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We develop a new methodology for the fitting of nonstationary time series that exhibit nonlinearity, asym-
metry, local persistence and changes in location scale and shape of the underlying distribution. In order
to achieve this goal, we perform model selection in the class of piecewise stationary quantile autoregres-
sive processes. The best model is defined in terms of minimizing a minimum description length criterion
derived from an asymmetric Laplace likelihood. Its practical minimization is done with the use of genetic
algorithms. If the data generating process follows indeed a piecewise quantile autoregression structure,
we show that our method is consistent for estimating the break points and the autoregressive parameters.
Empirical work suggests that the proposed method performs well in finite samples.

Keywords: autoregressive time series; change-point; genetic algorithm; minimum description length
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1. Introduction

Many time series observed in practice display nonstationary behavior, especially if data is col-
lected over long time spans. Nonstationarity can affect the trend, the variance–covariance struc-
ture or, more comprehensively, aspects of the underlying distribution. Since estimates and fore-
casts can be severely biased if nonstationarity is not properly taken into account, identifying and
locating structural breaks has become an important issue in the analysis of time series. Over the
years, there has been a large amount of research on issues related to testing and estimating struc-
tural breaks in sequences of independent random variables, time series and regression models.
Most of these focus on considering breaks in the (conditional) mean, while a smaller number of
publications are available for breaks in the (conditional) variance. The relevant lines of research
are summarized in the monograph [6] and the more recent survey paper [2].

In various situations, however, it may be helpful and more informative to study structural
breaks in the (conditional) quantiles. As a case in point, Hughes et al. [12] have argued con-
vincingly that the increase in mean surface temperatures recorded at temperature stations across
the Antarctic can to a large degree be attributed to an increase in the minimum and lower quan-
tile temperatures. When focusing on the mean, this additional information about the underlying
changes in variation is smoothed out and unavailable for a more in-depth analysis. As another
example, the Value at Risk, a measure of loss associated with a rare event under normal market
conditions, is by definition a quantile and more important for risk managers than information on
measures of central tendency such as the mean.
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Global estimation procedures for quantiles are often performed in the quantile regression
framework described in [13]. There is by now a rich body of literature on the various aspects of
quantile regression models. Detecting structural breaks in nonstationary time series over different
quantiles, however, is a comparatively new research area. Contributions in a different direction
from ours include [5], who considered the estimation of structural breaks in the median of an
underlying regression model by means of least absolute deviations. In the quantile regression
framework, Aue et al. [1] have recently developed a related methodology to perform segmented
variable selection that includes break point detection as a special case. The focus of the present
paper, however, is more on the aspects of nonlinear time series analysis.

In order to capture nonlinearities such as asymmetries, local persistence, and changes in lo-
cation, scale and shape, in conjunction with temporal dependence that is frequently observed in
applications, and thus to obtain a more complete picture of the distributional evolution of the
underlying random processes, we propose in this paper a new method for estimating structural
breaks at any single quantile or across multiple quantiles. Our methodology differs from the
works above in that it is not based on hypothesis testing. Instead we try to match the observed
data with a best fitting piecewise quantile autoregression. These models, introduced by Koenker
and Xiao [14], are members of the class of random coefficient autoregressions that allow the
autoregressive coefficients to be quantile dependent and, therefore, generalize linear quantile au-
toregressions as studied by Koul and Saleh [15], and Hallin and Jurečková [10], among others.
We discuss quantile autoregression models and their piecewise specifications in Section 2. In par-
ticular, we state necessary and sufficient conditions for the existence of stationary solutions and
discuss the estimation of the parameters via optimizing a subgradient condition. These results
will then be generalized to the piecewise stationary case.

Recognizing the connection between estimation of quantile autoregression parameters and
maximum likelihood estimation for asymmetric Laplace random variables [23], we shall apply
the minimum description length principle [20] to define the best fitting piecewise quantile autore-
gression. Details of this are given in Section 3. Minimization of the resulting convex objective
function will then yield the best fitting model for the given data. The numerical complexity of
this optimization problem is handled via the application of a genetic algorithm [7].

From a technical perspective, our methodology is related to [8], who proposed an automatic
procedure termed Auto-PARM. This procedure is designed to detect structural breaks by fitting
piecewise stationary, linear autoregressive time series models which are estimated through the
minimization of a minimum description length criterion using a normal likelihood. Auto-PARM
is defined to mimic the second-order properties of the data but is not always able to adjust to
a nonlinear framework and does not provide additional insight into distributional changes other
than those affecting the conditional mean and variance of the data given past observations.

The remainder of the paper is organized as follows. In Section 2, quantile autoregressive mod-
els are introduced. Estimation and model selection aspects for piecewise quantile autoregres-
sive models are detailed in Section 3. Sections 4 and 5 deal with asymptotic results and imple-
mentation details, respectively. Empirical properties of the proposed methodology are evaluated
through simulations in Section 6 and real data examples in Section 7. Section 8 concludes and
all technical proofs are given in the Appendix.
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2. Quantile autoregressions

Linear autoregressive models have played a dominant role in classical time series analysis for
at least half a century. The popularity stems partially from their closeness to the linear regres-
sion framework with its well-developed theory. They are, however, unable to capture nonlinear
dynamics and local persistence. With the objective of dynamically modeling the evolution of
location, scale and shape of the underlying processes, Koenker and Xiao [14] have introduced a
particular subclass of random coefficient autoregressive models called quantile autoregressions.
In this model, autoregressive coefficients are allowed to vary with the quantiles τ ∈ [0,1]. In
contrast to many of the standard contributions to the random coefficient autoregression area for
which independence is a key assumption, the coefficients possess a strong functional relation-
ship; in sequel Z denotes the set of integers. A real time series (yt : t ∈ Z) is said to follow a
quantile autoregression of order p, shortly QAR(p), if

yt = θ0(ut ) + θ1(ut )yt−1 + · · · + θp(ut )yt−p, t ∈ Z, (1)

where (ut : t ∈ Z) are independent random variables distributed uniformly on the interval [0,1],
and θj : [0,1] → R, j = 0,1, . . . , p, are the coefficient functions. In order to exhibit the connec-
tion to standard random coefficient autoregressions, (1) can also be written more conventionally
in the form

yt = φ0 + φ1,t yt−1 + · · · + φp,tyt−p + εt , t ∈ Z, (2)

where φ0 = E{θ0(ut )}, εt = θ0(ut ) − φ0, and φj,t = θj (ut ) for j = 1, . . . , p and t ∈ Z. We have
in particular that the innovations (εt : t ∈ Z) constitute an independent, identically distributed
sequence with distribution function F(·) = θ−1

0 (· +φ0). Therefore, necessary and sufficient con-
ditions for the existence of a strictly stationary solution to the equations (1) can be derived from
the work of Aue et al. [3], which also contains statements concerning the finiteness of moments
of quantile autoregressions.

