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We consider a stochastic process model with time trend and measurement error. We establish consistency
and derive the limiting distributions of the maximum likelihood (ML) estimators of the covariance function
parameters under a general asymptotic framework, including both the fixed domain and the increasing
domain frameworks, even when the time trend model is misspecified or its complexity increases with the
sample size. In particular, the convergence rates of the ML estimators are thoroughly characterized in terms
of the growing rate of the domain and the degree of model misspecification/complexity.
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1. Introduction

Learning the covariance structure of a stochastic process from data is a fundamental prerequisite
for problems such as prediction, classification and control. For example, to do prediction for an
Ornstein–Uhlenbeck (OU) (Uhlenbeck and Ornstein [15]) process η(s), s ∈ [0,1] with mean 0
and covariance function

cov
(
η(s1), η(s2)

) = σ 2
0,η exp

(−κ0|s1 − s2|
)
, (1.1)

where σ 2
0,η, κ0 > 0 are unknown, Ying [17] proposed the maximum likelihood (ML) estimators

for σ 2
0,η and κ0 based on discrete observations η(s1), . . . , η(sn) with 0 ≤ s1 < · · · < sn ≤ 1, and

established the root-n consistency of the corresponding ML estimator for σ 2
0,ηκ0. Note that since

the probability measures induced by two OU processes are absolutely continuous with respect
to each other if and only if their σ 2

0,ηκ0 values are equal (Ibragimov and Rozanov [9]), the pa-

rameters in (1.1) are asymptotically identifiable up to σ 2
0,ηκ0. However, when the OU process is

subject to measurement error, the so-called “nugget” effect (see, for example, Cressie [7]) may
deteriorate the performance of the ML estimators. In particular, Chen, Simpson and Ying [6]
showed that the ML estimator for σ 2

0,ηκ0 becomes fourth-root-n consistent, depicting the effect
of measurement error in estimating the exponential covariance parameters in (1.1). On the other
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hand, they also proved that the ML estimator of the measurement-error variance has the usual
root-n consistency. In fact, a similar phenomenon can also be found in a driftless Brownian mo-
tion (BM) process with measurement error. Let this error-contaminated process be denoted by
y(t), t ∈ [0,1]. Having observed y(0), y(1/n), . . . , y(1), Stein [14] showed that a modified ML
(MML) estimator of the ratio of the variance of the increments of the BM process to that of
measurement error is only fourth-root-n consistent, whereas the corresponding MML estimator
of the measurement-error variance still remains root-n consistent. Similar asymptotic results for
the ML estimators of the two variances have also been established by Aït-Sahalia, Mykland and
Zhang [1].

In this article, we shall superimpose a time trend (regression) term on an OU process with
measurement error in order to accommodate a broader range of applications. Specifically, we
propose the following model for a real-valued stochastic process {Z(s); s ∈ D ⊂R}:

Z(s) = β0 +
p∑

j=1

βjxj (s) + η(s) + ε(s), (1.2)

where x(s) = (x1(s), . . . , xp(s))′ is a p-dimensional time trend vector, η(s) is a zero-mean OU
process with covariance function defined in (1.1), ε(s) is a zero-mean Gaussian measurement er-
ror with E(ε(s)ε(t)) = θ0,1I{s=t} for some unknown θ0,1 > 0, β = (β0, β1, . . . , βp)′ is a (p + 1)-
dimensional constant vector, and {x(s)}, {η(s)} and {ε(s)} are independent. In a computer experi-
ment, η(s) in (1.2) can be used to describe the systematic departure of the response Z(s) from the
linear model β0 + ∑p

j=1 βjxj (s) and ε(s) denotes the measurement error. For more details, we
refer the reader to Sacks, Schiller and Welch [13] and Ying [17]. Model (1.2) can also be applied
to one-dimensional geostatistical modeling and η(·) therein corresponds to a commonly used
exponential covariance model; see Ripley [12] and Cressie [7] for numerous examples. Denote
the true time trend by

μ0(s) = Z(s) − η(s) − ε(s), (1.3)

where {μ0(s)} is independent of {η(s)} and {ε(s)}, and define x0(s) = (1,x′(s))′. The time trend
model β ′x0(s) in (1.2) is said to be correctly specified if

μ0(s) = β ′x0(s) for some β ∈ R
p+1, (1.4)

and misspecified otherwise. In this article, we shall allow β ′x0(s) to be misspecified, which
further increases the flexibility of model (1.2). However, a misspecified time trend will usually
create extra challenges in estimating covariance parameters. This motivates us to ask how the
ML estimators of the covariance parameters in model (1.2) perform when the corresponding
time trend model is subject to misspecification.

To facilitate exposition, we assume in the sequel that D = [0, nδ] for some δ ∈ [0,1), and the
data are observed regularly at si = in−(1−δ), i = 1, . . . , n. In addition, we also allow that the
number of regressors (model complexity) p = pn grows to infinity in order to reduce the model
bias. When δ = 0, the domain D = [0,1] has been considered by the aforementioned authors,
and the setup is called fixed domain asymptotics. On the other hand, when δ > 0, the domain
D grows to infinity as n → ∞ with a faster growing rate for a larger δ value, and the setup is
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referred to as the increasing domain asymptotics, even though the minimum inter-data distance
n−(1−δ) goes to zero. This is different from the increasing domain setup considered by Zhang
and Zimmerman [18], in which the minimum distance between sampling points is bounded away
from zero. By incorporating both fixed and increasing domains, our mixed domain asymptotic
framework enables us to explore the interplay between the model misspecification/complexity
and the growing rate of D on the asymptotic behaviors of the ML estimators, thereby leading to
an intriguing answer to the above question.

Re-parameterizing (1.1) by θ0,2 = σ 2
0,ηκ0 and θ0,3 = κ0, the covariance parameter vector in

model (1.2) can be written as θ0 = (θ0,1, θ0,2, θ0,3)
′. Let 	, the parameter space, be a compact

set in (0,∞)3 and suppose θ0 ∈ 	. Based on model (1.2) and observations (x′(si),Z(si)), i =
1, . . . , n, we estimate θ0 using the ML estimator θ̂ , which satisfies


(θ̂) = sup
θ=(θ1,θ2,θ3)

′∈	


(θ),

where


(θ) = − 1
2n log(2π) − 1

2 log det
(
�(θ)

)
(1.5)

− 1
2 Z′(I − M(θ)

)′
�−1(θ)

(
I − M(θ)

)
Z,

is known as the profile log-likelihood function, in which Z = (Z(s1), . . . ,Z(sn))
′,

�(θ) = �η(θ) + θ1I, (1.6)

with

�η(θ) =
(

θ2

θ3
exp

(−θ3|si − sj |
))

1≤i,j≤n

,

and

M(θ) = X
(
X′�−1(θ)X

)−1X′�−1(θ), (1.7)

with X = (x0(s1), . . . ,x0(sn))
′ being full rank almost surely (a.s.). It is not difficult to show that

the ML estimator of β is given by β̂(θ̂), where

β̂(θ) = (
X′�−1(θ)X

)−1X′�−1(θ)Z.

However, since model (1.2) can be misspecified, investigating the asymptotic properties of β̂(θ̂)

is beyond the scope of this paper.
Let μ0 = (μ0(s1), . . . ,μ0(sn))

′ and ε = (ε(s1), . . . , ε(sn))
′. By M(θ)′�−1(θ)M(θ) =

�−1(θ)M(θ), (1.3) and (1.5), we have

−2
(θ) = −2
0(θ) + μ′
0�

−1(θ)
(
I − M(θ)

)
μ0

+ 2μ′
0�

−1(θ)
(
I − M(θ)

)
(η + ε) (1.8)

− (η + ε)′�−1(θ)M(θ)(η + ε),
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where with h(θ) = (η + ε)′�−1(θ)(η + ε) − tr(�−1(θ)�(θ0)),


0(θ) ≡ − 1
2

{
n log(2π) + log det

(
�(θ)

) + tr
(
�−1(θ)�(θ0)

) + h(θ)
}
, (1.9)

is the log-density function for η + ε. As will be seen in Section 2, the contribution of the time
trend to −2
(θ) is mainly made by

μ′
0�

−1(θ)
(
I − M(θ)

)
μ0 − (η + ε)′�−1(θ)M(θ)(η + ε). (1.10)

The first term above, vanishing when (1.4) holds true, is due to model misspecification, and the
second term, having an order of magnitude Op(pn) uniformly over 	 (see Lemma 4.7), is related
to model complexity. We therefore introduce

R(	) = max
{

sup
θ∈	

μ′
0�

−1(θ)
(
I − M(θ)

)
μ0,pn

}
, (1.11)

as a uniform bound for (1.10) over 	. Let (θ̂1, θ̂2, θ̂3)
′ = θ̂ . The growing rates of D needed

for θ̂i , i = 1,2,3, to achieve consistency are given in the next theorem in terms of the order of
magnitude of R(	). It provides a preliminary answer to the question of whether the covariance
structures of η and ε can be learnt from data under possible model misspecification.

