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We introduce the notions of scaling transition and distributional long-range dependence for stationary ran-
dom fields Y on Z

2 whose normalized partial sums on rectangles with sides growing at rates O(n) and
O(nγ ) tend to an operator scaling random field Vγ on R

2, for any γ > 0. The scaling transition is char-
acterized by the fact that there exists a unique γ0 > 0 such that the scaling limits Vγ are different and do
not depend on γ for γ > γ0 and γ < γ0. The existence of scaling transition together with anisotropic and
isotropic distributional long-range dependence properties is demonstrated for a class of α-stable (1 < α ≤ 2)

aggregated nearest-neighbor autoregressive random fields on Z
2 with a scalar random coefficient A having

a regularly varying probability density near the “unit root” A = 1.

Keywords: α-stable mixed moving average; autoregressive random field; contemporaneous aggregation;
isotropic/anisotropic long-range dependence; lattice Green function; operator scaling random field; scaling
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1. Introduction

Following Biermé et al. [7], a scalar-valued random field (RF) V = {V (x);x ∈ R
ν} is called

operator scaling random field (OSRF) if there exist a H > 0 and a ν × ν real matrix E whose all
eigenvalues have positive real parts, such that for any λ > 0

{
V

(
λEx

);x ∈ R
ν
} f.d.d.= {

λH V (x);x ∈ R
ν
}
. (1.1)

(See the end of this section for all unexplained notation.) In the case when E = I is the unit ma-
trix, (1.1) agrees with the definition of H -self-similar random field (SSRF), the latter referred to
as self-similar process when ν = 1. OSRFs may exhibit strong anisotropy and play an important
role in various physical theories; see [7] and the references therein. Several classes of OSRFs
were constructed and discussed in [7,9].

It is well known that the class of self-similar processes is very large, SSRFs and OSFRs being
even more numerous. According to a popular view, the “value” of a concrete self-similar process
depends on its “domain of attraction”. In the case ν = 1, the domain of attraction of a self-similar
stationary increment process V = {V (τ); τ ≥ 0} is defined in [31] as the class of all stationary
processes Y = {Y(t); t ∈ Z+} whose normalized partial sums tend to V in the distributional
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sense, namely,

B−1
n

[nτ ]∑
t=1

Y(t)
f.d.d.−→ V (τ), τ ∈R+, n → ∞. (1.2)

The classical Lamperti’s theorem [31] says that in the case of (1.2), the normalizing constants
Bn necessarily grow as nH (modulus a slowly varying factor) and the limit random process
in (1.2) is H -self-similar. The limit process V in (1.2) characterizes large-scale and dependence
properties of Y , leading to the important concept of distributional short/long memory originating
in Cox [10]; see also ([11], pages 76–77), [22,41–44]. There exists a large probabilistic literature
devoted to studying the partial sums limits of various classes of strongly and weakly dependent
processes and RFs. In particular, several works [12,13,16,32,36,47] discussed the partial sums
limits of (stationary) RFs indexed by t ∈ Z

ν :

B−1
n

∑
t∈K[nx]

Y(t)
f.d.d.−→ V (x), x = (x1, . . . , xν) ∈R

ν+, n → ∞, (1.3)

where K[nx] := {t = (t1, . . . , tν) ∈ Z
ν : 1 ≤ ti ≤ nxi} is a sequence of rectangles whose all sides

increase as O(n). Related results for Gaussian or linear (shot-noise) and their subordinated RFs,
with a particular focus on large-time behavior of statistical solutions of partial differential equa-
tions, were obtained in [1,2,35–37]. See also the recent paper Anh et al. [3] and the numerous
references therein. Most of the above mentioned studies deal with “nearly isotropic” models of
RFs characterized by a single memory parameter H and a limiting SSRF {V (x)} in (1.3).

Similarly as in the case of random processes indexed by Z, stationary RFs usually exhibit
two types of dependence: weak dependence and strong dependence. The second type of de-
pendence is often called long memory or long-range dependence (LRD). Although there is
no single satisfactory definition of LRD, usually it refers to a stationary RF Y having an un-
bounded spectral density f : supx∈[−π,π]ν f (x) = ∞ or a non-summable auto-covariance func-
tion:

∑
t∈Zν | cov(Y (0), Y (t))| = ∞; see [5,13,15–17,21,32]. The above definitions of LRD do

not apply to RFs with infinite variance and are of limited use since these properties are very hard
to test in practice. On the other hand, the characterization of LRD based on partial sums as in the
case of distributional long memory is directly related to the asymptotic distribution of the sample
mean. As noted in [27], in many applications the auto-covariance of RF decays with different ex-
ponents (Hurst indices) in different directions. In the latter case, the partial sums of such RF on
rectangles

∏ν
i=1[1, ni] may grow at different rate with ni → ∞, leading to a limiting anisotropic

OSRF.
The present paper attempts a systematic study of anisotropic distributional long-range de-

pendence, by exhibiting some natural classes of RFs whose partial sums tend to OSRFs. Our
study is limited to the case ν = 2 and RFs with anisotropy along the coordinate axes and a di-
agonal matrix E. Note that for ν = 2 and E = diag(1, γ ),0 < γ �= 1, relation (1.1) writes as

{V (λx,λγ y)} f.d.d.= {λH V (x, y)}, or{
λV (x, y); (x, y) ∈ R

2} f.d.d.= {
V

(
λ1/H x,λγ/Hy

); (x, y) ∈R
2} ∀λ > 0. (1.4)
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The OSRFs V = Vγ depending on γ > 0 are obtained by taking the partial sums limits

n−H(γ )
∑

(t,s)∈K[nx,nγ y]

Y(t, s)
f.d.d.−→ Vγ (x, y), (x, y) ∈ R

2+, n → ∞ (1.5)

on rectangles K[nx,nγ y] := {(t, s) ∈ Z
2 : 1 ≤ t ≤ nx,1 ≤ s ≤ nγ y} whose sides grow at possibly

different rate O(n) and O(nγ ). Somewhat unexpectedly, it turned out that for a large class of RFs
Y = {Y(t, s); (t, s) ∈ Z

2}, the limit in (1.5) exists for any γ > 0. What is more surprising, many
LRD RFs Y exhibit a dramatic change of their scaling behavior at some point γ0 > 0, in the sense

that Vγ
f.d.d.= V± do not depend on γ for γ > γ0 or γ < γ0 and V+

f.d.d.�= V−. This phenomenon
which we call scaling transition seems to be of general nature, suggesting an exciting new area
in spatial research [45]. It occurs for α-stable (1 < α ≤ 2) aggregated autoregressive RFs studied
in this paper, for a natural class of LRD Gaussian RFs discussed in [45] and Remark 2.2 below,
but also in a very different context of network traffic models; see Remark 2.3. In most of the
above mentioned works, the limit Vγ0 is different from V+ and V−, and the differences between
Vγ0,V+,V− can be characterized by dependence properties of increments Vγ (K) := Vγ (x, y) −
Vγ (u, y) − Vγ (x, v) + Vγ (u, v) on rectangles K = (u, x] × (v, y] ⊂ R

2+, which may change
from independent increments in the vertical direction for γ > γ0 to independent increments in
the horizontal direction (or completely dependent increments in the vertical direction) for γ < γ0,
or vice versa. Further on, depending on whether γ0 = 1 or γ0 �= 1, the corresponding RF Y is
said to have isotropic distributional LRD or anisotropic distributional LRD properties.

The main purpose of this work is establishing scaling transition and Type I isotropic and
anisotropic distributional LRD properties for a natural class of aggregated nearest-neighbor
random-coefficient autoregressive RFs with finite and infinite variance. We recall that the idea
of contemporaneous aggregation originates to Granger [26], who observed that aggregation of
random-coefficient AR(1) equations with random beta-distributed coefficient can lead to a Gaus-
sian process with long memory and slowly decaying covariance function. Since then, aggre-
gation became one of the most important methods for modeling and studying long memory
processes; see Beran [5]. For linear and heteroscedastic autoregressive time series models with
one-dimensional time, it was developed in [8,23,24,30,40–44,51,52] and for some RF models in
[32–34,38]. Aggregation is also important for understanding and modeling of spatial LRD pro-
cesses by relating them to short-range dependent random-coefficient autoregressive models in a
natural way. The two models of interest are given by equations:

X3(t, s) = A

3

(
X3(t − 1, s) + X3(t, s + 1) + X3(t, s − 1)

) + ε(t, s), (1.6)

X4(t, s) = A

4

(
X4(t − 1, s) + X4(t + 1, s) + X4(t, s + 1) + X4(t, s − 1)

) + ε(t, s), (1.7)

where {ε(t, s), (t, s) ∈ Z
2} are i.i.d. r.v.’s whose generic distribution ε belongs to the domain of

(normal) attraction of α-stable law, 1 < α ≤ 2, and A ∈ [0,1) is a r.v. independent of {ε(t, s)}
and having a regularly varying probability density φ at a = 1: there exist φ1 > 0 and β > −1
such that

φ(a) ∼ φ1(1 − a)β, a ↗ 1. (1.8)
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(a) 3N (b) 4N

Figure 1. One-step transition probabilities of the random walk underlying models (1.6) and (1.7).

