0

)
= (

θ̂n(X) − θ0
)(2n

θ2
0

− 2nX̄

θ3
0

)

= −2n(θ̂n(X) − θ0)
2

θ3
0

.
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Using Lemma 2.1 for f (x) = x2 gives

E
[(

θ̂n(X) − θ0
)2|∣∣θ̂n(X) − θ0

∣∣≤ ε
]≤ E

[(
θ̂n(X) − θ0

)2]
.

Finally,

E
(∣∣R2(θ0;x)

∣∣|∣∣θ̂n(X) − θ0
∣∣≤ ε

) = E

(
2n

θ3
0

(
θ̂n(X) − θ0

)2
∣∣∣∣∣θ̂n(X) − θ0

∣∣≤ ε

)

≤ 2n

θ3
0

E
[(

θ̂n(X) − θ0
)2]= 2

θ0
.

Applying now the general result of Corollary 3.1 for ε = θ0
2 yields the result in (3.4).

Remark 3.3. (1) In this case, the speed of convergence related to the sample size of the above
upper bound is O( 1√

n
) and the bound does not depend on θ0.

(2) Comparing the upper bound in (3.4) with that in (3.2) for the canonical case we see that
the first term is the same. However, the rest of the bound is larger in (3.4) than in (3.2) ∀n ∈N.

(3) In the specific occasion of independent, exponentially distributed random variables with

rate parameter 1
θ0

, the MLE exists, it is unique and equal to X̄. Define W =
√

n(X̄−θ0)
θ0

=
1√
n

∑n
i=1 Yi , where Yi = Xi−θ0

θ0
are independent, zero mean and unit variance random variables.

Also, E(W) = 0 and Var(W) = 1
nθ2

0

∑n
i=1 Var(Xi) = 1. Therefore, (1.5) can be used to show

dbW

(√
ni(θ0)

(
θ̂n(X) − θ0

)
,Z
)≤ 1√

n

(
2 + 1

θ3
0

E|X1 − θ0|3
)

≤ 4.41456√
n

. (3.5)

The upper bound given in (3.5) as a result of the direct use of Stein’s method is smaller than
the upper bound given in (3.4) using the general method explained in Section 2. However, in
order to apply Stein’s method directly, the quantity (θ̂n(x) − θ0)

√
ni(θ0) is assumed to be a sum

of independent random variables. The general method, on the other hand, gives an upper bound
for (2.1), whatever the MLE is, as long as the assumptions expressed in the beginning of the
section hold.

3.1.3. Empirical results

In this subsection, we study the accuracy of our bounds by simulations. We start by generat-
ing 10 000 trials of n random independent observations, x, from the exponential distribution.
The means for the canonical and the non-canonical case are equal to 1 and 2, respectively.
We evaluate the MLE, θ̂n(X), of the parameter in each trial, which in turn gives a vector of
10 000 values. We standardise these values and we apply to them the function h(x) = 1

x2+2
with

h ∈ H and ‖h‖ = 0.5, ‖h′‖ = 3
√

1.5
16 to calculate the expressions in (2.3) and (2.12). Finally,

we compare |E[h(
√

ni(θ0)(θ̂n(X) − θ0))] − E[h(Z)]| with the sum of the right-hand sides of
(2.3) and (2.12), using the difference between their values as a measure of the error. The re-
sults presented in the following tables are based on this particular function h while the bounded
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Table 1. Results taken by simulations from the Exp(1) distribution

n |Ê[h((θ̂n(X) − θ0)
√

ni(θ0))] − E[h(Z)]| Upper bound Error

10 0.007 1.955 1.948
100 0.002 0.336 0.334

1000 0.001 0.094 0.093
10 000 0.0002 0.029 0.0288

100 000 0.0001 0.009 0.0089

Wasserstein metric is a supremum over a broader class of test functions, given in (1.3). Here,
E[h(Z)] = 0.379 and the results from the simulations are shown in Tables 1 and 2. The tables
indicate that |Ê[h((θ̂n(X) − θ0)

√
ni(θ0))] − E[h(Z)]|, the bound and the error, decrease as the

sample size gets larger. All the values in Table 1 are smaller than the respective ones in Table 2,
as expected from Remark 3.3. The bounds are not very good for n = 100. The reason might
be due to the crude upper bound related to the second term of the bound in (3.1). However,
when n ≥ 1000 the bounds are informative. For the non-canonical case the bounds using directly
Lemma 1.1 are, as expected, much better than those from the general approach. The bounds are
conceptual and better constraints may be possible.

4. Discrete distributions: The boundary issue

In this section, we use a perturbation method for any discrete distribution that faces the problem
of the MLE having positive probability of being on the boundary of the parameter space. We also
illustrate the perturbation for the specific example of the Poisson distribution.

4.1. The perturbation approach

A perturbation method based on a perturbation function, should be such that first of all, the
function should perturb the quantity of interest in a way that ensures it will be interior to its
domain. The second requirement is that the perturbed quantity should be as close as possible

Table 2. Results taken by simulations from the Exp(0.5) distribution treated as a non-canonical exponential
family

n |Ê[h((θ̂n(X) − θ0)
√

ni(θ0))] − E[h(Z)]| Bound Error Bound using Lemma 1.1

10 0.004 11.888 11.884 0.321
100 0.003 3.401 3.398 0.101

1000 0.002 1.058 1.056 0.032
10 000 0.001 0.333 0.332 0.010

100 000 0.0005 0.105 0.1045 0.003
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to the initial quantity. Let X be a random variable with support B , the connected closed (semi-
closed) interval [a, b] ((a, b] or [a, b)), where −∞ < a < b < ∞. For 0 < ε < b−a

2 , we are

looking for a perturbation function, q : B → ◦
B (where in this case,

◦
B denotes the interior of the

set B) with q(x) = kx + d , such that:

(1) q(a) = a + ε and q(b) = b − ε.
(2) supx |q(x) − x| is minimum, x ∈ B .