Theorem 1.1. Suppose

R(	) = Op

(
nξ

)
, (1.12)

for some ξ ∈ [0,1). Then, for δ ∈ [0,1),

θ̂1 = θ0,1 + op(1) if 0 ≤ ξ < 1, (1.13)

θ̂2 = θ0,2 + op(1) if 0 ≤ ξ < (1 + δ)/2, (1.14)

θ̂3 = θ0,3 + op(1) if 0 ≤ ξ < δ. (1.15)

Theorem 1.1 shows that as long as (1.12) holds true, θ̂1 is a consistent estimator of θ0,1, re-
gardless of the value of δ. In contrast, in order for θ̂2 and θ̂3 to achieve consistency, one would
require 0 ≤ ξ < (1 + δ)/2 and 0 ≤ ξ < δ, respectively. In fact, these two constraints cannot
be weakened because we provide counterexamples in Section 3 illustrating that θ̂3 is no longer
consistent when ξ = δ, and both θ̂2 and θ̂3 fail to achieve consistency if ξ = (1 + δ)/2. It is
worth mentioning that 
(θ) is highly convoluted due to the involvement of regression terms,
making it difficult to establish consistency of θ̂ . Our strategy is to decompose the nonstochas-
tic part of −2
(θ) into several layers whose first three leading orders are n1 ≡ n, n2 ≡ n(1+δ)/2

and n3 ≡ nδ , respectively, and express the remainder stochastic part as the sum of h(θ) and
two other terms that can be uniformly expressed as Op(R(	)) and op(nδ); see (4.17). One dis-
tinctive characteristic of these nonstochastic layers is that the coefficient associated with the ith
(1 ≤ i ≤ 3) leading layer only depends on θ1, . . . , θi . When (1.12) is assumed, this hierarchi-
cal layer structure together with some uniform bounds established for the second moments of
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h(θ) enables us to derive the consistency of θ̂ in the order of θ̂1, θ̂2 and θ̂3 by focusing on one
layer and one parameter at a time. Let tr(A) denote the trace of a matrix A. As shown in the
proof of Theorem 1.1, the uniform bounds for h(θ) are first expressed in terms the supremums of
tr{(∂m�−1(θ)�(θ0)/∂θj1 · · · θjm)2},1 ≤ m ≤ 3, j1 < · · · < jm ∈ {1,2,3}, or other similar trace
terms such as those given in (4.31). These expressions are obtained using the idea that the sup-
norms of a sufficiently smooth function can be bounded above by suitable integral norms, as
suggested in Lai [10], Chan and Ing [3] and Chan, Huang and Ing [2]. We then carefully calcu-
late the orders of magnitude of the aforementioned traces, yielding uniform bounds in terms of
n,n(1+δ)/2 or nδ . Note that Dahlhaus [8] has applied the chaining lemma (see Pollard [11]) to
obtain uniform probability bounds for some quadratic forms of a discrete time long-memory pro-
cess. However, since no rates have been reported in his bounds, his approach may not be directly
applicable here.

Whereas Theorem 1.1 has demonstrated the performance of θ̂ from the perspective of con-
sistency, the questions of what are the convergence rates of and whether there are central
limit theorems (CLTs) for θ̂i , i = 1, . . . ,3, still remain unanswered. The next section is de-
voted to these questions. In particular, it is shown in Theorem 2.2 that for ni → ∞, 1 ≤ i ≤ 3,
θ̂i − θ0,i = Op(max{nξn−1

i , n
−1/2
i }) if nξ = o(ni), and n

1/2
i (θ̂i − θ0,i ) has a limiting normal dis-

tribution if nξ = o(n
1/2
i ). Since the time trend is involved, our proof of Theorem 2.2 is somewhat

nonstandard. We first obtain the initial convergence rates of θ̂ using the standard Taylor expan-
sion and an argument similar but subtler than the one used in the proof of Theorem 1.1. Using
these initial rates, we can improve the convergence results through the same argument. We then
repeat this iterative procedure until the final convergence results are established.

The rest of this article is organized as follows. In Section 2, we begin by establishing the CLT
for θ̂i , i = 1, . . . ,3 in situations where pn is fixed and the regression model is correctly specified
(namely, (1.4) is true); see Theorem 2.1. We subsequently drop these two restrictions and report
in Theorem 2.2 the most general convergence results of this paper. In Section 3, we provide two
counterexamples showing that the results obtained in Theorem 1.1 are difficult to improve. The
proofs of all theorems and corollaries in the first three sections are given in Section 4. The proofs
of the auxiliary lemmas used in Section 4 are provided in the supplementary material (Chang,
Huang and Ing [5]) in light of space constraint. Before leaving this section, we remark that al-
though our results are derived under the Gaussianity of {η(t)} and {ε(t)}, similar results can be
obtained when either {η(t)} or {ε(t)} is not (but pretended to be) Gaussian, provided some fourth
moment information is available. On the other hand, while we allow the time trend to be mis-
specified, we preclude a misspecified covariance model. The interested reader is referred to Xiu
[16] for some asymptotic results on the ML estimators when the covariance model considered in
Stein [14] or Aït-Sahalia, Mykland and Zhang [1] is misspecified.

2. Central limit theorems and rates of convergence

In this section, we begin with establishing the asymptotic normality of θ̂i ,1 ≤ i ≤ 3, in situations
where the regression model is correctly specified and pn is fixed.
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Theorem 2.1. Assume that (1.4) holds and pn is a fixed nonnegative integer. (Note that these
assumptions yield ξ = 0 in (1.12).) Then for δ ∈ [0,1),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
, (2.1)

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
, (2.2)

and for δ ∈ (0,1),

nδ/2(θ̂3 − θ0,3)
d→N(0,2θ0,3). (2.3)

One of the easiest ways to understand Theorem 2.1 is to link the result to the Fisher infor-
mation matrix. Straightforward calculations show that under the assumption of Theorem 2.1, the
diagonal elements of the Fisher information matrix evaluated at θ = θ0 are given by

−E

(
∂2

∂θ2
1


(θ0)

)
= 1

2
tr
(
�−2(θ0)

) + O(1),

−E

(
∂2

∂θ2
2


(θ0)

)
= 1

2θ2
0,2

tr
{(

�−1(θ0)�η(θ0)
)2} + O(1), (2.4)

−E

(
∂2

∂θ2
3


(θ0)

)
= 1

2
tr

{(
�−1(θ0)

∂�(θ0)

∂θ3

)2}
+ O(1) if 0 < δ < 1,

where the trace terms are solely contributed by the log-density (log-likelihood) function for η+ε

(defined in (1.9)), and the O(1) terms, which vanish if the time trend is known to be zero, are
related to the model complexity. Moreover, by (4.11), (4.13) and (4.22),

lim
n→∞

1

2n
tr
(
�−2(θ0)

) = 1

2θ2
0,1

,

lim
n→∞

1

2θ2
0,2n

(1+δ)/2
tr
{(

�−1(θ0)�η(θ0)
)2} = 1

25/2θ
1/2
0,1 θ

3/2
0,2

, (2.5)

lim
n→∞

1

2nδ
tr

{(
�−1(θ0)

∂�(θ0)

∂θ3

)2}
= 1

2θ0,3
if 0 < δ < 1.

It is interesting pointing out that the denominator on the right-hand side of the first equation
of (2.5) coincides exactly with the limiting variance in (2.1). This is reminiscent of a conventional
asymptotic theory for the ML estimate which says that the limiting variance of the ML estimate
is the reciprocal of the corresponding Fisher information number. On the other hand, while the
reciprocals of the right-hand sides of the second and third identities of (2.5) are the same as
the limiting variances in (2.2) and (2.3), the divergence rates of the corresponding trace terms
n(1+δ)/2 and nδ are much slower than n. In fact, they are equal to the divergence rates of the
second and third leading layers of the nonstochastic part of −2
(θ); see (4.17). These findings
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reveal that the amounts of information related to θ0,i ’s have different orders of magnitude, thereby
leading to different normalizing constants in the CLTs for θ̂i ’s.

The next theorem improves Theorem 2.1 by deriving rates of convergence of θ̂i ,1 ≤ i ≤ 3,
without requiring ξ = 0 in (1.12). It further shows that CLTs for θ̂i ,1 ≤ i ≤ 3, are still possible if
the model misspecification/complexity associated with the time trend has an order of magnitude
smaller than n1/2, n(1+δ)/4 and nδ/2, respectively.

Theorem 2.2. Suppose that (1.12) is true. Then for δ ∈ [0,1),

θ̂1 − θ0,1 =
{

Op

(
n−1/2

); if ξ < 1/2,

Op

(
n−(1−ξ)

); if 1/2 ≤ ξ < 1,

θ̂2 − θ0,2 =
{

Op

(
n−(1+δ)/4

); if ξ < (1 + δ)/4,

Op

(
n−{(1+δ)/2−ξ}); if (1 + δ)/4 ≤ ξ < (1 + δ)/2,

and for δ ∈ (0,1),

θ̂3 − θ0,3 =
{

Op

(
n−δ/2

); if ξ < δ/2,

Op

(
n−(δ−ξ)

); if δ/2 ≤ ξ < δ.

In addition, for δ ∈ [0,1),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

); if ξ < 1/2,

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

); if ξ < (1 + δ)/4,

and for δ ∈ (0,1),

nδ/2(θ̂3 − θ0,3)
d→N(0,2θ0,3); if ξ < δ/2.

Recall that n1 = n, n2 = n(1+δ)/2 and n3 = nδ . It is shown in (2.4) and (2.5) that, ignoring
the constant, the amount of information regarding θ0,i contained in η + ε is ni , 1 ≤ i ≤ 3. On
the other hand, as will become clear later, nξ can be used to measure the amount of information
contaminated by model misspecification/complexity (again ignoring the constant). Therefore, the
first part of Theorem 2.2 delivers nothing more than the simple idea that

Rate of convergence of θ̂i

= max

{
Amount of information contaminated by model misspecification/complexity

Amount of information regarding θ0,i contained in η + ε
, (2.6)

1

(Amount of information regarding θ0,i contained in η + ε)1/2

}
,
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provided that

Amount of information contaminated by model misspecification/complexity
(2.7)

< Amount of information regarding θ0,i contained in η + ε.