In the sequel, we refer to (1.6) and (1.7) as the 3N and 4N models, N standing for “Neighbor”.
Let X3j ,X4j , j = 1, . . . ,m denote m independent copies of X3,X4 in (1.6), (1.7), respectively.

As shown in Section 5, the aggregated 3N and 4N models defined as m−1 ∑m
j=1 Xij (t, s)

f.d.d.−→
Xi (t, s),m → ∞, i = 3,4 are written as respective mixed α-stable moving-averages:

Xi (t, s) =
∑

(u,v)∈Z2

∫
[0,1)

gi(t − u, s − v, a)Mu,v(da), (t, s) ∈ Z
2, i = 3,4, (1.9)

where {Mu,v(da), (u, v) ∈ Z
2} are i.i.d. copies of an α-stable random measure M on [0,1) with

control measure φ(a)da and gi is the corresponding (lattice) Green function:

gi(t, s, a) =
∞∑

k=0

akpk(t, s), (t, s) ∈ Z
2, a ∈ [0,1), i = 3,4, (1.10)

where pk(t, s) = P(Wk = (t, s)|W0 = (0,0)) is the k-step probability of the nearest-neighbor
random walk {Wk,k = 0,1, . . .} on the lattice Z

2 with one-step transition probabilities p(t, s)

shown in Figure 1(a)–(b).
The main results of Sections 3 and 4 are Theorems 3.1 and 4.1. The first theorem identifies

the scaling limits Vγ , γ > 0 in (1.5) and proves Type I anisotropic LRD property in the sense
of Definition 2.4 with γ0 = 1/2 for the aggregated 3N model X3 in (1.9). Similarly, the second
theorem obtains Type I isotropic LRD property (γ0 = 1) for the aggregated 4N model X4 in (1.9).

The proofs of Theorems 3.1 and 4.1 rely on the asymptotics of the lattice Green function
in (1.10) for models 3N and 4N. Particularly, Lemmas 3.1 and 4.1 obtain the following point-
wise convergences: as λ → ∞,

√
λg3

(
[λt], [√λs],1 − z

λ

)
→ h3(t, s, z), t > 0, s ∈ R, z > 0, (1.11)

g4

(
[λt], [λs],1 − z

λ2

)
→ h4(t, s, z), (t, s) ∈R

2
0, z > 0, (1.12)

respectively, together with dominating bounds of the left-hand sides of (1.11)–(1.12). The limit
functions h3 and h4 in (1.11)–(1.12) (entering stochastic integral representations of the scaling
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limits Vγ in Theorems 3.1 and 4.1) are given by

h3(t, s, z) := 3

2
√

πt
e−3zt−s2/(4t)1(t, z > 0),

(1.13)

h4(t, s, z) := 2

π
K0

(
2
√

z
(
t2 + s2

))
1(z > 0),

where K0 is the modified Bessel function of second kind. Note that h3 in (1.13) is the Green
function of one-dimensional heat equation (modulus constant coefficients), while h4 is the Green
function of the Helmholtz equation in R

2. The proofs of these technical lemmas can be found
in the extended version of this paper available at http://arxiv.org/abs/1303.2209v3 and will be
published elsewhere. Lemmas 3.1 and 4.1 may also have independent interest for studying the
behavior of the autoregressive fields (1.6) and (1.7) with deterministic coefficient A in the vicinity
of A = 1, particularly, for testing stationarity near the unit root in spatial autoregressive models,
cf. [6].

Notation. In what follows, C,C(K), . . . denote generic constants, possibly depending on the

variables in brackets, which may be different at different locations. We write
d−→,

d=,
f.d.d.−→,

f.d.d.= ,
f.d.d.�= for the weak convergence and equality and inequality of distributions and finite-

dimensional distributions, respectively. f.d.d.-lim stands for the limit in the sense of weak con-
vergence of finite-dimensional distributions. For λ > 0 and a ν × ν matrix E,λE := eE logλ,
where eA = ∑∞

k=0 Ak/k! is the matrix exponential. Z
ν+ := {(t1, . . . , tν) ∈ Z

ν : ti > 0, i =
1, . . . , ν},Rν+ := {(x1, . . . , xd) ∈ R

ν : xi > 0, i = 1, . . . , ν}, R̄ν+ := {(x1, . . . , xd) ∈ R
ν : xi ≥

0, i = 1, . . . , ν},Z+ := Z
1+,R+ := R

1+, R̄+ := R̄
1+,R2

0 := R
2 \ {(0,0)}. E = diag(γ1, . . . , γν)

denotes the diagonal ν × ν matrix with entries γ1, . . . , γν on the diagonal. 1A stands for the in-
dicator function of a set A. log+(x) := logx, x ≥ 1, := 0 otherwise. [x] = 
x� := k, x ∈ [k, k +
1), �y� := k + 1, y ∈ (k, k + 1], k ∈ Z. K[nx,nγ y] := {(t, s) ∈ Z

2 : 1 ≤ t ≤ nx,1 ≤ s ≤ nγ y},
K(u,v);(x,y) := {(t, s) ∈R

2+ : u < t ≤ x, v < s ≤ y}.

2. Scaling transition and Type I distributional LRD for RFs
on Z

2

In this section, by RF on R̄
2+ we mean a RF V = {V (x, y); (x, y) ∈ R̄

2+} such that V (x, y) = 0
for any (x, y) ∈ R̄

2+ \R2+. A RF V on R̄
2+ is said trivial if V (x, y) = 0 for any (x, y) ∈ R̄

2+, else
V is said non-trivial.

Definition 2.1. Let Y = {Y(t, s); (t, s) ∈ Z
2} be a stationary RF. Assume that for any γ > 0 there

exist a normalization An(γ ) → ∞ and a non-trivial RF Vγ = {Vγ (x, y); (x, y) ∈ R̄
2+} such that

A−1
n (γ )

∑
(t,s)∈K[nx,nγ y]

Y(t, s)
f.d.d.−→ Vγ (x, y), (x, y) ∈R

2+, n → ∞. (2.1)

http://arxiv.org/abs/1303.2209v3
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We say that Y exhibits scaling transition if there exists γ0 > 0 such that the limits Vγ
f.d.d.= V+, γ >

γ0 and Vγ
f.d.d.= V−, γ < γ0 do not depend on γ for γ > γ0 and γ < γ0 and, moreover, V+ and

V− are mutually different RFs, in the sense that for any a > 0

V+
f.d.d.�= aV−. (2.2)

In such case, Vγ0 will be called the well balanced and V+,V− the unbalanced scaling limits of Y ,
respectively.

Note that the fact that (2.2) hold for any a > 0 excludes a trivial change of the scaling limit
by a linear change of normalization. It follows rather easily that under general set-up scaling
limits Vγ satisfy the self-similarity and stationarity of rectangular increments properties stated in
Proposition 2.1 below. Let V = {V (x, y); (x, y) ∈ R̄

2+} be a RF and K = K(u,v);(x,y) ⊂ R
2+ be a

rectangle. By increment of V on rectangle K we mean the difference

V (K) := V (x, y) − V (u,y) − V (x, v) + V (u, v).

We say that V has stationary rectangular increments if for any (u, v) ∈R
2+,{

V (K(u,v);(x,y));x ≥ u,y ≥ v
} f.d.d.= {

V (K(0,0);(x−u,y−v));x ≥ u,y ≥ v
}
. (2.3)

As mentioned in the Introduction, in the case of scaling transition the limits Vγ0 ,V+,V− can
be characterized by dependence properties of increments V (K). To define these properties, we
introduce some terminology. Let � = {(x, y) ∈ R

2 : ax + by = c} be a line in R
2. A line �′ =

{(x, y) ∈ R
2 : a′x + b′y = c′} is said perpendicular to � (denoted �′ ⊥ �) if aa′ + bb′ = 0. We

say that two rectangles K = K(u,v);(x,y) and K ′ = K(u′,v′);(x′,y′) are separated by line �′ if they
lie on different sides of �′, in which case K and K ′ are necessarily disjoint: K ∩ K ′ = ∅. See
Figure 2.

Definition 2.2. Let V = {V (x, y); (x, y) ∈ R̄
2+} be a RF with stationary rectangular increments,

V (x,0) = V (0, y) ≡ 0, x, y ≥ 0, and � ⊂R
2 be a given line , (0,0) ∈ �. We say that V has:

Figure 2. Rectangles K and K ′ separated by line �′.
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(i) independent rectangular increments in direction � if for any orthogonal line �′ ⊥ � and
any two rectangles K,K ′ ⊂R

2+ separated by �′, increments V (K) and V (K ′) are independent;
(ii) invariant rectangular increments in direction � if V (K) = V (K ′) for any two rectangles

K,K ′ ⊂R
2+ such that K ′ = (x, y) + K for some (x, y) ∈ �;

(iii) properly dependent rectangular increments in direction � if neither (i) nor (ii) holds;
(iv) properly dependent rectangular increments if V has properly dependent rectangular in-

crements in arbitrary direction;
(v) independent rectangular increments if V has independent rectangular increments in ar-

bitrary direction.