The estimation of the quantile autoregression functions θ(τ ) in stationary quantile autoregres-
sive models (1) is typically achieved [13] by solving the convex optimization problem

min
θ(τ)∈Rp+1

n∑
t=1

ρτ

{
yt − X′

t θ(τ )
}
, (3)

where ρτ (u) = u{τ −I (u < 0)} is the check function. Solutions θ̂ (τ ) of (3) are called autoregres-
sion quantiles. Asymptotic properties of the estimation procedure have been derived in [14]. It
should be noted that the assumptions under which the following proposition holds require X′

t θ(τ )

to be monotonic. This will not always be reasonable. However, for the methodology developed in
this paper, this is not an issue insofar as we derive asymptotic statements only about the quality
of the segmentation procedure but not on the quality of the estimator θ̂ .

Proposition 2.1. Let Ft−1 = P(yt < · | Ft−1) be the conditional distribution function of yt given
Ft−1, and denote by ft−1 its derivative. Under stationarity and if ft−1 is uniformly integrable
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on X = {x: 0 < F(x) < 1}, then

�−1/2n1/2[θ̂ (·) − θ(·)] D−→ Bp+1(·) (n → ∞),

where � = �−1
1 �0�

−1
1 with �0 = E(XtX

′
t ) and �1 = limn

1
n

∑n
t=1 ft−1{F−1

t−1(τ )}XtX
′
t . More-

over, (Bp+1(τ ): τ ∈ [0,1]) is a standard (p + 1)-dimensional Brownian bridge.

If the number of break points m is given, then estimating their locations and the m + 1 piece-
wise quantile autoregressive models at a specific quantile τ ∈ (0,1) can be done via solving

min
θ(τ),K

m+1∑
j=1

kj∑
t=kj−1+1

ρτ

{
yt − X′

j,t θj (τ )
}
. (4)

Given that the number of observations in each segment increases as a fraction of the overall
sample size, the limit behavior of (4) follows directly from Proposition 2.1. For unknown m, we
use a model selection approach to select the numbers of segments. To this end, we discuss the
relation between (3) and (4), and optimizing the likelihood obtained from asymmetric Laplace
distributions next.

The connection between the asymmetric Laplace distribution and quantile regression has long
been recognized and has often been used in the Bayesian context. Yu et al. [23] have made this
explicit. If we assume that at the τ th quantile the innovations (εt : t ∈ Z) in model (2) follow an
asymmetric Laplace distribution with parameter τ , then maximizing the likelihood function

L
{
θ(τ )

} ∝ exp

[
−

n∑
t=1

ρτ

{
yt − X′

t θ(τ )
}]

is equivalent to solving the problem in (3). The equivalent to (4) could be stated in a similar fash-
ion. The use of the asymmetric Laplace likelihood allows us to formulate a minimum description
length criterion in order to do model selection with (4).

3. Piecewise quantile autoregressions

3.1. The model

Koenker and Xiao [14] have pointed out that a fitted quantile autoregressive model should serve
as a useful local approximation to a potentially more complicated global dynamic. While a single
quantile autoregression fit can already adequately and quite explicitly describe local persistence
and seemingly explosive behavior (see Sections 6 and 7 for examples), it does not provide us
with means to fit nonstationary data. We propose to match a nonstationary time series by blocks
of different stationary quantile autoregressions.

The piecewise stationary quantile autoregressive models are defined as follows. Assume that
the data y1, . . . , yn can be segmented into m+1 stationary pieces, and that, for 	 = 1, . . . ,m+1,
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the 	th piece can be modeled by a QAR(p	) process. For 	 = 1, . . . ,m + 1, we denote by k	

the 	th break date, that is, the time lag at which the transition from the 	th to the (	 + 1)th
segment occurs. Using the convention k0 = 1 and km+1 = n and letting u1, . . . , un be independent
standard uniform random variables, the 	th segment is, for t = k	−1 + 1, . . . , k	, given by

yt = θ	,0(ut ) + θ	,1(ut )yt−1 + · · · + θ	,p	
(ut )yt−p	

= X′
	,t θ	(ut ), (5)

where X	,t = (1, yt−1, . . . , yt−p	
)′ and θ	(ut ) = {θ	,0(ut ), . . . , θ	,p	

(ut )}′. At τ ∈ (0,1), model
(5) is determined by the parameters m, K = (k1, . . . , km)′ and θ(τ ) = {θ1(τ )′, . . . , θm+1(τ )′}′,
where the segment autoregression functions are denoted by θ	(τ ) = {θ	,0(τ ), θ	,1(τ ), . . . ,

θ	,p	
(τ )}′. Observe that in the case that m = 0, (5) reduces to the single QAR(p) model (1).

One can fit the model (5) even if it is not the true data generating process and that we can then
view the piecewise quantile autoregressive structure as an approximation.

The approach taken in this paper is related to the piecewise AR model fitting technique Auto-
PARM developed in [8]. These authors utilized linear time series models, changing the coeffi-
cient functions θ	,j (·) in (5) to constants, say, φ	,j , and were concerned mainly about matching
the second-order structure of the data with stationary AR segments. The present paper focuses
on nonlinear aspects of the time series as observed from quantiles, thereby enabling a more com-
prehensive study of changes in the distribution of the underlying data. The switch from linear
to nonlinear time series means in particular that somewhat different arguments are needed in
order to prove large-sample results (see Section 4). In terms of practical estimation, the genetic
algorithm behind Auto-PARM can be modified for the piecewise quantile autoregression fitting.
Details are given in Section 5.

