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For α ∈ (1,2), we present a generalized central limit theorem for α-stable random variables under sublinear
expectation. The foundation of our proof is an interior regularity estimate for partial integro-differential
equations (PIDEs). A classical generalized central limit theorem is recovered as a special case, provided a
mild but natural additional condition holds. Our approach contrasts with previous arguments for the result
in the linear setting which have typically relied upon tools that are non-existent in the sublinear framework,
for example, characteristic functions.
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1. Introduction

The purpose of this manuscript is to prove a generalized central limit theorem for α-stable ran-
dom variables in the setting of sublinear expectation. Such a result complements the limit theo-
rems for G-normal random variables due to Peng and others in this context and answers in the
affirmative a question posed by Neufeld and Nutz in [22] (see below).

When working with a sublinear expectation, one is simultaneously considering a potentially
uncountably infinite and non-dominated collection of probability measures. A construction of
this kind is motivated by the study of pricing under volatility uncertainty. Needless to say, a
variety of frequently called upon devices from the classical setting are unavailable. The com-
plications encompass further issues as well: new behaviors are occasionally observed like those
outlined in [4].

Analogues of significant theorems from classical probability and stochastic analysis are nev-
ertheless moderately abundant. For instance, versions of the law of large numbers can be found
in [26] and [28]; the martingale representation theorem is given in [37,38] and [31]; Girsanov’s
theorem is obtained in [23,39] and [9]; and a Donsker-type result is shown in [8]. To conduct
investigations along these lines, standard proofs must often be re-imagined. For instance, Peng’s
proof of the central limit theorem under sublinear expectation in [26] resorts to interior regularity
estimates for fully nonlinear parabolic partial differential equations (PDEs). His idea has since
been extended to prove a number of variants of his original result, for example, see [12,20,28]
and [40].

We will operate in the sublinear expectation framework unless explicitly indicated otherwise.
The objects of our special attention here, the α-stable random variables for α ∈ (1,2), were in-
troduced in [22]. The authors pondered whether or not these could be the subject of a generalized
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central limit theorem. Classical generalized central limit theorems ordinarily come in one of three
flavors:

(i) a statement indicating that a random variable has a non-empty domain of attraction if and
only if it is α-stable such as Theorem 2.1.1 in [13],

(ii) a characterization theorem for the domain of attraction of an α-stable random variable
such as Theorem 2.6.1 in [13], or

(iii) a characterization theorem for the domain of normal attraction for an α-stable random
variable such as Theorem 2.6.7 in [13].

Recall that an i.i.d. sequence (Yi)
∞
i=1 of random variables is in the domain of attraction of a

random variable X if there exist sequences of constants (Ai)
∞
i=1 and (Bi)

∞
i=1 so that

Bn

n∑
i=1

Yi − An

converges in distribution to X as n → ∞. (Yi)
∞
i=1 is in the domain of normal attraction of X if

Bn = 1

bn1/α

for some b > 0.
We confine our search to the direction suggested by (iii) because of the particular importance

classically of results of this type (cf. the central limit theorem). Our main findings are sum-
marized in Theorem 3.1, which details sufficient conditions for membership in the domain of
normal attraction of a given α-stable random variable. While the initial appearance of our dis-
tributional hypotheses is perhaps forbidding, in point of fact, our assumptions are manageable.
This is illustrated by the discussion immediately following Theorem 3.1, as well as Examples 4.1
and 4.2.

Example 4.1 establishes that the α-stable random variables under consideration are in their
own domain of normal attraction. Although one need not apply Theorem 3.1 for this purpose,
the write-up serves a clarifying role and any credible result clearly must pass this litmus test.

Example 4.2 is more substantive. Setting aside a few mild “uniformity” conditions which arise
due to the supremum, this example can be understood in an intuitive manner (see Section 4). This
falls out of our analysis just below Theorem 3.1, where we describe the relationship between
our work and the classical result noted in (iii) above. More specifically, Theorem 3.1 detects
all classical random variables in this collection with mean zero and a cumulative distribution
function (cdf) that satisfies a small differentiability requirement. An extra regularity condition on
the cdf is unavoidable, as one must translate its form into properties that can be stated only in
terms of expectation.

The strategy of our proof is to reduce demonstrating convergence in distribution to showing
that a certain limit involving the solution to the backward version of our generating PIDE is
zero. Upon breaking up our domain and summing the corresponding increments of the solution,
regularity properties of this function are employed to argue that size of the terms being added



2550 E. Bayraktar and A. Munk

together decay rapidly enough in the limit to furnish the desired conclusion. This general scheme
is similar to that initiated in [26], except that the generating equation there is

∂tu − 1

2

(
σ 2(∂xxu)+ − σ 2(∂xxu)−

) = 0, (t, x) ∈ (0,∞) ×R,

u(0, x) = ψ(x), x ∈R

for some 0 ≤ σ 2 ≤ σ 2 and appropriate function ψ . Recall that this equation is known as the
Barenblatt equation if σ 2 > 0 and has been studied in [2] and [1], for instance. Ours is given by
(2.1), a difference that leads to a few difficulties as reflected by the increased complexity of our
hypotheses. To overcome these difficulties, we use the technology from [18,19] and [7].

The work in this paper offers a step toward understanding α-stability under sublinear expecta-
tion. The simple interpretation admitted by Example 4.2 is promising, as developing intuition in
this environment is usually a tough undertaking for the reasons mentioned previously.

A brief overview of necessary background material can be found in Section 2. We prove our
main result and discuss its connection to the classical case in Section 3. Examples highlighting
the applications of our main result are contained in Section 4. We give some prerequisite material
for the proof of the essential interior regularity estimate for our PIDE in Appendix A. The proof
of this estimate is in Appendix B.

2. Background

We now offer a concise account of those aspects of sublinear expectations, α-stable random
variables, and PIDEs which are required for the sequel.1 References for more comprehensive
treatments of these topics are also included for the convenience of the interested reader.

Definition 2.1. Let H be a collection of real-valued functions on a set �. A sublinear expectation
is an operator E : H −→ R which is:

(i) monotonic: E[X] ≤ E[Y ] if X ≤ Y ,
(ii) constant-preserving: E[c] = c for any c ∈R,

(iii) sub-additive: E[X + Y ] ≤ E[X] + E[Y ], and
(iv) positive homogeneous: E[λX] = λE[X] for λ ≥ 0.

The triple (�,H,E) is called a sublinear expectation space.

One views H as a space of random variables on �. Typically, it is assumed that H

(i) is a linear space,
(ii) contains all constant functions, and

(iii) contains ψ(X1,X2, . . . ,Xn) for every X1,X2, . . . ,Xn ∈ H and ψ ∈ Cb.Lip(R
n), where

Cb.Lip(R
n) is the set of bounded Lipschitz functions on R

n;

1Further information on PIDE interior regularity theory is contained in Appendix A.
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however, we will expend little attention on either � or H. Delicacy needs to be exercised while
computing sublinear expectations. A rare instance when a classical technique can be justly em-
ployed is the following.

Lemma 2.2. Consider two random variables X,Y ∈ H such that E[Y ] = −E[−Y ]. Then

E[X + αY ] = E[X] + αE[Y ]
for all α ∈R.

This result is notably useful in the case where E[Y ] = E[−Y ] = 0.

Definition 2.3. A random variable Y ∈ H is said to be independent from a random variable
X ∈ H if for all ψ ∈ Cb.Lip(R

2), we have

E
[
ψ(X,Y )

] = E
[
E
[
ψ(x,Y )

]
x=X

]
.

Observe the deliberate wording. This choice is crucial, as independence can be asymmetric in
our context. Note that this definition reduces to the traditional one if E is a classical expectation.
The same is true for the next three concepts.

Definition 2.4. Let X, Y and (Yn)
∞
n=1 be random variables, that is, X, Y and (Yn)

∞
n=1 ∈H.