Note that the second term on the right-hand side of (2.6) is the best rate one can expect when
the time trend is known to be zero. The second part of Theorem 2.2 further indicates that the
CLTs for θ̂i ’s in Theorem 2.1 carry over to situations where (2.7) holds with the right-hand
side replaced by its square root. To the best of our knowledge, this is one of the most general
CLTs established for θ̂i ’s. In the following, we present two specific examples illustrating how the
asymptotic behavior of θ̂i ’s is affected by the interaction between ξ and δ. In the first example,
the model misspecification yields R(	) = O(nδ), and hence ξ = δ. According to Theorem 2.2,
the CLTs for θ̂1 and θ̂2 hold for a certain range of δ.

Corollary 2.1. Consider the intercept-only model of (1.2) with pn = 0. Suppose that μ0(s) =
β0,0 + β0,1n

−δs, where β0,0 and β0,1 are nonzero constants. Then for δ ∈ [0,1),

R(	) = O
(
nδ

)
, (2.8)

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

); δ ∈ [0,1/2),
(2.9)

n1−δ(θ̂1 − θ0,1) = Op(1); δ ∈ [1/2,1),

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

); δ ∈ [0,1/3),
(2.10)

n(1−δ)/2(θ̂2 − θ0,2) = Op(1); δ ∈ [1/3,1).

We remark that the scaling factor n−δ is introduced for the linear term, x1(s) = n−δs, so that
1
nδ

∫ nδ

0 (x1(s) − x̄1)
2 ds does not depend on n, where x̄1 = 1

nδ

∫ nδ

0 x1(s) ds. The model misspeci-

fication in the next example results in R(	) = Op(n(1+δ)/2), yielding ξ = (1 + δ)/2. Therefore,
θ̂1 is guaranteed to be consistent in view of Theorem 2.2.

Corollary 2.2. Consider the same setup as in Corollary 2.1 except that μ0(s) = β0,0 +β0,1x(s),
where x(·) is generated from a zero-mean Gaussian spatial process with covariance function

cov
(
x(s), x

(
s ′)) = θ1,2

θ1,3
exp

(−θ1,3
∣∣s − s′∣∣); s, s′ ∈ [

0, nδ
]
,

for some constants θ1,2, θ1,3 > 0. Then for δ ∈ [0,1),

R(	) = Op

(
n(1+δ)/2), (2.11)

θ̂1 = θ0,1 + Op

(
n−(1−δ)/2). (2.12)
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It is worth noting that θ̂3 is inconsistent under the setup of Corollary 2.1. Moreover, both
θ̂2 and θ̂3 are inconsistent under the setup of Corollary 2.2. These inconsistency results will be
reported in detail in the next section. Before closing this section we remark that our theoretical
results on θ̂ can be used to make statistical inference about the regression function. For example,
when (1.4) holds and pn ≥ 1 is a fixed integer, the convergence rate of θ̂ obtained in Theorem 2.1
plays an indispensable role in analyzing the convergence rate of the ML estimator, β̂(θ̂), of β .
Recently, by making use of Theorems 2.1 and 2.2, Chang, Huang and Ing [4] established the first
model selection consistency result under the mixed domain asymptotic framework. Moreover,
some technical results established in the proofs of Theorems 2.1 and 2.2 have been used by
Chang, Huang and Ing [4] to develop a model selection consistency result under a misspecified
covariance model.

3. Counterexamples

Using the examples constructed in Corollaries 2.1 and 2.2, we show in this section that the
constraints ξ < δ and ξ < (1 + δ)/2 imposed in Theorem 1.1 for the consistency of θ̂3 and θ̂2,
respectively, cannot be relaxed.

Corollary 3.1. Under the setup of Corollary 2.1,

θ̂3 = 12θ0,2

12θ0,2 + β2
0,1θ0,3

θ0,3 + op(1); δ ∈ (0,1). (3.1)

Corollary 3.2. Under the setup of Corollary 2.2,

θ̂2 = θ0,2 + θ1,2β
2
0,1 + op(1); δ ∈ [0,1), (3.2)

θ̂3 = θ0,2 + β2
0,1θ1,2

β2
0,1θ1,2θ

−1
1,3 + θ0,3θ

−1
0,3

+ op(1); δ ∈ (0,1). (3.3)

All the above results can be illustrated by Figure 1, in which some change point behavior
of θ̂i ’s (in terms of modes of convergence) is exhibited when (δ, ξ) runs through the region
[0,1) × [0,1).

4. Proofs of the theorems and corollaries

In this section, we first prove the consistency of θ̂ in Section 4.1. The proofs of CLTs for θ̂ with
and without the restrictions of correct specification and fixed dimension on the time trend model
are given in Sections 4.2 and 4.3, respectively. The proofs of Corollaries 2.1 and 3.1 and those of
Corollaries 2.2 and 3.2 are provided in Sections 4.4 and 4.5, respectively.
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(a) Convergence rates of θ̂1 − θ0,1 (b) Convergence rates of θ̂2 − θ0,2

(c) Convergence rates of θ̂3 − θ0,3

Figure 1. Convergence rates of θ̂i to θ0,i with respect to (δ, ξ), where i = 1, . . . ,3, δ is the growing rate of
the domain and ξ satisfies R(	) = Op(nξ ). Note that θ̂i also possesses asymptotic normality when (δ, ξ)

falls in the dark gray regions, but may fail to achieve consistency when (δ, ξ) falls in the white regions or
on the dash lines. In addition, the points on the lines between the light and dark gray area are referred to as
the change points merely in the modes of convergence but not in the convergence rate scenario.

4.1. Proof of Theorem 1.1

To prove Theorem 1.1, we need a series of auxiliary lemmas, Lemmas 4.1–4.9. Lemma 4.1 gives
a modified Cholesky decomposition for �−1(θ), which can be used to prove Lemma 4.2, assert-
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ing that the eigenvalues of �−1(θ)�(θ0) are uniformly bounded above and below. Lemmas 4.3
and 4.4 provide the orders of magnitude of the Cholesky factors of �−1(θ) and the products of
�η(θ) and these factors. Based on Lemmas 4.2–4.4, Lemma 4.5 establishes asymptotic expres-
sions for the key components of the nonstochastic part of −2
(θ), and Lemma 4.6 provides the
orders of magnitude of �−1(θ) ∂�(θ)/∂θi; i = 1,2,3. Lemmas 4.2 and 4.6 can be used in con-
junction with Lemma 4.9, which provides uniform bounds for quadratic forms in i.i.d. random
variables, to analyze the asymptotic behavior of h(θ); see (4.19). Lemmas 4.7 and 4.8 explore
the effects of the time trend model on −2
(θ).

Lemma 4.1. Let �(θ) be given by (1.6) with θ1 ≥ 0, θ2 > 0 and θ3 > 0. Then

�−1(θ) = Gn(θ)′T−1
n (θ)Gn(θ), (4.1)

where

Gn(θ) ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

−ρn 1 0
. . .

...

0 −ρn 1
. . . 0

...
. . .

. . .
. . . 0

0 · · · 0 −ρn 1

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

,

Tn(θ) = Dn(θ) + θ1Gn(θ)Gn(θ)′,

ρn = exp(−θ3n
−(1−δ)), and

Dn(θ) ≡ θ2

θ3

⎛
⎜⎜⎜⎝

1 0 · · · 0

0 1 − ρ2
n

. . .
...

...
. . .

. . . 0
0 · · · 0 1 − ρ2

n

⎞
⎟⎟⎟⎠

n×n

.

Lemma 4.2. Let λmax(A) and λmin(A) denote the maximum and minimum eigenvalues of the
matrix A. For �(θ) given by (1.6), suppose that 	 ⊂ (0,∞)3 is compact. Then,

0 < lim inf
n→∞ inf

θ∈	
λmin

(
�−1/2(θ)�(θ0)�

−1/2(θ)
)

(4.2)
≤ lim sup

n→∞
sup
θ∈	

λmax
(
�−1/2(θ)�(θ0)�

−1/2(θ)
)
< ∞.

Lemma 4.3. Under the setup of Lemma 4.1, for any θ ∈ 	 ∈ (0,∞)3, where 	 is compact, and
δ ∈ [0,1), the following equation holds uniformly over 	:

tr
(
T−2

n (θ)
) = n(5−3δ)/2

27/2θ
1/2
1 θ

3/2
2

+ o
(
n(5−3δ)/2). (4.3)
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Lemma 4.4. Under the setup of Lemma 4.3, for any θ ∈ 	,

Gn(θ)�η(θ0)Gn(θ)′

= θ0,2ρn

θ0,3ρ0,n

(
1 − ρ2

0,n

)
I +

(
1 − ρn

ρ0,n

)
(1 − ρnρ0,n)�η(θ0) (4.4)

+ θ0,2

θ0,3

{(
1 − ρn

ρ0,n

)(
v0e′

1 + e1v′
0

) + ρ2
ne1e′

1

}
,

where e1 = (1,0, . . . ,0)′, v0 = (1, ρ0,n, . . . , ρ
n−1
0,n ) and ρ0,n = exp(−θ0,3n

−(1−δ)). In addition,
for any δ ∈ [0,1),

sup
θ∈	

v′
0T−1

n (θ)v0 = O
(
n2(1−δ)

)
, (4.5)

sup
θ∈	

v′
0T−1

n (θ)e1 = O
(
n1−δ

)
, (4.6)

sup
θ∈	

e′
1T−1

n (θ)e1 = O(1). (4.7)

Furthermore, for any δ ∈ (0,1),

sup
θ∈	

tr
((

T−1
n (θ)�η(θ)

)2) = 1

4θ3
3

n4−3δ + o
(
n4−3δ

)
. (4.8)

Lemma 4.5. Under the setup of Lemma 4.3, the following equations hold uniformly over 	:

log
(
det

(
�(θ)

)) = n log θ1 +
(

2θ2

θ1

)1/2

n(1+δ)/2 −
(

θ2

θ1
+ θ3

)
nδ

(4.9)
− 1 − δ

2
logn + o

(
nδ

) + O(1),

tr
(
�(θ0)�

−1(θ)
) = θ0,1

θ1
n − θ0,1

2θ1

(
2θ2

θ1

)1/2

n(1+δ)/2

+ θ0,2

(2θ1θ2)1/2
n(1+δ)/2 + θ0,2(θ

2
3 − θ2

0,3)

2θ2θ0,3
nδ (4.10)

+ o
(
nδ

) + O(1).

