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A common challenge for most spatial cluster detection methods is the lack of asymptotic properties to sup-
port their validity. As the spatial scan test is the most often used cluster detection method, we investigate
two important properties in the method: the consistency and asymptotic local efficiency. We address the
consistency by showing that the detected cluster converges to the true cluster in probability. We address the
asymptotic local efficiency by showing that the spatial scan statistic asymptotically converges to the square
of the maximum of a Gaussian random field, where the mean and covariance functions of the Gaussian
random field depends on a function of at-risk population within and outside of the cluster. These conclu-
sions, which are also supported by simulation and case studies, make it practical to precisely detect and
characterize a spatial cluster.

Keywords: asymptotic distribution; clusters; converges in probability; Gaussian random field; spatial scan
statistics

1. Introduction

Spatial cluster detection is a critical part of disease surveillance, and many cluster detection
methods have been developed in the last two decades (see a thorough review by [16] as well as
[2,5,7,11,13]). However, most cluster detection methods share the problem of how to ascertain
and characterize a spatial cluster. R. Fisher noted that in agriculture experiments “patches in close
proximity are commonly more alike. . . than those which are further apart” ([9], page 66), which
Tobler paraphrased as the First Law of Geography: “Everything is related to everything else, but
near things are more related than distant things” [24]. Furthermore, clusters can be associated
with etiology and ecological covariates, and characteristics of a detected cluster can provide
clues for isolating potential ecological factors [28]. It is therefore important to distinguish a true
cluster with any shape and size from a collection of cluster candidates with regular shapes and
sizes that may mask an etiological effect [3,27]. In this paper, we consider these problems in
relation to the spatial scan test because it is the most frequently used test in disease surveillance
[14,22,23].

Scan statistics were originally developed for one dimension point process [21] with some im-
portant asymptotic properties [4,6,10]. Kulldorff [15] extended it to two-dimensional by treating
counts in spatial units as Poisson random variables. The spatial scan statistic uses a moving win-
dow of varying size to detect a set of clustered regions that are unlikely to happen by chance.
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It compares disease rate within a clustered area with the rate in the rest of the area. In particular,
suppose there is only one cluster in the study area, which is denoted by CT . Then, the spatial
scan statistic is to test whether CT is a high-value or low-value cluster (i.e. a hot or a cool spot).
Because CT is unknown, it is generally to assume that CT may belong to a collection of cluster
candidates denoted by C. A cluster candidate is often composed of a set of contiguous spatial
units in the study area, which can be thought as a priori collection for spatial clusters.

As long as C is determined, the null hypothesis and the alternative hypothesis are

H0 : θC = θ0 versus H1 : θC �= θ0, (1.1)

for some C ∈ C. Because the assumption that CT belongs to C may be incorrect in applications,
we consider the asymptotic behavior of the spatial scan statistic under the case when CT ∈ C and
CT /∈ C, respectively. The testing problem described by (1.1) is misspecified if CT /∈ C.

Assume a study area has m spatial units. Let Yi be the count, yi be the observed count, and
ni be the at-risk population in unit i, for i = 1, . . . ,m. Suppose Yi are independent. Denote φ

as the empty set, S = {1, . . . ,m} as the set of the indices of spatial units, C = {C1, . . . ,CN }
as the collection of cluster candidates, where N = #C is the total number of cluster candidates
contained in C. Assume CT �= φ and CT �= S. Let θ0CT

and θCT
be the expected value of Yi for

i ∈ C̄T and i ∈ CT , respectively, where C̄T represents the complementary set of CT . Then, the
true model is

Yi ∼ Poisson(θ0CT
ni), i ∈ C̄T ; or Yi ∼ Poisson(θCT

ni), i ∈ CT . (1.2)

The difference between the hypotheses given by equation (1.1) and the true model given by
equation (1.2) is that equation (1.2) is included in equation (1.1) if CT ∈ C but not if CT /∈ C.
Our asymptotic results are derived under the true model given by equation (1.2) when the hy-
potheses are used as those given in equation (1.1), which include both CT ∈ C and CT /∈ C cases,
respectively.

Let Y = ∑m
i=1 Yi , y = ∑m

i=1 yi , n = ∑m
i=1 ni , YC = ∑

i∈C Yi , yC = ∑
i∈C yi , nC = ∑

i∈C ni ,
YC̄ = ∑

i∈C̄ Yi , yC̄ = ∑
i∈C̄ yi , and nC̄ = ∑

i∈C̄ ni . Then, y, yC and yC̄ are the observed values
of Y , YC and YC̄ under model (1.1), respectively. Under the true model, YCT

= ∑
i∈CT

Yi and
YC̄T

= ∑
i∈C̄T

Yi are independently Poisson random variables with expected values θCT
nCT

and
θ0CT

nC̄T
, respectively. However, the distributions of YC and YC̄ are more complicated if C �= CT .

Note that the usual alternative hypothesis of the spatial scan test assumes that

Yi ∼ Poisson(θ0ni), i ∈ C̄; or Yi ∼ Poisson(θCni), i ∈ C,θC �= θ0, (1.3)

for a certain C ∈ C. Since the true cluster CT may not be contained in C, our alternative hy-
pothesis can be understood as a generalized version of the usual alternative hypothesis that has
been considered in literature, where our alternative hypothesis is reduced to the usual alterna-
tive hypothesis if CT ∈ C. In the following, we specify the likelihood ratio statistic for a general
C ∈ C.

Under H0 ∪ H1, the loglikelihood function is

�C(θ0, θC) = YC̄ log θ0 − θ0nC̄ + YC log θC − θCnC + log

(
m∏

i=1

n
Yi

i

Yi !

)
. (1.4)
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The maximum likelihood estimators (MLEs) of θ0 and θC are

θ̂1
0C = YC̄/nC̄

and

θ̂1
C = YC/nC,

respectively, which satisfy

�̇C

(
θ̂1

0C, θ̂1
C

) = 0,

where �̇C(θ0, θC) is the gradient of �C(θ0, θC). Under H0 for a given C, the loglikelihood func-
tion is

�0(θ0) = Y log θ0 − θ0n + log

(
m∏

i=1

n
Yi

i

Yi !