(i) X and Y are identically distributed, denoted X ∼ Y , if

E
[
ψ(X)

] = E
[
ψ(Y )

]
for all ψ ∈ Cb.Lip(R).

(ii) If X and Y are identically distributed and Y is independent from X, then Y is an inde-
pendent copy of X.

(iii) (Yn)
∞
n=1 converges in distribution to Y , which we denote by Yn

d→ Y , if

lim
n→∞E

[
ψ(Yn)

] = E
[
ψ(Y )

]
for all ψ ∈ Cb.Lip(R).

Random variables need not be defined on the same space to have appropriate notions of (i)
or (iii). In this case, the above definitions require the obvious notational modifications. Further
details concerning general sublinear expectation spaces can be found in [27] or [30].

Definition 2.5. Let α ∈ (0,2]. A random variable X is said to be (strictly) α-stable if for all a,
b ≥ 0,

aX + bY
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and (
aα + bα

)1/α
X

are identically distributed, where Y is an independent copy of X.

Three examples of α-stable random variables exist in the current literature. For α = 1, there are
the maximal random variables discussed in references such as [28,30] and [10]. When α = 2, we
have the G-normal random variables of Peng. Resources on this topic are plentiful and include
[21,27,29,30] and [4]. If α ∈ (1,2), we can consider X1 for a nonlinear α-stable Lévy process
(Xt )t≥0 in the framework of [22]. Our focus shall be restricted to the last situation.

The construction of nonlinear Lévy processes in [22] extends that studied in [11,25,32] and
[24] and is much more general than our present objectives demand. We limit our presentation to
a few key ideas. Let

(i) α ∈ (1,2);
(ii) K± be a bounded measurable subset of R+;

(iii) Fk± be the α-stable Lévy measure

Fk±(dz) = (k−1(−∞,0) + k+1(0,∞))(z)|z|−α−1 dz

for all k± ∈ K±; and
(iv) � = {(0,0,Fk±) : k± ∈ K±}.

One can then produce a process (Xt )t≥0 which is a nonlinear Lévy process whose local charac-
teristics are described by the set of Lévy triplets �. This means the following:

(i) (Xt )t≥0 is a real-valued càdlàg process.
(ii) X0 = 0.

(iii) (Xt )t≥0 has stationary increments, that is, Xt − Xs and Xt−s are identically distributed
for all 0 ≤ s ≤ t .

(iv) (Xt )t≥0 has independent increments, that is, Xt −Xs is independent from (Xs1, . . . ,Xsn)

for all 0 ≤ s1 ≤ · · · ≤ sn ≤ s ≤ t .
(v) If ψ ∈ Cb.Lip(R) and u is defined by

u(t, x) = E
[
ψ(x + Xt)

]
for all (t, x) ∈ [0,∞) ×R, then u is the unique2 viscosity solution3 of

∂tu(t, x) − sup
k±∈K±

{∫
R

δzu(t, x)Fk±(dz)

}
= 0, (t, x) ∈ (0,∞) ×R

(2.1)
u(0, x) = ψ(x), x ∈ R.

2The uniqueness of a viscosity solution of (2.1) can be viewed as a special case of Theorem 2.5 in [22].
3We take the following definition from Section 2.2 of [22]. Let C

2,3
b

((0,∞) × R) denote the set of functions on
(0,∞) ×R having bounded continuous partial derivatives up to the second and third order in t and x, respectively.
A bounded upper semicontinuous function u on [0,∞) ×R is a viscosity subsolution of (2.1) if

u(0, ·) ≤ ψ(·)
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Here, we use the notation

δzu(t, x) := u(t, x + z) − u(t, x) − ∂xu(t, x)z

since the right-hand side of this equation as well as similar expressions will frequently occur
throughout the paper.

A critical feature of this setup is that if � is a singleton, (Xt )t≥0 is a classical Lévy process
with triplet �. That X1 actually is an α-stable random variable is not immediately obvious. We
give a brief argument in Example 4.1, but the core of this observation is a result from [22] (see
Example 2.7).

Lemma 2.6. For all β > 0 and t ≥ 0, Xβt and β1/αXt are identically distributed.

The dynamic programming principle in Lemma 2.7 (see Lemma 5.1 in [22]) and the absolute
value bound in Lemma 2.8 (see Lemma 5.2 in [22]) also play a central role when using our main
result to check that X1 is in its own domain of normal attraction.

Lemma 2.7. For all 0 ≤ s ≤ t < ∞ and x ∈ R,

u(t, x) = E
[
u(t − s, x + Xs)

]
.

Lemma 2.8. We have that

E
[|X1|

]
< ∞.

The remaining essential ingredients for our purposes describe the regularity of u. The first
result describes properties of u which are valid on the whole domain. It is a special case of
Lemma 5.3 in [22].

Lemma 2.9. The function u is uniformly bounded by ‖ψ‖L∞(R) and jointly continuous. More
precisely, u(t, ·) is Lipschitz continuous with constant Lip(ψ), the Lipschitz constant of ψ , and

and for any (t, x) ∈ (0,∞) ×R,

∂t ϕ(t, x) − sup
k±∈K±

{∫
R

δzϕ(t, x)Fk± (dz)

}
≤ 0

whenever ϕ ∈ C
2,3
b

((0,∞) ×R) is such that

ϕ ≥ u

on (0,∞) ×R and

ϕ(t, x) = u(t, x).

To define a viscosity supersolution of (2.1), one reverses the inequalities and semicontinuity. A bounded continuous
function is a viscosity solution of (2.1) if it is both a viscosity subsolution and supersolution. Viscosity solutions of the
other PIDEs appearing in this paper, for example, see Lemma A.4, are defined similarly.
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u(·, x) is locally 1/2-Hölder continuous with a constant depending only on Lip(ψ) and

sup
k±∈K±

{∫
R

|z| ∧ |z|2Fk±(dz)

}
< ∞.

We will require even stronger regularity estimates for u. To obtain these, we must restrict our
attention to the interior of the domain.

Proposition 2.10. Suppose that for some λ, � > 0, we know λ < k± < � for all k± ∈ K±. For
any h > 0,

(i) ∂tu and ∂xu exist and are bounded on [h,h + 1] ×R;
(ii) there are constants C, γ > 0 such that∣∣∂tu(t0, x) − ∂tu(t1, x)

∣∣ ≤ C|t0 − t1|γ /α,∣∣∂tu(t, x0) − ∂tu(t, x1)
∣∣ ≤ C|x0 − x1|γ

for all (t0, x), (t1, x), (t, x0), (t, x1) ∈ [h,h + 1] ×R;
(iii) u is a classical solution of (2.1) on [h,h + 1] ×R; and
(iv) if K± contains exactly one pair {k±}, then ∂2

xxu exists and is bounded on [h,h + 1] ×R.

The proof of Proposition 2.10 can be found in Appendix B.

3. Main result

To facilitate our discussion in the sequel, we now fix some notation. Compared with Section 2,
we make only one alteration to our nonlinear α-stable Lévy process (Xt )t≥0: additionally assume
that K± is a subset of (λ,�) for some λ, � > 0. We will make use of this in conjunction with
Proposition 2.10.

We also consider a sequence (Yi)
∞
i=1 of random variables on some sublinear expectation space.

The only aspect of this space that we will invoke directly is the sublinear expectation itself,
say E ′. Distinguishing between E and E ′ will be convenient for Example 4.2. We further specify
that (Yi)

∞
i=1 is i.i.d. in the sense that Yi+1 is independent from (Y1, Y2, . . . , Yi) and Yi+1 ∼ Yi for

all i ≥ 1. After proper normalization,

Sn :=
n∑

i=1

Yi

will be the sequence attracted to X1.