Lemma 4.6. Under the setup of Lemma 4.3, the following equations hold uniformly over 	:

tr
((

�η(θ)�−1(θ)
)2) =

(
θ2

8θ1

)1/2

n(1+δ)/2 + o
(
n(1+δ)/2), (4.11)

tr
(
�η(θ0)�

−1(θ)
) = θ0,2

(2θ1θ2)1/2
n(1+δ)/2 + θ0,2(θ

2
3 − θ2

0,3)

2θ2θ0,3
nδ

(4.12)+ o
(
nδ

) + O(1),
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tr

((
�−1(θ)

∂

∂θ3
�(θ)

)2)
= 1

θ3
nδ + o

(
nδ

)
. (4.13)

Remark 1. As will be shown later, (4.2), (4.11) and (4.12) can be used to derive bounds for
tr((�−1(θ) ∂�(θ)/∂θ2)

2) and tr((�−1(θ) ∂�(θ)/∂θ1)
2). These bounds, together with (4.13),

play important roles in establishing the consistency of θ̂1.

Lemma 4.7. Let X be full rank a.s. Then under the setup of Lemma 4.3,

sup
θ∈	

{
(η + ε)′�−1(θ)M(θ)(η + ε)

} = Op(pn), (4.14)

where M(θ) is defined in (1.7).

Lemma 4.8. Under the setup up of Lemma 4.3, let X be full rank a.s. Suppose that for some
ξ ≥ 0,

sup
θ∈	

{
μ′

0�
−1(θ)

(
I − M(θ)

)
μ0

} = Op

(
nξ

)
.

Then

sup
θ∈	

{
μ′

0�
−1(θ)

(
I − M(θ)

)
(η + ε)

} = op

(
nξ

)
. (4.15)

Before introducing Lemma 4.9, we need some notation. For 1 ≤ m ≤ r < ∞, define
J(m, r) = {(j1, . . . , jm) : j1 < · · · < jm, ji ∈ {1, . . . , r},1 ≤ i ≤ m}. Let g(ξ) be a function of
ξ = (ξ1, . . . , ξr )

′ ∈ R
r . For j = (j1, . . . , jm) ∈ J(m, r), define Djg(ξ) = ∂mg(ξ )/∂ξj1 , . . . , ∂ξjm .

Denote by Bτ (λ) the r-dimensional closed ball centered at λ = (λ1, . . . , λr)
′ with radius 0 < τ <

∞. For j ∈ J(m, r), define the m-dimensional sphere:

Bτ (λ, j) = {
(ξj1, . . . , ξjm) : (λ1, . . . , λj1−1, ξj1, λj1+1, . . . , λj2−1,

ξj2, λj2+1, . . . , λjm−1, ξjm, λjm+1, . . . , λr ) ∈ Bτ (λ)
}
.

Lemma 4.9. Assume that w1, . . . ,wn are i.i.d. random variables with E(w1) = 0,E(w2
1) = 1

and E(w4
1) < ∞. Let A(ξ) = [ai,j (ξ)]1≤i,j≤n be an n × n matrix whose (i, j)th component is

ai,j (ξ), a function of ξ with a continuous partial derivative Djai,j (ξ) on Bτ (λ), for j ∈ J(m, r).
Define q1(ξ ) = w′A(ξ)w − tr(A(ξ)), where w = (w1, . . . ,wn)

′. Then for ξ ∈ Bτ (λ), there exists
a constant C > 0 such that

E
(

sup
ξ∈Bτ (λ)

(
q1(ξ) − q1(λ)

)2
)

(4.16)

≤ C

r∑
m=1

∑
j∈J(m,r)

vol2
(
Bτ (λ, j)

)
sup

ξ∈Bτ (λ)

var
(
Djq1(ξ)

)
,

where vol(	) denotes the volume of 	.
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First, we prove (1.13). By (1.12), (4.9), (4.10), (4.14) and (4.15), it follows that

−2
(θ) = n log(2π) − 1 − δ

2
logn +

(
log θ1 + θ0,1

θ1

)
n

+
(

2θ2

θ1

)1/2(
1 − θ0,1

2θ1
+ θ0,2

2θ2

)
n(1+δ)/2

(4.17)

−
{

θ2

θ1
+ θ3 − θ0,2(θ

2
3 − θ2

0,3)

2θ2θ0,3

}
nδ

+ h(θ) + Op

(
nξ

) + op

(
nδ

)
,

uniformly in 	, where h(θ) = (η + ε)′�−1(θ)(η + ε) − tr(�−1(θ)�(θ0)). Hence, (1.13) is en-
sured by for any ε > 0,

P
(

inf
θ∈	1(ε)

{−2
(θ) + 2
(θ0)
}

> 0
)

→ 1, (4.18)

as n → ∞, where 	1(ε) = {θ ∈ 	 : |θ1 − θ0,1| > ε}. Since by (4.17),

inf
θ∈	1(ε)

{−2
(θ) + 2
(θ0)
} ≥ inf

θ∈	1(ε)

{
log θ1 + θ0,1

θ1
− log(θ0,1) − 1

}
n

− sup
θ∈	1(ε)

∣∣h(θ) − h(θ0)
∣∣ + op(n),

and since infθ∈	1(ε){log θ1 + θ0,1
θ1

− log(θ0,1) − 1} > 0, (4.18) follows immediately from

E
(

sup
θ∈	

∣∣h(θ) − h(θ0)
∣∣2

)
= O(n). (4.19)

Since h(θ) is continuous on 	 and 	 is compact, in the rest of the proof, we assume without
loss of generality that 	 = Bτ (θ0), a closed ball centered at θ0 with radius τ for some 0 <

τ < ∞. By (4.16) with w = �−1/2(θ0)(η + ε) and A(θ) = �1/2(θ0)�
−1(θ)�1/2(θ0), we obtain

h(θ) = w′A(θ)w − tr(A(θ)) and

E
(

sup
θ∈	

∣∣h(θ) − h(θ0)
∣∣2

)

≤ C sup
θ∈	

{
var

(
∂

∂θ1
h(θ)

)
+ var

(
∂

∂θ2
h(θ)

)
+ var

(
∂

∂θ3
h(θ)

)
(4.20)

+ var

(
∂2

∂θ1 ∂θ2
h(θ)

)
+ var

(
∂2

∂θ1 ∂θ3
h(θ)

)
+ var

(
∂2

∂θ2 ∂θ3
h(θ)

)

+ var

(
∂3

∂θ1 ∂θ2 ∂θ3
h(θ)

)}
,
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for some constant C > 0. By (4.2), (4.12),

tr(A)λmin(B) ≤ tr(AB) ≤ tr(A)λmax(B), (4.21)

for the nonnegative definite matrices A and B , and using I−�−1(θ0)�η(θ0) = θ0�
−1(θ0) twice,

we obtain

tr
(
�−2(θ0)

) = 1

θ0,1

{
tr
(
�−1(θ0)

) − tr
(
�−2(θ0)�η(θ0)

)}

= 1

θ0,1

{
1

θ0,1

(
n − tr

(
�−1(θ0)�η(θ0)

))
(4.22)

− tr
(
�−2(θ0)�η(θ0)

)}

= 1

θ2
0,1

n + O
(
n(1+δ)/2).

Equations (4.2), (4.21) and (4.22) lead to

sup
θ∈	

var

(
∂

∂θ1
h(θ)

)
= sup

θ∈	

2 tr

((
∂

∂θ1
�−1(θ)�(θ0)

)2)
(4.23)

= sup
θ∈	

2 tr
((

�−2(θ)�(θ0)
)2) = O(n).

Similarly, (4.2), (4.11) and (4.21) imply

sup
θ∈	

var

(
∂

∂θ2
h(θ)

)
= sup

θ∈	

2 tr

((
∂

∂θ2
�−1(θ)�(θ0)

)2)

= sup
θ∈	

2

θ2
2

tr
((

�−1(θ)�η(θ)�−1(θ)�(θ0)
)2) (4.24)

= O
(
n(1+δ)/2).