Solving this problem for k and d , gives k = 1 − 2ε
b−a

and d = ε + 2a
b−a

ε. There is only one
solution, which is minimal. Thus, the second requirement is also satisfied. Choose ε = ε(n) = c

n

and 0 < c <
n(b−a)

2 . Finally, the perturbation function is

q(x) = x + c

n
− 2c

n

(
x − a

b − a

)
, x ∈ B,0 < c <

n(b − a)

2
. (4.1)

In the case where B = (−∞, b] or B = [a,∞), then q(x) = x − c
n

or q(x) = x + c
n

, respectively.

Assuming existence and uniqueness of the MLE, θ̂n(X), for the parameter θ0, of a discrete
distribution with parameter space as in the previous paragraph, the aim is to find an upper bound
on

dbW

(√
n
(
θ̂n(X) − θ0

)
,K

)
,

where K ∼ N(0, 1
i(θ0)

). Note that N(0,0) is point mass at 0. The quantity we will bound is not
exactly the one shown in (2.1) because the Expected Fisher Information number might not exist
or not be finite when θ0 lies on the boundary of the parameter space. For this purpose, we will
use the perturbation function in (4.1) for both the parameter and the data.

First, we introduce some notations. For S being the discrete sample space, let a := inf�,
b := sup�, S1 := infS, Sp := supS and 0 < c1 <

n(b−a)
2 , 0 < c2 <

n(Sp−S1)

2 . In addition, θ∗
0 =

θ0 + c1
n

− 2c1
n

(
θ0−a
b−a

) is the perturbed parameter and

q(xi) = xi + c2

n
− 2c2

n

(
xi − S1

Sp − S1

)
(4.2)

is the perturbed data. The perturbed MLE is denoted by θ̂∗
n (x) := θ̂n(x)|x=q(x). Also,

l′
(
θ∗

0 ;q(x)
) := l′(θ;x)

∣∣∣ θ=θ∗
0

x=q(x)

, l′′
(
θ∗

0 ;q(x)
) := l′′(θ;x)

∣∣∣ θ=θ∗
0

x=q(x)

,

l(3)
(
θ;q(x)

) = l(3)(θ;x)
∣∣
x=q(x)

.

For ease of presentation, abbreviate Yi = l′(θ∗
0 ;q(Xi))√
ni(θ∗

0 )
, i ∈ {1, . . . , n} while w1 := w1(n, θ∗

0 ) and

w2 := w2(n, θ∗
0 ) are its expectation and variance, respectively.

Theorem 4.1. Let X1,X2, . . . ,Xn be i.i.d. random variables from a single-parameter discrete
distribution with parameter space the connected, closed or semi-closed interval � ⊂ R and dis-
crete sample space S. Assume that i(θ0) > 0 and let 1

i(θ0)
= 0 to be the continuous extension of
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1
i(θ)

to θ → θ0 when θ0 is such that i(θ0) does not exist or it is equal to infinity. Let h ∈ H and

0 < ε = ε(θ∗
0 ) such that (θ∗

0 − ε, θ∗
0 + ε) ⊂ ◦

�. Then

dbW

(√
n
(
θ̂n(X) − θ0

)
,K

)
≤ c1√

n

∣∣∣∣1 − 2

(
θ0 − a

b − a

)∣∣∣∣+ √
nE
∣∣θ̂n(X) − θ̂∗

n (X)
∣∣

+
[∣∣∣∣1 − 1√

w2ni(θ0)

∣∣∣∣√nw2 + (nw1)2 +
√

n|w1|√
w2i(θ0)

]
1

{
1

i(θ0)
> 0

}
(4.3)

+ 1√
n

(
2 + 1

(w2)3/2
E|Y1 − w1|3

)
1

{
1

i(θ0)
> 0

}
+ 2

E(θ̂∗
n (X) − θ∗

0 )2

ε2

+ 1√
ni(θ∗

0 )

{
E
(∣∣(θ̂∗

n (x) − θ∗
0

)[
l′′
(
θ∗

0 ;q(x)
)+ ni

(
θ∗

0

)]∣∣|∣∣θ̂∗
n (X) − θ∗

0

∣∣≤ ε
)

+ 1

2

[
E
((

sup
θ :|θ−θ∗

0 |≤ε

∣∣l(3)
(
θ;q(X)

)∣∣)2∣∣∣∣θ̂∗
n (X) − θ∗

0

∣∣≤ ε
)]1/2[

E
(
θ̂∗
n (X) − θ∗

0

)4]1/2
}
.