Theorem 3.1. Suppose that

(i) E ′[Y1] = E ′[−Y1] = 0;
(ii) E ′[|Y1|] < ∞; and
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(iii) for any 0 < h < 1 and ψ ∈ Cb.Lip(R),

n

∣∣∣∣E ′[δBnY1v(t, x)
] −

(
1

n

)
sup

k±∈K±

{∫
R

δzv(t, x)Fk±(dz)

}∣∣∣∣ → 0 (3.1)

uniformly on [0,1] ×R as n → ∞, where v is the unique viscosity solution of

∂tv(t, x) + sup
k±∈K±

{∫
R

δzv(t, x)Fk±(dz)

}
= 0, (t, x) ∈ (−h,1 + h) ×R

(3.2)
v(1 + h,x) = ψ(x), x ∈ R.

Then

BnSn
d→ X1

as n → ∞.

Admittedly, a cursory glance over our hypotheses leaves one with the impression that they are
intractable. The opposite is true. Before presenting the proof of Theorem 3.1, let us demonstrate
that when our attention is confined to the classical case, we are imposing only a mild and natural
supplementary restriction on the attracted random variable. In addition to being a significant
remark in itself, this work also underlies Example 4.2.

Assume that � is a singleton. Since (Xt )t≥0 is the classical Lévy process with triplet
(0,0,Fk±), the characteristic function of X1, denoted ϕX1 , is given by

ϕX1(t) = exp

(
k−

∫ 0

−∞
exp(itz) − 1 − itz

|z|α+1
dz + k+

∫ ∞

0

exp(itz) − 1 − itz

zα+1
dz

)

for all t ∈ R. In the case where Y1 is a classical random variable with mean zero, Theorem 2.6.7
from [13] implies that

BnSn
d→ X1

as n → ∞ if and only if the cdf of Y1, denoted FY1 , has the form

FY1(z) =

⎧⎪⎨
⎪⎩

[
bα(k−/α) + β1(z)

] 1

|z|α , z < 0,

1 − [
bα(k+/α) + β2(z)

] 1

zα
, z > 0,

for some functions β1 and β2 satisfying

lim
z→−∞β1(z) = lim

z→∞β2(z) = 0.

As there is no appropriate counterpart of the cdf in the sublinear setting, we must recast this
condition using expectation. To do so requires FY1 to possess further regularity properties. For
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convenience, say that after an extension, the βi ’s are continuously differentiable on their respec-
tive closed half-lines. This is the lone extra requirement we shall need.

It follows that

E
[|Y1|

]
< ∞

since

∫ ∞

0
z dFY1(z) = −

∫ 1

0

β ′
2(z)

zα−1
dz +

∫ 1

0

bαk+ + αβ2(z)

zα
dz + β2(1)

+
∫ ∞

1

β2(z)

zα
dz +

∫ ∞

1

bαk+
zα

dz (3.3)

< ∞

and similarly for the integral along the negative half-line. One could have cited Theorem 2.6.4 of
[13] instead, but (3.3) will be helpful in Example 4.2. We also get

n

∣∣∣∣E[
δBnY1v(t, x)

] −
(

1

n

)∫
R

δzv(t, x)Fk±(dz)

∣∣∣∣
=

(
1

bα

)∣∣∣∣
∫
R

δzv(t, x)

(
β ′

1(B
−1
n z)|B−1

n z| + αβ1(B
−1
n z)

|z|α+1
1(−∞,0)(z) (3.4)

+ −β ′
2(B

−1
n z)|B−1

n z| + αβ2(B
−1
n z)

|z|α+1
1(0,∞)(z)

)
dz

∣∣∣∣
for all (t, x) ∈ [0,1] ×R and n ≥ 1 by changing variables.

A careful application of elementary estimates shows that this last expression tends to zero
uniformly on [0,1]×R as n → ∞. To see this, note that we can choose an upper bound, say M1,
for |∂xxv|, |∂xv|, and |v| on [0,1]×R by Lemma 2.9 and Proposition 2.10. Then using integration
by parts and the dominated convergence theorem,

∣∣∣∣
∫ ∞

1
δzv(t, x)

(−β ′
2(B

−1
n z)|B−1

n z| + αβ2(B
−1
n z)

|z|α+1

)
dz

∣∣∣∣
=

∣∣∣∣δ1v(t, x)β2
(
B−1

n

)

+
∫ ∞

1

β2(B
−1
n z)

zα

[
∂xv(t, x + z) − ∂xv(t, x)

]
dz

∣∣∣∣ (3.5)

≤ 3M1
∣∣β2

(
B−1

n

)∣∣ + 2M1

∫ ∞

1

|β2(B
−1
n z)|

zα
dz

→ 0
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as n → ∞. The mean value theorem and a change of variables give∣∣∣∣
∫ Bn

0
δzv(t, x)

(−β ′
2(B

−1
n z)|B−1

n z| + αβ2(B
−1
n z)

|z|α+1

)
dz

∣∣∣∣
≤

∫ Bn

0
M1

|−β ′
2(B

−1
n z)(B−1

n z) + αβ2(B
−1
n z)|

zα−1
dz (3.6)

=
(

M1

b2−αn2/α−1

)∫ 1

0

|−β ′
2(z)z + αβ2(z)|

zα−1
dz

→ 0

as n → ∞. We have ∣∣∣∣
∫ 1

Bn

δzv(t, x)

(
αβ2(B

−1
n z)

|z|α+1

)
dz

∣∣∣∣
≤

∫ 1

Bn

M1
|αβ2(B

−1
n z)|

zα−1
dz

(3.7)

≤ M1α

∫ 1

0

|β2(B
−1
n z)|

zα−1
dz

→ 0

as n → ∞ by the mean value theorem and dominated convergence theorem. Finally,∣∣∣∣
∫ 1

Bn

δzv(t, x)

(−β ′
2(B

−1
n z)(B−1

n z)

|z|α+1

)
dz

∣∣∣∣
=

∣∣∣∣−δ1v(t, x)β2
(
B−1

n

) + δBnv(t, x)(Bn)
−αβ2(1)

+
∫ 1

Bn

[
∂xv(t, x + z) − ∂xv(t, x)

](β2(B
−1
n z)

zα

)
dz

− α

∫ 1

Bn

δzv(t, x)

(
β2(B

−1
n z)

zα+1

)
dz

∣∣∣∣
(3.8)

≤ 3M1
∣∣β2

(
B−1

n

)∣∣ + M1
∣∣β2(1)

∣∣( 1

b2−αn2/α−1

)
+

∫ 1

Bn

M1
|β2(B

−1
n z)|

zα−1
dz

+ α

∫ 1

Bn

M1
|β2(B

−1
n z)|

zα−1
dz

≤ 3M1
∣∣β2

(
B−1

n

)∣∣ + M1
∣∣β2(1)

∣∣( 1

b2−αn2/α−1

)
+ 2αM1

∫ 1

0

|β2(B
−1
n z)|

zα−1
dz

→ 0
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as n → ∞ by integration by parts, the dominated convergence theorem, and the mean value
theorem. The integrals along the negative half-line are handled similarly.

Having established the connection between Theorem 3.1 and the classical case, we finally
present its proof.

Proof of Theorem 3.1. We need to show that

lim
n→∞E ′[ψ(BnSn)

] = E
[
ψ(X1)

]
(3.9)

for all ψ ∈ Cb.Lip(R). Our initial step will be to reduce proving (3.9) to proving (3.12). The
advantage of doing so is that we can then incorporate the regularity properties described in
Lemma 2.9 and Proposition 2.10. These properties alone do much of the heavy lifting in the
estimates at the heart of the argument, and our distributional assumptions do the rest.

Let ψ ∈ Cb.Lip(R), and define u by

u(t, x) = E
[
ψ(x + Xt)

]
(3.10)

for all (t, x) ∈ [0,∞) × R. We know from Section 2 that u is the unique viscosity solution of
(2.1).