Example 2.3. Fractional Brownian sheet BH1,H2 with parameters 0 < H1,H2 ≤ 1 is a Gaussian
process on R̄

2+ with zero mean and covariance

EBH1,H2(x, y)BH1,H2

(
x′, y′)

(2.4)

= 1

4

(
x2H1 + x′2H1 − ∣∣x − x′∣∣2H1

)(
y2H2 + y′2H2 − ∣∣y − y′∣∣2H2

)
,

where (x, y), (x′, y′) ∈ R̄
2+. It follows (see [4], Corollary 3) that for any rectangles K =

K(u,v);(x,y),K
′ = K(u′,v′);(x′,y′)

EBH1,H2(K)BH1,H2

(
K ′)

= 1
4

(∣∣x − x′∣∣2H1 + ∣∣u − u′∣∣2H1 − ∣∣x − u′∣∣2H1 − ∣∣x′ − u
∣∣2H1

)
× (∣∣y − y′∣∣2H2 + ∣∣v − v′∣∣2H2 − ∣∣y − v′∣∣2H2 − ∣∣y′ − v

∣∣2H2
)

(2.5)

= E
(
BH1(x) − BH1(u)

)(
BH1

(
x′) − BH1

(
u′))

× E
(
BH2(y) − BH2(v)

)(
BH2

(
y′) − BH2

(
v′)),

where {BH (x);x ∈ R̄+} is a fractional Brownian motion on R̄+ = [0,∞) with EBH (x)BH (x′) =
(1/2)(x2H + x′2H − |x − x′|2H ),H ∈ (0,1]. (Recall that B1/2 is a standard Brownian motion
with variance EB2

1/2(x) = x and B1(x) = xB1(1) is a random line.) In particular, BH1,H2 has
stationary rectangular increments; see [4], Proposition 2. It follows from (2.5) that B1/2,H2 has
independent rectangular increments in the horizontal direction since EB1/2,H2(K)B1/2,H2(K

′) =
0 for any K,K ′ which are separated by a vertical line, or (u, x]∩ (u′, x′] =∅. Similarly, BH1,1/2

has independent rectangular increments in the vertical direction and B1/2,1/2 has independent
rectangular increments in arbitrary direction. It is also clear that for H1 = 1 (resp., H2 = 1)
BH1,H2 has invariant rectangular increments in the horizontal (resp., vertical) direction.

Let Hi �= 1/2,1, i = 1,2 and � be any line passing through the origin. Let K =
K(x−1,y−1);(x,y),K

′ = K(0,0);(1,1) be two rectangles whose all sides are equal to 1. Clearly, if
x and y are large enough, K and K ′ are separated by an orthogonal line �′ ⊥ �. From (2.5) and
Taylor’s expansion, it easily follows that

EBH1,H2(K)BH1,H2

(
K ′) ∼ C(H1,H2)x

2H1−2y2H2−2 when x, y → ∞,
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with

C(H1,H2) :=
2∏

i=1

(2Hi)(2Hi − 1) �= 0.

This means that for Hi /∈ {1/2,1}, i = 1,2, BH1,H2 has properly dependent rectangular incre-
ments in arbitrary direction �.

Using the terminology of Definition 2.2, we conclude that fractional Brownian sheet BH1,H2

has:

• properly dependent rectangular increments if Hi /∈ {1/2,1}, i = 1,2;
• independent rectangular increments in the horizontal (vertical) direction if H1 = 1/2 (H2 =

1/2);
• invariant rectangular increments in the horizontal (vertical) direction if H1 = 1 (H2 = 1);
• independent rectangular increments if H1 = H2 = 1/2.

Definition 2.4. Let Y = {Y(t, s); (t, s) ∈ Z
2} be a stationary RF. Assume that for any γ > 0

there exist a normalization An(γ ) → ∞ and a non-trivial RF Vγ = {Vγ (x, y); (x, y) ∈ R̄
2+}

such that (2.1) holds.
We say that Y has Type I distributional LRD (or Y is a Type I RF) if there exists γ0 > 0 such

that

• RF Vγ0 has properly dependent rectangular increments, and
• RFs Vγ , γ �= γ0 do not have properly dependent rectangular increments; in other words,

for any γ �= γ0, γ > 0 there exists a line �(γ ) ∈ R
2 such that Vγ has either independent or

invariant increments in the direction �(γ ).

Moreover, a Type I RF Y is said to have isotropic distributional LRD if γ0 = 1 and anisotropic
distributional LRD if γ0 �= 1.

Remark 2.1. The above definition does not assume the occurrence of scaling transition at γ0,
although in all cases known to us, Type I distributional LRD property holds simultaneously with
scaling transition. On the other hand, Remark 2.3 shows that scaling transition need not lead
to Type I distributional LRD. “Type I” indicates that Vγ has properly dependent rectangular
increments at a single point γ = γ0. By contrast, “Type II” Gaussian LRD RFs mentioned in
Remark 2.2 below have the property that Vγ have properly dependent rectangular increments for
all γ > 0.

Remark 2.2. Puplinskaitė and Surgailis [45] established scaling transition and Type I distribu-
tional LRD property for stationary Gaussian RFs with spectral density f (x, y) = g(x, y)(|x|2 +
|y|2H2/H1)−H1/2, (x, y) ∈ [−π,π]2, where Hi > 0,H1H2 < H1 + H2 are parameters and g is
a bounded positive function having nonzero limit at the origin. In this case, γ0 =H1/H2 and the
unbalanced scaling limits V± agree with a fractional Brownian sheet BH1,H2 where at least one of
the two parameters H1,H2 equals 1/2 or 1. Moreover, H1 =H2 (resp., H1 �=H2) correspond to
Type I isotropic (resp., anisotropic) distributional LRD properties. By contrast, “Type II” Gaus-
sian RFs with spectral density of the form f (x, y) = g(x, y)|x|−2d1 |y|−2d2 ,0 < d1, d2 < 1/2 and
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a similar function g do not exhibit scaling transition since their scaling limits Vγ for any γ > 0
coincide with a fractional Brownian sheet Bd1+0.5,d2+0.5 up to a multiplicative constant; see [45].
[32,34] discuss scaling limits of Gaussian LRD RFs with general anisotropy axis.

Remark 2.3. Scaling transition different from Type I arises under joint temporal and contempo-
raneous aggregation of independent LRD processes in telecommunication and economics; see
[14,20,39,42] and the references therein. In these works, {Y(t, s); t ∈ Z}, s ∈ Z are indepen-
dent copies of a stationary LRD process X = {X(t); t ∈ Z} and the scaling limits Vγ of RF
Y = {Y(t, s); (t, s) ∈ Z

2} necessarily have independent increments in the vertical direction for
any γ > 0, meaning that Y cannot have Type I distributional LRD by definition. Nevertheless,
for heavy-tailed centered ON/OFF process X and some other duration based models, the results
in [39] imply that Y exhibits a scaling transition with some γ0 ∈ (0,1) and markedly distinct
“supercritical” and “subcritical” unbalanced scaling limits V±, V+ being a Gaussian RF with
dependent increments in the horizontal direction and V− having α-stable (1 < α < 2) distribu-
tions and independent increments in the horizontal direction. The well-balanced scaling limit Vγ0

termed the “intermediate process” is discussed in detail in [19,42].

Proposition 2.1. Let Y = {Y(t, s); (t, s) ∈ Z
2} be a stationary RF satisfying (2.1) for some γ > 0

and An(γ ) = L(n)nH , where H > 0 and L : [1,∞) → R+ is a slowly varying function. Then
the limit RF Vγ in (1.5) satisfies the self-similarity property (1.4). In particular, Vγ is OSRF
corresponding to E := diag(1, γ ). Moreover, Vγ has stationary rectangular increments.

Proof. Fix λ > 0 and let m := nλ1/H . Then L(n)/L(m) → 1, n → ∞ and

Vγ

(
λ1/H x,λγ/H y

) = f.d.d.-lim
n→∞

1

nH L(n)

∑
(t,s)∈K[xλ1/H n,yλγ /H nγ ]

Y(t, s)

= f.d.d.-lim
m→∞

L(m)

L(n)

λ

mH L(m)

∑
(t,s)∈K[xm,ymγ ]

Y(t, s)
f.d.d.= λVγ (x, y).