)
,

(1.5)
θ̂0

0 = Y/n,

which satisfies

�̇0
(
θ̂0

0

) = 0,

where �̇0(θ0) is the derivative of �0(θ0). The logarithm of the likelihood ratio statistic is

log�C = �C

(
θ̂1

0C, θ̂1
C

) − �0
(
θ̂0

0

)
.

The twice logarithm of the spatial scan statistic is

2 log� = max
C∈C

2
[
�C

(
θ̂1

0C, θ̂1
C

) − �0
(
θ̂0

0

)]
, (1.6)

where � is usually called the spatial scan statistic and currently a bootstrap method is often used
to compute the p-value [15]. The detected cluster Ĉ then is the cluster candidate in C which
satisfies �

Ĉ
= �. The spatial scan statistic � defined in (1.6) is the most frequently used test

statistic to detect clusters. Currently, there is no explicit formula for 2 log� because it depends
on the choice of C.

As the spatial scan statistic has become increasingly popular with new extensions to capture ir-
regular cluster shapes and ecological covariates [1,17,26,28], questions have risen regarding how
to characterize a detected cluster and how to specify cluster detection among many competing
conditions. For example, disease surveillance specialists often set the cluster size to be an area
covering 50% of the population resulting a detected cluster that covers more than one-half of
the surveillance area. To provide etiological clues, it is often necessary to repeatedly refine clus-
ter detection size from 10% to 50% of the population size, and then reevaluate cluster strength.
However, it is almost impractical to do so empirically due to a range of population size choice.
In addition, it is not certain if a newly detected one from refinement would point to the same
core area from the originally detected cluster. Answers to these questions require understanding
theoretical properties of the spatial scan test, which is the subject of the current study.
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We set out a theoretical treatment of the original and nontrivial scan test setting for which
only the most important cluster is detected. According to the true distributions of Yi specified in
equation (1.2), we provide the asymptotic behaviors of the spatial scan statistic based on a set of
weak regularity conditions.

• If CT ∈ C, then Ĉ
P→ CT ; if CT /∈ C, then Ĉ

P→ C̃ �= CT for a certain C̃ ∈ C.
• The true distribution of 2 log� is asymptotically equal to the distribution of the square of

the maximum of a Gaussian random field, where the mean vector of the Gaussian random
field is zero under the null hypothesis and nonzero under the alternative hypothesis.

• The power function of � is determined by the choice of the collection of cluster candi-
dates C, the disease rates within and outside of CT , and the at-risk populations within and
outside of CT .

• If the at-risk population within CT is less than the half of the at-risk population of the whole
study area, then the power function increases as the total at-risk population in the cluster
increases.

In Section 2, we provide the mathematical proof of the above results as well as their rigorous
statements. In Section 3, we evaluate the theoretical results via simulation and case studies. In
Section 4, we provide concluding remarks.

2. Main result

We study the asymptotic properties of � as nmin = min(n1, n2, . . . , nm) → ∞ since this reflects
the case that the at risk population sizes for all units are large, which is often true in practice. We
need the condition that limnmin→∞ ni/nmin positively exists because such a condition indicates
that the mean (given in equation (2.10)) and covariance functions (given in equation (2.11)) in
the asymptotic distribution under the local alternative uniquely exists. We assume m does not
change as nmin → ∞ because this condition implies that the whole study area (i.e., the map)
does not vary, which also indicates that both m and C do not vary as nmin → ∞. Therefore, we
impose the following regularity conditions:

(a) In the true model given by (1.2), θ0CT
does not vary as nmin → ∞, and both θ0CT

and θCT

are positive.
(b) The limits ηi = limnmin→∞ ηinmin for all i ∈ S positively exist, where ηinmin = ni/nmin.

Therefore, ηC = ∑
i∈C ηi , ηC̄ = ∑

i /∈C ηi , and η = ∑m
i=1 ηi also positively exist as nmin → ∞.

(c) The collection of cluster candidates C does not vary as nmin → ∞. In addition, we also
have φ,S /∈ C, and C̄ /∈ C if C ∈ C.

(d) Both m and N do not vary as nmin → ∞.
(e) Asymptotic properties are considered under one of the following conditions:

(e1) limnmin→∞(θCT
− θ0CT

) positively exists as nmin → ∞; or
(e2) limnmin→∞

√
nmin(θCT

− θ0CT
) positively exists as nmin → ∞.

We investigated asymptotic properties of 2 log� under the above regularity conditions. Prop-
erties under conditions (a), (b), (c), (d), and (e1) are presented in Section 2.1. Properties under
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conditions (a), (b), (c), (d), and (e2) are presented in Section 2.2. Condition (e2) is also under-
stood as a case of local alternatives because Section 2.2 focuses on asymptotic local efficiency

of the test. We use
P→ to denote convergence in probability as nmin → ∞ and

D→ to denote
convergence in distribution as nmin → ∞, respectively.

2.1. Consistency

Let Ĉ ∈ C be the detected cluster. Then

�
Ĉ

= max
C∈C

�C. (2.1)

We say that a cluster candidate C̃ is specified asymptotically by � if Ĉ
P→ C̃. We say that � is

consistent if Ĉ
P→ CT . The consistency of the spatial scan test is whether � is consistent.

Denote nD∩E = ∑
i∈D∩E ni and ηD∩E = ∑

i∈D∩E ηi = limn→∞nmin nD∩E/nmin for any
D,E ⊆ S. For a deterministic sequence {anmin : nmin = 1,2, . . .}, we write anmin = o(1) if
limnmin→∞ anmin = 0 or anmin = O(1) if |anmin | is uniformly bounded as nmin → ∞. For a stochas-

tic sequence {Wnmin : nmin = 1,2, . . .}, we write Wnmin = op(1) if Wnmin

P→ 0 or Wnmin = Op(1)

if |Wnmin | is uniformly bounded in probability as nmin → ∞. Let

θ0C = E
(
θ̂1

0C

) = θ0CT
+ ηCT ∩C̄

ηC̄

(θCT
− θ0CT

) + o(1),

θ1C = E
(
θ̂1
C

) = θ0CT
+ ηCT ∩C

ηC

(θCT
− θ0CT

) + o(1), (2.2)

θ00 = E
(
θ̂0

0

) = θ0CT
+ ηCT

η
(θCT

− θ0CT
) + o(1).