3.2. Model selection at a single quantile

In this section, we derive a minimum description length criterion for choosing the best fitting
model from the piecewise quantile autoregressive models defined in (5). As to be seen below,
the “best” model is defined as the one that enables the best compression of the observed series
Y = (y1, . . . , yn)

′. For introductory material on this, see, for example, [11,17,20].
There are different versions of the minimum description length principle, and the version

adopted here is the so-called two-part code. It begins with splitting Y into two parts. The first
part, denoted by F̂ , represents the fitted piecewise quantile autoregression, and the second part,
denoted by Ê = Y − Ŷ , represents the residuals, where Ŷ is the fitted value for Y . Notice that
once F̂ and Ê are known, Y can be completely retrieved. The idea of the minimum description
length principle is to find the best pair of F̂ and Ê so that via encoding (or compressing) F̂ and
Ê , Y can be transmitted (or stored) with the least amount of codelength (or memory). To quan-
tify this idea, let CLF (Z|τ) denote the codelength of an object Z using model F at a specific
quantile τ . Then we have the decomposition

CLF (Y |τ) = CLF (F̂ |τ) + CLF (Ê |F̂, τ ) (6)

for the data Y . In the above CLF (Y |τ) is the codelength for Y , CLF (F̂ |τ) is the codelength
for F̂ , while CLF (Ê |F̂, τ ) is the codelength for Ê . The minimum description length principle
defines the best fitting F̂ as the one that minimizes CLF (Y |τ).
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Using the estimated quantile autoregression structure, we obtain the following expression:

CLF (F̂ |τ) = CLF (m|τ) + CLF (k1, . . . , km|τ) + CLF (p1, . . . , pm+1|τ)

+ CLF
{
θ̂1(τ ), . . . , θ̂m+1(τ )

}
(7)

= CLF (m|τ) + CLF (n1, . . . , nm+1|τ) + CLF (p1, . . . , pm+1|τ)

+ CLF
{
θ̂1(τ ), . . . , θ̂m+1(τ )

}
.

To proceed further, we need the following coding result: the codelength for an integer T is
log2 T bits, leading to CLF (m|τ) = log2 m and CLF (p1, . . . , pm+1|τ) = ∑m+1

j=1 log2 pj . On the
other hand, if the upper bound TU of an integer T is known, the corresponding codelength is
log2 TU bits. This gives CLF (n1, . . . , nm+1|τ) = (m + 1) log2 n, as each n	 is upper-bounded
by n. Lastly, Rissanen [20] has shown that a maximum likelihood estimate computed from n

data points can be effectively encoded with 1
2 log2 n bits. Applying this to the θ̂	(τ )’s, we have

CLF {θ̂1(τ ), . . . , θ̂m+1(τ )} = ∑m+1
j=1

pj +1
2 log2 nj . Combining these codelength expressions, (7)

becomes

CLF (F̂ |τ) = log2 m + (m + 1) log2 n +
m+1∑
j=1

log2 pj +
m+1∑
j=1

pj + 1

2
log2 nj . (8)

Now for the last term in (6). It is shown in [20] that the codelength of the residuals Ê is the
negative of the log likelihood of the fitted model F̂ . Utilizing the asymmetric Laplace likelihood
this leads to

CLF (Ê |F̂, τ ) = − logL
{
θ(τ )

} =
m+1∑
j=1

kj∑
t=kj−1+1

ρτ (ε̂t ) − n log
{
τ(1 − τ)

}
. (9)

Combining equations (6), (7) and (9) and dropping the constant term −n log{τ(1−τ)}, we define
the best fitting piecewise quantile autoregressive model at a single quantile τ ∈ (0,1) as the one
that minimizes the minimum description length criterion

MDL(m, k1, . . . , km,p1, . . . , pm+1|τ)

= log2 m + (m + 1) log2 n (10)

+
m+1∑
j=1

log2 pj +
m+1∑
j=1

pj + 1

2
log2 nj +

m+1∑
j=1

kj∑
t=kj−1+1

ρτ (ε̂t ).

3.3. Model selection at multiple quantiles

To extend the scope of detecting break points at a single quantile, it is worthwhile to study the
joint estimation of, say, L quantiles in order to gain more insight into the global behavior of the
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process. To estimate break points for multiple quantiles, it can, for example, be assumed that
the true break locations are the same across the different quantiles under consideration. This
could lead to a borrowing of strength in the segmentation procedure because information on the
behavior of various quantiles is added into the analysis. Instead of summing up the minimum
description length function defined in (10) for all L quantiles, one could also use their weighted
sums. That is,

MDL(m, k1, . . . , km,p1, . . . , pm+1|τ1, . . . , τL)
(11)

=
L∑

	=1

ω	MDL(m, k1, . . . , km,p1, . . . , pm+1|τ	).

The weights can either be chosen in advance or data-adaptively. In the latter case it may be
worthwhile to read the discussion in Chapter 5.5 of [13], where similar ideas are discussed in a
location-shift regression model. For this case the optimal weights ωopt = (ω1,opt, . . . ,ωL,opt)

′ are
given by ωopt = W−1v, where W is the L×L matrix with entries A	,	′ = min{τ	, τ	′ }−τ	τ	′ and
v = (v1, . . . , vL)′ with v	 = f (F−1(τ	)). For the more complicated model under consideration
here, one could use these results as a starting point for a more detailed analysis.

On the other hand, one could also think about a more general version of the segmentation
procedure that would not enforce simultaneous breaks across the quantiles under consideration.
Such an approach may be useful if it could be coupled with prior information on the effect
breaks would have on the underlying distribution; for example, if breaks would propagate in a
monotone way from the lower to the upper quantiles. The resulting minimum description length
criterion would then be even more complex. While a few issues concerning multiple quantiles
are highlighted in the empirical parts of the paper, any detailed analysis of such modeling is,
however, beyond the scope of the present paper.