The fact that Vγ has stationary rectangular increments is an easy consequence of Y being sta-
tionary. �

3. Scaling transition in the aggregated 3N model

This section establishes scaling transition and Type I anisotropic distributional LRD property,
in the sense of Definitions 2.1 and 2.4 of Section 2, for the aggregated 3N model X3 in (1.9).
We shall assume that M in (1.9) is symmetric α-stable with characteristic function EeiθM(B) =
e−|θ |α
(B),B ⊂ [0,1). The case of general α-stable random measure M (see (5.36)) in (1.9)
can be discussed in a similar way. Recall that g3(t, s, a) in (1.9) is the Green function of the
random walk {Wk} on Z

2 with one-step transition probabilities shown in Figure 1(a). According
to Remark 5.2, RF X3 in (1.9) with mixing distribution in (1.8) is well-defined if 1 < α ≤ 2, β >

−(α − 1)/2.
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For given γ > 0, introduce a RF Vγ = {V3γ (x, y); (x, y) ∈ R̄
2+} written as a stochastic integral

V3γ (x, y) :=
∫
R2×R+

F3γ (x, y;u,v, z)M(du,dv,dz), (3.1)

where F3γ (x, y;u,v, z) is defined as

F3γ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x

0

∫ y

0
h3(t − u, s − v, z)dt ds,

γ = 1/2,

1(0 < v < y)

∫ x

0
dt

∫
R

h3(t − u,w, z)dw,

γ > 1/2,0 < β < α − 1,

x

∫ y

0
h3(−u, s − v, z)ds,

γ > 1/2,−(α − 1)/2 < β < 0,

1(0 < u < x)

∫ y

0
ds

∫
R

h3(w,v − s, z)dw,

γ < 1/2, (α − 1)/2 < β < α − 1,

y

∫ x

0
h3(t − u,v, z)dt,

γ < 1/2,−(α − 1)/2 < β < (α − 1)/2,

(3.2)

h3(t, s, z) = 3
2
√

πt
e−3zt−s2/(4t)1(t > 0, z > 0) as in (1.13), and M is an α-stable random mea-

sure on R
2 × R+ with control measure dμ(u, v, z) := φ1z

β dudv dz and characteristic func-
tion EeiθM(B) = e−|θ |αμ(B), where φ1 > 0, β > −1 are the asymptotic parameters in (1.8) and
B ⊂R

2 ×R+ is a measurable set with μ(B) < ∞.

Proposition 3.1. (i) The RF V3γ in (3.1) is well-defined for any γ > 0,1 < α ≤ 2 and β in (3.2).
It has α-stable finite-dimensional distributions and stationary rectangular increments in the
sense of (2.3).

(ii) V3γ is OSRF: for any λ > 0,{
V3γ

(
λx,λγ y

); (x, y) ∈ R̄
2+
} f.d.d.= {

λH(γ )V3γ (x, y); (x, y) ∈ R̄
2+
}
,

where

H(γ ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ + α − β

α
, γ ≥ 1/2, β > 0,

γ + α − 2βγ

α
, γ ≥ 1/2, β < 0,

1 − γ + 2γ (α − β)

α
, γ < 1/2, β > (α − 1)/2,

αγ + (α + 1)/2 − β

α
, γ < 1/2, β < (α − 1)/2.

(3.3)
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(iii) RF V3γ has properly dependent rectangular increments for γ = 1/2 and does not have
properly dependent rectangular increments for γ �= 1/2.

(iv) RFs V3γ = V3,+(γ > 1/2) and V3γ = V3,−(γ < 1/2) do not depend on γ for γ > 1/2
and γ < 1/2.

(v) For α = 2, the RFs

V3,+
f.d.d.= κ3,+

{
B1−(β/2),1/2, 0 < β < 1,

B1,(1/2)−β, −1/2 < β < 0,
(3.4)

V3,−
f.d.d.= κ3,−

{
B1/2,(3/2)−β, 1/2 < β < 1,

B(3/4)−(β/2),1, −1/2 < β < 1/2,

agree, up to some constants κ3,± = κ3,±(β) �= 0, with fractional Brownian sheet BH1,H2 where
one of the parameters H1,H2 equals 1/2 or 1.

Remark 3.1. Similarly, as in the case of fractional Brownian sheet (case α = 2), the unbalanced
limit RFs V3,± have a very special dependence structure, being either “independent” or “deter-
ministic continuations” of random processes with one-dimensional time:

V11 := {
V3,+(t,1); t ≥ 0

}
, 0 < β < α − 1,

V12 := {
V3,+(1, t); t ≥ 0

}
, −(α − 1)/2 < β < 0,

(3.5)
V21 := {

V3,−(1, t); t ≥ 0
}
, (α − 1)/2 < β < α − 1,

V22 := {
V3,−(t,1); t ≥ 0

}
, −(α − 1)/2 < β < (α − 1)/2.

The four processes Vij , i, j = 1,2 in (3.5) are all symmetric α-stable (SαS) and self-similar with
stationary increments (SSSI) with corresponding self-similarity parameters:

H11 := α − β

α
, H12 := 1 − 2β

α
,

H21 := 2(α − β) − 1

α
, H22 := α + 1 − 2β

2α
.

These facts follow from Proposition 3.1, for example, the self-similarity property of V12 follows
from the definition of V3,+ and Proposition 3.1(ii): ∀λ > 0,{

V12(λt)
} = {

V3,+(1, λt)
} = {

V3,+
(
λ1/γ λ−1/γ 1, λt

)}
f.d.d.= λH(γ )/γ

{
V3,+

(
λ−1/γ 1, t

)} = λ(H(γ )−1)/γ
{
V3,+(1, t)

} = λH12
{
V12(t)

}
.

For α = 2, processes Vij , i, j = 1,2 are representations of fractional Brownian motion and, for
1 < α < 2, they belong to the class of SαS SSSI processes discussed in [48]. Note that the self-
similarity exponents satisfy 1/α < Hij < 1, i, j = 1,2 and fill in all points of the interval (1/α,1)

as β vary in the corresponding intervals in (3.5).
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Proof of Proposition 3.1. (i) It suffices to show Jγ (x, y) := ∫
R2×R+ |F3γ (x, y;u,v, z)|α ×

μ(du,dv,dz) < ∞, x, y > 0. For simplicity, we restrict the proof to x = y = 1, or Jγ <

∞, Jγ := Jγ (1,1).

First, consider the case γ = 1/2. Write J1/2 = J ′ + J ′′, where J ′ := ∫
R2×R+(

∫ 1
0

∫ 1
0 h3(t −

u, s − v, z)dt ds)α1(|v| ≤ 2)dμ,J ′′ := ∫
R2×R+(

∫ 1
0

∫ 1
0 h3(t − u, s − v, z)dt ds)α1(|v| > 2)dμ.

Then

J ′ ≤ C

∫ 1

−∞
du

∫ ∞

0
zβ dz

(∫ 1

0

1(t > u)dt√
t − u

e−3z(t−u)

)α

= C

(∫ 0

−∞
du + · · · +

∫ 1

0
du · · ·

)
=: C

(
J ′

1 + J ′
2

)
.

By Minkowski’s inequality,

J ′
1 ≤

{∫ 1

0
dt

(∫ 0

−∞
du

(t − u)α/2

∫ ∞

0
e−(3α/2)z(t−u)zβ dz

)1/α}α

≤ C

{∫ 1

0
dt

(∫ ∞

0

du

(t + u)1+β+(α/2)

)1/α}α

= C

{∫ 1

0

dt

t (1/2)+(β/α)

}1/α

< ∞

since (1/2) + (β/α) < 1 due to β < α − 1, α ≤ 2. We also have

J ′
2 ≤ C

∫ ∞

0
zβ dz

{∫ 1

0
e−(3α/2)zx dx

}α

= C

∫ ∞

0
zβ−α(1 − e−z)α dz < ∞

since α > 1 + β . On the other hand, since (s − v)2 ≥ v2/4 for |s| < 1, |v| > 2, so using
Minkowski’s inequality we obtain

J ′′ ≤
{∫ 1

0
dt

(∫ t

−∞
du

(t − u)α/2

∫
|v|>2

e−v2/4(t−u) dv

∫ ∞

0
e−(3α/2)z(t−u)zβ dz

)1/α}α

≤ C

∫ ∞

0

dx

x1+β+(α/2)

∫
|v|>2

e−v2/(4x) dv,

where the last integral is easily seen to be finite. This proves J1/2 < ∞.
Next, consider Jγ for γ > 1/2,0 < β < α − 1. Using h�(u, z) := ∫

R
h3(u, v, z)dv =

12e−3uz1(u > 0), similarly as above we obtain

Jγ ≤ C

∫ 1

−∞
du

∫ ∞

0
zβdz

(∫ 1

u∨0
e−3z(t−u) dt

)α

= C

{∫ 0

−∞
du + · · · +

∫ 1

0
du · · ·

}
=: C{Jγ 1 + Jγ 2},

where Jγ 1 ≤ C{∫ 1
0 dt (

∫ ∞
0 (t + u)−1−βdu)1/α}α ≤ C{∫ 1

0 t−β/α dt}1/α < ∞ and

Jγ 2 ≤ C

∫ 1

0
du

∫ ∞

0
zβ dz

(∫ 1

u

e−3z(t−u) dt

)α

≤ C

∫ ∞

0
zβ dz

((
1 − e−z

)
/z

)α
< ∞

because of β − α < −1. This proves Jγ < ∞ for γ > 1/2,0 < β < α − 1.



Aggregation of autoregressive random fields 2413

Next, let γ > 1/2,−(α − 1)/2 < β < 0. We have

Jγ ≤ C

∫
R+×R×R+

dμ

(∫ 1

0
h3(u, s − v, z)ds

)α

≤ C

∫ ∞

0
u−α/2du

∫
R

dv

∫ ∞

0
e−zuzβ dz

(∫ 1

0
e−(s−v)2/u ds

)α

= C

∫ ∞

0
u−(1+β+α/2) du

{∫
|v|≤2

dv +
∫

|v|>2
dv

}(∫ 1

0
e−(s−v)2/u ds

)α

=: C{Jγ 1 + Jγ 2}.