Lemma 2.1. Assume (a), (b), (c) and (d) hold, and either (e1) or (e2) holds. If C ⊆ S but C �= φ

and C �= S, then

�C

(
θ̂1

0C, θ̂1
C

) − �C(θ0C, θ1C) = 1

2

[
nC̄(θ̂1

0C − θ0C)2

θ0C

+ nC(θ̂1
C − θ1C)2

θ1C

]
+ op(1) = Op(1) (2.3)

and

�0
(
θ̂0

0

) − �0(θ00) = n(θ̂0 − θ00)
2

2θ00
+ op(1) = Op(1). (2.4)

Proof. Although there may be C �= CT , the results of local asymptotic normality (LAN) ([25],
page 104) can always be used because we have YC̄ ∼ Poisson(nC̄θ0C), YC ∼ Poisson(nCθ1C)

and Y ∼ Poisson(nθ00). Then,
√

nC̄(θ̂1
0C −θ0C) = √

nC̄(YC̄/nC̄ −θ0C)
D→ N(0, θ0C),

√
nC(θ̂1

C −
θ1C) = √

nC(YC/nC − θ1C)
D→ N(0, θ1C), and

√
n(θ̂0

0 − θ00) = √
n(Y/n − θ00)

D→ N(0, θ00) as
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nmin → ∞. We compute the Taylor expansion of �C(θ0C, θ1C) at the MLE (θ̂1
0C, θ̂1

C) based on
equation (1.4) and obtain

�C(θ0C, θ1C) = �C

(
θ̂1

0C, θ̂1
C

) − 1

2

[
ȲC̄

(θ̂1
0C)2

(
θ̂1

0C − θ0C

)2 + ȲC

(θ̂1
C)2

(
θ̂1
C − θ1C

)2
]

+ op(1)

= �C

(
θ̂1

0C, θ̂1
C

) − 1

2

[
nC̄

θ̂1
0C

(
θ̂1

0C − θ0C

)2 + nC

θ̂1
C

(
θ̂1
C − θ1C

)2
]

+ op(1)

= �C

(
θ̂1

0C, θ̂1
C

) − 1

2

[
nC̄

θ0C

(
θ̂1

0C − θ0C

)2 + nC

θ1C

(
θ̂1
C − θ1C

)2
]

+ op(1),

which implies equation (2.3). We compute the Taylor expansion of �0(θ00) at the MLE θ̂0
0 based

on equation (1.5) and obtain

�0(θ00) = �0
(
θ̂0

0

) − Y

2(θ̂0
0 )2

(
θ̂0

0 − θ00
)2 + op(1)

= �0
(
θ̂0

0

) − n

2θ̂0
0

(
θ̂0

0 − θ00
)2 + op(1)

= �0
(
θ̂0

0

) − n

2θ00

(
θ̂0

0 − θ00
)2 + op(1),

which implies equation (2.4). �

Lemma 2.2. Assume conditions (a), (b), (c), (d), and (e1) hold. Suppose C ⊆ S but C �= CT ,
C �= φ, and C �= S. Then for any M > 0, we have

lim
nmin→∞P(log�CT

− log�C > M) = 1.

Proof. We can equivalently rephrase the case when nmin → ∞ by partitioning Yi = ∑nmin
k=1 Yik ,

where Yik are i.i.d. Poisson random variables with common mean θ0CT
ηinmin if i ∈ C̄T or

θ1CT
ηinmin if i ∈ C for all i ∈ S and k = 1, . . . , nmin. Let

pC,θ0,θC
(y1k, . . . , ymk) =

[∏
i /∈C

(ηinminθ0)
yik

yik! e−ηinmin θ0

][∏
i∈C

(ηinminθC)yik

yik! e−ηinmin θC

]

be the joint PMF of (Y1k, . . . , Ymk) for a cluster candidate C, and parameters θ0 and θC . The
above expression is the true likelihood function if and only if C = CT , θ0 = θ0CT

and θC = θCT
.

By the Jensen Inequality, there is

aC(θ0, θC) ≤ aCT
(θ0CT

, θCT
) (2.5)

and the equality holds if and only if C = CT , θ0 = θ0CT
, and θC = θCT

, where

aC(θ0, θC) = E
[
�C,k(θ0, θC)

]
. (2.6)
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For general C, θ0, and θC ,

�C,k(θ0, θC) = logpC,θ0,θC
(Y1k, . . . , Ymk) (2.7)

is the loglikelihood function for a given k, and �C,k are i.i.d. with common expected value
aC(θ0, θC) and also with a common finite variance. The loglikelihood function for all k =
1, . . . , nmin is

�̃C(θ0, θC) =
nmin∑
k=1

�C,k(θ0, θC)

=
nmin∑
k=1

∑
i∈C̄

{
Yik

[
log(ηinmin) + log θ0

] − logYik! − θ0ηinmin

}

+
nmin∑
k=1

∑
i∈C

{
Yik

[
log(ηinmin) + log θC

] − logYik! − θCηinmin

}

= YC̄ log θ0 − nC̄θ0 + YC log θC − nCθC +
m∑

i=1

Yi log(ηinmin) −
m∑

i=1

nmin∑
k=1

logYik!

= �C(θ0, θC) −
m∑

i=1

nmin∑
k=1

logYik! +
m∑

i=1

logYi ! − Y lognmin.

Note that �C,k(θ0, θC) are i.i.d. for distinct k. By the strong law of large number (SLLN) and the
Shannon–Kolmogorov Information Inequality (also known as the nonegativity of the Kullback–
Leibler divergence) ([8], page 113) with the limit that ηi = limnmin→∞ ηinmin exists, we have

1

nmin

[
�C(θ0CT

, θCT
) − �C(θ0, θC)

] = 1

nmin

[
�̃C(θ0CT

, θCT
) − �̃C(θ0, θC)

]

= 1

nmin

nmin∑
k=1

[
�CT ,k(θ0CT

, θCT
) − �C,k(θ0, θC)

]
(2.8)

P→ aCT
(θ0CT

, θCT
) − aC(θ0, θC) ≥ 0,

and according to (2.5) the equality holds if and only if CT = C, θ0 = θ0CT
, and θC = θCT

. Thus,
we have the conclusion of the lemma. �

Theorem 2.1. Assume conditions (a), (b), (c), (d), and (e1) hold. If CT ∈ C, then � is consis-
tent. If CT /∈ C, then � is inconsistent but the cluster candidate specified by � asymptotically
maximizes aC(θ0C, θ1C), where aC(θ0, θC) is defined by (2.6).