Moreover, by (4.2), (4.13) and (4.21), one gets

sup
θ∈	

var

(
∂

∂θ3
h(θ)

)
= sup

θ∈	

2 tr

((
∂

∂θ3
�−1(θ)�(θ0)

)2)

= sup
θ∈	

2 tr

((
�−1(θ)

(
∂

∂θ3
�(θ)

)
�−1(θ)�(θ0)

)2)
(4.25)

= O
(
nδ

)
.
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In a similar way, it can be shown that

sup
θ∈	

var

(
∂2

∂θ1 ∂θ2
h(θ)

)
= O

(
n(1+δ)/2), (4.26)

and

sup
θ∈	

var

(
∂2

∂θ1 ∂θ3
h(θ)

)
+ sup

θ∈	

var

(
∂2

∂θ2 ∂θ3
h(θ)

)
(4.27)

+ sup
θ∈	

var

(
∂3

∂θ1 ∂θ2 ∂θ3
h(θ)

)
= O

(
nδ

)
.

Consequently, (4.19) follows from (4.20)–(4.27), and hence (1.13) holds true.
Next, we prove (1.14), which in turn is implied by the property that for any ε2 > 0, there exists

an ε1 > 0 such that

P
(

inf
θ∈	2(ε)

{−2
(θ) + 2

(
(θ1, θ0,2, θ0,3)

′)} > 0
)

→ 1, (4.28)

as n → ∞, where 	2(ε) = {θ ∈ 	 : |θ1 − θ0,1| ≤ ε1, |θ2 − θ0,2| > ε2} and ε = (ε1, ε2)
′. Let

θb = (θ1, θ0,2, θ0,3)
′. Since ξ < (1 + δ)/2, by (4.17), we have

inf
θ∈	2(ε)

{−2
(θ) + 2
(θb)
}

≥ inf
θ∈	2(ε)

1

(2θ1θ2)1/2

{(
θ

1/2
2 − θ

1/2
0,2

)2 + θ
1/2
2

(
θ

1/2
2 − θ

1/2
0,2

)(
1 − θ0,1

θ1

)}
n(1+δ)/2

− sup
θ∈	2(ε)

∣∣h(θ) − h(θb)
∣∣ + op

(
n(1+δ)/2).

Therefore (4.28) is given by

E
(

sup
θ∈	

∣∣h(θ) − h(θb)
∣∣2

)
= Op

(
n(1+δ)/2). (4.29)

By (4.16) with w = �−1/2(θ0)(η + ε) and A(θ) = �1/2(θ0){�−1(θ) − �−1(θb)}�1/2(θ0), we
obtain h(θ) − h(θb) = w′A(θ)w − tr(A(θ)) and

E
(

sup
θ∈	

∣∣h(θ) − h(θb)
∣∣2

)

≤ C sup
θ∈	

{
var

(
∂

∂θ1

(
h(θ) − h(θb)

)) + var

(
∂

∂θ2
h(θ)

)
+ var

(
∂

∂θ3
h(θ)

)
(4.30)

+ var

(
∂2

∂θ1 ∂θ2
h(θ)

)
+ var

(
∂2

∂θ1 ∂θ3
h(θ)

)
+ var

(
∂2

∂θ2 ∂θ3
h(θ)

)

+ var

(
∂3

∂θ1 ∂θ2 ∂θ3
h(θ)

)}
,
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for some constant C > 0. In addition, it follows from (4.2), (4.11) and (4.21) that

sup
θ∈	

var

(
∂

∂θ1

(
h(θ) − h(θb)

))

= 2 sup
θ∈	

tr

((
∂

∂θ1

(
�−1(θ) − �−1(θb)

)
�(θ0)

)2)

= 2 sup
θ∈	

tr
(((

�−2(θ) − �−2(θb)
)
�(θ0)

)2)
= 2 sup

θ∈	

tr
(
�1/2(θ0)�

−2(θ)
(
�2(θb) − �2(θ)

)
�−2(θb)�(θ0)

× �−2(θb)
(
�2(θb) − �2(θ)

)
�−2(θ)�1/2(θ0)

)
= O

(
sup
θ∈	

tr
(
�1/2(θ0)�

−2(θ)
(
�2(θb) − �2(θ)

)
× �−2(θb)

(
�2(θb) − �2(θ)

)
�−2(θ)�1/2(θ0)

))
= O

(
sup
θ∈	

tr
(
�−2(θ)�(θ0)�

−2(θ)
(
�2(θb) − �2(θ)

)
�−2(θb)

(
�2(θb) − �2(θ)

)))

= O
(

sup
θ∈	

tr
(
�−2(θ)

(
�2(θb) − �2(θ)

)
�−2(θb)

(
�2(θb) − �2(θ)

)))

= O
(

sup
θ∈	

tr
((

�−2(θ) − �−2(θb)
)(

�2(θb) − �2(θ)
)))

= O
(

sup
θ∈	

tr
((

�−1(θ)
(
�−1(θ) − �−1(θb)

) + (
�−1(θ) − �−1(θb)

)
�−1(θb)

)
(4.31)

× (
�(θb)

(
�(θb) − �(θ)

) + (
�(θb) − �(θ)

)
�(θ)

)))
= O

(
sup
θ∈	

tr
(
�−1(θ)

(
�−1(θ) − �−1(θb)

)
�(θb)

(
�(θb) − �(θ)

)))

+ O
(

sup
θ∈	

tr
(
�−1(θ)

(
�−1(θ) − �−1(θb)

)(
�(θb) − �(θ)

)
�(θ)

))

+ O
(

sup
θ∈	

tr
((

�−1(θ) − �−1(θb)
)
�−1(θb)�(θb)

(
�(θb) − �(θ)

)))

+ O
(

sup
θ∈	

tr
((

�−1(θ) − �−1(θb)
)
�−1(θb)

(
�(θb) − �(θ)

)
�(θ)

))

= O
(

sup
θ∈	

tr
(
�−2(θ)

(
�(θb) − �(θ)

)2))

+ O
(

sup
θ∈	

tr
(
�−1(θ)

(
�(θb) − �(θ)

)
�−1(θb)

(
�(θb) − �(θ)

)))
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+ O
(

sup
θ∈	

tr
(
�−1(θ)

(
�(θb) − �(θ)

)
�−1(θb)

(
�(θb) − �(θ)

)))

+ O
(

sup
θ∈	

tr
(
�−2(θb)

(
�(θb) − �(θ)

)2))

= O
(

sup
θ∈	

tr
(
�−2(θ)

(
�η(θb) − �η(θ)

)2))

= O
(
n(1+δ)/2).

Combining (4.30) and (4.31), with (4.24)–(4.27), yields (4.29), and hence (1.14) is established.
Finally, we prove (1.15). It suffices to show that for any ε3 > 0, there exist ε1, ε2 > 0 such that

P
(

inf
θ∈	3(ε)

{−2
(θ) + 2

(
(θ1, θ2, θ0,3)

′)} > 0
)

→ 1, (4.32)

as n → ∞, where 	3(ε) = {θ ∈ 	 : |θ1 − θ0,1| ≤ ε1, |θ2 − θ0,2| ≤ ε2, |θ3 − θ0,3| > ε3} and ε =
(ε1, ε2, ε3)

′. Let θc = (θ1, θ2, θ0,3)
′. Since ξ < δ, by (4.17), we have

inf
θ∈	3(ε)

{−2
(θ) + 2
(θc)
} ≥ inf

θ∈	3(ε)

{
θ0,2(θ3 − θ0,3)

2

2θ0,3θ2
− (θ3 − θ0,3)

(
1 − θ0,2

θ2

)}
nδ

− sup
θ∈	3(ε)

∣∣h(θ) − h(θc)
∣∣ + op

(
nδ

)
.

Therefore, it suffices for (4.32) to show that

E
(

sup
θ∈	

∣∣h(θ) − h(θ c)
∣∣2

)
= O

(
nδ

)
. (4.33)

By (4.16) with w = �−1/2(θ0)(η + ε) and A(θ) = �1/2(θ0){�−1(θ) − �−1(θc)}�1/2(θ0), we
obtain h(θ) − h(θc) = w′A(θ)w − tr(A(θ)) and

E
(

sup
θ∈	

∣∣h(θ) − h(θ c)
∣∣2

)

≤ C sup
θ∈	

{
var

(
∂

∂θ1

(
h(θ) − h(θ c)

)) + var

(
∂

∂θ2

(
h(θ) − h(θc)

)) + var

(
∂

∂θ3
h(θ)

)
(4.34)

+ var

(
∂2

∂θ1 ∂θ2

(
h(θ) − h(θ c)

)) + var

(
∂2

∂θ1 ∂θ3
h(θ)

)
+ var

(
∂2

∂θ2 ∂θ3
h(θ)

)

+ var

(
∂3

∂θ1 ∂θ2 ∂θ3
h(θ)

)}
,

for some constant C > 0. In view of (4.34), (4.25) and (4.27), (4.33) is guaranteed by

sup
θ∈	

var

(
∂

∂θ1

(
h(θ) − h(θ c)

)) = O
(
nδ

)
, (4.35)
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sup
θ∈	

var

(
∂

∂θ2

(
h(θ) − h(θ c)

)) = O
(
nδ

)
, (4.36)

sup
θ∈	

var

(
∂2

∂θ1 ∂θ2

(
h(θ) − h(θ c)

)) = O
(
nδ

)
. (4.37)

In what follows, we only focus on the proof of (4.35) since the proofs of (4.36) and (4.37) are
similar. Note first that by an argument similar to that used to prove (4.31), one obtains

sup
θ∈	

var

(
∂

∂θ1

(
h(θ) − h(θc)

))

= 2 sup
θ∈	

tr

((
∂

∂θ1

(
�−1(θ) − �−1(θc)

)
�(θ0)

)2)
(4.38)

= O
(

sup
θ∈	

tr
((

�−1(θ)
(
�(θc) − �(θ)

))2))

= O
(

sup
θ∈	

tr
((

T−1
n (θ)Gn(θ)

(
�η(θ c) − �η(θ)

)
Gn(θ)′

)2))
.