Proof. Step 1: Perturbation of θ0. Using the triangle inequality and then a first order Taylor
expansion of h(

√
n(θ̂n(X) − θ0)) about

√
n(θ̂n(X) − θ∗

0 ) gives

∣∣E[h(√n
(
θ̂n(X) − θ0

))]− E
[
h(K)

]∣∣
≤ ∣∣E[h(√n

(
θ̂n(X) − θ∗

0

))]− E
[
h(K)

]∣∣
+ ∣∣E[h(√n

(
θ̂n(X) − θ0

))− h
(√

n
(
θ̂n(X) − θ∗

0

))]∣∣ (4.4)

≤ ∣∣E[h(√n
(
θ̂n(X) − θ∗

0

))]− E
[
h(K)

]∣∣+ √
n
∥∥h′∥∥E

∣∣θ∗
0 − θ0

∣∣
= ∣∣E[h(√n

(
θ̂n(X) − θ∗

0

))]− E
[
h(K)

]∣∣+ ‖h′‖c1√
n

∣∣∣∣1 − 2

(
θ0 − a

b − a

)∣∣∣∣.
Step 2: Perturbation of the MLE. To perturb the MLE, we perturb the data. The perturbed data
is denoted by q(x) = (q(x1), q(x2), . . . , q(xn)), with q(xi) given in (4.2). This construction en-
sures that the MLE evaluated at q(x) is not on the boundary of the parameter space. Following
the same process as in (4.4), using the triangle inequality and a first order Taylor expansion of
h(

√
n(θ̂n(X) − θ∗

0 )) about
√

n(θ̂∗
n (X) − θ∗

0 ) gives

∣∣E[h(√n
(
θ̂n(X) − θ∗

0

))]− E
[
h(K)

]∣∣
≤ ∣∣E[h(√n

(
θ̂∗
n (X) − θ∗

0

))]− E
[
h(K)

]∣∣
(4.5)

+ ∣∣E[h(√n
(
θ̂n(X) − θ∗

0

))− h
(√

n
(
θ̂∗
n (X) − θ∗

0

))]∣∣
≤ ∣∣E[h(√n

(
θ̂∗
n (X) − θ∗

0

))]− E
[
h(K)

]∣∣+ √
n
∥∥h′∥∥E

∣∣θ̂n(X) − θ̂∗
n (X)

∣∣.
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Step 3: The final bound. It remains to bound∣∣E[h(√n
(
θ̂∗
n (X) − θ∗

0

))]− E
[
h(K)

]∣∣.
Since both θ∗

0 and θ̂∗
n (x) are interior to �, a second-order Taylor expansion of l′(θ̂∗

n (x);q(x))

about θ∗
0 yields

0 = l′
(
θ∗

0 ;q(x)
)+ (

θ̂∗
n (x) − θ∗

0

)
l′′
(
θ∗

0 ;q(x)
)+ R1

(
θ∗

0 ;q(x)
)
, (4.6)

where, similarly as in Section 2,

R1
(
θ∗

0 ;q(x)
)= 1

2

(
θ̂∗
n (x) − θ∗

0

)2
l(3)

(
θ̃;q(x)

)
with

l(3)
(
θ̃;q(x)

)= l(3)(θ;x)

∣∣∣ θ=θ̃
x=q(x)

for θ̃ between θ̂∗
n (x) and θ∗

0 . A simple rearrangement of the terms in (4.6), leads to θ̂∗
n (x) − θ∗

0 =
−l′(θ∗

0 ;g(x))−R1(θ
∗
0 ;g(x))

l′′(θ∗
0 ;g(x))

. Since, in general l′′(θ∗
0 ;q(x)) �= −ni(θ∗

0 ), using the results in the proof of

Theorem 2.1 gives

θ̂∗
n (x) − θ∗

0 = l′(θ∗
0 ;q(x)) + R1(θ

∗
0 ;q(x)) + R2(θ

∗
0 ;q(x))

ni(θ∗
0 )

,

where

R2
(
θ∗

0 ;q(x)
)= (

θ̂∗
n (x) − θ∗

0

)[
l′′
(
θ∗

0 ;q(x)
)+ ni

(
θ∗

0

)]
.

Using that q(X) = (q(X1), q(X2), . . . , q(Xn)), the triangle inequality gives∣∣E[h(√n
(
θ̂∗
n (X) − θ∗

0

))]− E
[
h(K)

]∣∣
≤
∣∣∣∣E
[
h

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )

)]
− E

[
h(K)

]∣∣∣∣ (4.7)

+
∣∣∣∣E
[
h

(
l′(θ∗

0 ;q(X)) + R1(θ
∗
0 ;q(X)) + R2(θ

∗
0 ;q(X))√

ni(θ∗
0 )

)
− h

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )

)]∣∣∣∣.
(A) To find an upper bound on the first quantity on the right-hand side of (4.7) using

Lemma 1.1, note that

l′(θ∗
0 ;q(X))√
ni(θ∗

0 )
=

n∑
i=1

Yi, where Yi = l′(θ∗
0 ;q(Xi))√
ni(θ∗

0 )
.