It will be more convenient for our purposes to work with the backward equation. Since we will
soon rely on the interior regularity results of Proposition 2.10, we also let 0 < h < 1 and define
v by

v(t, x) = u(1 + h − t, x) (3.11)

for (t, x) ∈ (−h,1 + h] ×R. Then v will be the unique viscosity solution of (3.2).
Observe that v inherits key regularity properties from u. At the moment, it is enough to note

that for any (t, x) ∈ (−h,1 + h] × R, v(·, x) is 1/2-Hölder continuous with some constant K1
and v(t, ·) is Lipschitz continuous with constant Lip(ψ) by Lemma 2.9. Because the t -domain
has length 1 + 2h and 0 < h < 1, the 1/2-Hölder continuity is uniform, and we can assume that
K1 does not depend on h. It follows by (3.10) and (3.11) that

lim sup
n→∞

∣∣E ′[ψ(BnSn)
] − E

[
ψ(X1)

]∣∣
≤ lim sup

n→∞
(∣∣E ′[ψ(BnSn)

] − E ′[v(1,BnSn)
]∣∣ + ∣∣E ′[v(1,BnSn)

] − v(0,0)
∣∣

+ ∣∣v(0,0) − E
[
ψ(X1)

]∣∣)
= lim sup

n→∞
(∣∣E ′[v(1 + h,BnSn)

] − E ′[v(1,BnSn)
]∣∣ + ∣∣E ′[v(1,BnSn)

] − v(0,0)
∣∣

+ ∣∣v(0,0) − v(h,0)
∣∣)

≤ lim sup
n→∞

(
E ′[K1

√
h] + ∣∣E ′[v(1,BnSn)

] − v(0,0)
∣∣) + K1

√
h

= 2K1
√

h + lim sup
n→∞

∣∣E ′[v(1,BnSn)
] − v(0,0)

∣∣.
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As h is arbitrary, it is sufficient to show that

lim
n→∞E ′[v(1,BnSn)

] = v(0,0). (3.12)

The required estimates are intricate, so we will give them in Lemma 3.2 below. �

Lemma 3.2. In the setup of Theorem 3.1,

lim
n→∞E ′[v(1,BnSn)

] = v(0,0).

Proof. For all n ≥ 3,

v(1,BnSn) − v(0,0)

= v(1,BnSn) − v

(
n − 1

n
,BnSn

)
+

n−1∑
i=2

[
v

(
i

n
,BnSi+1

)
− v

(
i − 1

n
,BnSi

)]
(3.13)

+ v

(
1

n
,BnS2

)
− v(0,0).

Our analysis now becomes delicate. We would like to show that when we apply E ′ to (3.13) and
let n → ∞, the result goes to zero. Since the number of terms in this decomposition is growing
with n, we must prove that our v-increments are decaying quite rapidly. The properties of v

arising from Lemma 2.9 are only enough to manage the first and last terms. By the 1/2-Hölder
continuity of v(·, x),

E ′
[∣∣∣∣v(1,BnSn) − v

(
n − 1

n
,BnSn

)∣∣∣∣
]

≤ E ′
[
K1

√
1

n

]
= K1

√
1

n
. (3.14)

If we also use the Lipschitz continuity of v(t, ·) and the fact that Y2 is independent from Y1, we
get

E ′
[∣∣∣∣v

(
1

n
,BnS2

)
− v(0,0)

∣∣∣∣
]

≤ E ′
[∣∣∣∣v

(
1

n
,BnS2

)
− v(0,BnS2)

∣∣∣∣
]

+ E ′[∣∣v(0,BnS2) − v(0,0)
∣∣]

(3.15)

≤ E ′
[
K1

√
1

n

]
+ E ′[Lip(ψ)Bn|S2|

]

≤ K1

√
1

n
+ 2 Lip(ψ)BnE ′[|Y1|

]
.

We remark that although we only referred to Cb.Lip(R) in our definition of independence, our
manipulations are still valid by Exercise 3.20 in [30].
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Proposition 2.10 allows us to control the remaining terms. Again, this motivates our require-
ment that K± ⊂ (λ,�) for some 0 < λ < �. We can find a constant K2 > 0 such that ∂tv exists
on [0,1] ×R and

∣∣∂tv(t0, x) − ∂tv(t1, x)
∣∣ ≤ K2|t0 − t1|γ /α,

(3.16)∣∣∂tv(t, x0) − ∂tv(t, x1)
∣∣ ≤ K2|x0 − x1|γ

for all (t0, x), (t1, x), (t, x0), and (t, x1) ∈ [0,1] ×R. We then break down the rest of (3.13) a bit
further. If 2 ≤ i ≤ n − 1,

v

(
i

n
,BnSi+1

)
− v

(
i − 1

n
,BnSi

)

= v

(
i

n
,BnSi+1

)
− v

(
i − 1

n
,BnSi+1

)
− ∂tv

(
i − 1

n
,BnSi

)
1

n

+ ∂tv

(
i − 1

n
,BnSi

)
1

n
+ v

(
i − 1

n
,BnSi+1

)
− v

(
i − 1

n
,BnSi

)
.

Let

Cn
i = v

(
i

n
,BnSi+1

)
− v

(
i − 1

n
,BnSi+1

)
− ∂tv

(
i − 1

n
,BnSi

)
1

n

and

Dn
i = ∂tv

(
i − 1

n
,BnSi

)
1

n
+ v

(
i − 1

n
,BnSi+1

)
− v

(
i − 1

n
,BnSi

)
.

We can establish an appropriate bound for the Cn
i ’s using (3.16):

∣∣Cn
i

∣∣ =
∣∣∣∣1

n

∫ 1

0

[
∂tv

(
i − 1 + β

n
,BnSi+1

)
− ∂tv

(
i − 1

n
,BnSi+1

)]
dβ

+ 1

n

[
∂tv

(
i − 1

n
,BnSi+1

)
− ∂tv

(
i − 1

n
,BnSi

)]∣∣∣∣
≤ 1

n

∫ 1

0

∣∣∣∣∂tv

(
i − 1 + β

n
,BnSi+1

)
− ∂tv

(
i − 1

n
,BnSi+1

)∣∣∣∣dβ

+ 1

n

∣∣∣∣∂tv

(
i − 1

n
,BnSi+1

)
− ∂tv

(
i − 1

n
,BnSi

)∣∣∣∣
≤ 1

n

∫ 1

0
K2

∣∣∣∣βn
∣∣∣∣
γ /α

dβ + 1

n
K2B

γ
n |Yi+1|γ

≤ K2

n

[(
1

n

)γ /α

+ B
γ
n |Yi+1|γ

]
.
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Hence, for 2 ≤ i ≤ n − 1,

E ′[∣∣Cn
i

∣∣] ≤ K2

n

[(
1

n

)γ /α

+ B
γ
n E ′[|Y1|γ

]]
(3.17)

since Yi+1 and Y1 are identically distributed. Note that hypothesis (ii) gives that

E ′[|Y1|γ
]
< ∞.

While we need (3.16) to bound the Dn
i ’s, we finally use (3.1), too. Let ε > 0. By (3.1), we can

find N such that n ≥ N implies

n

∣∣∣∣E ′[δBnY1v(t, x)
] −

(
1

n

)
sup

k±∈K±

{∫
R

δzv(t, x)Fk±(dz)

}∣∣∣∣ < ε

on [0,1] ×R. Now

E ′
[
v

(
i − 1

n
,Bnx + BnY1

)]
− v

(
i − 1

n
,Bnx

)

= E ′
[
δBnY1v

(
i − 1

n
,Bnx

)]

by (i), so for these n,

n

∣∣∣∣v
(

i − 2

n
,Bnx

)
− E ′

[
v

(
i − 1

n
,Bnx + BnY1

)]∣∣∣∣
= n

∣∣∣∣v
(

i − 2

n
,Bnx

)
− E ′

[
v

(
i − 1

n
,Bnx + BnY1

)]

+ v

(
i − 1

n
,Bnx

)
− v

(
i − 1

n
,Bnx

)

+
(

1

n

)
∂tv

(
i − 1

n
,Bnx

)
+

(
1

n

)
sup

k±∈K±

{∫
R

δzv

(
i − 1

n
,Bnx

)
Fk±(dz)

}∣∣∣∣
≤

∣∣∣∣−v((i − 2)/n,Bnx) − v((i − 1)/n,Bnx)