Here,

Jγ 1 ≤ C

∫ ∞

0
u−(1+β+α/2) du

(∫ 1

0
e−s2/u ds

)α

≤ C

(∫ 1

0
u−(1+β) du +

∫ ∞

1
u−(1+β+α/2) du

)
< ∞

since β < 0, β > −α/2, while

Jγ 2 ≤ C

∫ ∞

0
u−(1+β+α/2) du

∫ ∞

1
e−v2/u dv

≤ C

∫ ∞

0
u−(1/2+β+α/2) du

∫ ∞

u1/2
e−z2

dz < ∞

as 1
2 +β + α

2 > 1 and
∫ ∞

1/u1/2 e−z2
dz decays exponentially when u → 0. This proves Jγ < ∞ for

γ > 1/2,−(α − 1)/2 < β < 0.
Consider the case 0 < γ < 1/2, (α − 1)/2 < β < α − 1. Then using

∫
R

h3(w,v, z)dw =√
3

2
√

z
e−√

3z|v| we obtain

Jγ ≤ C

∫
R

dv

∫ ∞

0
zβ dz

(∫ 1

0
z−1/2e−√

z|s−v| ds

)α

= C

{∫
|v|≤2

dv + · · · +
∫

|v|>2
dv · · ·

}
=: C{Jγ 1 + Jγ 2},

where Jγ 1 ≤ C
∫ ∞

0 zβ−(α/2) dz(
∫ 1

0 e−z|s| ds)α ≤ C
∫ ∞

0 zβ−α(1 − e−√
z)α dz < ∞ for 0 < β <

α − 1 and

Jγ 2 ≤ C

∫ ∞

1
dv

∫ ∞

0
zβ−α/2e−√

zv dz = C

∫ ∞

1
vα−2−2β dv < ∞

since 2 + 2β − α > 1 for β > (α − 1)/2.
Finally, let 0 < γ < 1/2,−(α−1)/2 < β < (α−1)/2. Then Jγ = C

∫ 1
−∞ du

∫
R

dv
∫ ∞

0 zβ dz×
(
∫ 1

0 h3(t − u,v, z)dt)α = C{∫ 0
−∞ du + · · · + ∫ 1

0 du · · ·} =: C{Jγ 1 + Jγ 2}. By Minkowski’s in-
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equality,

J
1/α

γ 1 ≤ C

∫ 1

0
dt

{∫ ∞

0
du

∫ ∞

0
dv

∫ ∞

0
hα

3 (t + u,v, z)zβ dz

}1/α

= C

∫ 1

0
dt

{∫ ∞

0

du

(t + u)1+β+(α−1)/2

}1/α

=
∫ 1

0
dt

{
1

tβ+(α−1)/2

}1/α

< ∞

and, similarly,

J
1/α

γ 2 ≤ C

∫ 1

0
dt

{∫ ∞

0
dv

∫ ∞

0
hα

3 (t, v, z)zβ dz

}1/α

= C

∫ 1

0
dt

{
1

tβ+(α+1)/2

}1/α

< ∞

since |β| < (α − 1)/2. This proves Jγ < ∞, or the existence of V3γ , for all choices of α,β, γ

in (3.2). The fact that linear combinations of integrals in (3.1) are α-stable is well known ([46]).
Stationarity of increments of (3.1) is an easy consequence of the integrand (3.2) and the control
measure μ. This proves part (i).

(ii) The OSRF property is immediate from the scaling properties h3(λu,
√

λv,λ−1z) =
λ−1/2h3(u, v, z) of the kernel h3 in (1.13) and {M(dλu,dλγ v,dλ−1z)} f.d.d.= {λ(γ−β)/αM(du,

dv,dz)} of the stable random measure M, the last property being a consequence of the scaling
property of μ(dλu,dλγ v,dλ−1z) = λγ−βμ(du,dv,dz) of the control measure μ.

(iii) Let γ = γ0 := 1/2. Consider arbitrary rectangles Ki = K(ξi ,ηi );(xi ,yi ) ⊂ R
2+, i = 1,2,

and write
∫ = ∫

R2×R+ . Then V3γ0(Ki) = ∫
GKi

(u, v, z)dM, where GKi
(u, v, z) := ∫

Ki
h3(t −

u, s − v, z)dt ds. Note GKi
≥ 0 and GKi

(u, v, z) > 0 for any u < xi implying supp(GK1) ∩
supp(GK2) �=∅. Hence, and from ([46], Theorem 3.5.3, page 128) it follows that the increments
V3γ0(Ki), i = 1,2 on arbitrary nonempty rectangles K1,K2 are dependent. It is also easy to
show that V3γ0 does not have invariant rectangular increments in any direction. This proves (iii)
for γ = 1/2.

Next, let γ > 1/2,0 < β < α − 1. Similarly as above, for any rectangle K = K(ξ,η);(x,y) ⊂
R

2+, we have V3γ (K) = ∫
GK,γ (u, v, z)dM, where GK,γ (u, v, z) := 1(η < v ≤ y)

∫ η

ξ
h3γ (t −

u, z)dt . Clearly, if Ki, i = 1,2 are any two rectangles separated by a horizontal line, then
supp(GK1,γ ) ∩ supp(GK2) = ∅, implying independence of V3γ (K1) and V3γ (K2). Thus, V3γ

for 0 < β < α − 1 has independent increments in the vertical direction. The fact that V3γ for
γ > 1/2,−(α − 1)/2 < β < 0 has invariant increments in the horizontal direction is obvious
from (3.1) and (3.2). The properties of V3γ in the case 0 < γ < 1/2 are completely analogous.

(iv) Follows from (3.1) and (3.2).
(v) Since V3,± for α = 2 are zero mean Gaussian RFs, it suffices to show that their covariances

agree with that of fractional Brownian sheet in (2.4). This can be easily verified by using self-
similarity and stationarity of increments properties stated in (i) and (ii), as follows.

Let 0 < β < 1 and ρ+(x, x′) := EV3,+(x,1)V3,+(x′,1), x, x′ ≥ 0. By (3.1) and (3.2),
EV3,+(x, y)V3,+(x′, y′) = (y ∧ y′)ρ+(x, x′), (x, y), (x′, y′) ∈ R

2+. According to (ii), for any
λ > 0

ρ+
(
λx,λx′) = EV3,+(λx,1)V3,+

(
λx′,1

) = λ2H(γ )EV3,+
(
x,λ−γ

)
V3,+

(
x′, λ−γ

)
(3.6)

= λ2H(γ )−γ EV3,+(x,1)V3,+
(
x′,1

) = λ2H+ρ
(
x, x′),
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where H+ := H(γ ) − (γ /2) = 1 − (β/2); see (3.3). The stationarity of rectangular increments
property of RF V3,+ implies that the process {V3,+(x,1), x ≥ 0} has stationary increments. To-
gether with the scaling property in (3.6), this implies that ρ+(x, x′) = (κ2+/2)(x2H+ + x′2H+ −
|x − x′|2H+), x, x′ ≥ 0, or EV3,+(x, y)V3,+(x′, y′) = κ2+EB1−(β/2),1/2(x, y)B1−(β/2),1/2(x

′, y′),
see (2.4). The remaining relations in (v) are analogous. Proposition 3.1 is proved. �

The main result of this section is Theorem 3.1. Its proof is based on the asymptotics
of the Green function g3 in Lemma 3.1, below. The proof of Lemma 3.1 can be found at
http://arxiv.org/abs/1303.2209v3.

Lemma 3.1. For any (t, s, z) ∈ (0,∞)×R× (0,∞) the point-wise convergence in (1.11) holds.
This convergence is uniform on any relatively compact set {ε < t < 1/ε, ε < |s| < 1/ε, ε < z <

1/ε} ⊂ (0,∞) ×R× (0,∞), ε > 0.
Moreover, there exist constants C,c > 0 such that for all sufficiently large λ and any

(t, s, z), t > 0, s ∈R,0 < z < λ the following inequality holds:

√
λg3

(
[λt], [√λs],1 − z

λ

)
< C

(
h̄3(t, s, z) + √

λe−zt−c(λt)1/3−c(
√

λ|s|)1/2)
, (3.7)

where h̄3(t, s, z) := 1√
t
e−zt−s2/(16t), (t, s, z) ∈ (0,∞) ×R× (0,∞).

Theorem 3.1. Assume that the mixing density φ is bounded on any interval [0,1 − ε), ε > 0 and
satisfies (1.8), where

−(α − 1)/2 < β < α − 1, 1 < α ≤ 2, β �= 0, β �= (α − 1)/2. (3.8)

Let X3 be the aggregated RF in (1.9). Then for any γ > 0

n−H(γ )

[nx]∑
t=1

[nγ y]∑
s=1

X3(t, s)
f.d.d.−→ V3γ (x, y), x, y > 0, n → ∞, (3.9)

where H(γ ) and V3γ are given in (3.3) and (3.1), respectively. As a consequence, the RF X3
exhibits scaling transition at γ0 = 1/2 and enjoys Type I anisotropic distributional LRD with
γ0 = 1/2 in the sense of Definition 2.4.