4. Large sample results

To study large sample properties assume that the underlying true model indeed follows the piece-
wise quantile autoregressive structure in (5). We denote the true number of break points and their
locations respectively by m0 and k0

j , j = 1, . . . ,m0, where k0
j = �λ0

j n� and 0 < λ0
1 < λ0

2 < · · · <
λ0

m0 < 1. Following standard convention in order to ensure sufficient separation of the break

points, we choose an ε > 0 such that ε 	 minj=1,...,m0+1(λ
0
j − λ0

j−1) and set

m = {
(λ1, . . . , λm): 0 < λ1 < · · · < λm < 1, λj − λj−1 ≥ ε, j = 1,2, . . . ,m + 1

}
,

where λ0 = 0 and λm+1 = 1. Fix τ ∈ (0,1), and set λ = (λ1, . . . , λm) and p = (p1, . . . , pm+1).
The parameters m, λ and p are estimated by minimizing the minimum description length crite-
rion

(m̂, λ̂, p̂) = arg min
(m,λ,p)∈M

1

n
MDL(m,λ,p|τ), (12)
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where the minimum is taken in the set M = {(m,λ,p): m ≤ M0, λ ∈ m,0 ≤ pj ≤ P0} with
M0 and P0 denoting upper bounds for m and pj , respectively. The large sample behvavior of the
minimum description length criterion is given in the next theorem. Its proof can be found in the
Appendix.

Theorem 4.1. Assume that the conditions of Proposition 2.1 are satisfied and let the number of
break points m0 be known. Then estimating the piecewise quantile autoregressive model specified
in (5) at any single quantile τ ∈ (0,1) leads to

λ̂j → λ0
j with probability one (n → ∞)

for all j = 1,2, . . . ,m0, where λ̂ = (λ̂1, . . . , λ̂m0) is the minimizer of the criterion function (10).

The following corollary extends the result of Theorem 4.1 to the multiple quantile case. Its
verification is also provided in the Appendix.

Corollary 4.1. Assume that the conditions of Proposition 2.1 are satisfied. Let the number of
break points m0 be known and assume that the break locations as well as the autoregressive
orders are the same across the quantiles under consideration. Then estimating the piecewise
quantile autoregressive model specified in (5) at the collection of quantiles (τ1, . . . , τL) ∈ (0,1)L

leads to

λ̂j → λ0
j with probability one (n → ∞)

for all j = 1,2, . . . ,m0, where λ̂ = (λ̂1, . . . , λ̂m0) is the minimizer of the criterion function (11).

We remark that in practice the assumption of known m0 is often unrealistic. However, it is sub-
stantially more difficult to establish consistency in the general case of unknown m0. Even in the
simpler univariate change-point frameworks, where independent variables are grouped into seg-
ments of identical distributions, only special cases such as normal distributions and exponential
families have been thoroughly investigated; for example, [16,22] as well as [4] for image seg-
mentation. The reason for this is that sharp tail estimates for maxima of certain squared Gaussian
processes are needed which do not hold for distributions with thicker tails.

5. Practical minimization using genetic algorithms

Practical minimization of the minimum description length criteria (10) and (11) is not a trivial
task. We propose using genetic algorithms to solve this minimization problem.

Genetic algorithms are a class of stochastic optimization techniques. They are based on the
idea of Darwin’s theory of natural selection. Typically a genetic algorithm begins with a ran-
dom population of possible solutions to the optimization problems. These solutions are known
as chromosomes and often represented in vector form. These chromosomes are allowed to evolve
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over time through the so-called crossover and mutation operations. The hope is that the evolu-
tion process would ultimately lead to a chromosome which represents a good answer to the opti-
mization problem. Successful applications of genetic algorithms for solving various optimization
problems can be found, for examples, in [7].

For a similar piecewise AR modeling minimization problem, Davis et al. [8] developed a ge-
netic algorithm for approximating the minimizer. We modified their genetic algorithm to solve the
present minimization problem. For conciseness, we only describe the major differences between
the genetic algorithm for the present piecewise quantile autoregressive model fitting problem and
the one from [8]. We refer the reader to [8] for complete details.

Chromosome representation. For the current problem of detecting break points for a non-
stationary time series at a specific quantile τ , a chromosome should contain information of all the
break points kj as well as the quantile autoregression orders pj for any F ∈ M, where M de-
notes the whole class of piecewise quantile autoregressive models. We express a chromosome as
a vector of n integers: a chromosome δ = (δ1, . . . , δn) is of length n with gene values δt defined
as

δt =
{−1, if no break point at time t,

pj , if t = kj−1 and for the j th piece we choose the QAR(pj ) model at quantile τ .

In practice, we impose an upper bound P0 on the order pj of each quantile autoregressive pro-
cess. For our numerical work, we set P0 = 20. While the algorithm is running, we also impose
the following constraint on each δ: in order to have enough observations for parameter estima-
tion, each piecewise quantile autoregressive process is required to have a minimum length mp ,
which is chosen as a function of the order pj of the piecewise process; their values are listed in
Table 1.

Island Model and convergence. The Island Model was also applied to speed up the convergence
rate. We used 40 islands with subpopulation size 40, performed a migration for every 5 gener-
ations, and migrated 2 chromosomes during each migration. And at the end of each migration
the overall best chromosome that has the smallest minimum description length value is selected.
If this best chromosome does not change for 20 consecutive migrations, or the total number of
generations exceeds 100, the genetic algorithm stops and the best chromosome is taken as the
solution to the optimization problem.

Table 1. Values of mp used in the genetic algorithm

p

0–1 2 3 4 5 6 7–10 11–20

mp 10 12 14 16 18 20 25 50
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6. Simulation studies

6.1. Preliminaries

In this section, four sets of simulation experiments are conducted to evaluate the empirical perfor-
mance of the proposed method for fitting piecewise stationary quantile autoregressions. We shall
compare the results from our method with the Auto-PARM method of [8], who developed an
automatic procedure for fitting piecewise autoregressive processes. In each set of experiments,
the results are based on 500 repetitions. For the proposed method, we estimated the structural
changes at individual quantiles τ = 0.25, 0.5 and 0.75, as well as jointly at (0.25,0.5,0.75) us-
ing equal weights for the three quantiles. For convenience, we will report the relative locations

of break points defined as λ̂j = k̂j /n for j = 1, . . . , m̂.