−1/n
+ ∂tv

(
i − 1

n
,Bnx

)∣∣∣∣
+ n

∣∣∣∣E ′
[
δBnY1v

(
i − 1

n
,Bnx

)]

−
(

1

n

)
sup

k±∈K±

{∫
R

δzv

(
i − 1

n
,Bnx

)
Fk±(dz)

}∣∣∣∣
<

K2

nγ/α
+ ε
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by the mean value theorem, (3.2), and (3.16). Then

∣∣∣∣∂tv

(
i − 1

n
,Bnx

)
1

n
+ E ′

[
v

(
i − 1

n
,Bnx + BnYi+1

)]
− v

(
i − 1

n
,Bnx

)∣∣∣∣
≤ 1

n

∣∣∣∣∂tv

(
i − 1

n
,Bnx

)
+ v((i − 2)/n,Bnx) − v((i − 1)/n,Bnx)

1/n

∣∣∣∣
(3.18)

+
∣∣∣∣E ′

[
v

(
i − 1

n
,Bnx + BnY1

)]
− v

(
i − 2

n
,Bnx

)∣∣∣∣
<

2K2

n1+γ /α
+ ε

n

for 2 ≤ i ≤ n − 1, x ∈ R, and n ≥ N .
Since Yi+1 is independent from (Y1, . . . , Yi), repeated application of (3.18) shows that for

n ≥ N ,

E ′
[

n−1∑
i=2

Dn
i

]
< (n − 2)

(
2K2

n1+γ /α
+ ε

n

)
<

2K2

nγ/α
+ ε (3.19)

and

E ′
[

n−1∑
i=2

Dn
i

]
> −(n − 2)

(
2K2

n1+γ /α
+ ε

n

)
> − 2K2

nγ/α
− ε. (3.20)

We only need to combine our bounds above and invoke hypothesis (ii) to finish the proof. By
(3.14), (3.15), (3.17), (3.19) and (3.20),

E ′[v(1,BnSn)
] − v(0,0)

= E ′
[
v(1,BnSn) − v

(
n − 1

n
,BnSn

)
+

n−1∑
i=2

Cn
i +

n−1∑
i=2

Dn
i + v

(
1

n
,BnS2

)
− v(0,0)

]

≤ E ′
[∣∣∣∣v(1,BnSn) − v

(
n − 1

n
,BnSn

)∣∣∣∣
]

+
n−1∑
i=2

E ′[∣∣Cn
i

∣∣] + E ′
[

n−1∑
i=2

Dn
i

]

+ E ′
[∣∣∣∣v

(
1

n
,BnS2

)
− v(0,0)

∣∣∣∣
]

<

(
K1

√
1

n

)
+

(
K2

[(
1

n

)γ /α

+ B
γ
n E ′[|Y1|γ

]])
+

(
2K2

nγ/α
+ ε

)

+
(

K1

√
1

n
+ 2 Lip(ψ)BnE ′[|Y1|

])
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and

E ′[v(1,BnSn)
] − v(0,0)

> −
(

K1

√
1

n

)
−

(
K2

[(
1

n

)γ /α

+ B
γ
n E ′[|Y1|γ

]])
−

(
2K2

nγ/α
+ ε

)

−
(

K1

√
1

n
+ 2 Lip(ψ)BnE ′[|Y1|

])

for n ≥ N . Since ε > 0 is arbitrary and limn→∞ Bn = 0, we have

lim
n→∞E ′[v(1,BnSn)

] = v(0,0). �

4. Examples

Example 4.1. X1 is in its own domain of normal attraction. While this follows directly from the
α-stability of X1, we will demonstrate this using Theorem 3.1 as well in order to unpack our
main result.

Let ψ ∈ Cb.Lip(R) and u be defined by

u(t, x) = E
[
ψ(x + Xt)

]
on [0,∞) ×R. If X̃1 is an independent copy of X1, then

E
[
ψ(aX1 + bX̃1)

] = E
[
E
[
ψ

(
ax + (

bα
)1/α

X̃1
)]

x=X1

]
= E

[
u
(
bα, aX1

)]
= u

(
aα + bα,0

)
= E

[
ψ

((
aα + bα

)1/α
X1

)]
for any a, b ≥ 0 by Lemmas 2.6 and 2.7, that is, X1 is α-stable. Exercise 3.20 in [30] implies
that the same relation actually holds for a broader class of maps. In particular,

21/αE[X1] = E
[
E[x + X̃1]x=X1

]
= E

[
X1 + E[X1]

]
= 2E[X1],

so

E[X1] = 0.

It follows similarly that

E[−X1] = 0.



2564 E. Bayraktar and A. Munk

We know

E
[|X1|

]
< ∞

from Lemma 2.8.
To check the final hypothesis, let 0 < h < 1 and v be the unique viscosity solution of (3.2).

Then for all (t, x) ∈ [0,1] ×R,

n

∣∣∣∣E[
δBnX1v(t, x)

] −
(

1

n

)
sup

k±∈K±

{∫
R

δzv(t, x)Fk±(dz)

}∣∣∣∣
= n

∣∣∣∣E[
v(t, x + BnX1)

] − v(t, x) +
(

1

n

)
∂tv(t, x)

∣∣∣∣
= n

∣∣∣∣v
(

t − 1

n
,x

)
− v(t, x) +

(
1

n

)
∂tv(t, x)

∣∣∣∣
=

∣∣∣∣v(t − 1/n, x) − v(t, x)

1/n
+ ∂tv(t, x)

∣∣∣∣
≤ K2

nγ/α

by (3.11), (3.16) and Lemma 2.7. Here, b = 1 or, equivalently,

Bn = 1

n1/α
.

Abusing notation, Theorem 3.1 shows that

BnSn
d→ X1

as n → ∞.

Example 4.2. Up to some “uniformity” assumptions, this example has a straightforward inter-
pretation.

Let the uncertainty subset of distributions (see [30]) of Y1 be given by {Pθ : θ ∈ �}. If for all θ ∈ �, a classical
random variable with distribution Pθ is in the domain of normal attraction of a classical α-stable random variable
with triplet θ , then Y1 is in the domain of normal attraction of X1.

Let b, M > 0 and f be a non-negative function on N tending to zero as n → ∞. For each
k± ∈ K±, let Wk± be a classical random variable such that

(i) Wk± has mean zero;
(ii) Wk± has a cdf FWk± of the form

FWk± (z) =

⎧⎪⎨
⎪⎩

[
bα(k−/α) + β1,k±(z)

] 1

|z|α , z < 0,

1 − [
bα(k+/α) + β2,k±(z)

] 1

zα
, z > 0,

(4.1)
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for some continuously differentiable functions β1,k± on (−∞,0] and β2,k± on [0,∞)

with

lim
z→−∞β1,k±(z) = lim

z→∞β2,k±(z) = 0;
(iii) the following quantities are all less than M :

∣∣∣∣
∫ −1

−∞
β1,k±(z)

(−z)α
dz

∣∣∣∣,
∣∣∣∣
∫ 0

−1

β ′
1,k±(z)

(−z)α−1
dz

∣∣∣∣,
∫ 0

−1

|−β ′
1,k±(z)z + αβ1,k±(z)|

(−z)α−1
dz,

∣∣∣∣
∫ ∞

1

β2,k±(z)

zα
dz

∣∣∣∣,
∣∣∣∣
∫ 1

0

β ′
2,k±(z)

zα−1
dz

∣∣∣∣,
∫ 1

0

|−β ′
2,k±(z)z + αβ2,k±(z)|

zα−1
dz;

and
(iv) the following quantities are less than f (n) for all n:

∣∣β2,k±
(
B−1

n

)∣∣, ∫ ∞

1

|β2,k±(B−1
n z)|

zα
dz,

∫ 1

0

|β2,k±(B−1
n z)|

zα−1
dz

∣∣β1,k±
(−B−1

n

)∣∣, ∫ −1

−∞
|β1,k±(B−1

n z)|
(−z)α

dz,

∫ 0

−1

|β1,k±(B−1
n z)|

(−z)α−1
dz.