Proof. Because C is finite, the conclusion for the case when CT ∈ C can be directly drawn from
Lemma 2.2. If CT /∈ C, we can find C̃ such that aC(θ0C, θ1C) is maximized at C = C̃. If C̃
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is unique, then Ĉ
P→ C̃; otherwise Ĉ may not have a limit, but any convergent subsequence

of Ĉ should converge to a subset of S, which is not equal to CT but maximizes aC(θ0C, θ1C).
Therefore, � is inconsistent. In both cases, aC(θ0C, θ1C) is maximized. �

Theorem 2.1 states the consistency of a spatial scan test in the two-sided alternative hypothesis.
The ideas of the proof of Theorem 2.1 can be similarly used to show consistency of a spatial scan
test in a one-sided alternative hypothesis, in which the alternative hypothesis in (1.1) reduces to
either H1 : θC > θ0 for one hot spot only or H1 : θC < θ0 for one cool spot only. We summarize
these statements into the following corollary.

Corollary 2.1. Assume conditions (a), (b), (c), (d), and (e1) hold. If CT ∈ C and θ1CT
> θ0CT

,
then � is consistent under H0 : θC = θ0 against H1 : θC > θ0. If CT ∈ C and θ1CT

< θ0CT
, then

� is consistent under H0 : θC = θ0 against H1 : θC < θ0.

2.2. Asymptotic distributions under local alternative

We use regularity condition (e2) to derive the asymptotic power function as well as the asymp-
totic local efficiency of 2 log�. The asymptotic power function is determined by the relationship
between CT and C, which is primarily decided by the total population size within the cluster. The
asymptotic local efficiency is given by the behavior of the mean and covariance functions of the
asymptotic distribution under the local alternative. For instance, many simulation studies (e.g.,
[12,13,28]) found that the probability detecting a cluster with a larger at-risk population size is
higher than the probability detecting a cluster with a lower at-risk population size. Therefore, we
focus on the asymptotic behavior of power functions of 2 log� according to the value of ηCT

.
Our main conclusion about the asymptotic distribution is summarized in Theorem 2.2, which
provides the asymptotic mean and covariance functions of 2 log� under the local alternative.
In addition, we also provide the asymptotic local efficiency in Corollary 2.4, which concludes
that the behavior of the power function of 2 log� is almost determined by 1/ηCT

+ 1/ηC̄T
with

minimum at ηC = η/2.
Let γ = √

nmin(θCT
− θ0CT

)/θ0CT
so that θCT

= θ0CT
(1 + γ /

√
nmin). Then, γ exists and the

parameters defined in (2.2) can be written into

θ0C = θ0CT

[
1 +

(
ηCT ∩C̄

ηC̄

)
γ√
nmin

]
+ o

(
1√
nmin

)
,

θ1C = θ0CT

[
1 +

(
ηCT ∩C

ηC

)
γ√
nmin

]
+ o

(
1√
nmin

)
, (2.9)

θ00 = θ0CT

[
1 +

(
ηCT

η

)
γ√
nmin

]
+ o

(
1√
nmin

)
.
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Let μγ = (μ1γ , . . . ,μNγ )′ be an N -dimensional vector and R be an N ×N dimensional matrix,
where the ith component of μγ is

μiγ = γ
√

θ0CT
(ηCT ∩Ci

/ηCi
− ηCT ∩C̄i

/ηC̄i
)√

σii

, (2.10)

and the (i, j)th entry of R is

rij = σij√
σiiσjj

, (2.11)

with

σij =
(

ηCi∩Cj

ηCi
ηCj

−
ηCi∩C̄j

ηCi
ηC̄j

−
ηC̄i∩Cj

ηC̄i
ηCj

+
ηC̄i∩C̄j

ηC̄i
ηC̄j

)
.

Obviously, |rij | ≤ 1 and rii = 1 for all i, j = 1, . . . ,m. If conditions (a), (b), (c), (d), and (e2)
hold, then μiγ and σij exist as nmin → ∞.

Lemma 2.3. Assume conditions (a), (b), (c), (d), and (e2) hold. Then for any C ⊆ S but C �= φ

and C �= S, 2 log�C = δ2
C + op(1), where δC = (θ̂1

C − θ̂1
0C)/

√
θ0CT

(1/nC + 1/nC̄).

Proof. Because limnmin→∞(θCT
− θ0CT

) = 0, we have

1

nmin
�̈
(
θ̂1

0C, θ̂1
C

) P→ − 1

θ0CT

(
ηC̄T

0
0 ηCT

)

and

1

nmin
�̈
(
θ̂0

0

) P→ − η

θ0CT

.

Straightforwardly,

√
nmin

(
θ̂1

0C − θ0CT

) D→ N(0, θ0CT
/ηC̄T

),

√
nmin

(
θ̂1
C − θ0CT

) D→ N(0, θ0CT
/ηCT

),

and
√

nmin
(
θ̂1

0C − θ̂1
C

) D→ N
(
0, θ0CT

(1/ηC̄T
+ 1/ηCT

)
)
.

Using equation (2.4) in Lemma 2.1, we have

�0
(
θ̂0

0

) = �0(θ0CT
) + n(θ̂0

0 − θ0CT
)2

2θ0CT

+ op(1). (2.12)
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Because �0(θ0CT
) = �C(θ0CT

, θ0CT
), using equation (2.3) in Lemma 2.1, we have

�C

(
θ̂1

0C, θ̂1
C

) = �0(θ0CT
) + 1

2θ0CT

[
nC̄

(
θ0CT

− θ̂1
0C

)2 + nC

(
θ0CT

− θ̂1
C

)2] + op(1).

Note that nθ̂0
0 = nC̄ θ̂1

0C + nCθ̂1
1 , we have

2 log�C = 2
[
�C

(
θ̂1

0C, θ̂1
C

) − �0
(
θ̂0

0

)]
= 1

θ0CT

[
nC̄

(
θ0CT

− θ̂1
0C

)2 + nC

(
θ0CT

− θ̂1
C

)2] − n(θ0CT
− θ̂0

0 )2

θ0CT

+ op(1)

= 1

θ0CT

[
nC̄

(
θ0CT

− θ̂1
0C

)2 + nC

(
θ0CT

− θ̂1
C

)2]

− [nC̄(θ̂0
0 − θ0CT

) + nC(θ̂1
1 − θ0CT

)]2

nθ0CT

+ op(1)

= (θ̂1
C − θ̂1

0C)2

θ0CT
(1/nC̄ + 1/nC)

+ op(1),

which implies the conclusion of the lemma. �

Lemma 2.4. Assume conditions (a), (b), (c), (d), and (e2) hold. Then
√

nmin(δ − μγ )
D→

N(0,R), where δ = (δC1 , . . . , δCN
).