6.2. Piecewise AR(2) processes

This simulation experiment is designed to compare the performance of the proposed method and
Auto-PARM in a linear autoregressive process setting favoring the latter. The data generating
process is

yt =
⎧⎨
⎩

0.5yt−1 + 0.3yt−2 + εt (1 ≤ t ≤ n/2),

−0.5yt−1 − 0.7yt−2 + εt (n/2 < t ≤ 3n/4),

1.3yt−1 − 0.5yt−2 + εt (3n/4 < t ≤ n),

(13)

where (εt ) are independent standard normal, and n = 1024 and 2048.
For each simulated process we applied both procedures to locate the break points. We recorded

the number of break points detected by each method, together with their relative locations. These
numbers are summarized in Tables 2 and 3. From Table 2, we observe that, for the case n = 1024,
the performance of Auto-PARM is slightly better than for the proposed method at the median
and is better at the other two quantiles under consideration. However, as n increased to 2048, the
performance of the quantile autoregression procedure improved and is comparable with Auto-
PARM both in terms of finding the correct number of breaks and their locations, as can be seen
from Table 3.

We have repeated the same experiment but with innovations distributed as the t -distribution
with 5 degrees of freedom. In this case, our method outperformed Auto-PARM for all quantiles
tested. Due to space limitation, tabulated results are omitted.

6.3. QAR(1) processes exhibiting explosive behavior

The data generating mechanism in this simulation follows the QAR(1) process

yt = (0.85 + 0.25ut )yt−1 + �−1(ut ), (14)

where (ut ) is a sequence of independent standard uniform random variables and � the standard
normal distribution function. Shown in Figure 1 is a typical realization. There is no structural
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Table 2. Summary of the estimated number of break points m̂ for the proposed procedure for the process
(13) with n = 1024. Mean (standard deviation (Std)) of the relative break point location is reported where
applicable. If mult is specified for the quantile, it refers to the multiple case τ = (0.25,0.50,0.75). The
rows labeled Auto-PARM give the results for that method

m̂

0 1 2 3

τ % % Mean (Std) % Mean (Std) %

0.25 1.2 23.2 0.759 (0.016) 75.6 0.501 (0.024) 0
0.747 (0.012)

0.50 0 3.6 0.757 (0.012) 96.4 0.504 (0.021) 0
0.747 (0.011)

0.75 0.6 19.8 0.756 (0.014) 79.6 0.501 (0.025) 0
0.747 (0.013)

mult 0 14.2 0.750 (0.013) 85.8 0.503 (0.023) 0
0.748 (0.012)

Auto-PARM 0 0 99.6 0.501 (0.004) 0.4
0.751 (0.002)

break in this series but from the plot one can see that it exhibits explosive behavior in the upper
tail. Processes such as this one seem to be capable of modeling certain macroeconomic time
series; for example, interest rate data. We will revisit this issue in Section 7 below. While our
method does not detect break points at any of the quantiles tested, only about one-third of the

Table 3. Similar to Table 2 except for n = 2048

m̂

2 3

τ % Mean (Std) %

0.25 99.2 0.503 (0.015) 0.8
0.747 (0.008)

0.50 99.4 0.503 (0.012) 0.6
0.744 (0.006)

0.75 99.6 0.503 (0.015) 0.4
0.748 (0.007)

mult 99.4 0.504 (0.013) 0.6
0.748 (0.007)

Auto-PARM 100 0.501 (0.002) 0
0.750 (0.001)
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Figure 1. A typical realization for the process in (14).

results from Auto-PARM lead to the correct conclusion; the numbers of break points detected by
their method are summarized in Table 4. It is apparent that it is much less tolerant to nonlinearity.

6.4. Piecewise AR(1) processes with changes in certain quantile ranges

In this simulation experiment, the nonstationary time series is generated from the model

yt =
{{

0.5I (τ ≤ 0.2) + 0.8I (τ > 0.2)
}
yt−1 + εt (1 ≤ t ≤ n/2),

0.5yt−1 + εt (n/2 < t ≤ n),
(15)

where (εt ) are independent asymmetric Laplace with parameter 0.4 for t ≤ n/2 and independent
asymmetric Laplace with parameter 0.6 for t > n/2.

For this process, results from our method and Auto-PARM are reported in Table 5 in a similar
manner as in Table 2. Not reported in this table is the fact that, when the coefficients of yt−1 in the
two pieces are the same (which happens for quantiles τ ≤ 0.2), then the proposed procedure does
not detect any break points even though the residuals of the two pieces are slightly different. For
the quantile at τ = 0.25 which is close to the threshold at which the autoregressive coefficient
changes, our method detected a (nonexisting) break point in 16% of the simulation runs. On
the other hand, when τ ≥ 0.5, the quantile autoregression method performs reasonably well,
especially at the median where the performance is excellent. Also at τ = 0.75 it outperforms

Table 4. Relative frequencies of the number of break points estimated from Auto-PARM for the process
(14) with n = 1024. Independent of the specific quantile it was applied to, the proposed methodology always
correctly chose m̂ = 0

Number of break points

0 1 2 3 4 5

Relative frequency 33.8 35.2 23.8 5.6 1.4 0.2
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Table 5. Similar to Table 2 except for the process (15) with n = 1024

m̂

0 1 2 3

τ % % Mean (Std) % %

0.25 83.4 16.6 0.527 (0.096) 0 0
0.50 1.5 98.5 0.503 (0.038) 0 0
0.75 24.4 75.6 0.479 (0.055) 0 0
mult 35.2 64.8 0.498 (0.046) 0 0
Auto-PARM 51.0 44.4 0.487 (0.181) 4.0 0.6

Auto-PARM. When estimating jointly at τ = (0.25,0.5,0.75), the percentage of detecting the
correct number of break points is not as high as at τ = 0.5 due to the inclusion of the quantiles at
τ = 0.25 and τ = 0.75, indicating that care has to be exercised if quantiles are jointly specified.
We can also see that the performance of our method is better than that of Auto-PARM in both
percentage and accuracy (in terms of smaller standard deviations) for this simulation example. In
Table 6, we summarize the proposed procedure’s estimates of the quantile autoregression orders
for the above process at τ = 0.5, and we can see that most of the segments are correctly modeled
as QAR(1) processes.