Remark 3.2. As it follows from the proof of Theorem 3.1, for γ = 1/2 the limit in (3.9) exists
also when β = 0 or β = (α − 1)/2 and is given in (3.1) as in the remaining cases. On the other
hand, the existence of the scaling limit (3.9) in the cases γ > 1/2, β = 0 and 0 < γ < 1/2 and
β = (α − 1)/2 is an open and delicate question. Note a sharp transition in the dependence struc-
ture of the limit fields V3,+ and V3,− in the vicinity of β = 0 and β = (α − 1)/2, respectively,
changing abruptly from independent rectangular increments in one direction to invariant (com-
pletely dependent) rectangular increments in the perpendicular direction. For α = 2, the above
transition may be related to the fact that the covariance functions of the “vertical” and “horizontal
sectional processes” {X3(0, s); s ∈ Z} and {X3(t,0); t ∈ Z} change their summability properties
at respective points β = 0 and β = 1/2; see Proposition 3.2 below.

http://arxiv.org/abs/1303.2209v3
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Let α = 2 and r3(t, s) = EX3(t, s)X3(0,0) be the covariance function of the aggregated Gaus-
sian RF in (1.9). The proof of Proposition 3.2 using Lemma 3.1 can be found in the arXiv version
http://arxiv.org/abs/1303.2209v3.

Proposition 3.2. Assume α = 2 and the conditions of Theorem 3.1. Then for any (t, s) ∈R
2
0

lim
λ→∞λβ+1/2r3

([λt], [√λs]) =

⎧⎪⎨⎪⎩
C3|s|−2β−1γ

(
β + 1/2, s2/4|t |), t �= 0, s �= 0,

C3|s|−2β−1�(β + 1/2), t = 0,

C4|t |−β−1/2, s = 0,

where γ (α, x) := ∫ x

0 yα−1e−y dy is incomplete gamma function and C3 := π−1/222β−131−βσ 2 ×
φ1�(β + 1), C4 := 4−1/2−βC3.

Proof of Theorem 3.1. Write Snγ (x, y) for the left-hand side of (3.9). It suffices to prove the
convergence of characteristic functions:

Eei
∑p

j=1 θj Snγ (xj ,yj ) → Eei
∑p

j=1 θj V3γ (xj ,yj )
, n → ∞, (3.10)

for any p ∈N+, θj ∈ R, (xj , yj ) ∈R
2+, j = 1, . . . , p. We have

Eei
∑p

j=1 θj Snγ (xj ,yj ) = e−Jnγ , Eei
∑p

j=1 θj V3γ (xj ,yj ) = e−Jγ , (3.11)

where

Jγ :=
∫
R2×R+

∣∣Gγ (u, v, z)
∣∣α dμ, Gγ (u, v, z) :=

p∑
j=1

θjF3γ (xj , yj ;u,v, z),

(3.12)

Jnγ := n−H(γ )α
∑

(u,v)∈Z2

E

∣∣∣∣∣
p∑

j=1

θj

∑
1≤t≤[nxj ],1≤s≤[nγ yj ]

g3(t − u, s − v, a)

∣∣∣∣∣
α

.

Thus, (3.10) follows from

lim
n→∞Jnγ = Jγ . (3.13)

To prove (3.13), we write Jnγ as an integral

Jnγ =
∫
R2×R+

∣∣Gnγ (u, v, z)
∣∣αχn(z)μ(du,dv,dz), (3.14)

where the functions χn satisfying χn(z) → 1(n → ∞) uniformly in z > 0 will be specified
later, and where Gnγ : R2 × R+ → R are some functions which approach Gγ in (3.12) in
the following sense. Let Wε := {(u, v, z) ∈ R

2 × R+ : |u| + |v| < 1/ε, ε < z < 1/ε},Wc
ε :=

(R2 ×R+) \ Wε, ε > 0. We will prove that

lim
n→∞

∫
Wε

∣∣Gnγ (u, v, z) − Gγ (u, v, z)
∣∣α dμ = 0 ∀ε > 0, (3.15)

http://arxiv.org/abs/1303.2209v3
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and

lim
ε→0

lim sup
n→∞

∫
Wc

ε

∣∣Gnγ (u, v, z)
∣∣α dμ = 0. (3.16)

Since μ(Wε) < ∞, (3.15) follows from the uniform convergence

lim
n→∞ sup

(u,v,z)∈Wε

∣∣Gnγ (u, v, z) − Gγ (u, v, z)
∣∣ = 0 ∀ε > 0. (3.17)

Clearly, (3.15) and (3.16) together with (3.14) and the above mentioned property of χn im-
ply (3.13).

The subsequent proof of (3.15) and (3.16) is split into several cases depending on values γ

and β .
Case γ = γ0 = 1/2. In this case, (3.14) holds with

Gnγ0(u, v, z)
(3.18)

:=
p∑

j=1

θj

∫ 
nxj �/n

0

∫ 
√nyj �/√n

0

√
ng3

(
�nt� − �nu�, �√ns� − �√nv�,1 − z

n

)
dt ds

and χn(z) := (z/n)−β(φ(1 − z/n)/φ1)1(0 < z < n) → 1 boundedly on R+ as n → ∞ accord-
ing to condition (1.8). To show (3.17), for given ε1 > 0 split Gnγ0(u, v, z) − Gγ0(u, v, z) =∑3

i=1 �ni(u, v, z), where, for 0 < z < n,

�n1(u, v, z) :=
p∑

j=1

θj

∫ 
nxj �/n

0

∫ 
√nyj �/√n

0

{√
ng3

(
�nt� − �nu�, �√ns� − �√nv�,1 − z

n

)

− h3(t − u, s − v, z)

}
1
(
(t, s) ∈ Dj(ε1)

)
dt ds,

�n2(u, v, z) :=
p∑

j=1

θj

∫ 
nxj �/n

0

∫ 
√nyj �/√n

0

√
ng3

(
�nt� − �nu�, �√ns� − �√nv�,1 − z

n

)
× 1

(
(t, s) /∈ Dj(ε1)

)
dt ds,

�n3(u, v, z) := −
p∑

j=1

θj

∫ 
nxj �/n

0

∫ 
√nyj �/√n

0
h3(t − u, s − v, z)1

(
(t, s) /∈ Dj(ε1)

)
dt ds,

and where the sets Dj(ε1), j = 1, . . . , p (depending on u,v) are defined by

Dj(ε1) := {
(t, s) ∈ (0, xj ] × (0, yj ] : t − u > ε1, |s − v| > ε1

}
.

Relation (3.17) follows from

lim
n→∞ sup

(u,v,z)∈Wε

∣∣�n1(u, v, z)
∣∣ = 0, (3.19)

lim
ε1→0

lim sup
n→∞

sup
(u,v,z)∈Wε

∣∣�ni(u, v, z)
∣∣ = 0, i = 2,3. (3.20)
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Here, (3.19) follows from Lemma 3.1. Next, |�n3(u, v, z)| ≤ C
∫ ε1

0 t−1/2 dt + C
∫ 1
ε1

t−1/2 dt ×∫
|s|<ε1

ds = O(
√

ε1), implying (3.20) for i = 3. Similarly, using (3.7) we obtain |�n2(u, v, z)| ≤
C

√
ε1 + C

√
n
∫ 1

0 e−c(nt)1/3
dt ≤ C

√
ε1 + C/

√
n. This proves (3.20) for i = 2, and hence (3.17),

too.
Consider (3.16). W.l.g., we can assume p = 1, θ1 = x1 = y1 = 1. With (3.18) and (3.7) in

mind, we have 0 ≤ Gnγ0(u, v, z) ≤ C(Ḡ(u, v, z) + G̃n(u, v, z)), where

Ḡ(u, v, z) :=
∫ 1

0

∫ 1

0
h̄3(t − u, s − v, z)dt ds,

G̃n(u, v, z) := √
n1(0 < z < n)

∫ 1

0

∫ 1

0
e−z(t−u)−c(n(t−u))1/3−c(

√
n|s−v|)1/2

1(t > u)dt ds,

where c > 0 is the same as in (3.7). Relation (3.16) with Gnγ replaced by Ḡ follows from Ḡ ∈
Lα(μ) (see Proposition 5.1, proof of (i)), since h̄3(t, s, z) and h3(t, s, z) differ only in constants.
Thus, (3.16) follows from

J̃n :=
∫
R2×R+

(
G̃n(u, v, z)

)α dμ = o(1), n → ∞. (3.21)

Split J̃n = ∑3
i=1 Ini , where

In1 :=
∫

(−∞,0]×R×R+
(G̃n)

α dμ,

In2 :=
∫

(0,1]×[−2,2]×R+
(G̃n)

α dμ,

In3 :=
∫

(0,1]×[−2,2]c×R+
(G̃n)

α dμ,

[−2,2]c := R \ [−2,2]. Using the fact that
∫
R

e−cn1/4|s−v|1/2
dv = C/

√
n and Minkowski’s in-

equality,

In1 ≤ Cnα/2
{∫

(0,1]2
dt ds

(∫
R+×R×R+

e−αz(t+u)−cα(n(t+u))1/3−cα(
√

n|s−v|)1/2

× zβ dudv dz

)1/α}α

≤ Cn(α−1)/2
{∫ 1

0
dt

(∫ ∞

0
e−cα(n(t+u))1/3 du

(t + u)1+β

)1/α}α

≤ Cn−((α+1)/2−β)I,



Aggregation of autoregressive random fields 2419

where α+1
2 − β > 0 and I := {∫ ∞

0 dt (
∫ ∞

0 e−cα(t+u)1/3
(t + u)−1−β du)1/α}α < ∞. Next,

In2 ≤ Cnα/2
∫ ∞

0
zβ dz

{∫
(0,4]2

e−zt−c(nt)1/3−c(
√

n|s|)1/2
dt ds

}α

≤ C

{∫ 4

0
e−c(nt)1/3

dt

(∫ ∞

0
e−αzt zβ dz

)1/α}α

≤ C

{∫ ∞

0
e−c(nt)1/3

t−(1+β)/α dt

}α

≤ Cn−(α−1−β) = o(1).