In addition, (4.4) and some algebraic manipulations yield

Gn(θ)
(
�η(θ c) − �η(θ)

)
Gn(θ)′

=
(

θ2ρn

θ0,3ρ0,n

(
1 − ρ2

0,n

) − θ2

θ3

(
1 − ρ2

n

))
I +

(
1 − ρn

ρ0,n

)
(1 − ρnρ0,n)�η(θc) (4.39)

+ θ2

θ0,3

(
1 − ρn

ρ0,n

)(
v0e′

1 + e1v′
0

) + θ2

(
1

θ0,3
− 1

θ3

)
ρ2

ne1e′
1,

where ρ0,n = exp(−θ0,3n
−(1−δ)), and

1 − ρk
nρ


0,n = (kθ3 + 
θ0,3)n
−(1−δ) + O

(
n−2(1−δ)

); k, 
 ∈ Z, (4.40)

uniformly in 	. Moreover, by (4.3), (4.5)–(4.8) and

lim sup
n→∞

sup
θ∈	

λmax
(
�−1

η (θ)�η(θc)
)
< ∞,

which can be shown using an argument similar to that used to prove (B.2) in the supplementary
document (Chang, Huang and Ing [5]), we have

sup
θ∈	

n−4(1−δ) tr
(
T−2

n (θ)
) = O

(
nδ

)
,

sup
θ∈	

n−4(1−δ) tr
((

T−1
n (θ)�η(θc)

)2) = O
(
nδ

)
,

(4.41)
sup
θ∈	

n−2(1−δ) tr
((

T−1
n (θ)

(
v0e′

1 + e1v′
0

))2) = O(1),

sup
θ∈	

tr
((

T−1
n (θ)e1e′

1

)2) = O(1).

Combining (4.38)–(4.41) leads to (4.35) and hence (4.33). This completes the proof of (1.15).
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4.2. Proof of Theorem 2.1

To prove Theorem 2.1, we need two additional lemmas, Lemmas 4.10–4.11, which provide the
orders of magnitude of ∂
(θ̂)/∂θi and ∂2
(θ̂)/∂θ2

i ; i = 1,2,3, when the convergence rate of

θ̂ is given. On the contrary, using the orders of the magnitude of ∂
(θ̂)/∂θi and ∂2
(θ̂)/∂θ2
i ,

i = 1,2,3, one can also derive the convergence rate of θ̂ ; see (4.55)–(4.57). As a result, the
convergence rate of θ̂ can be sequentially improved via an initial convergence rate and applying
this argument repeatedly.

Lemma 4.10. Under the setup of Lemma 4.8, define for k = 1,2,3,

gk(θ) = − ∂

∂θk

2
(θ),

where 
(θ) is given by (1.5). Let θ̂ = (θ̂1, θ̂2, θ̂3)
′ be an estimate of θ with θ̂1 = θ0,1 +

Op(n−r1), θ̂2 = θ0,2 + Op(n−r2) and θ̂3 = θ0,3 + Op(n−r3) for some constants r1 ∈ [0,1/2],
r2 ∈ [0, (1 + δ)/4] and r3 ∈ [0, δ/2]; δ ∈ [0,1). Then for any δ ∈ [0,1),

g1
(
(θ0,1, θ̂2, θ̂3)

′) = Op

(
n1/2) + Op

(
n(1+δ)/2−r2

) + Op

(
nδ−r3

)
(4.42)

+ Op

(
nξ

) + O(1),

g2
(
(θ̂1, θ0,2, θ̂3)

′) = Op

(
n(1+δ)/4) + Op

(
n(1+δ)/2−r1

) + Op

(
nδ−r3

)
(4.43)

+ Op

(
nξ

) + O(1),

and for δ ∈ (0,1),

g3
(
(θ̂1, θ̂2, θ0,3)

′) = Op

(
nδ/2) + Op

(
nδ−r1

) + Op

(
nδ−r2

)
(4.44)

+ Op

(
nξ

) + O(1).

In addition, for any δ ∈ [0,1), if ξ < 1/2 and r2 ≥ δ/2,

n−1/2g1
(
(θ0,1, θ̂2, θ̂3)

′) d→ N
(
0,2θ−2

0,1

); (4.45)

if ξ < (1 + δ)/4, r1 > (1 + δ)/4 and r3 > −(1 − 3δ)/4,

n−(1+δ)/4g2
(
(θ̂1, θ0,2, θ̂3)

′) d→N
(
0,2−1/2θ

−1/2
0,1 θ

−3/2
0,2

)
. (4.46)

Furthermore, for any δ ∈ (0,1), if ξ < δ/2, r1 > δ/2 and r2 > δ/2,

n−δ/2g3
(
(θ̂1, θ̂2, θ0,3)

′) d→N
(
0,2θ−1

0,3

)
. (4.47)
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Lemma 4.11. Under the setup of Lemma 4.8, let

gkk(θ) = − ∂2

∂θ2
k

2
(θ); k = 1,2,3. (4.48)

Let θ̂ = (θ̂1, θ̂2, θ̂3)
′ be an estimate of θ . Suppose that θ̂1 = θ0,1 +op(1). Then for δ ∈ [0,1), there

exists a constant θ∗
0,1 > 0 satisfying |θ∗

0,1 − θ̂1| ≤ |θ0,1 − θ̂1| such that

g11
((

θ∗
0,1, θ̂2, θ̂3

)′) = n

θ2
0,1

+ op(n). (4.49)

In addition, suppose that θ̂1 = θ0,1 +op(1) and θ̂2 = θ0,2 +op(1), then for δ ∈ [0,1), there exists
a constant θ∗

0,2 > 0 satisfying |θ∗
0,2 − θ̂2| ≤ |θ0,2 − θ̂2| such that

g22
((

θ̂1, θ
∗
0,2, θ̂3

)′) = n(1+δ)/2

23/2θ
1/2
0,1 θ

3/2
0,2

+ Op

(
nξ

) + op

(
n(1+δ)/2). (4.50)

Furthermore, suppose that θ̂ = θ0 + op(1), then for δ ∈ (0,1), there exists a constant θ∗
0,3 > 0

satisfying |θ∗
0,3 − θ̂3| ≤ |θ0,3 − θ̂3| such that

g33
((

θ̂1, θ̂2, θ
∗
0,3

)′) = nδ

θ0,3
+ Op

(
nξ

) + op

(
nδ

)
. (4.51)

We shall prove (2.1)–(2.3) by iteratively applying (4.42)–(4.51). For the first iteration, we
show that

θ̂1 − θ0,1 = Op

(
n−(1−δ)/2) if δ ∈ [0,1), (4.52)

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
if δ ∈ [0,1/3),

(4.53)
θ̂2 − θ0,2 = Op

(
n−(1−δ)/2) if δ ∈ [1/3,1),

nδ/2(θ̂3 − θ0,3)
d→ N(0,2θ0,3) if δ ∈ (0,1/2),

(4.54)
θ̂3 − θ0,3 = Op

(
n−(1−δ)/2) if δ ∈ [1/2,1).

Proof of (4.52). Taking the Taylor expansion of g1(θ̂) at θ̂a = (θ0,1, θ̂2, θ̂3)
′ yields

0 = g1(θ̂) = g1(θ̂a) + g11
(
θ̂

∗
a

)
(θ̂1 − θ0,1), (4.55)

where θ̂
∗
a = (θ∗

0,1, θ̂2, θ̂3)
′ satisfies |θ∗

0,1 − θ̂1| ≤ |θ0,1 − θ̂1|. Therefore, for (4.52) to hold, it suffices
to show that

g1(θ̂a) = Op

(
n(1+δ)/2),

g11
(
θ̂∗

a

) = n

θ2
0,1

+ op(n),
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where the first equation follows from (1.14) and (4.42) with r2 = 0, and the second one is given
by (1.13) and (4.49). �

Proof of (4.53). Let θ̂b = (θ̂1, θ0,2, θ̂3)
′. Taking the Taylor expansion of g2(θ̂) at θ̂b =

(θ̂1, θ0,2, θ̂3)
′ yields

0 = g2(θ̂) = g2(θ̂b) + g22
(
θ̂

∗
b

)
(θ̂2 − θ0,2), (4.56)

where θ̂
∗
b = (θ̂1, θ

∗
0,2, θ̂3)

′ satisfies |θ∗
0,2 − θ̂2| ≤ |θ0,2 − θ̂2|. Therefore, for (4.53) to hold, it suffices

to show that

n−(1+δ)/4g2(θ̂b)
d→ N

(
0,2−1/2θ

−1/2
0,1 θ

−3/2
0,2

)
if δ ∈ [0,1/3),

g2(θ̂b) = Op

(
nδ

)
if δ ∈ [1/3,1),

g22
(
θ̂

∗
b

) = n(1+δ)/2

23/2θ
1/2
0,1 θ

3/2
0,2

+ op

(
n(1+δ)/2),

where the first two equations follow from (4.43) with r1 = (1 − δ)/2, (4.46) and (4.52), and the
last one is ensured by (1.14), (4.50) and (4.52). �

Proof of (4.54). Taking the Taylor expansion of g3(θ̂) at θ̂c yields

0 = g3(θ̂) = g3(θ̂c) + g33
(
θ̂

∗
c

)
(θ̂3 − θ0,3), (4.57)

where θ̂
∗
c = (θ̂1, θ̂2, θ

∗
0,3)

′ satisfies |θ∗
0,3 − θ̂3| ≤ |θ0,3 − θ̂3|. Therefore, for (4.54) to hold, it suffices

to show that

n−δ/2g3(θ̂c)
d→ N

(
0,2θ−1

0,3

)
if δ ∈ (0,1/2),

g3(θ̂c) = Op

(
n−(1−3δ)/2) if δ ∈ [1/2,1),

g33
(
θ̂

∗
c

) = nδ

θ0,3
+ op

(
nδ

)
,

where the first two equations follow from (4.44) with r1 = r2 = (1 − δ)/2, (4.47), (4.52)
and (4.53), and the last one is ensured by (4.51). Thus, (4.54) is established. �

For the second iteration, we show that

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
if δ ∈ [0,1/2),

(4.58)
θ̂1 − θ0,1 = Op

(
n−(1−δ)

)
if δ ∈ [1/2,1),

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
if δ ∈ [0,3/5),

(4.59)
θ̂2 − θ0,2 = Op

(
n−(1−δ)

)
if δ ∈ [3/5,1),
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nδ/2(θ̂3 − θ0,3)
d→ N(0,2θ0,3) if δ ∈ (0,2/3),

(4.60)
θ̂3 − θ0,3 = Op

(
n−(1−δ)

)
if δ ∈ [2/3,1).

By (4.42) with r2 = r3 = (1 − δ)/2, (4.45) and (4.53), we have

n−1/2g1(θ̂a)
d→ N

(
0,2θ−2

0,1

)
if δ ∈ [0,1/2),

g1(θ̂a) = Op

(
nδ

)
if δ ∈ [1/2,1).

The above two equations, (4.49) and (4.55) give (4.58). By (4.43) with r1 = 1 − δ and r3 =
(1 − δ)/2, (4.46), (4.54) and (4.58), we have

n−(1+δ)/4g2(θ̂b)
d→ N

(
0,2−1/2θ

−1/2
0,1 θ

−3/2
0,2

)
if δ ∈ [0,3/5),

g2(θ̂b) = Op

(
n−(1−3δ)/2) if δ ∈ [3/5,1).

Combining these two equations together with (4.50) and (4.56) yields (4.59). By (4.44) with
r1 = r2 = 1 − δ, (4.47), (4.58) and (4.59), we have

n−δ/2g3(θ̂c)
d→ N

(
0,2θ−1

0,3

)
if δ ∈ (0,2/3),

g3(θ̂c) = Op

(
n−(1−3δ)/2) if δ ∈ [2/3,1),

which, together with (4.51) and (4.57), lead immediately to (4.60).
Following the same argument as in the second iteration, we can recursively show that for each

i = 3,4, . . .

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
if δ ∈ [

0, (i − 1)/i
)
,

θ̂1 − θ0,1 = Op

(
n−i(1−δ)/2) if δ ∈ [

(i − 1)/i,1
)
,

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
if δ ∈ [

0, (2i − 1)/(2i + 1)
)
,

θ̂2 − θ0,2 = Op

(
n−i(1−δ)/2) if δ ∈ [

(2i − 1)/(2i + 1),1
]
,

nδ/2(θ̂3 − θ0,3)
d→ N(0,2θ0,3) if δ ∈ (

0, i/(i + 1)
)
,

θ̂3 − θ0,3 = Op

(
n−i(1−δ)/2) if δ ∈ [

i/(i + 1),1
)
.

Thus (2.1)–(2.3) are proved.

4.3. Proof of Theorem 2.2

We divide the proof into three parts corresponding to δ ∈ [0,1/3), δ ∈ [1/3,1/2) and δ ∈
[1/2,1).
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First, we consider δ ∈ [0,1/3). We further divide the proof into six subparts with respect to ξ

in terms of a partition of [0,1), corresponding to ξ ∈ [0, δ/2), ξ ∈ [δ/2, δ), ξ ∈ [δ, (1 + δ)/4),
ξ ∈ [(1 + δ)/4,1/2), ξ ∈ [1/2, (1 + δ)/2) and ξ ∈ [(1 + δ)/2,1). We shall prove each of the
following six subparts separately:

(a1) For ξ ∈ [(1 + δ)/2,1),

θ̂1 − θ0,1 = Op

(
nξ−1).

(a2) For ξ ∈ [1/2, (1 + δ)/2),

θ̂1 − θ0,1 = Op

(
nξ−1), (4.61)

θ̂2 − θ0,2 = Op

(
nξ−(1+δ)/2). (4.62)

(a3) For ξ ∈ [(1 + δ)/4,1/2),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
, (4.63)

θ̂2 − θ0,2 = Op

(
nξ−(1+δ)/2). (4.64)

(a4) For ξ ∈ [δ, (1 + δ)/4),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
, (4.65)

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
. (4.66)

(a5) For ξ ∈ [δ/2, δ),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
, (4.67)

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
, (4.68)

θ̂3 − θ0,3 = Op

(
nξ−δ

)
. (4.69)

(a6) For ξ ∈ [0, δ/2),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
, (4.70)

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
, (4.71)

and if in addition δ �= 0, then

nδ/2(θ̂3 − θ0,3)
d→ N(0,2θ0,3). (4.72)
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Proof of (a1). Applying (4.42) with r1 = r2 = r3 = 0 and ξ ∈ [(1 + δ)/2,1), we have

g1(θ̂a) = Op

(
nξ

)
. (4.73)

According to (1.13) and (4.49), we have

g11(θ̂a) = n

θ2
0,1

+ op(n). (4.74)

The desired conclusion (a1) now follows from plugging (4.73) and (4.74) into (4.55). �

Proof of (a2). Applying (4.42) with r1 = r2 = r3 = 0 and ξ ∈ [1/2, (1 + δ)/2), we have

g1(θ̂a) = Op

(
n(1+δ)/2).

Combining this with (4.55) and (4.74) gives

θ̂1 − θ0,1 = Op

(
n−(1−δ)/2).

Applying (4.43) with r1 = (1 − δ)/2, r2 = r3 = 0 and ξ ∈ [1/2, (1 + δ)/2), we obtain

g2(θ̂b) = Op

(
nξ

)
. (4.75)

From (1.14) and (4.50), we have

g22
(
θ̂

∗
b

) = n(1+δ)/2

23/2θ
1/2
0,1 θ

3/2
0,2

+ op

(
n(1+δ)/2). (4.76)

Combining this with (4.56) and (4.75) leads to (4.62). In addition, applying (4.42) with r2 =
(1 + δ)/2 − ξ, r3 = 0 and ξ ∈ [1/2, (1 + δ)/2), we have

g1(θ̂a) = Op

(
n1/2) + Op

(
nξ

) = Op

(
nξ

)
.

This together with (4.55) and (4.74) gives (4.61). �

Proof of (a3). Following the same arguments as the one used in the proof of (4.62) leads to
(4.64). Applying (4.45) with r1 = (1 − δ)/2, r2 = (1 + δ)/2 − ξ , r3 = 0 and ξ ∈ [(1 + δ)/4,1/2),
we have

n−1/2g1(θ̂a)
d→ N

(
0,2θ−2

0,1

)
.

This together with (4.55) and (4.74) gives (4.63). �

Proof of (a4). Applying (4.46) with r1 = (1 − δ)/2, r2 = r3 = 0 and ξ ∈ [δ, (1 + δ)/4), we have

n−(1+δ)/4g2(θ̂b)
d→N

(
0,2−1/2θ

−1/2
0,1 θ

−3/2
0,2

)
.
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This, (4.56) and (4.76) imply (4.66). Moreover, (4.65) can be shown by an argument similar to
that used to prove (4.63). �

Proof of (a5). The proofs of (4.67) and (4.68) are similar to those of (4.65) and (4.66), respec-
tively. Applying (4.44) with r1 = r2 = (1 − δ)/2, r3 = 0 and ξ ∈ [(1 + δ)/4,1/2), we have

g3(θ̂c) = Op

(
nξ

)
. (4.77)

From (1.13)–(1.15) and (4.51), we obtain

g33
(
θ̂

∗
c

) = nδ

θ0,3
+ o

(
nδ

)
. (4.78)

Combining this with (4.57) and (4.77) leads to (4.69). �

Proof of (a6). Equations (4.70) and (4.71) can be proved in a way similar to the proofs of (4.65)
and (4.66). Applying (4.47) with r1 = r2 = (1 − δ)/2, r3 = 0 and ξ ∈ (0, δ/2), we have

n−δ/2g3(θ̂c)
d→ N

(
0,2θ−1

0,3

)
.

This together with (4.57) and (4.78) gives (4.72). �

Second, we consider δ ∈ [1/3,1/2). Following an argument similar to that used in the first
part, we obtain

(b1) For ξ ∈ [(1 + δ)/2,1),

θ̂1 − θ0,1 = Op

(
nξ−1).

(b2) For ξ ∈ [1/2, (1 + δ)/2),

θ̂1 − θ0,1 = Op

(
nξ−1),

θ̂2 − θ0,2 = Op

(
nξ−(1+δ)/2).

(b3) For ξ ∈ [δ,1/2),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
,

θ̂2 − θ0,2 = Op

(
nξ−(1+δ)/2).