6.5. Higher-order QAR processes

In this experiment, the data generating process is

yt =
{

(0.2 + 0.1ut )yt−1 + (0.5 + 0.1ut )yt−2 + εt (1 ≤ t ≤ n/2),

0.7utyt−1 + εt (n/2 < t ≤ n),
(16)

where (ut ) is a sequence of independent standard uniform random variables, (εt ) are independent
standard normal for t ≤ n/2, and independent asymmetric Laplace with parameter 1 for t > n/2.
A typical realization is displayed in Figure 2, and break detection results from our method for
this process are reported in Table 7. One can see that our method has successfully detected one

Table 6. Relative frequencies of the quantile autore-
gression orders selected by the proposed method at τ =
0.5 for the realizations from the process (15)

Order

1 2 3 4 5

p1 80.3 15.7 2.6 1.4 0
p2 72.4 19.2 6.6 1.4 0.4
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Figure 2. A typical realization for the process in (16).

break with very high probability in most considered cases, and that the detected relative locations
are also very close to the true location.

In order to assess the performance of the MDL criterion for order selection in QAR(p) models
for p > 1, we tabulated the relative frequencies of the order selected by the proposed method for
the first piece of process (16) in Table 8. The proposed method never underestimates the order,
but only achieves about 50% accuracy. At first sight, these correct estimation rates seem to be
relatively low. However, in the break point detection context, the problem of order estimation
seems to be hard even for linear AR processes (of higher order), as is seen in Table 3 of [8],
where Auto-PARM only gave around 65% correct estimation rates for AR(2) processes. Thus,
we believe that a 50% correct rate is not unreasonable for QAR(p) models.

6.6. Stochastic volatility models

The simulation section concludes with an application of the proposed methodology to stochastic
volatility models (SVM) often used to fit financial time series; see [21] for a recent overview. It
should be noted that the proposed quantile methodology and Auto-PARM are not designed to deal

Table 7. Similar to Table 2 except for the process (16) with n = 4000

m̂

0 1 2

τ % % Mean (Std) %

0.25 4.0 95.5 0.517 (0.049) 0.5
0.50 0 98.5 0.505 (0.039) 1.5
0.75 3.0 97.0 0.508 (0.052) 0
mult 0 100.0 0.509 (0.045) 0.5
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Table 8. Relative frequencies of the quantile autoregression orders selected by the proposed method at
different τ values (τ = 0.25, 0.50, 0.75, and mult) for the first piece in the process (16). The true order is 2

τ 1 2 3 4 5 6 ≥ 7

0.25 0 48.69 31.41 15.71 2.09 1.57 0.52
0.50 0 51.78 26.40 12.18 5.58 2.03 2.03
0.75 0 55.15 22.68 11.86 7.73 1.55 1.05
mult 0 50.50 26.00 14.50 5.00 2.00 2.00

with this type of model as it consists of uncorrelated random variables exhibiting dependence in
higher-order moments. However, SVM are used to compare the two on a data generating process
different from nonlinear QAR and linear AR time series. Following Section 4.2 of [9], the process

yt = σtξt = eαt /2ξt , (17)

is considered, where αt = γ + φαt−1 + ηt . The following two-piece segmentations were com-
pared:

Scenario A Piece 1: γ = −0.8106703, φ = 0.90, (ηt ) ∼ i.i.d. N(0,0.45560010),

Piece 2: γ = −0.3738736, φ = 0.95, (ηt ) ∼ i.i.d. N(0,0.06758185),

while (ξt ) ∼ i.i.d. N(0,1) for both pieces, and

Scenario B Piece 1: γ = −0.8106703, φ = 0, (ξt ) ∼ i.i.d. N(0,1),

Piece 2: γ = −0.3738736, φ = 0, (ξt ) ∼ i.i.d. N(0,4),

while (ηt ) ∼ i.i.d. N(0,0.5) for both pieces. Scenario A corresponds to a change in dynamics of
the volatility function σt , Scenario B basically to a scale change.

Scenario A was considered in [9]. These authors developed a method tailored to deal with
financial time series of SVM and GARCH type. The method, termed Auto-Seg, was able to
detect one break in 81.8% of 500 simulation runs and detected no break otherwise. On this
data, Auto-PARM tends to use a too fine segmentation as 62.4% of the simulations runs resulted
in two or more estimated break points. One (no) breakpoint was detected in 21.2% (16.4%)
of the cases. The proposed method failed to detect any changes at any of the tested quantiles
(τ = 0.05,0.10,0.25,0.50,0.75,0.90,0.95). It should be noted, however, that there is no change
at the median and changes in the other quantiles are very hard to find as is evidenced by Figure 3,
which displays the averaged (over 50 simulation runs) empirical quantile–quantile plot from the
first and the second segment of the two-piece Scenario A process.

The results for Scenario B are summarized in Table 9. It can be seen that, for the proposed
method, the scale change, is detected at the more extreme quantiles (τ = 0.05,0.10,0.90,0.95)
with very good accuracy and with reasonable accuracy at intermediate quantiles (τ = 0.25 and
τ = 0.75), while no change is found (correctly) at the median τ = 0.50, reflecting that the pro-
posed procedure describes the local behavior of the SVM process adequately. Auto-PARM does
the same on a global basis.
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Figure 3. Empirical quantile–quantile plot for the SVM process specified under Scenario A (left panel)
and Scenario B (right panel). The x-axis (y-axis) shows the empirical quantiles of Piece 1 (Piece 2). The
45 degree line is given for ease of comparison.