Finally, using e−c(
√

n|s−v|)1/2 ≤ e−(c/2)(
√

n|v|)1/2
for |v| ≥ 2, |s| ≤ 1 it easily follows In3 =

O(e−c′n1/4
) = o(1)(∃c′ > 0), thus completing the proof of (3.21) and (3.13) for γ = γ0 = 1/2.

Case γ > 1/2,0 < β < α − 1. In this case, (3.14) holds with

Gnγ (u, v, z)

:=
p∑

j=1

θj

∫ 
nxj �/n

0
dtn−1/2


nγ yj �∑
s=1

g3

(
�nt� − �nu�, s − ⌈

nγ v
⌉
,1 − z

n

)
1(0 < z < n)

=
p∑

j=1

θj

∫ 
nxj �/n

0
dt

∫
R

ds
√

ng3

(
�nt� − �nu�, �√ns�,1 − z

n

)
(3.22)

× 1
(
0 < z < n,1 − ⌈

nγ v
⌉ ≤ �√ns� ≤ ⌊

nγ yj

⌋ − ⌈
nγ v

⌉)
=:

p∑
j=1

θj

∫ xj

0
dt

∫
R

dsfnj (t, s, u, v, z).

We first check the point-wise convergence: for any (u, z) ∈ R×R+, v ∈R\ {0, yj }, j = 1, . . . , p

Gnγ (u, v, z) → Gγ (u, v, z)
(3.23)

:=
p∑

j=1

θj

∫ xj

0
dt

∫
R

dsh3(t − u, s, z)1(0 < v < yj ), n → ∞.

To prove (3.23), note that from (1.11), (3.7) and γ > 1/2, for any u < t ∈R, v ∈R \ {0, yj }, j =
1, . . . , p, s ∈R, and z > 0, we have the point-wise convergences (as n → ∞)

√
ng3

(
�nt� − �nu�, �√ns�,1 − z

n

)
1(0 < z < n) → h3(t − u, s, z),

1
(
1 − ⌈

nγ v
⌉ ≤ �√ns� ≤ ⌊

nγ yj

⌋ − ⌈
nγ v

⌉) → 1(0 < v < yj )

and hence

fnj (t, s;u,v, z) → fj (t, s;u,v, z) := h3(t − u, s, z)1(0 < v < yj ). (3.24)
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Using (3.24), relation (3.23) can be shown similarly as in the case γ = γ0 above. Namely, write
Gnγ (u, v, z) − Gγ (u, v, z) = ∑3

i=1 �ni(u, v, z), where, for 0 < z < n,

�n1(u, v, z) :=
p∑

j=1

θj

∫ 
nxj �/n

0
dt

∫
R

{
fnj (t, s;u,v, z) − fj (t, s;u,v, z)

}
1
(
(t, s) ∈ Dj(ε1)

)
ds,

�n2(u, v, z) :=
p∑

j=1

θj

∫ 
nxj �/n

0
dt

∫
R

fj (t, s;u,v, z)1
(
(t, s) /∈ Dj(ε1)

)
ds,

�n3(u, v, z) :=
p∑

j=1

θj

∫ 
nxj �/n

0
dt

∫
R

fnj (t, s;u,v, z)1
(
(t, s) /∈ Dj(ε1)

)
ds,

and where Dj(ε1) := {(t, s) ∈ (0, xj ] × R : t − u > ε1, |s − v| > ε1, |s| < 1/ε1}. Then (3.23)
follows if we show that, for any (u, z) ∈ R×R+, v ∈R \ {0, y},

lim
n→∞

∣∣�n1(u, v, z)
∣∣ = 0 ∀ε1 > 0 and

(3.25)
lim

ε1→0
lim sup
n→∞

∣∣�ni(u, v, z)
∣∣ = 0, i = 2,3.

Here, the first relation in (3.25) follows from the uniform convergence statement of Lemma 3.1,
and the second one from the dominating bound in (3.7); in particular,∫ xj

0
dt

∫
R

fnj (t, s;u,v, z)1(t − u ≤ ε1)ds

≤
∫ ε1+n−1

0
dt

∫
R

(
1√
t
e−cs2/t + √

ne−c(nt)1/3−c(
√

n|s|)1/2
)

ds ≤ C
(
ε1 + n−1)

vanishes as n → ∞ and ε1 → 0.
With (3.23) in mind, the convergence of integrals in (3.15) and (3.16) can be established using

the dominated convergence theorem and the bound (3.7) of Lemma 3.1, similarly as in the case
γ = 1/2 above.

Case γ > 1/2,−(α−1)/2 < β < 0. In this case, (3.14) holds with χn(z) := (z/n2γ )−β(φ(1−
(z/n2γ ))/φ1)1(0 < z < n2γ ) → 1 and

Gnγ (u, v, z) :=
p∑

j=1

θj

∫ 
nxj �/n

0
dt

∫ 
nγ yj �/nγ

0
dsnγ

× g3

(
�nt� − ⌈

n2γ u
⌉
,
⌈
nγ s

⌉ − ⌈
nγ v

⌉
,1 − z

n2γ

)
1
(
0 < z < n2γ

)
=:

p∑
j=1

θj

∫ 
nxj �/n

0
dt

∫ 
nγ yj �/nγ

0
dsfn(t, s;u,v, z).
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Note that in the above integral, variables t and u are rescaled by n and n2γ � n, respectively.
Therefore, by (1.11) the integrand

fn(t, s;u,v, z) → f (s;u,v, z) := h3(−u, s − v, z) as n → ∞ (3.26)

converges point-wise to f (s;u,v, z) independent of t , for any u < 0, s, v ∈ R, s ∈ R, and z > 0
fixed. By using (3.26) and splitting Gnγ (u, v, z) similarly as in the case γ = γ0 above, we can
show the uniform convergence in (3.17) with

Gγ (u, v, z) :=
p∑

j=1

θj

∫ xj

0
dt

∫ yj

0
f (s;u,v, z)ds =

p∑
j=1

θjxj

∫ yj

0
h3(−u, s − v, z)ds

satisfying (3.12); see the definition of F3γ (x, y;u,v, z) = Gγ (u, v, z) in (3.2). The proof of
(3.16) uses the dominating bound (3.7) of Lemma 3.1 similarly as in the previous cases.

Case 0 < γ < 1/2, (α − 1)/2 < β < α − 1. We have (3.14) with

Gnγ (u, v, z)

:=
p∑

j=1

θj

∫ 
nxj �/n2γ

0
dt

∫ 
nγ yj �/nγ

0
dsnγ g3

(⌈
n2γ t

⌉ − �nu�,⌈nγ s
⌉ − ⌈

nγ v
⌉
,1 − z

n2γ

)

=
p∑

j=1

θj

∫ ∞

0
dw

∫ 
nγ yj �/nγ

0
fnj (w, s;u,v, z)ds,

where

fnj (w, s;u,v, z) := nγ g3

(⌈
n2γ w

⌉
,
⌈
nγ s

⌉ − ⌈
nγ v

⌉
,1 − z

n2γ

)
× 1

(
1 − �nu�

n2γ
< w <


nxj� − �nu�
n2γ

)
→ 1(0 < u < xj )h3(w, s − v, z), n → ∞

point-wise for each u ∈ R \ {0, xj },w > 0, s ∈ (0, yj ), v ∈ R, s �= v, z > 0 fixed, according to
Lemma 3.1. This leads to the point-wise convergence of integrals, namely,

Gnγ (u, v, z) → Gγ (u, v, z)
(3.27)

=
p∑

j=1

θj 1(0 < u < xj )

∫ ∞

0
dw

∫ yj

0
dsh3(w, s − v, z), n → ∞

similarly as in (3.23) above. We omit the rest of the proof of (3.15) and (3.16) which uses (3.27),
Lemma 3.1 and the dominated convergence theorem.
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Case 0 < γ < 1/2,−(α − 1)/2 < β < (α − 1)/2. We have (3.14) with

Gnγ (u, v, z) :=
p∑

j=1

θj

∫ 
nxj �/n

0
dt

∫ 
nγ yj �/nγ

0
fn(t, s;u,v, z)ds

and

fn(t, s;u,v, z) := n1/2g3

(
�nt� − �nu�,⌈nγ s

⌉ − ⌈
n1/2v

⌉
,1 − z

n

)
1(0 < z ≤ n)

→ h3(t − u,−v, z)

tending to a limit independent of s for each t < u, s ∈ R, v ∈ R, z > 0 fixed, according to

Lemma 3.1 and using the fact that sups∈[0,y] | �nγ s�−�n1/2v�
n1/2 − v| → 0 for any y > 0 as γ < 1/2.