Proof. Note that N is finite. The asymptotic normality of δ can be implied by the method of the
asymptotic normality of the M-estimator ([25], Theorem 5.21 on page 52). The main idea of the
proof is to use M-estimation in (�C1(θ01, θC1), . . . , �CN

(θ0N, θCN
)), where θ0i are the parameters

for units outside of Ci for i = 1, . . . ,N , respectively. The detail of proof in the verification of
the conditions for the asymptotic normality of the M-estimator is straightforward but tedious.
Therefore, it is omitted. Then, we only need to compute the mean and covariance function of δ.

For any C ⊆ S but C �= φ and C �= S,

lim
nmin→∞E

(
θ̂1
C − θ̂1

0C

) = γ θ0CT√
nmin

(
ηCT ∩C

ηC

− ηCT ∩C̄

ηC̄

)
.

For any C,C′ ⊆ S with C,C′ �= φ,S,

Cov
(
θ̂1
C − θ̂1

0C, θ̂1
C′ − θ̂1

0C′
)

= Cov(YC,YC′)

nCnC′
− Cov(YC̄, YC′)

nC̄nC′
− Cov(YC,YC̄′)

nDnC̄′
+ Cov(YC̄, YC̄′)

nC̄nC̄′

= θ0CT

(
nC∩C′

nCnC′
− nC̄∩C′

nC̄nC′
− nC∩C̄′

nCnC̄′
+ nC̄∩C̄′

nC̄nC̄′

)
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+ γ θ0CT√
nmin

(
nCT ∩C∩C′

nCnC′
− nCT ∩C̄∩C′

nC̄nC′
− nCT ∩C∩C̄′

nCnC̄′
+ nCT ∩C̄∩C̄′

nC̄nC̄′

)

→ θ0CT

(
ηC∩C′

ηCnC′
− ηC̄∩C′

ηC̄nC′
− ηC∩C̄′

ηCηC̄′
+ ηC̄∩C̄′

ηC̄ηC̄′

)

= θ0CT
σij .

Therefore, we have

E(δCi
) = E(θ̂1

Ci
− θ̂1

0Ci
)√

θ0CT
(1/nCi

+ 1/nC̄i
)

= γ
√

θ0CT
(nCT ∩Ci

/nCi
− nCT ∩C̄i

/nC̄i
)√

nmin(1/nCi
+ 1/nC̄i

)

and

Cov(δCi
, δCj

) =
Cov(θ̂1

Ci
− θ̂1

0Ci
, θ̂1

Cj
− θ̂1

0Cj
)

θ0CT

√
(1/nCi

+ 1/nC̄i
)(1/nCj

+ 1/nC̄j
)

= σij√
σiiσjj

,

which implies limnmin→∞ E(δCi
) = μiγ and limnmin→∞ Cov(δCi

, δCj
) = rij . �

Lemma 2.5. Let C and C′ be any two nonempty subsets of {1, . . . ,m}. Then,∣∣∣∣ηC∩C′/ηC′ − ηC∩C̄′/ηC̄′√
1/ηC′ + 1/ηC̄′

∣∣∣∣ ≤ 1√
1/ηC + 1/ηC̄

and the equality holds if and only if C = C′ or C = C̄′.

Proof. Straightforwardly, we have

∣∣∣∣nC∩C′

nC′
− nC∩C̄′

nC̄′

∣∣∣∣ ≤
√

nCnC̄

nC′nC̄′

⇔ (nC∩C′nC̄′ − nC∩C̄′nC′)2 ≤ nCnC̄nC′nC̄′

⇔ (nC∩C′nC̄∩C̄′ − nC∩C̄′nC̄∩C′)2 ≤ nCnC̄nC′nC̄′ .

Note that nC∩C′ ≤ min(nC,nC′) and nC̄∩C̄′ ≤ min(nC̄, n̄C′). If nC∩C′nC̄∩C̄′ ≥ nC∩C̄′nC̄∩C′ , then
the right-hand side of the last inequality is less than or equal to

n2
C∩C′n2

C̄∩C̄′ ≤ [
min(nC,nC′)min(nC̄, nC̄′)

]2 ≤ nCnC̄nC′nC̄′

and the equality holds if and only if C = C′. Note that nC∩C̄′ ≤ min(nC, n̄C′) and nC̄∩C′ ≤
min(nC̄, nC′). If nC∩C′nC̄∩C̄′ ≤ nC∩C̄′nC̄∩C′ , then the right-hand side of the last inequality is
less than or equal to

n2
C∩C̄′n

2
C̄∩C̄′ ≤ [

min(nC,nC̄′)min(nC̄, nC′)
]2 ≤ nCnC̄n′

CnC̄′
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and the equality holds if and only if C = C̄′. We can complete the proof of the lemma by using
ηi = limnmin→∞ ni/nmin. �

Let Zγ = (Z1γ , . . . ,ZNγ ) be an N -dimensional normally distributed random vector with
mean vector μγ and covariance matrix R. Denote Z+

γ = (Z+
1γ , . . . ,Z+

Nγ ) and Z− = (Z−
1γ , . . . ,

Z−
Nγ ), where x+ = max(x,0) and x− = max(−x,0) are the positive part and negative part of x,

respectively.

Theorem 2.2. Assume conditions (a), (b), (c), (d), and (e2) hold. Then, 2 log� weakly con-
verges to (i) maxCi∈C Z2

iγ for any fixed γ �= 0 if the alternative hypothesis is H1 : θC �= θ0,

(ii) maxCi∈C(Z+
iγ )2 for any fixed γ > 0 if the alternative hypothesis is H1 : θC > θ0, or

(iii) maxCi∈C(Z−
iγ )2 for any fixed γ < 0 if the alternative hypothesis is H1 : θC < θ0.