Denote by w1 := w1(n) and w2 := w2(n) the expectation and the variance of Yi, i = 1,2, . . . , n,
respectively. These quantities depend on the sample size and on the perturbed values (θ∗

0 and
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q(xi)). Define Ỹi = Yi−w1√
w2i(θ0)

,∀i ∈ {1,2, . . . , n} with E(Ỹi) = 0 and Var(Ỹi) = 1
i(θ0)

. As a conse-

quence of X1,X2, . . . ,Xn being i.i.d. random variables, Ỹ1, Ỹ2, . . . , Ỹn are i.i.d. random variables
too. Using the triangle inequality and that

1√
n

n∑
i=1

Ỹi = 1√
w2ni(θ0)

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )
− nw1

)

gives ∣∣∣∣E
[
h

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )

)]
− E

[
h(K)

]∣∣∣∣
≤
∣∣∣∣E
[
h

(
1√

w2ni(θ0)

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )
− nw1

))]
− E

[
h(K)

]∣∣∣∣ (4.8)

+
∣∣∣∣E
[
h

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )

)
− h

(
1√

w2ni(θ0)

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )
− nw1

))]∣∣∣∣.
The first term of the bound in (4.8) will be bounded using Lemma 1.1 with W = 1√

n

∑n
i=1 Ỹi .

Thus, ∣∣∣∣E
[
h

(
1√

w2ni(θ0)

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )
− nw1

))]
− E

[
h(K)

]∣∣∣∣
(4.9)

≤ ‖h′‖√
n

(
2 + [

i(θ0)
]3/2E|Ỹ1|3

)= ‖h′‖√
n

(
2 + 1

(w2)3/2
E|Y1 − w1|3

)
.

For the second term of the upper bound in (4.8) a first-order Taylor expansion and the Cauchy–
Schwarz inequality yield∣∣∣∣E

[
h

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )

)
− h

(
1√

w2ni(θ0)

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )
− nw1

))]∣∣∣∣
≤ ∥∥h′∥∥∣∣∣∣1 − 1√

w2ni(θ0)

∣∣∣∣E
∣∣∣∣ l′(θ∗

0 ;q(X))√
ni(θ∗

0 )

∣∣∣∣+ ‖h′‖√n|w1|√
w2i(θ0)

≤ ∥∥h′∥∥∣∣∣∣1 − 1√
w2ni(θ0)

∣∣∣∣
(

Var

(
l′(θ∗

0 ;q(X))√
ni(θ∗

0 )

)
+ [E(l′(θ∗

0 ;q(X)))]2

n[i(θ∗
0 )]2

)1/2

(4.10)

+ ‖h′‖√n|w1|√
w2i(θ0)

= ∥∥h′∥∥[∣∣∣∣1 − 1√
w2ni(θ0)

∣∣∣∣√nw2 + (nw1)2 +
√

n|w1|√
w2i(θ0)

]
.

When 1
i(θ0)

= 0 then Ỹi = 0,∀i ∈ {1,2, . . . , n} and by following the above process, the first term
on the right-hand side of (4.7) is equal to zero.
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(B) To complete the proof, it remains to find an upper bound for the second term on the right-
hand side of (4.7). The idea is the same as the one used for (2.12). We condition on whether

|θ̂∗
n (X) − θ∗

0 | > ε or |θ̂∗
n (X) − θ∗

0 | ≤ ε, where now ε = ε(θ∗
0 ) and 0 < ε (θ∗

0 − ε, θ∗
0 + ε) ⊂ ◦

�.
Following the same process as in Section 2 yields∣∣∣∣E

[
h

(
l′(θ∗

0 ;g(X)) + R1(θ
∗
0 ;g(X)) + R2(θ

∗
0 ;g(X))√

ni(θ∗
0 )

)
− h

(
l′(θ∗

0 ;g(X))√
ni(θ∗

0 )

)]∣∣∣∣
≤ 2‖h‖E(θ̂∗

n (X) − θ∗
0 )2

ε2
+ ‖h′‖√

ni(θ∗
0 )

{
E
(∣∣R2

(
θ∗

0 ;g(X)
)∣∣|∣∣θ̂∗

n (X) − θ∗
0

∣∣≤ ε
)

(4.11)

+ ‖h′‖
2

[
E
((

sup
θ :∣∣θ−θ∗

0

∣∣≤ε

∣∣l(3)
(
θ;g(X)

)∣∣)2∣∣∣∣θ̂∗
n (X) − θ∗

0

∣∣≤ ε
)]1/2[

E
(
θ̂∗
n (X) − θ∗

0

)4]1/2
}
.

Combining (4.4), (4.5), (4.9), (4.10) and (4.11) and the fact that ‖h‖ ≤ 1, ‖h′‖ ≤ 1 gives the
result in (4.3). �

Remark 4.1. (1) In order for the above bound to approach zero as the sample size, n, increases
we require that E|θ̂n(X) − θ̂∗

n (X)| = o( 1√
n
).

(2) When both endpoints of the parameter space are not finite, then parameter perturbation is
not necessary. In the case where one of the two endpoints of the now semi-closed parameter space
is infinite, then it suffices to change the form of the perturbed parameter, which now becomes

θ∗
0 = θ0 − c1

n
if the left endpoint is equal to −∞,

θ∗
0 = θ0 + c1

n
if the right endpoint is equal to ∞.

The same holds regarding the sample space and the relevant perturbation of the data.