Note that by (ii) alone, the terms in (iii) are finite and the terms in (iv) approach zero as n → ∞.
In other words, the content of (iii) and (iv) is that uniform bounds and minimum rates of conver-
gence exist.

Define an operator E ′ on a space H of suitable functions by

E ′[ϕ] = sup
k±∈K±

∫
R

ϕ(z) dFWk± (z)

for all ϕ ∈ H. The exact composition of H is irrelevant for our purposes here. Clearly, (R,H,E ′)
is a sublinear expectation space.

Let Y1 be the random variable on this space defined by

Y1(x) = x

for all x ∈ R. We will use Theorem 3.1 to show that

BnSn
d→ X1

as n → ∞. Most of the difficulties have already been addressed during our discussion of the
classical case in Section 3.

Since each Wk± has mean zero,

E ′[Y1] = sup
k±∈K±

∫
R

z dFWk± (z) = 0
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and

E ′[−Y1] = sup
k±∈K±

∫
R

−z dFWk± (z) = 0.

After recalling that K± ⊂ (λ,�), (iii) gives

E ′[|Y1|
]
< ∞

using (3.3) and (4.1). Observe that we are solving (4.1) for the obvious expressions to obtain
uniform bounds on the terms

∣∣β2,k±(1)
∣∣, ∣∣β1,k±(−1)

∣∣, ∣∣∣∣
∫ 1

0

bαk+ + αβ2,k±(z)

zα
dz

∣∣∣∣
and ∣∣∣∣

∫ 0

−1

bαk− + αβ1,k±(z)

(−z)α
dz

∣∣∣∣.
To check the remaining hypothesis, let 0 < h < 1, ψ ∈ Cb.Lip(R), and v be the unique viscosity

solution of (3.2). The techniques of (3.4) demonstrate that

n

∣∣∣∣E ′[δBnY1v(t, x)
] −

(
1

n

)
sup

k±∈K±

{∫
R

δzv(t, x)Fk±(dz)

}∣∣∣∣
≤

(
1

bα

)
sup

k±∈K±

∣∣∣∣
∫
R

δzv(t, x)

(
β ′

1,k±(B−1
n z)|B−1

n z| + αβ1,k±(B−1
n z)

|z|α+1
1(−∞,0)(z)

+ −β ′
2,k±(B−1

n z)|B−1
n z| + αβ2,k±(B−1

n z)

|z|α+1
1(0,∞)(z)

)
dz

∣∣∣∣
for (t, x) ∈ [0,1]×R and n ≥ 1. Combining (3.5), (3.6), (3.7) and (3.8) with (iii) and (iv) proves
that this last expression approaches zero in the required way.

Appendix A: Interior regularity theory background

Interior regularity theory for fully nonlinear integro-differential equations is rich and well devel-
oped. Before describing the results that we need for our proof, we provide a short discussion of
the literature. Readers new to this field are encouraged to first consult [41] for an introduction.

Some results and methods from the interior regularity theory for PDEs can be imported to
the non-local case after minor modifications. For other aspects of the theory, this is false. As
described in Section 2 of [14], a Hölder estimate and the Harnack inequality appear together
in the local setting; however, there are non-local equations for which a Hölder estimate holds
in the absence of the Harnack inequality. A partial list of other ways that non-local results can
significantly differ from their local counterparts can be found in [41].
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Early work on the regularity of integro-differential equations focused on equations in diver-
gence form. A survey of these results is contained in [15]. For equations in non-divergence form,
[3] contains the first Harnack inequality and Hölder estimate. The equations studied in [3] are of
the form ∫

Rd

[
w(x + z) − w(x) − z∇w(x)1B1(z)

]
k(x, z) dz = 0,

where k is a kernel such that

k(x, z) = k(x,−z) (A.1)

and

λ1

|z|d+α1
≤ k(x, z) ≤ �1

|z|d+α1
(A.2)

for some constants λ1, �1 > 0 and α1 ∈ (0,2). For a review of the extensions of this initial work,
see [15].

The Hölder estimate in [3] blows up as α1 → 2. Many other early estimates share this feature.
The first paper to prove a Hölder estimate and Harnack inequality without this property is [5].
The equations are of the form

inf
r

sup
s

{∫
Rd

[
w(x + z) − w(x) − z∇w(x)1B1(z)

]
krs(z) dz

}
= 0 (A.3)

for kernels krs depending only on z and satisfying (A.1), (A.2) and an additional smoothness
condition. More precisely, for some fixed positive constants ρ and C,∫

Rd\Bρ

|k(z) − k(z − ε)|
|ε| dz ≤ C

whenever

|ε| < ρ

2
.

The paper culminates in a C1,γ estimate for the solution of (A.3).
These findings have been extended in a number of ways. For instance, references such as

[17,18,33,36] and [19] study equations with non-symmetric kernels, that is, kernels that do not
satisfy (A.1). Other examples of recent work include [6,34] and [16].

We now collect the definitions and results from [18] and [19] that we need for our proof.
These references describe properties of the solutions to a broad class of non-local fully nonlinear
parabolic equations of the form

∂tw(t, x) − Iw(t, x) = f (t).

Due to the general nature of these equations, [18] and [19] are quite technical. Since (2.1) is an
easy case of the equations studied in these papers, we will simplify this material and present only
the version that we need for our argument.
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Notation A.1. Let

Cτ,r (t, x) := (t − τ, t] × (x − r, x + r).

We write Cτ,r for the cylinder Cτ,r (0,0). For suitable functions w, let

δ̃zw(t, x) := w(t, x + z) − w(t, x) − ∂xw(t, x)1(−1,1)(z)z;

‖w‖L1(ν) :=
∫
R

∣∣w(z)
∣∣min

(
1, |z|−1−α

)
dz; and

[w]C0,1((t0,t1]�→L1(ν)) := sup
(t−τ,t]⊆(t0,t1]

‖w(t, ·) − w(t − τ, ·)‖L1(ν)

τ
.

We also let

bk± := (k− − k+)

∫ ∞

1

dz

zα

for all k± ∈ K±.

In the literature, one also works frequently with cylinders of the form

(t − τα, t] × (x − r, x + r)

due to their convenient scaling properties. We introduce

‖ · ‖L1(ν)

and

[·]C0,1((t0,t1]�→L1(ν))

due to their role in upcoming Hölder estimates, namely, Lemmas A.4 and A.5. The symbols δ̃z

and bk± facilitate the identification of (2.1) with the equations studied [18] and [19]. Observe
that for all k± ∈ K± and suitable functions w,∫

R

δzw(t, x)Fk±(dz) = bk±∂xw(t, x) +
∫
R

δ̃zw(t, x)Fk±(dz). (A.4)

Definition A.2. Since K± ⊂ (λ,�), we can pick β > 0 such that

sup
k±∈K±

{
sup

r∈(0,1)

{
rα−1

∣∣∣∣bk± +
∫

(−1,1)\(−r,r)

zFk±(dz)

∣∣∣∣
}}

≤ β.

Let L0 be the family of operators

w(t, x) �→ b∂xw(t, x) +
∫
R

δ̃zw(t, x)
k(z)

|z|1+α
dz,
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where k is a kernel and b is a constant such that λ ≤ k ≤ � and

sup
r∈(0,1)

rα−1
∣∣∣∣b +

∫
(−1,1)\(−r,r)

zk(z)

|z|1+α
dz

∣∣∣∣ ≤ β.

We say that an operator in L0 is in L1 if

∣∣∂zk(z)
∣∣ ≤ �

|z| ,

and an operator in L1 is in L2 if ∣∣∂2
zzk(z)

∣∣ ≤ �

|z|2 .