(b4) For ξ ∈ [(1 + δ)/4, δ),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
,

θ̂2 − θ0,2 = Op

(
nξ−(1+δ)/2),

θ̂3 − θ0,3 = Op

(
nξ−δ

)
.
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(b5) For ξ ∈ [δ/2, (1 + δ)/4),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
,

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
,

θ̂3 − θ0,3 = Op

(
nξ−δ

)
.

(b6) For ξ ∈ [0, δ/2),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
,

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
,

nδ/2(θ̂3 − θ0,3)
d→ N(0,2θ0,3).

Third, for δ ∈ [1/2,1), one can similarly show that

(c1) For ξ ∈ [(1 + δ)/2,1),

θ̂1 − θ0,1 = Op

(
nξ−1).

(c2) For ξ ∈ [δ, (1 + δ)/2),

θ̂1 − θ0,1 = Op

(
nξ−1),

θ̂2 − θ0,2 = Op

(
nξ−(1+δ)/2).

(c3) For ξ ∈ [1/2, δ),

θ̂1 − θ0,1 = Op

(
nξ−1),

θ̂2 − θ0,2 = Op

(
nξ−(1+δ)/2),

θ̂3 − θ0,3 = Op

(
nξ−δ

)
.

(c4) For ξ ∈ [(1 + δ)/4,1/2),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
,

θ̂2 − θ0,2 = Op

(
nξ−(1+δ)/2),

θ̂3 − θ0,3 = Op

(
nδ/2).

(c5) For ξ ∈ [δ/2, (1 + δ)/4),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
,

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
,

θ̂3 − θ0,3 = Op

(
nξ−δ

)
.
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(c6) For ξ ∈ [0, δ/2),

n1/2(θ̂1 − θ0,1)
d→ N

(
0,2θ2

0,1

)
,

n(1+δ)/4(θ̂2 − θ0,2)
d→ N

(
0,25/2θ

1/2
0,1 θ

3/2
0,2

)
,

nδ/2(θ̂3 − θ0,3)
d→ N(0,2θ0,3).

Thus the proof of the theorem is complete.

4.4. Proofs of Corollaries 2.1 and 3.1

To prove Corollaries 2.1 and 3.1, the following lemma, which provides the order of magnitude
of R(	) defined in (1.11), is needed.

Lemma 4.12. Under the setup of Lemma 4.3, let x = n−1(1,2, . . . , n)′ and 1 = (1, . . . ,1)′. Then
for any δ ∈ [0,1), the following equations hold uniformly in 	:

1′�−1(θ)1 = θ2
3

2θ2
nδ + o

(
nδ

) + O(1), (4.79)

x′�−1(θ)1 = θ2
3

4θ2
nδ + o

(
nδ

) + O(1), (4.80)

x′�−1(θ)x = θ2
3

6θ2
nδ + o

(
nδ

) + O(1). (4.81)

We first prove Corollary 2.1. Note that

μ′
0�

−1(θ)
(
I − M(θ)

)
μ0

= μ′
0�

−1(θ)μ0 − μ′
0�

−1(θ)M(θ)μ0
(4.82)

= β2
0,1x′�−1(θ)x − β2

0,1x′�−1(θ)1
(
1′�−1(θ)1

)−11′�−1(θ)x

= β2
0,1θ

2
3

24θ2
nδ + o

(
nδ

)
,

uniformly in 	, where x = n−1(1, . . . , n)′ and the last equality is obtained from (4.79)–(4.81).
Therefore, (2.8) holds. With the help of (2.8), (2.9) and (2.10) follow directly from Theorem 2.2.

Second, we prove Corollary 3.1. By (1.8), (4.15) and (4.82), we have

−2
(θ) = n log(2π) + log det
(
�(θ)

) + tr
(
�−1(θ)�(θ0)

)
+ β2

0,1θ
2
3

24θ2
nδ + h(θ) + op

(
nδ

) + Op(1),
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uniformly in 	, noting that h(θ) = (η + ε)′�−1(θ)(η + ε) − tr(�−1(θ)�(θ0)). Therefore, by
(4.9) and (4.10),

−2
(θ) = n log(2π) − 1 − δ

2
logn +

(
log θ1 + θ0,1

θ1

)
n

+
(

2θ2

θ1

)1/2(
1 − θ0,1

2θ1
+ θ0,2

2θ2

)
n(1+δ)/2

−
(

θ2

θ1
+ θ3 − θ0,2(θ

2
3 − θ2

0,3)

2θ2θ0,3
− β2

0,1θ
2
3

24θ2

)
nδ

+ h(θ) + op

(
nδ

) + Op(1)
(4.83)

= n log(2π) − 1 − δ

2
logn +

(
log θ1 + θ0,1

θ1

)
n

+
(

2θ2

θ1

)1/2(
1 − θ0,1

2θ1
+ θ0,2

2θ2

)
n(1+δ)/2

−
{

θ2

θ1
+ θ3

(
1 − θ0,2

θ2

)
+ θ0,2θ0,3 + θ0,2θ

∗
0,3

2θ2

− θ0,2

2θ2θ
∗
0,3

(
θ3 − θ∗

0,3

)2
}
nδ + h(θ) + op

(
nδ

) + Op(1),

uniformly in 	, where θ∗
0,3 = 12θ0,2

12θ0,2+β2
0,1θ0,3

θ0,3. It follows from (4.83) and the same argument as

in the proof of (4.32) that for any ε3 > 0, there exist ε1, ε2 > 0 such that

P
(

inf
θ∈	2(ε1,ε2,ε3)

{−2
(θ) + 2

((

θ1, θ2, θ
∗
0,3

)′)}
> 0

)
→ 1,

as n → ∞, where 	3(ε1, ε2, ε3) = {θ ∈ 	 : |θ1 − θ0,1| ≤ ε1, |θ2 − θ0,2| ≤ ε2, |θ3 − θ∗
0,3| > ε3}.

Thus (3.1) is established, and hence the proof is complete.

4.5. Proofs of Corollaries 2.2 and 3.2

We first prove (2.11). Let x = (x(s1), . . . , x(sn))
′. By an argument similar to that used to prove

(4.15), it can be shown that

sup
θ∈	

n−δ/2x′�−1(θ)1 = Op(1).

This, together with (4.81) and (4.12), gives

μ′
0�

−1(θ)
(
I − M(θ)

)
μ0

= μ′
0�

−1(θ)μ0 − μ′
0�

−1(θ)M(θ)μ0
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= β2
0,1x′�−1(θ)x − β2

0,1x′�−1(θ)1
(
1′�−1(θ)1

)−11′�−1(θ)x

= β2
0,1 tr

(
�−1(θ)�η(0, θ1,2, θ1,3)

′) + hx(θ) + Op(1)

= β2
0,1θ1,2

(2θ1θ2)1/2
n(1+δ)/2 + β2

0,1θ1,2(θ
2
3 − θ2

1,3)

2θ2θ1,3
nδ

+ hx(θ) + o
(
nδ

) + Op(1),

uniformly in 	, where hx(θ) = β2
0,1(x

′�−1(θ)x − tr(�−1(θ)�η(0, θ1,2, θ1,3)
′)). In addition, an

argument similar to that used to prove (4.29) yields

sup
θ∈	

hx(θ) = op

(
n(1+δ)/2).

Hence (2.11) follows. In view of (2.11) and Theorem 2.2, we obtain (2.12). Thus, the proof of
Corollary 2.2 is complete.

To prove (3.2), note first that by the same line of reasoning as in (4.83), one gets

−2
(θ) = n log(2π) − 1 − δ

2
logn +

(
log θ1 + θ0,1

θ1

)
n

+
(

2θ2

θ1

)1/2(
1 − θ0,1

2θ1
+ θ∗

0,2

2θ2

)
n(1+δ)/2

−
{

θ2

θ1
+ θ3

(
1 − θ∗

0,2

θ2

)
+ θ0,2θ0,3 + β2

0,1θ1,2θ1,3 + θ∗
0,2θ

∗
0,3

2θ2
(4.84)

− θ∗
0,2

2θ2θ
∗
0,3

(
θ3 − θ∗

0,3

)2
}
nδ

+ hx(θ) + h(θ) + op

(
nδ

) + Op(1),

uniformly in 	, where θ∗
0,2 = θ0,2 + β2

0,1θ1,2 and θ∗
0,3 = θ0,2+β2

0,1θ1,2

β2
0,1θ1,2θ

−1
1,3+θ0,3θ

−1
0,3

. Moreover, using ar-

guments similar to those used in the proofs of (4.28) and (4.32), respectively, one can show that
for any ε2 > 0, there exists an ε1 > 0 such that

lim
n→∞P

(
inf

θ∈	2(ε1,ε2)

{−2
(θ) + 2

((

θ1, θ
∗
0,2, θ

∗
0,3

)′)}
> 0

)
= 1, (4.85)

and for any ε3 > 0, there exist ε1, ε2 > 0 such that

lim
n→∞P

(
inf

θ∈	3(ε1,ε2,ε3)

{−2
(θ) + 2

((

θ1, θ2, θ
∗
0,3

)′)}
> 0

)
= 1, (4.86)

where 	2(ε1, ε2) = {θ ∈ 	 : |θ1 − θ0,1| ≤ ε1, |θ2 − θ∗
0,2| > ε2} and 	3(ε1, ε2, ε3) = {θ ∈ 	 :

|θ1 −θ0,1| ≤ ε1, |θ2 −θ∗
0,2| ≤ ε2, |θ3 −θ∗

0,3| > ε3}. Combining (4.84)–(4.86) yields (3.2) and (3.3).
This completes the proof of Corollary 3.2.
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