4.2. Example: The Poisson distribution

In this subsection, we consider the Poisson distribution with parameter θ ∈ � = [0,∞). The
value θ = 0 must be in the parameter space in order for the MLE, θ̂n(X) = X̄, to exist and to
be unique. The Poisson(θ) distribution with the aforementioned parameter space is not a single-
parameter exponential family. When θ = 0 is included in the parameter space the requirements
of an exponential family are not satisfied as the set of values x for which the relevant probability
mass function

f (x|θ) = e−θ θx

x! , θ ∈ [0,∞), x ∈ Z
+
0

is positive, is different for θ = 0 than for any other value of the parameter θ ; the support of the
distribution depends on the parameter. Following the steps of the proof of Theorem 4.1, using
also Hölder’s inequality for the third absolute moment in the third term of the bound in (4.3) and
taking 0 < c = c1 = c2, which minimizes the bound, gives the next result.
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Corollary 4.1. Let X1,X2, . . . ,Xn be i.i.d. random variables which follow the Poisson(θ0) dis-
tribution, with θ0 ∈ [0,∞). For K ∼ N(0, θ0), h ∈ H and c > 0 a positive constant,

(1) if θ0 > 0 then

dbW

(√
n
(
θ̂n(X) − θ0

)
,K

)
≤ 2c√

n
+ 1√

n

[
2 + (3θ0 + 1)3/4

θ
3/4
0

]
(4.12)

+ 8θ0

n(θ0 + c/n)2
+ θ0√

n(θ0 + c/n)
+ 12√

n(θ0 + c/n)

[
θ0

n
+ 3θ2

0

]1/2

;

(2) if θ0 = 0 then

dbW

(√
nθ̂n(X),K

)= 0.

Remark 4.2. (1) The upper bound expressed in (4.12) for the distributional distance between the
actual distribution of the MLE and the normal distribution in the case of i.i.d. random variables
following the Poisson(θ) distribution, with θ ∈ [0,∞) is of order at most 1√

n
.

(2) Since the MLE is unique and equal to θ̂n(X) = X̄, Lemma 1.1 could be used directly for X̄.
Define W = √

n(X̄−θ0) = 1√
n

∑n
i=1 Yi , where Yi = Xi −θ0 are independent, zero mean random

variables. Also, E(W) = 0 and Var(W) = nVar(X̄) = 1
n

∑n
i=1 Var(Xi) = θ0. Therefore, (1.5) for

K ∼ N(0, θ0) and Hölder’s inequality give for θ0 > 0

dbW

(√
n
(
θ̂n(X) − θ0

)
,K

)≤ 1√
n

(
2 + 1

θ
3/2
0

[
E(Y1)

4]3/4
)

= 1√
n

(
2 + (3θ0 + 1)3/4

θ
3/4
0

)
.

This bound, obtained by the direct application of Stein’s method, is smaller than the bound given
in Corollary 4.1. However, the interest in the example treated in this section, where � = [0,∞),
is in adapting the approach to such cases where the MLE could be on the boundary of the pa-
rameter space with positive probability when it is not assumed that the MLE is a sum of random
variables.

5. Bounds on the Mean Squared Error of the MLE

This section focuses on the situation when an analytic form for the MLE is not available. In
the proof for the final upper bound in Theorem 2.1, an explicit form of the MLE was not used.
However, if the MLE is not known, then the MSE, E(θ̂n(X) − θ0)

2, appearing in the bound
for (2.1) should be bounded by a quantity which is independent of θ̂n(X).

Let X1,X2, . . . ,Xn be i.i.d. random variables. Apart from the regularity conditions, first de-
fined in Section 1, we make the following further assumptions that make the steps and the calcu-
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lations easier and ensure a meaningful upper bound:

(Fur.1) The support, S, is bounded;
(Fur.2) For ε = ε(θ0) > 0 such that (θ0 − ε, θ0 + ε) ⊂ �, we require that there is a

constant C1 = C1(θ0) which depends on the unknown parameter θ0 such that
supθ :|θ−θ0|≤ε|l(3)(θ;x1)| ≤ C1, where C1 = C1(θ0) is a constant that depends on the
unknown parameter θ0;

(Fur.3) ∃N ∈ N such that ∀n ≥ N we have 1 − 2 ‖x2‖
ni(θ0)ε

2 − ‖x‖C1√
n[i(θ0)]3/2 > 0 for ε as in (Fur.2).

Solving the quadratic inequality, with unknown the
√

n yields that n, the sample size,
should satisfy

n ≥ ‖x‖2[C1ε +√
(C1ε)2 + 8[i(θ0)]2]2

4[i(θ0)]3ε2
.

For ease of presentation, let D1 = D1(θ0, x, n) = 1 − 2 ‖x2‖
ni(θ0)ε

2 − ‖x‖C1√
n[i(θ0)]3/2 .

Theorem 5.1. Let X1,X2, . . . ,Xn be i.i.d. random variables with density or frequency function
f (xi |θ). Assume that the regularity conditions (R1)–(R4), as well as the assumptions (Fur.1)–
(Fur.3) are satisfied. Also assume that the MLE exists and that it is unique. Then A1 = A1(θ0, n)

is an upper bound for
√

E(θ̂n(X) − θ0)2, where for ε as in (Fur.2),

A1 = [2D1]−1
{

2‖x‖√Var[l′′(θ0;X1)]
n[i(θ0)]3/2

+
[

4
‖x‖2 Var[l′′(θ0;X1)]

n2[i(θ0)]3
(5.1)

+ 4D1

ni(θ0)

[
1 + 2

‖x‖√
n

(
2 + E|l′(θ0;X1)|3

[i(θ0)]3/2

)]]1/2}
.