The stronger regularity requirements on the kernels (in L2, say, compared to those in L0) give
rise to stronger regularity results. All of the operators

w(t, x) �→ bk±∂xw(t, x) +
∫
R

δ̃zw(t, x)Fk±(dz)

are in each of these families. As we will soon see in (B.1), we will be especially interested in the
operator I defined by

Iw(t, x) = inf
k±∈K±

{
bk±∂xw(t, x) +

∫
R

δ̃zw(t, x)Fk±(dz)

}
.

I is a specific case of an extremal operator.

Definition A.3. For a collection of operators L ⊆ L0, define the extremal operators M+
L and

M−
L by

M+
L = sup

L∈L
L and M−

L = inf
L∈L

L.

I has a number of other key properties including the following.4

(i) I0 = 0.
(ii) I is uniformly elliptic with respect to Lj , that is,

M−
Lj

(w1 − w2) ≤ Iw1 − Iw2 ≤ M+
Lj

(w1 − w2).

(iii) I is translation invariant, that is,

I
(
w(t0 + ·, x0 + ·))(t, x) = (Iw)(t0 + t, x0 + x).

4Though we will not emphasize this point, we remark in passing that Iw(t, x) is well-defined for any w(t, ·) ∈ C1,1(x)∩
L1(ν) (see Section 2 of [19]).
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(i) is trivial. See Section 2 of [19] for (ii). Since I has constant coefficients, we get (iii). We
highlight these classes of operators and properties of I for the convenience of the reader com-
paring the next three results to their original versions (see Theorem 2.3 in [19] for Lemma A.4;
Theorems 1.1, 2.4, and 2.5 in [19] for Lemma A.5; and Theorem 3.3 in [18] for Lemma A.6).5

Lemma A.4. Let w satisfy

∂tw − M+
L0

w ≤ 0,

∂tw − M−
L0

w ≥ 0

in the viscosity sense on C1,1. There is some γ ∈ (0,1) and C > 0 depending only on λ, �, and
β such that for every (t0, x0), (t1, x1) ∈ C1/2,1/2,

|w(t0, x0) − w(t1, x1)|
(|t0 − t1|1/α + |x0 − x1|)γ ≤ C‖w‖L1((−1,0]�→L1(ν)).

Lemma A.5. Let w satisfy

∂tw − Iw = 0

in the viscosity sense on C1,1 . There is some γ ∈ (0,1) and C > 0 depending only on λ, �, and
β such that for every (t0, x0), (t1, x1) ∈ C1/2,1/2,

∣∣∂xw(t0, x0)
∣∣ + |∂xw(t0, x0) − ∂xw(t1, x1)|

(|t0 − t1|1/α + |x0 − x1|)γ ≤ C‖w‖L1((−1,0]�→L1(ν))

and ∣∣∂tw(t0, x0)
∣∣ + |∂tw(t0, x0) − ∂tw(t1, x1)|

(|t0 − t1|1/α + |x0 − x1|)γ ≤ C[w]C0,1((−1,0]�→L1(ν)).

We also have

‖w‖Cα+γ (C1/2,1/2) ≤ C
(‖w‖L1((−1,0]�→L1(ν)) + [w1(−1,1)c ]C0,1((−1,0]�→L1(ν))

)
.

Lemma A.6. Let w1, w2 satisfy

∂twi − Iwi = 0

in the viscosity sense on some domain �. Then

∂t (w1 − w2) − M+
L0

(w1 − w2) ≤ 0,

∂t (w1 − w2) − M−
L0

(w1 − w2) ≥ 0

5A number of related results exist in the literature. We mention only a small sample. Theorem 12.1 in [5], Theorem 1.1
in [14] and Theorem 7.1 in [33] are Cγ estimates along the lines of Lemma A.4. Theorem 8.1 in [33], Theorem 13.1 in
[5], Theorem 1.1 in [6] and Theorem 1.1 in [34] contain C1,γ or Cα+γ estimates similar to those in Lemma A.5. Like
Lemma A.6, Theorem 5.9 in [5] and Lemma 3.2 in [35] investigate the difference of viscosity solutions.
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also holds in the viscosity sense on �.

We will need one more result (for the original version, see Lemma 5.6 and the proof of Corol-
lary 5.7 in [7]). It is the key to a standard technique from the literature allowing one to repeatedly
apply an estimate such as Lemma A.4 in order to obtain a higher regularity estimate.

Lemma A.7. Let 0 < β1 ≤ 1, 0 < β2 < 1, L > 0, and w ∈ L∞([−1,1]) satisfy

‖w‖L∞([−1,1]) ≤ L.

For 0 < |h0| ≤ 1, define wβ1,h0 by

wβ1,h0(x) = w(x + h0) − w(x)

|h0|β1

for all x ∈ Ih0 , where Ih0 = [−1,1−h0] if h0 > 0 and Ih0 = [−1−h0,1] if h0 < 0. Suppose that

wβ1,h0 ∈ Cβ2(Ih0)

and

‖wβ1,h0‖Cβ2 (Ih0 ) ≤ L

for any 0 < |h0| ≤ 1.

(i) If β1 + β2 < 1, then

w ∈ Cβ1+β2
([−1,1])

and

‖w‖Cβ1+β2 ([−1,1]) ≤ CL.

(ii) If β1 + β2 > 1 and β1 �= 1, then

w ∈ C0,1([−1,1])
and

‖w‖C0,1([−1,1]) ≤ CL.

(iii) If β1 = 1, then w ∈ C1,β2([−1,1]) and

‖w‖C1,β2 ([−1,1]) ≤ CL.

In any of these cases, C depends only on β1 + β2.

We will often apply these results on different domains than we have listed above without
comment. For instance, we might use Lemma A.5 on C1,1(t, x) or Lemma A.7 on an arbitrary
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closed interval. These “new” results are obtained merely by translating or rescaling, both standard
routines in the literature. As an example of such an operation, notice that if w satisfies

∂tw − Iw = 0

in the viscosity sense on (t1, t2] × �, then w̃ defined by

w̃(t, x) = w
(
rαt + t0, rx + x0

)
satisfies

∂t w̃ − I w̃ = 0

in the viscosity sense on (
t1 − t0

rα
,
t2 − t0

rα

]
× � − x0

r

(see Section 2.1.1 of [18]). Further information can be found in [18,19] and [7].

Appendix B: Proof of Proposition 2.10

In the hope of keeping the number of constants in our argument at a reasonable level, we will
not issue a new subscript each time we introduce a new constant B below. Also, we will write ū

instead of −u. From (2.1) and (A.4), ū is a viscosity solution of

∂t ū(t, x) − I ū(t, x) = 0, (t, x) ∈ (0,∞) ×R

(B.1)
ū(0, x) = −ψ(x), x ∈ R.

It suffices to show that parts (i)–(iv) of Proposition 2.10 hold for ū and (B.1).
The quantities

[ū]C0,1((t0,t1]�→L1(ν))

play a crucial role in Lemma A.5, so our first goal will be to control them for t0 greater than some
positive number. We will do this by showing that ū is uniformly Lipschitz as a function of time
for times above some lower bound. Achieving a Lipschitz estimate can be done using a stan-
dard strategy. Specifically, we will begin by obtaining an initial Cγ/α estimate from Lemma A.4.
Lemma A.6 will allow us to apply Lemma A.4 to get a Cγ/α estimate for the incremental quo-
tients of ū. Then Lemma A.7 will give that ū is C2γ /α in time. We will repeat these steps to show
that ū is C3γ /α in time, C4γ /α in time, and so on until we conclude that ū is Lipschitz in time.