Proof. Let us first consider (i). Using Lemma 2.3 for a given Ci ∈ C, the likelihood ratio statistic
�Ci

satisfies 2 log�Ci
= δ2

Ci
+ op(1). Because the distribution of Ziγ is the limiting distri-

bution of δCi
, the distributions of 2 log�Ci

and Z2
iγ are asymptotically equivalent, which im-

plies 2 log�
D→ maxCi∈C Z2

iγ because C is finite ([25], page 260). For (ii), the distributions of

2 log�Ci
and (Z+

iγ )2 are asymptotically equivalent, which implies 2 log�
D→ maxCi∈C(Z+

iγ )2.

For (iii), the distribution of 2 log�Ci
and (Z−

iγ )2 are asymptotically equivalent, which implies

2 log�
D→ maxi∈C∈C(Z−

iγ )2. �

Conclusions of Theorem 2.2 include asymptotic behaviors of power functions of 2 log� for
CT ∈ C and CT /∈ C under the local alternative, respectively. As the case when CT ∈ C is more
interesting in applications, we specify the following corollaries below.

Corollary 2.2. Assume conditions (a), (b), (c), and (d) hold. Let Ĉ be the detected cluster. If

CT ∈ C, γ → ∞, and γ /
√

nmin → 0 in equation (2.9), then Ĉ
P→ CT as nmin → ∞.

Proof. From Lemma 2.5, for any C �= CT , we have

lim
nmin→∞E(ZCT

− ZC) = γ
√

θ0CT

(
1√

(1/ηCT
+ 1/ηC̄T

)
− ηC′∩C/ηC′ − ηC̄′∩C/ηC̄′√

(1/ηC′ + 1/ηC̄′)

)
,

which is positive if γ > 0 or negative if γ < 0. Therefore, E(ZCT
) has the largest absolute value

and E2(ZCT
) − E2(ZC) → ∞ if C �= CT as nmin → ∞. Because γ /

√
nmin → 0, V (δC) →

V (ZC) = 1 for all C ∈ S. Therefore, Ĉ
P→ CT . �

Corollary 2.2 implies the consistency of the spatial scan test under a weaker condition than
(e1) that θCT

− θ0CT
= o(1/

√
nmin) as nmin → ∞.
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Corollary 2.3. Assume conditions (a), (b), and (c) hold. Then under the null hypothesis of H0 :
θCT

= θ0CT
, 2 log� weakly converges to (i) maxCi∈C Z2

i0 if the alternative hypothesis is H1 :
θC �= θ0, (ii) maxCi∈C(Z+

i0) if the alternative hypothesis is H1 : θC > θ0, or (iii) maxCi∈C(Z−
i0)

2

if the alternative hypothesis is H1 : θC < θ0.

The asymptotic null distribution of 2 log� given in Corollary 2.3 depends (and only depends)
on the collection of cluster candidates C and the ratio of at risk population sizes but not on the
disease rates. Therefore, we are not able to provide a closed form formula of the asymptotic
null distribution that we have stated in the corollary. To derive the asymptotic null distribution,
a Monte Carlo method is used. However, as the population pattern and the collection of cluster
candidates do not often change in most real world disease surveillance systems, the Monte Carlo
method is only necessary to be considered once. As long as the null distribution of 2 log� has
been derived, the Monte Carlo method is not necessary any more. Therefore, the asymptotic
result given in the corollary can significantly reduce the computational burden of the test.

Corollary 2.4. Consider the following two scenarios in the true model given by (1.2) when
CT ∈ C:

(i) CT1 is the cluster and γ1 = √
nmin(θCT1

− θ0CT1
)/θ0CT1

is the true parameter for CT1 ;
(ii) CT2 is the cluster and γ2 = √

nmin(θCT2
− θ0CT2

)/θ0CT2
is the true parameter for CT2 .

Assume conditions (a), (b), (c), (d), and (e2) hold in the two scenarios, respectively. If

γ1

γ2
=

√√√√θ0CT2
(1/ηCT1

+ 1/ηC̄T1
)

θ0CT1
(1/ηCT2

+ 1/ηC̄T2
)
,

then the power functions of 2 log� under (i) and (ii), respectively, are asymptotically equal.

The proofs of Corollaries 2.3 and 2.4 are straightforward and therefore are omitted. In sum-
mary, Theorem 2.2 provides the key conclusion of the power functions under the local alterna-
tive, which can be used to numerically compute the asymptotic local efficiency. Corollary 2.3
can be used to compute the null limiting distribution and p-value of the test statistic. Because
the asymptotic null distribution of 2 log� does not depend on θ0CT

, we can use the simulation
method to compute the distribution. In real world disease surveillance, the simulation method
only needs to be used once because the at-risk population and the collection of cluster candidates
usually do not change. Corollary 2.4 can be used to compare the behavior of power functions
between two cluster specifications, which provides the asymptotic relative efficiency of the test.
The theoretical properties of the spatial scan statistic that have been concluded in the theorems
and corollaries are numerically evaluated via simulation and case studies in the next section.

3. Simulation and case study

In both simulation and case studies, we used real-world data. We obtained county-level lung can-
cer incidence data from 2003 to 2007 from the Texas Cancer Registry, and used the mid-census
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population of 2005 as the at-risk population. Texas had 254 counties with a total population of
22 811 128 in 2005. The number of lung cancer incidence during the study period was 63 651,
with a five-year incidents rate of 279 per 100 000.

3.1. Simulation

Under the alternative hypothesis of having one cluster only, we compared the true and asymptotic
behaviors of 2 log�, which include the specificability shown by Theorem 2.1 and the asymptotic
power functions shown by Theorem 2.2. We used the county-level population distribution of
Texas in 2005 as the template to design at-risk populations according to

ni = ωni0, i = 1, . . . ,254, (3.1)

where ni0 was the ith true population and ni was the ith designed population. We introduced the
designed population, which was proportional to the true population to study the consistency of
2 log� as nmin → ∞.

For a cluster candidate C, we used nC0 = ∑
i∈C ni0 to represent the observed population

within C and nC = ωnC0 to represent the designed population within C. The ω value determined
the variation of nmin, and we selected ω equal to 1, 2, 5, and 10. Although nmin → ∞ as ω → ∞,
it is sufficient to assess the behavior of the asymptotic distribution of 2 log� by setting ω = 10,
and the results for ω > 10 were omitted.