Proof. Using the notations for the remainder terms, the triangle inequality, conditional expecta-
tions, Markov’s inequality and Stein’s method, the same way as in Section 2, gives∣∣E[h((θ̂n(X) − θ0

)√
ni(θ0)

)]− E
[
h(Z)

]∣∣
≤ ‖h′‖√

n

(
2 + E|l′(θ0;X1)|3

[i(θ0)]3/2

)

+ 2‖h‖E(θ̂n(X) − θ0)
2

ε2

+ ‖h′‖√
ni(θ0)

∣∣E[R2(θ0;X)|∣∣θ̂n(X) − θ0
∣∣≤ ε

]∣∣P(∣∣θ̂n(X) − θ0
∣∣≤ ε

)

+ ‖h′‖
2
√

ni(θ0)
E
((

θ̂n(X) − θ0
)2 sup

θ :|θ−θ0|≤ε

∣∣l(3)(θ;X)
∣∣∣∣∣∣θ̂n(X) − θ0

∣∣≤ ε
)
.
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Using the definition of R2(θ0;x) and the Cauchy–Schwarz inequality yields

∣∣E[R2(θ0;X)|∣∣θ̂n(X) − θ0
∣∣≤ ε

]∣∣P(∣∣θ̂n(X) − θ0
∣∣≤ ε

)
≤ E

∣∣(ni(θ0) + l′′(θ0;X)
)(

θ̂n(X) − θ0
)∣∣

≤
√

E
[
ni(θ0) + l′′(θ0;X)

]2E
[
θ̂n(X) − θ0

]2

=
√

nVar
(
l′′(θ0;X1)

)√
E
[
θ̂n(X) − θ0

]2
,

which leads to

∣∣E[h((θ̂n(X) − θ0
)√

ni(θ0)
)]− E

[
h(Z)

]∣∣
≤ ‖h′‖√

n

(
2 + E|l′(θ0;X1)|3

[i(θ0)]3/2

)
(5.2)

+ 2‖h‖E(θ̂n(X) − θ0)
2

ε2
+ ‖h′‖nC1

2
√

ni(θ0)
E
(
θ̂n(X) − θ0

)2

+ ‖h′‖√Var(l′′(θ0;X1))

√
E(θ̂n(X) − θ0)2

√
i(θ0)

.

Straightforward calculations and denoting with Bx2 the upper bound for (2.1) when h(x) = x2,
lead to

E
(
θ̂n(X) − θ0

)2 = 1

ni(θ0)

∣∣E[√ni(θ0)
(
θ̂n(X) − θ0

)]2 − E
(
Z2)+ E

(
Z2)∣∣

(5.3)

≤ 1

ni(θ0)
(Bx2 + 1),

where

Bx2 ≤ 2
‖x‖√

n

(
2 + E|l′(θ0;X1)|3

[i(θ0)]3/2

)
+ 2‖x2‖E(θ̂n(X) − θ0)

2

ε2
+ ‖x‖√nC1√

i(θ0)
E
(
θ̂n(X) − θ0

)2

+ 2
‖x‖√Var(l′′(θ0;X1))

√
E(θ̂n(X) − θ0)2

√
i(θ0)

.

Now Bx2 also includes E(θ̂n(X) − θ0)
2 and its positive root. Therefore, the next step is to solve

the simple quadratic inequality (5.3), with unknown
√

E(θ̂n(X) − θ0)2. Using (Fur.3), after basic

calculations we obtain that 0 <

√
E(θ̂n(X) − θ0)2 ≤ A1. �
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Remark 5.1. (1) Using this result, the final upper bound for (2.1) which is useful when no ana-
lytic expression of the MLE is available, becomes

dbW

(√
ni(θ0)

(
θ̂n(X) − θ0

)
,Z
) ≤ 1√

n

(
2 + E|l′(θ0;X1)|3

[i(θ0)]3/2

)
+ 2(A1)

2

ε2

(5.4)

+
√

nC1(A1)
2

2
√

i(θ0)
+

√
Var[l′′(θ0;X1)]A1√

i(θ0)
.

(2) The order of A1 in terms of the sample size is 1√
n

and hence the order of the final upper

bound in (5.4) is also 1√
n

.

Example (The Beta distribution). Consider the example of i.i.d random variables from the Beta
distribution with one of the two shape parameters being unknown. In this case, the MLE can only
be expressed in terms of the inverse of the digamma function, �(θ) = d

dθ
log�(θ). We use the

general result in Theorem 5.1, in order to obtain an upper bound for the MSE and use it to get an
upper bound for (2.1). The following corollary gives the result.

Corollary 5.1. Let X1,X2, . . . ,Xn be i.i.d. random variables from the Beta(θ0, β) distribution,
where β is known and θ0 is unknown. Let B1 = B1(θ0) = 8(�3(θ0)+�3(θ0 +β)+3[�1(θ0)]2 +
3[�1(θ0 + β)]2), where �j(θ), j ∈ N is the j th derivative of the digamma function, �(θ). Also,

let B2 = B2(θ0) = 96β+6.6βθ4
0

θ4
0

, D�1 = D�1(θ0, β) = �1(θ0) − �1(θ0 + β) and

B3 = B3(θ0, n) =
[(

4 + 8√
n

(
2 + (B1)

3/4

D
3/2
�1

))(
1 − 8

nθ2
0 D�1

− B2√
nD

3/2
�1

)]1/2

(5.5)

×
(

2

(√
D�1 − 8

nθ2
0

√
D�1

− B2√
nD�1

))−1

.