Since

M−
L0

w ≤ Iw ≤M+
L0

w,

ū satisfies

∂t ū − M+
L0

ū ≤ 0,

∂t ū − M−
L0

ū ≥ 0
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in the viscosity sense on (0,∞) ×R. For any t̄ > 1,

∥∥ū(t̄ + ·, ·)∥∥
L1((−1,0]�→L1(ν))

=
∫ 0

−1

∫
R

∣∣ū(t̄ + t, z)
∣∣min

(
1, |z|−1−α

)
dzdt

≤ ‖ψ‖L∞(R)

∫ 0

−1

∫
R

min
(
1, |z|−1−α

)
dzdt

by Lemma 2.9. Lemma A.4 implies that for some B , γ > 0,

|ū(t0, x0) − ū(t1, x1)|
(|t0 − t1|1/α + |x0 − x1|)γ ≤ B (B.2)

for every (t0, x0), (t1, x1) ∈ C1/2,1/2(t̄ , x̄) with t̄ > 1.
For 0 < |h0| < 1/2, define ūγ /α,h0 by

ūγ /α,h0(t, x) = ū(t + h0, x) − ū(t, x)

|h0|γ /α

for all (t, x) ∈ [1/2,∞) ×R. Then

‖ūγ /α,h0‖L∞((1,∞)×R) ≤ B

by (B.2). Hence,

∥∥ūγ /α,h0(t̄ + ·, ·)∥∥
L1((−1,0]�→L1(ν))

≤ B

∫
R

min
(
1, |z|−1−α

)
dz

for any t̄ > 2.
Notice that

∂t ū(· + h0, ·) − I ū(· + h0, ·) = 0

in the viscosity sense on (1/2,∞) × R because (B.1) has constant coefficients. Lemma A.6
implies that

∂t ūγ /α,h0 − M+
L0

ūγ /α,h0 ≤ 0,

∂t ūγ /α,h0 − M−
L0

ūγ /α,h0 ≥ 0

in the viscosity sense on (1/2,∞) ×R. For some B ,

|ūγ /α,h0(t0, x0) − ūγ /α,h0(t1, x1)|
(|t0 − t1|1/α + |x0 − x1|)γ ≤ B

for every (t0, x0), (t1, x1) ∈ C1/2,1/2(t̄ , x̄) with t̄ > 2 by Lemma A.4.
Lemma A.7 shows that for a small r1 (less than 1/4), we can find B such that

ū(·, x̄) ∈ C2γ /α
([t̄ − r1, t̄ + r1]

)
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and ∥∥ū(·, x̄)
∥∥

C2γ /α([t̄−r1,t̄+r1]) ≤ B (B.3)

for t̄ > 2.
Due to Lemma A.7, assume without loss of generality that α/γ is not an integer. Starting from

the incremental quotient

ū(t + h0, x) − ū(t, x)

|h0|2γ /α
,

we can use these steps to produce a C3γ /α estimate for ū in time. By continuing to repeat this pro-
cedure, we will obtain a C4γ /α estimate, a C5γ /α estimate, and so on until we obtain a Lipschitz
estimate for ū in time. More precisely, we will find B and a small rn such that

ū(·, x̄) ∈ C0,1([t̄ − rn, t̄ + rn]
)

and ∥∥ū(·, x̄)
∥∥

C0,1([t̄−rn,t̄+rn]) ≤ B

for t̄ > �α/γ �.
For t0, t1 > �α/γ �,∣∣ū(t0, x0) − ū(t1, x0)

∣∣ ≤ ∣∣ū(s0, x0) − ū(s1, x0)
∣∣ + · · · + ∣∣ū(sN−1, x0) − ū(sN , x0)

∣∣
≤ B|s0 − s1| + · · · + B|sN−1 − sN |
= B|t0 − t1|,

where t0 = s0, t1 = sN , and si < si+1 ≤ si + 2rn. This indicates that

ū(·, x̄) ∈ C0,1((�α/γ �,∞))
and ∥∥ū(·, x̄)

∥∥
C0,1((�α/γ �,∞))

≤ B.

Then t0, t1 > �α/γ � implies

[ū1(−1,1)c ]C0,1((t0,t1]�→L1(ν)) ≤ [ū]C0,1((t0,t1]�→L1(ν))

= sup
(t−τ,t]⊆(t0,t1]

‖ū(t, ·) − ū(t − τ, ·)‖L1(ν)

τ

≤ B

∫
R

min
(
1, |z|−1−α

)
dz.

Lemma A.5 gives that for t̄ > �α/γ �,

∣∣∂xū(t0, x0)
∣∣ + |∂xū(t0, x0) − ∂xū(t1, x1)|

(|t0 − t1|1/α + |x0 − x1|)γ ≤ B (B.4)
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and ∣∣∂t ū(t0, x0)
∣∣ + |∂t ū(t0, x0) − ∂t ū(t1, x1)|

(|t0 − t1|1/α + |x0 − x1|)γ ≤ B (B.5)

for every (t0, x0), (t1, x1) ∈ C1/2,1/2(t̄ , x̄). It also shows that

‖ū‖Cα+γ (C1/2,1/2(t̄ ,x̄)) ≤ B. (B.6)

After suitably rescaling, we see that these inequalities actually hold for t̄ > (1 + h)/2. Part (i)
of Proposition 2.10 then follows from (B.4) and (B.5), while part (iii) follows from (B.6). From
(B.5) and a simple covering argument, we know that as long as the distance between x0 and x1
is under some arbitrary bound, we can find B such that∣∣∂t ū(t, x0) − ∂t ū(t, x1)

∣∣ ≤ B|x0 − x1|γ

for t ∈ [h,h + 1]. Since ∂t ū is bounded on [h,h + 1] × R, we can drop the distance constraint
and get the second inequality in part (ii). A similar covering argument finishes the proof of the
first inequality and yields part (ii) of Proposition 2.10.

It remains to prove part (iv). In this case, the equation for ū is

∂t ū(t, x) − bk±∂xū(t, x) −
∫
R

δ̃zū(t, x)Fk±(dz) = 0, (t, x) ∈ (0,∞) ×R

(B.7)
ū(0, x) = −ψ(x), x ∈R.

Since ū is a classical solution of this equation on [h,∞) ×R, ū(·, x̄ + ·) also classically satisfies

∂t ū(·, x̄ + ·) − bk±∂xū(·, x̄ + ·) −
∫
R

δ̃zū(·, x̄ + ·)Fk±(dz) = 0

on [h,∞) ×R. Then

ûh0(t, x) := ū(t, x + h0) − ū(t, x)

|h0|
is a classical solution of (B.7) on [h,∞) ×R as well.

Lemma 2.9 implies that

∥∥ûh0(t̄ + ·, ·)∥∥
L1((−1,0]�→L1(ν))

≤ Lip(ψ)

∫
R

min
(
1, |z|−1−α

)
dz

for t̄ > 1. By Lemma A.5, it follows that for some B ,

∣∣∂xûh0(t0, x0)
∣∣ + |∂xûh0(t0, x0) − ∂xûh0(t1, x1)|

(|t0 − t1|1/α + |x0 − x1|)γ ≤ B

for every (t0, x0), (t1, x1) ∈ C1/2,1/2(t̄ , x̄) with t̄ > 1. Rewriting this in terms of ū, we see that we
have found a γ -Hölder estimate for

∂xū(t0, x + h0) − ∂xū(t0, x)

|h0| .
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By Lemma A.7, ∂2
xx ū exists and is bounded on (1/2,∞) × R. By rescaling, we get that this

actually holds on [h,h + 1] ×R.

Acknowledgements

We gratefully acknowledge Dennis Kriventsov of the University of Texas at Austin and Luis Sil-
vestre of the University of Chicago for valuable conversations regarding interior regularity esti-
mates for PIDEs. We also thank the anonymous referees for their helpful advice on improving the
paper. This work is supported by the National Science Foundation under Grant DMS-0955463.

References

[1] Avellaneda, M., Levy, A. and Parás, A. (1995). Pricing and hedging derivative securities in markets
with uncertain volatilities. Appl. Math. Finance 2 73–88.

[2] Barenblatt, G.I. (1979). Similarity, Self-Similarity, and Intermediate Asymptotics. New York–London:
Consultants Bureau [Plenum]. Translated from the Russian by Norman Stein, translation edited by
Milton Van Dyke, with a foreword by Ya.B. Zel’dovich [Ja.B. Zel’dovič]. MR0556234
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