We used 0.05% as the standard disease rate in our simulation because it was close to the
annualized incidence rate of 55.8 per 100 000. In order to improve the speed of the simulation
for comparing the proposed and the bootstrap methods, we chose C as the collection of adjacent
counties around a cluster center. To evaluate Corollary 2.4, we designed four types of clusters in
four different locations where each cluster includes the cluster center and its adjacent counties
(Table 1 and Figure 1). Note that CW was a boundary cluster. In Table 1, CW had a small at-risk
population, while CS , CJ and CH had larger at-risk populations.

For each designed cluster CT (which could be either CW , CS , CJ , or CH ), we generated
independent Poisson random samples Yi , i = 1, . . . ,254, with expected value

E(Yi) = 0.0005(1 + νIi∈CT
)ni, (3.2)

Table 1. Designed clusters and their observed population nC0

CT Center Size Counties within cluster nC0

CW Wichita 5 Archer, Baylor, Clay, Wichita, Wilbarger 167 512

CS Smith 8 Cherokee, Gregg, Henderson, Rusk 607 327
Smith, Upshur, Van Zandt, Wood

CJ Johnson 8 Bosque, Ellis, Hill, Hood, Johnson 2 096 477
Parker, Somervell, Tarrant

CH Harris 8 Brazoria, Chambers, Fort Bend, Galveston 5 252 832
Harris, Liberty, Montgomery, Waller
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Figure 1. County-level population and designed cluster centers in Texas in 2005.

where ν increased from 0 to a certain value. For each selected ν, we generated 1000 datasets
from model (3.2). We computed the null limiting distribution by using Corollary 2.3. We used
the null limiting distribution and the bootstrap method to compute the p-value of 2 log�, and to
test their significance at the 0.05 level. Because power functions were approximately determined

by the values of 1/
√

1/nCT
+ 1/nC̄T

(Corollary 2.4), we used

νa = ν

√
1/ηCW

+ 1/ηC̄W

1/ηCT
+ 1/ηC̄T

(3.3)

to adjust ν in the illustration of the power functions. When we took CT as either CW , CS , CJ ,
or CH from Table 1, we had the values of νa equal to ν multiplied by 1, 1.8854, 3.3841, and
4.9310, respectively. To make the power functions between two designed clusters almost equal,
a cluster with a larger at-risk population should be assigned a smaller ν value.

Location specificity is defined by the percentage of times that the detected cluster was iden-
tical to the designed cluster, and we used the percentage to assess the specificability of 2 log�

according to Theorem 2.1. The simulation results (Table 2) supported the conclusion from The-
orem 2.1. For the same cluster strength (ν), the location specificity increased as ω increased,
and it would finally reach one if ω approached infinity. The location specificity was positively
related to both the cluster strength and the at-risk population. In other words, a designed cluster



104 T. Zhang and G. Lin

Table 2. Location specificity for the four designed clusters

ν ω CW CS CJ CH

0.05 1 0.013 0.059 0.185 0.279
2 0.042 0.078 0.304 0.789
5 0.064 0.239 0.862 0.998

10 0.128 0.589 1.000 1.000

0.10 1 0.048 0.266 0.664 0.660
2 0.093 0.458 0.989 1.000
5 0.295 0.941 1.000 1.000

10 0.738 1.000 1.000 1.000

0.15 1 0.103 0.570 0.854 0.863
2 0.282 0.937 1.000 1.000
5 0.763 1.000 1.000 1.000

10 0.997 1.000 1.000 1.000

0.20 1 0.171 0.815 0.945 0.962
2 0.561 0.999 1.000 1.000
5 0.975 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000

with either a larger at-risk population or greater cluster strength had a higher increasing rate as
ω increased. These results also supported the conclusion of Corollary 2.2: as ν increased, the lo-
cation specificity of 2 log� also increased. The location specificity would also finally reach one
as ν approached to infinity, which reenforces the conclusion of Theorem 2.1 for the consistency
of 2 log�.

Next, we compared the type I error probabilities and power functions of 2 log� from the
limiting distribution and bootstrap methods. We computed the p-values of 2 log� according to
the null limiting distribution from Corollary 2.3, and compared them with 1000-run bootstrap
p-values. The power function was derived by the percentage of p-values less than the nominal
p-value of 0.05. The type I error probabilities were obtained when ν = 0.

The simulation results (Table 3) showed that the type I error probabilities were almost equal
to the nominal p-values for all population patterns when ν = 0. This result suggested that the p-
value derived from the bootstrap method can be precisely calculated by the limiting distribution.
Likewise, all the power functions behaved according to the conclusions of Theorem 2.2: the
power functions increased as ν increased, and they reached 1 as ν increased to a certain value. In
addition, the power increased as ω increased. For each selected ω with a fixed νa value, the power
functions for CW , CS , CJ , and CH were almost identical. This latter result is also expected from
Corollary 2.4, as the power function is almost a function of νa , which can be interpreted as a
population adjusted strength of a spatial cluster.

To briefly summarize, the behaviors of simulation for location specificity can be described by
Theorem 2.1 and Corollary 2.2. The null distribution can be provided by Corollary 2.3, which
can be used to compute the p-value of the test statistic. The power functions can be quantified
by Theorem 2.2 and Corollary 2.4.
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Table 3. Power functions for the four designed clusters, where νa was equal to 1, 1.18854, 3.3841, and
4.9310 times ν for CT = CW ,CS,CJ ,CH , respectively

Limiting distribution Bootstrap method

ω νa CW CS CJ CH CW CS CJ CH

1 0.00 0.053 0.050 0.051 0.051 0.034 0.040 0.042 0.034
0.10 0.092 0.085 0.077 0.073 0.076 0.064 0.057 0.044
0.20 0.265 0.295 0.242 0.296 0.219 0.238 0.186 0.248
0.30 0.690 0.701 0.692 0.740 0.631 0.632 0.628 0.675
0.40 0.945 0.948 0.960 0.965 0.912 0.933 0.938 0.954

2 0.00 0.047 0.046 0.058 0.052 0.032 0.038 0.042 0.035
0.10 0.136 0.127 0.135 0.136 0.106 0.099 0.088 0.110
0.20 0.636 0.632 0.645 0.662 0.579 0.557 0.570 0.594
0.30 0.975 0.980 0.978 0.991 0.965 0.970 0.968 0.986
0.40 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000