Let

n ≥
[
B2

θ0

2
+
√

(B2θ0)2

4
+ 8

[
�1(θ0) − �1(θ0 + β)

]2
]2([

�1(θ0) − �1(θ0 + β)
]3

θ2
0

)−1
.

Then for Z ∼ N(0,1)

dbW

(√
ni(θ0)

(
θ̂n(X) − θ0

)
,Z
)≤ 1√

n

(
2 + (B1)

3/4

[�1(θ0) − �1(θ0 + β)]3/2

)
(5.6)

+ 8

nθ2
0

(B3)
2 + B2(B3)

2

2
√

n[�1(θ0) − �1(θ0 + β)]1/2
.

Proof. See the Appendix. �

Now, we study the accuracy of our bound for the MSE of the MLE by simulations. For the sim-
ulations, θ0 = 1.5, β = 1 and in this case of β being equal to 1, the MLE is θ̂n(X) = − n∑n

i=1 logXi
.
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Table 3. Part of the results taken by simulations from the Beta(1.5,1) distribution

n Ê(θ̂n(X) − θ0)2 Upper bound Error

7500 0.0002 0.2517 0.2515
7700 0.0002 0.0416 0.0414
7900 0.0002 0.0223 0.0221
8100 0.0002 0.0151 0.0149
8300 0.0002 0.0112 0.00110

We find that n ≥ 7460, in order for (Fur.3) to be satisfied. The process to simulate is quite
simple. Let n ∈ {7460,7461, . . . ,8459} and for each n, start by generating 10 000 trials of
n random independent observations, x, from the Beta distribution with parameter values as
above. We evaluate the MLE, θ̂n(X), of the parameter in each trial, which in turn gives a
vector of 10 000 values. Thus, for each n from 7460 to 8459, we evaluate the sample MSE,
Ê(θ̂n(X) − θ0)

2 = 1
10 000

∑10 000
i=1 [θ̂n(x)[i] − θ0]2 and compare it with its upper bound, (

B3√
n
)2,

where B3 is given in (5.5). The difference between their values measures the error of our bound
on the MSE. Part of the results from the simulations is shown in Table 3. The table indicates that
the bound and the error decrease as the sample size increases, as expected, since the order of the
upper bound for the MSE is 1

n
. In addition, it is reasonable that the smaller the sample size is, the

larger the bound is. The bounds are considerably larger than the estimated MSE and they are not
numerically sharp. In addition, because of the relatively strong requirement that n ≥ 7460, these
bounds on the MSE are more of theoretical interest.

Remarks. Several interesting paths lead from the work explained in this paper. When the di-
mension of the parameter is d > 1, Stein bounds are available in Chen et al. [3], which can be
employed to get upper bounds related to the distribution of the MLE in a multi-parameter setting
(work in progress). In addition, one of the main advantages of Stein’s method is that it can be
used in situations where dependence comes into play. Upper bounds on the distributional dis-
tance between the distribution of the MLE and the normal distribution in the case of dependent
random variables are also work in progress.

Appendix: Some proofs

Proof of Lemma 2.1. Let ε > 0 and f a continuous increasing function with f (m) ≥ 0 for
m > 0. Then,

E
[
f (M)

] = E
[
f (M)|M ≤ ε

]
P(M ≤ ε) + E

[
f (M)|M > ε

]
P(M > ε)

= E
[
f (M)|M ≤ ε

](
1 − P(M > ε)

)+ E
[
f (M)|M > ε

]
P(M > ε)

= E
[
f (M)|M ≤ ε

]+ P(M > ε)
(
E
[
f (M)|M > ε

]− E
[
f (M)|M ≤ ε

])
≥ E

[
f (M)|M ≤ ε

]
as f (m) is increasing. �
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Proof of Corollary 5.1. The probability density function is

f (x|θ) = �(θ + β)

�(θ)�(β)
xθ−1(1 − x)β−1, (A.1)

with θ > 0 and x ∈ [0,1]. Hence

l(θ;x) = n
[
log

(
�(θ + β)

)− log
(
�(θ)

)− log
(
�(β)

)]
(A.2)

+ (θ − 1)

n∑
i=1

logxi + (β − 1)

n∑
i=1

log(1 − xi)

and

l′(θ;x) = n
[
�(θ + β) − �(θ)

]+
n∑

i=1

logxi

l(j)(θ;x) = n
(
�j−1(θ + β) − �j−1(θ)

)
, j ∈N \ {1}.

Now we show that the conditions (R1)–(R4) and the assumptions (Fur.1)–(Fur.3) are satisfied.
For (R1) it is obvious. As for (R2), the three times differentiability of the density function can
be verified from (A.2). In addition, using (A.1) and the expressions for the logarithmic expec-

tations of a Beta distributed random variable, it is straightforward to verify
∫ 1

0
dj

dθj f (x|θ)dx =
dj

dθj

∫ 1
0 f (x|θ)dx = 0, j ∈ {1,2,3} for (R2). Let ε = ε(θ0) > 0 such that θ ∈ (θ0 −ε, θ0 +ε) ⊂ �.