7. Real data applications

7.1. Treasury bill data

Treasury bills are short-term risk-free investments that are frequently utilized by investors to
hedge portfolio risks. In this application, the observations are three-month treasury bills from the
secondary market rates in the United States, ranging from January 1954 to December 1999. The
weekly data can be found at the website http://research.stlouisfed.org/fred2/series/TB3MS and
are displayed in Figure 4.

It can be seen from Figure 4 that the time series exhibits obvious explosive behavior in the
upper tail. In many instances similar time series would be viewed as random walks and sophis-
ticated testing procedures would have to be applied to either confirm or reject what is known as
unit-root hypothesis; see, for example, [18,19] for more. As in Section 6.3, Auto-PARM aims in
this case at partitioning the series into segments with structures mimicking linear behavior. In the
present case, this leads to 15 segments. On the other hand the proposed procedure does not detect
break points at any of the quantiles tested (τ = 0.05,0.10, . . . ,0.90,0.95), thus indicating that
with the use of some extra parameters a more parsimonious stationary but nonlinear modeling

Table 9. Summary of the estimated number of break points m̂ for the proposed procedure and Auto-PARM
for the process (17) with specifications given under Scenario B

τ

m̂ 0.05 0.10 0.25 0.50 0.75 0.90 0.95 Auto-PARM

0 0.4% 0.2% 32.6% 100.0% 29.6% 0.0% 0.6% 0.2%
1 99.6% 99.8% 67.4% 0.0% 70.4% 100.0% 99.4% 99.6%
2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2%

http://research.stlouisfed.org/fred2/series/TB3MS
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Figure 4. Three-month treasury bills (01/1954 to 12/1999).

is possible for this data set. Using a QAR(2) model with cubic polynomial coefficients in the
uniform random variables (ut ), the data can be approximated via the following model with 12
parameters:

yt = θ0(ut ) + θ1(ut )yt−1 + θ2(ut )yt−2, (18)

where

θ0(ut ) = −0.0144 + 0.2264ut − 0.5448u2
t + 0.3848u3

t ,

θ1(ut ) = 1.3721 − 0.9635ut + 1.5312u2
t − 0.6939u3

t ,

θ2(ut ) = −0.4394 + 1.3154ut − 2.1945u2
t + 1.1353u3

t .

Figure 5 depicts several realizations generated by the estimated model (18), which all show
a pattern closely resembling the data in Figure 4. This example illustrates that quantile autore-
gressions can expand the modeling options available to the applied statistician as it accurately
captures temporary explosive behavior and nonlinearity.

7.2. Monthly minimum temperature data

In this section the monthly mean minimum temperature at Melbourne in Australia is considered.
The data set is obtainable from the Bureau of Meteorology of the Australian Government (http://
www.bom.gov.au/climate/data/). The plots for the original series and its deseasonalized version
are shown in Figure 6. This data set has been investigated by [13] who pointed out that, due
to the quantile dependent behavior visible in the scatter plots, linear autoregressive models are
insufficient to describe the data. Our method was applied to this data set at various quantiles and
for all cases one break point was found near the year 1960. This agrees with a visual inspection
of Figure 6.

It can be seen from Table 10 that the break point location estimated with the multiple quantile
procedure, set up with equal weights for the three quantiles under consideration, is between the
break point locations estimated at the individual quantiles. This should always be the case, as

http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
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Figure 5. Four typical realizations of the process in (18).

Figure 6. (a) Monthly minimum air temperature in Melbourne, Australia from January 1856 to December
2010. (b) Deseasonalized series. The dashed line represents the estimated break point in August 1962.

Table 10. Estimated break points at different quantiles for the Australian temperature data

Quantiles

0.25 0.5 0.75 mult

Estimated break point December 1960 August 1963 December 1958 August 1962
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the requirement of simultaneous occurrence of breaks automatically leads to a weighted average
interpretation. In general, one would ideally find weights that prefer quantiles which stronger ex-
hibit the structural break and attenuate the impact of quantiles that are only marginally subjected
to the break. This would mean to more closely evaluate properties of the (piecewise) density and
distribution function of the underlying random process.

8. Conclusions

This article proposes a new segmentation procedure that helps breaking down a given nonstation-
ary time series into a number of stationary pieces by means of quantile autoregression modeling.
In contrast to most of the existing literature, this is done either for individual quantiles or across a
collection of quantiles. The proposed method utilizes the minimum description length principle
and a genetic algorithm to obtain the best segmentation. It has been proved that this method is
asymptotically consistent, and simulation results have demonstrated that the finite sample per-
formance of the proposed procedure is quite good. Data applications are also provided with sat-
isfactory results. It can be seen in particular that our method can add to second-order time series
modeling by enriching the statistician’s tool box via the inclusion of nonlinearity, asymmetry,
local persistence and other distributional aspects. An interesting problem for future research that
shows some potential is the investigation of the properties of the multiple quantile segmenta-
tion procedure for the case of quantile-dependent break point locations, thereby loosening the
assumption of simultaneous breaks utilized in this paper.

Appendix: Proofs

Lemma A.1. If (yt : t ∈ Z) follow a stationary QAR(p) model such that the assumptions of
Proposition 2.1 are satisfied, then with probability one and for all τ ∈ (0,1),

1

n

n∑
t=1

ρτ (ε̂t ) → E
{
ρτ (ε1)

}
(n → ∞),

where ρτ is the check function defined below (3).

Proof. The assertion follows as in the proof of Lemma A.1 in [1]. �

Lemma A.2. Let (yt : t ∈ Z) be a piecewise stationary QAR(p) model that satisfies the as-
sumptions of Proposition 2.1 on each of the segments. Let λ0 = (λ0

1, . . . , λ
0
m0) denote the true

segmentation and choose K = �κn�, M = �μn� with 0 ≤ κ < μ ≤ 1. Then, with probability one
for all τ ∈ (0,1),

1

M − K

M∑
t=K+1

ρτ (ε̂t ) → Lτ (κ,μ).