5 0.00 0.049 0.051 0.057 0.054 0.047 0.041 0.035 0.034
0.05 0.086 0.097 0.085 0.066 0.068 0.068 0.059 0.042
0.10 0.358 0.359 0.365 0.412 0.298 0.318 0.314 0.343
0.15 0.857 0.834 0.851 0.857 0.797 0.777 0.796 0.811
0.20 0.991 0.991 0.990 0.996 0.984 0.987 0.979 0.995

10 0.00 0.046 0.051 0.051 0.062 0.038 0.037 0.040 0.037
0.05 0.135 0.174 0.178 0.175 0.111 0.145 0.147 0.123
0.10 0.771 0.780 0.800 0.814 0.714 0.734 0.752 0.757
0.15 0.998 0.997 0.998 0.998 0.996 0.995 0.994 0.994
0.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3.2. Case study

We applied the elliptical spatial scan statistic for lung cancer cluster surveillance in Texas. The
mathematical principles behind the spatial scan statistics are identical for circular, elliptical or
any other shape, the only difference being the collection of candidate clusters C. Following [17],
we considered only a finite set of elliptical centroid coordinates, which were identical to the
county centroids. For the purpose of demonstration, we considered only a few possible ellipse
shapes and angles. We restricted C to be less than 1/2 of the Texas counties such that our final
C would not contain either C or C̄ for any cluster candidate C. When there was more than one
cluster, we used a stepwise procedure to detect all possible non-overlapping clusters according
to [18,29].

After C was determined, we computed the null limiting distribution of 2 log� by simulations
(Figure 2) as the basis for computing p-values. The limiting null distribution showed that the 5%
upper quantile was 17.22, suggesting that a spatial scan statistic was significant if its value was
greater than 17.22.

Overdispersion occurs when disease counts variability exceeds that of the predicted value from
the Poisson model. To account for overdispersion, the Poisson assumption is often modified by
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Figure 2. Cumulative distribution function of 2 log� for Texas cancer data when C is the collection of
elliptical shaped cluster candidates.

the quasi-Poisson model with the marginal mean and variance relationship, in which overdisper-
sion occurs when V (yi) = ξE(yi), i = 1, . . . ,m. Because type I error probabilities of the spatial
scan tests can be significantly inflated, accounting for overdispersion is extremely helpful in the
analysis and surveillance of real-world data [19]. A common way to account for overdispersion
is to introduce a dispersion parameter φ [20], which is estimated by

ξ̂ = max

(
1,

X2

dfres

)
,

where X2 is the Pearson χ2 statistic, and dfres is the residual degrees of freedom. Overdispersion
is present if ξ̂ > 1. When overdispersion was accounted for, we derived the modified spatial scan
statistic 2 log� as 2 log�/ξ̂ , where the definition of 2 log� is the same as that given in (1.6) for
the pure Poisson case. When there was more than one cluster, we used a stepwise procedure to
detect all possible non-overlapping clusters according to [18,29].

The result from 2 log� indicated the existence of several clusters. The values of 2 log� for
the first, second, and third clusters were 3401.2, 848.7, and 386.6, respectively. All p-values
from the limiting distribution and bootstrap methods were less than 0.001. After adjusting for
overdispersion, however, the value of ξ̂ was 45.07 for the first cluster, 32.01 for the second
cluster, and 27.55 for the third cluster. Consequently, we had 2 log�/ξ̂ values of 75.46, 26.51,
and 14.03, respectively for the first, second, and third clusters. Their corresponding p-values for
the three clusters from the limiting distribution were 0, 0.0013, and 0.1831, respectively, and
from the bootstrap method were 0.001, 0.002, and 0.191, respectively. Both methods suggested
the existence of two clusters (Figure 3).
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Figure 3. Spatial clusters for Texas lung cancer from 2003 to 2007.

The first cluster had 12 901 lung cancer incidents, with an at-risk population of 2 762 316. The
five-year incidence rate was 467 per 100 000, which was about 67.38% higher than the state
average. The center of the cluster was in the northeast part of Texas, which together with areas
across the border in Oklahoma and Louisiana is known for its oil and gas industries. The second
cluster had 5 777 lung cancer cases in five years with an at-risk population of 1 396 464. The
five-year incidence rate was 414 per 100 000, which was 48.26% higher than the state average.
This cluster was around the Hill Country, east of the Austin-Dallas corridor. Since smoking rates
and COPD hospitalization rates were all high in rural part of the second cluster jackson2011¸ ,
while its urban part of Dallas Metropolitan area is high on ozone concentration, this cluster may
represent risks associated with these risk factors.

4. Conclusion

In this study, we have shown that the spatial scan statistic is able to detect a cluster if the clus-
ter is included in the collection of the cluster candidates, and that the spatial scan statistic is
still optimized even if the cluster is not included. The power function of the spatial scan test is
asymptotically equal to the square of the maximum of a Gaussian random field, which depends
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on the ratio of the at-risk population between spatial units, the collection of cluster candidates,
and the strength and magnitude of the cluster. These conclusions provide a theoretical basis for
future development and implementation of the spatial scan test.

Our theoretical results have several important implications. First, the finding that the limiting
distribution is not unique shows a need for the computation of p-values of spatial scan tests,
which will provide promising avenues to categorize limiting distributions into groups. Second,
the evaluation of weak or strong clusters is likely to be resolved precisely and efficiently. Third,
the asymptotic power function can provide a sound solution among clusters with different popu-
lation sizes. Such complex theoretical issues are rarely touched upon in actual applications.

Given the limitation of existing methods only available in literature, we can only compare
the behavior of our null limiting distribution with the bootstrap method. Even though the results
from the both methods were consistent, our method can go beyond the null distribution providing
a variety of cluster properties under the alternative hypothesis. Our conclusion in Theorem 2.1
can also be applied to the case when the collection of cluster candidates does not contain the
true cluster, which has not been explored in literature. Our conclusion in Corollary 2.4 makes
it possible to derive a population adjusted strength, which has not been used as a measure of a
cluster. These conclusions can provide more information that makes further characterization of
a detected cluster from impractical to practical endeavor. To conclude, our asymptotic results
provides a foundation of the spatial scan test under the alternative hypothesis.
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