Since in this case � = (0,∞), indeed 0 < ε < θ0. Using a first order Taylor expansion and the
fact that

�m(z) = (−1)m+1m!
∞∑

k=0

1

(z + k)m+1
(A.3)

gives

�3(z) = 6
∞∑

k=0

1

(z + k)4
for z ∈ C \ {Z−} and m > 0,

with �3(z) being a decreasing function of z. For θ ∈ (θ0 − ε, θ0 + ε),

∣∣∣∣ d3

dθ3
logf (x|θ)

∣∣∣∣ = ∣∣�2(θ + β) − �2(θ)
∣∣

(A.4)
≤ β

∣∣�3
(
θ∗)∣∣≤ β

∣∣�3(θ0 − ε)
∣∣= M(x),

with E[M(X)] < ∞. Hence, (R3) holds as well. Also, i(θ0) = �1(θ0) − �1(θ0 + β) which is
positive since it is obvious from (A.3) that �1(z) is a decreasing function. The assumption (Fur.1)
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obviously holds with ‖x‖ ≤ 1. Using (A.4) and the fact that
∑∞

i=1
1
i4 = π4

90 < 1.1 gives

sup
θ :|θ−θ0|≤ε

∣∣l(3)(θ;X1)
∣∣ ≤ β

∣∣�3(θ0 − ε)
∣∣= 6β

∞∑
k=0

1

(θ0 − ε + k)4

(A.5)

≤ 6β

[
1

(θ0 − ε)4
+

∞∑
k=1

1

k4

]
<

6β

(θ0 − ε)4
+ 6.6β = C1.

Thus, (Fur.2) is also satisfied. Now, since i(θ0) = �1(θ0) − �1(θ0 + β) take

n ≥ [C1ε +√
(C1ε)2 + 8[�1(θ0) − �1(θ0 + β)]2]2

4ε2[�1(θ0) − �1(θ0 + β)]3

in order for (Fur.3) to be satisfied. To find B3, firstly, as E|l′(θ0;X1)|3 is not straightforward
to evaluate due to the absolute value in the expectation, it is easily seen that using Hölder’s
inequality E|l′(θ0;X1)|3 ≤ [E(l′(θ0;X1))

4]3/4 we find an upper bound for

E
[
l′(θ0;X1)

]4 = E
[
logX1 + �(θ0 + β) − �(θ0)

]4

= E
[
logX1 − E(logX1)

]4
.

If G1 ∼ �(θ0, λ) and G2 ∼ �(β,λ) independent, then G1
G1+G2

∼ Beta(θ0, β). Thus, with X1 =
G1

G1+G2

E
[
l′(θ0;X1)

]4 = E
[(

logG1 − E[logG1]
)+ (

E
[
log(G1 + G2)

]− log(G1 + G2)
)]4

(A.6)
≤ 8

[
E
(
logG1 − E(logG1)

)4 + E
(
log(G1 + G2) − E

(
log(G1 + G2)

))4]
.

Now we calculate the fourth central moment of the logarithm of a Gamma distributed ran-

dom variable. Using that
∫∞

0
zα−1e−z(log z)k

�(α)
dz = �(k)(α)

�(α)
, for any α > 0 and k ∈ N gives that for

Y ∼ �(α,λ)

E(logY) = �(α) − logλ.

Using again z = λy,

E
[
logY − E(logY)

]4 =
∫ ∞

0

zα−1e−z

�(α)

(
log

(
z

λ

)
− E

(
log

(
Z

λ

)))4

dz

=
∫ ∞

0

zα−1e−z

�(α)

(
log z − E(logZ)

)4 dz

= 1

�(α)

4∑
k=0

(
4
k

)
(−1)k

[
�(α)

]4−k
∫ ∞

0
zα−1e−z(log z)k dz

= −3
[
�(α)

]4 + 6
[
�(α)

]2 �′′(α)

�(α)
− 4�(α)

�(3)(α)

�(α)
+ �(4)(α)

�(α)
.
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At this point, the digamma function can be used in order to simplify the expression above. Fol-
lowing simple steps it can be easily verified that

�′′(α)

�(α)
= �1(α) + [

�(α)
]2

,
�(3)(α)

�(α)
= �2(α) + 3�(α)�1(α) + [

�(α)
]3

,

�(4)(α)

�(α)
= �3(α) + 4�2(α)�(α) + 6�1(α)

[
�(α)

]2 + 3
[
�1(α)

]2 + [
�(α)

]4
.

Hence for Y ∼ �(α,λ)

E
[
logY − E(logY)

]4 = �3(α) + 3
[
�1(α)

]2

and therefore, from (A.6),

E
[
l′(θ0;X1)

]4 ≤ 8
(
�3(θ0) + �3(θ0 + β) + 3

[
�1(θ0)

]2 + 3
[
�1(θ0 + β)

]2)= B1.

With C1 as in (A.5), taking ε = θ0
2 , we conclude that

sup
θ :|θ−θ0|≤ε

∣∣l(3)(θ;X1)
∣∣≤ 96β

θ4
0

+ 6.6β = B2.

Using (A.2), gives

Var
(
l′′(θ0;X1)

)= Var
(
�1(θ0 + β) − �1(θ0)

)= 0.

Having found all the necessary quantities, we calculate the upper bound in (5.1) and multiply it

by
√

n. This is equal to B3 shown in (5.5), which is an upper bound for
√

nE(θ̂n(X) − θ0)2 in
the specific case of i.i.d. random variables from the Beta distribution. Using this bound in (5.2)
gives the result in (5.6). �
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