The limit Lτ (κ,μ) is the sum of two components, Aτ (κ,μ) and Bτ (κ,μ), both of which are given
in the proof.
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Proof. There are two cases to consider, namely (1) K and M are contained in the same segment
and (2) K and M are in different segments.

For the case (1), Lemma A.1 implies immediately that

1

M − K

M∑
t=K+1

ρτ (ε̂t ) → ρτ,j = Aτ (κ,μ).

With Bτ (κ,μ) = 0, one can set Lτ (κ,μ) = Aτ (κ,μ) and the limit is determined.
For the case (2), there are 1 ≤ j < J ≤ m0 +1 such that κ ∈ [λ0

j−1, λ
0
j ) and μ ∈ (λ0

J−1, λ
0
J ]. In

addition to the residuals ε̂t obtained from fitting a QAR model to the observations yK+1, . . . , yM ,
one also defines residuals ε̂t,	 obtained from fitting a QAR model on the 	th underlying (true)
segment. If now t ∈ {k0

	−1 + 1, . . . , k0
	 } with k0

	 = �λ0
	n�, then one gets the decomposition

ρτ (ε̂t ) = {ρτ (ε̂t )− ρτ (ε̂t,	)} + ρτ (ε̂t,	). The sum over the first terms on the right-hand side leads
to a positive bias term Bτ (κ,μ) determined by the almost sure limit relation

1

M − K

[ k0
j∑

t=K+1

{
ρτ (ε̂t ) − ρτ (ε̂t,j )

}

+
J−1∑

	=j+1

k0
	∑

t=k	−1+1

{
ρτ (ε̂t ) − ρτ (ε̂t,	)

} +
M∑

t=k0
J−1+1

{
ρτ (ε̂t ) − ρτ (ε̂t,J )

}]

→ Bτ (κ,μ).

The remaining segment residuals ε̂t,	 allow for an application of Lemma A.1 to each of the
underlying (true) segments, so that, with probability one,

1

M − K

{ k0
j∑

t=K+1

ρτ (ε̂t,j ) +
J−1∑

	=j+1

k0
	∑

t=k0
	−1+1

ρτ (ε̂t,	) +
M∑

t=k0
J−1+1

ρτ (ε̂t,J )

}

→ 1

μ − κ

{(
λ0

j − κ
)
ρτ,j +

J−1∑
	=j+1

(
λ0

	 − λ0
	−1

)
ρτ,	 + (

μ − λ0
J−1

)
ρτ,J

}

= Aτ (κ,μ),

where ρτ,j = E{ρτ (εk0
j
)}. Setting Lτ (κ,μ) = Aτ (κ,μ) + Bτ (κ,μ) completes the proof. �

Proof of Theorem 4.1. Denote by λ̂ = (λ̂1, . . . , λ̂m0) and λ0 = (λ0
1, . . . , λ

0
m0) the segmentation

chosen by the minimum description length criterion (10) and the true segmentation, respectively.
The proof is obtained from a contradiction argument, assuming that λ̂ does not converge almost
surely to λ0. If that was the case, then the boundedness of λ̂ would imply that, almost surely
along a subsequence, λ̂ → λ∗ = (λ∗

1, . . . , λ
∗
m0) as n → ∞, where λ∗ is different from λ0. Two
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cases for neighboring λ∗
j−1 and λ∗

j have to be considered, namely (1) λ0
j ′ ≤ λ∗

j−1 < λ∗
j ≤ λ0

j ′ and

(2) λ0
j ′−1 ≤ λ∗

j−1 < λ0
j ′ < · · · < λ0

j ′+J
< λ∗

j ≤ λ0
j ′+J+1 for some positive integer J .

For the case (1), Lemma A.1 implies that, almost surely,

lim
n→∞

1

n

k̂j∑
t=k̂j−1+1

ρτ (ε̂t ) ≥ (
λ∗

j − λ∗
j−1

)
ρτ,j ′ ,

where ρτ,j ′ = E{ρτ (εk0
j ′ )}. For the case (2), Lemma A.2 gives along the same lines of argument

that, almost surely,

lim
n→∞

1

n

k̂j∑
t=k̂j−1+1

ρτ (ε̂t ) >
1

λ∗
j − λ∗

j−1

{(
λ0

j ′ − λ∗
j−1

)
ρτ,j ′

+
j ′+J+1∑
	=j ′+1

(
λ0

	 − λ0
	−1

)
ρτ,	 + (

λ∗
j − λ0

j ′+J

)
ρτ,j ′+J+1

}
.

Taken together, these two inequalities, combined with the fact that asymptotically all penalty
terms in the definition of the MDL in (12) vanish, give, almost surely,

lim
n→∞

1

n
MDL

(
m0, λ̂, p̂|τ) = lim

n→∞
1

n

m0+1∑
j=1

k̂j∑
t=k̂j−1+1

ρτ (ε̂t )

> lim
n→∞

1

n

m0+1∑
j=1

k0
j∑

t=k0
j−1+1

ρτ (εt ) = lim
n→∞ MDL

(
m0, λ0,p0|τ)

,

which is a contradiction to the definition of the MDL minimizer. �

Proof of Corollary 4.1. Recall that the minimum description length criterion for multiple quan-
tiles (τ1, . . . , τL) is given in (11). If follows from Theorem 4.1 that at any individual quantile
τ	, the minimizer, say, (λ̂	, p̂	) of the minimum description length criterion (10) is consistent
for (λ0,p0). It follows that the minimizer (λ̂, p̂) of (11) is consistent as it is a weighted sum of
several criteria in the form of (10). �
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[6] Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis. Wiley Series in Prob-
ability and Statistics. Chichester: Wiley. MR2743035

[7] Davis, L.D. (1991). Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.
[8] Davis, R.A., Lee, T.C.M. and Rodriguez-Yam, G.A. (2006). Structural break estimation for nonsta-

tionary time series models. J. Amer. Statist. Assoc. 101 223–239. MR2268041
[9] Davis, R.A., Lee, T.C.M. and Rodriguez-Yam, G.A. (2008). Break detection for a class of nonlinear

time series models. J. Time Series Anal. 29 834–867. MR2450899
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