Whence, the point-wise convergence, as n → ∞,

Gnγ (u, v, z) → Gγ (u, v, z) =
p∑

j=1

θj yj

∫ xj

0
h3(t − u,−v, z)dt

(3.28)

=
p∑

j=1

θjF3γ (xj , yj ;u,v, z),

can be obtained. The details of the proof of (3.28) and subsequently (3.17) and (3.16) are similar
as in other cases above.

This proves (3.13), and hence the limit in (3.9) in all cases of γ and β under consideration.
The second statement of the theorem follows from (3.9) and Proposition 3.1. Theorem 3.1 is
proved. �

4. Scaling transition in the aggregated 4N model

In this section, we discuss scaling transition and Type I isotropic distributional LRD property for
the aggregated 4N model X4 in (1.9). Recall that g4(t, s, a) in (1.9) is the Green function of the
random walk {Wk} on Z

2 with one-step transition probabilities shown in Figure 1(b). Recall that

h4(t, s, z) = 2

π
K0

(
2
√

z
(
t2 + s2

)) = 2

π

∫ ∞

0
w−1e−zw−(t2+s2)/w dw, (t, s) ∈R

2
0, z > 0

is the potential of the Brownian motion in R
2 with covariance matrix diag(1/2,1/2), written via

K0, the modified Bessel function of second kind. See [29], Chapter 7.2.
For any γ > 0, introduce a RF V4γ = {V4γ (x, y); (x, y) ∈ R̄

2+} as a stochastic integral

V4γ (x, y) :=
∫
R2×R+

F4γ (x, y;u,v, z)M(du,dv,dz), (4.1)
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where F4γ (x, y;u,v, z) is defined as

F4γ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x

0

∫ y

0
h4(t − u, s − v, z)dt ds, γ = 1,

1(0 < v < y)

∫ x

0
dt

∫
R

h4(t − u,w, z)dw, γ > 1, β > (α − 1)/2,

1(0 < u < x)

∫
R

dw

∫ y

0
h4(w, s − v, z)ds, γ < 1, β > (α − 1)/2,

x

∫ y

0
h4(u, s − v, z)ds, γ > 1,0 < β < (α − 1)/2,

y
∫ x

0 h4(t − u,v, z)dt, γ < 1,0 < β < (α − 1)/2,

(4.2)

and where M is the same α-stable random measure on R
2 ×R+ as in (3.1).

Proposition 4.1. (i) V4γ in (4.1) is well-defined for any γ > 0,1 < α ≤ 2,0 < β < α − 1 with
exception of γ �= 1, β = (α−1)/2. It has α-stable finite-dimensional distributions and stationary
rectangular increments in the sense of (2.3).

(ii) V4γ is OSRF: for any λ > 0, {V4γ (λx,λγ y); (x, y) ∈ R
2+} f.d.d.= {λH(γ )V4γ (x, y); (x, y) ∈

R
2+}, with

H(γ ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(α − β)

α
, γ = 1,

γ − 1 + 2(α − β)

α
, γ > 1, β > (α − 1)/2,

α + αγ − 2βγ

α
, γ > 1, β < (α − 1)/2,

1 − γ + 2γ (α − β)

α
, γ < 1, β > (α − 1)/2,

α + αγ − 2β

α
, γ < 1, β < (α − 1)/2.

(4.3)

(iii) RFs V4γ = V4,+(γ > 1) and V4γ = V4,−(γ < 1) do not depend on γ for γ > 1 and γ < 1.
(iv) RF V4γ has properly dependent rectangular increments for γ = 1 and does not have

properly dependent rectangular increments for γ �= 1.
(v) For α = 2, the RFs

V4,+
f.d.d.= κ4,+

{
B(3/2)−β,1/2, 1/2 < β < 1,

B1,1−β, 0 < β < 1/2,
(4.4)

V4,−
f.d.d.= κ4,−

{
B1/2,(3/2)−β, 1/2 < β < 1,

B1−β,1, 0 < β < 1/2,

agree, up to some constants κ4,± = κ4,±(β) �= 0, with fractional Brownian sheet BH1,H2 where
one of the parameters H1,H2 equals 1/2 or 1.
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Proof. (i) As in the proof of Proposition 3.1(i), we show Jγ := ∫
R2×R+(F4γ (1,1;u,v,

z))α dμ < ∞ only. First, consider the case γ = 1. We have J1 = C
∫
R2×R+(

∫
(0,1]2 K0(2

√
z‖v −

w‖)dv)αzβ dw dz < ∞. Here, ‖x‖2 := x2
1 +x2

2 , for x = (x1, x2) ∈R
2. Split J1 = J ′ +J ′′, where

J ′ := ∫
{‖w‖≤√

2}×R+ · · · , J ′′ := ∫
{‖w‖>√

2}×R+ · · · . By Minkowski’s inequality,

J ′′ ≤ C

{∫
{‖v‖≤√

2}
dv

[∫
{‖w‖>√

2}×R+
Kα

0

(
2
√

z‖v − w‖)zβ dz dw

]1/α}α

≤ C

{∫
{‖v‖≤√

2}
dv

[∫
{‖w‖>√

2}
‖v − w‖−2−2β dw

]1/α}α

≤ C

{∫
{‖v‖≤√

2}
(√

2 − ‖v‖)−2β/α dv

}α

< ∞,

where we used the facts that
∫ ∞

0 Kα
0 (2

√
z)zβ dz < ∞ and 0 < β < α − 1 ≤ 2. Next,

J ′ ≤ C

∫
{‖w‖≤√

2}
dw

∫ ∞

0
zβ dz

(∫
{‖v‖≤√

2}
K0

(
2
√

z‖v‖)dv

)α

≤ C

∫ ∞

0
zβ dz

(∫ √
2

0
K0(2

√
zr)r dr

)α

≤ C

∫ ∞

0
zβ

(
z−α/21(0 < z < 1) + z−α1(z ≥ 1)

)
dz < ∞,

where we used 0 < β < α − 1 and the inequality∫ √
2

0
K0(2

√
zr)r dr ≤ C

{
z−1/2, 0 < z ≤ 1,

z−1, z > 1,

which is a consequence of the fact that the function r �→ rK0(r) is bounded and integrable on
(0,∞). This proves J1 < ∞.

Next, let γ > 1, (α − 1)/2 < β < α − 1. Using h4�(u, z) := ∫
R

h4(u,w, z)dw = 2
π

∫
R

K0(2 ×√
z(u2 + w2))dw = 2

π

√
u

4z1/2 K−1/2(2
√

z|u|) =
√

1
4πz

e−2
√

z|u| ([25], 6.596, 8.469), we obtain

Jγ ≤ C
∫
R

du
∫
R+ zβ dz(

∫ 1
0 h4�(t − u, z)dt)α ≤ C{∫|u|≤2 · · · + ∫

|u|>2 · · ·} =: C{J ′
γ + J ′′

γ }, where

J ′
γ ≤ C

∫ ∞

0
zβ dz

(∫ 1

0
h4�(t, z)dt

)α

≤ C

∫ ∞

0
zβ−(α/2) dz

(∫ 1

0
e−2

√
zt dt

)α

≤ C

∫ ∞

0
zβ−α dz

(
1 − e−2

√
z
)α

,

where the last integral converges for any 0 < β < α − 1,1 < α ≤ 2. Next,

J ′′
γ ≤ C

∫ ∞

1
du

∫ ∞

0
zβ−(α/2)e−2

√
zu dz ≤ C

∫ ∞

0
zβ−(1+α)/2e−2z dz < ∞

provided β > (α − 1)/2 holds. Hence, Jγ < ∞.
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Consider Jγ for γ > 1,0 < β < (α − 1)/2. We have Jγ ≤ C
∫
R

du
∫
R

dv
∫
R+ zβ dz(

∫ 1
0 h4(u,

s − v, z)ds)α ≤ C{∫|v|≤2 · · · + ∫
|v|>2 · · ·} =: C{J ′

γ + J ′′
γ }. By Minkowski’s inequality,

J ′
γ ≤ C

∫ ∞

0
du

∫ ∞

0
zβdz

(∫ 1

0
h4(u, s, z)ds

)α

≤ C

{∫ 1

0
ds

[∫ ∞

0
du

∫ ∞

0
zβKα

0

(
2
√

z
(
t2 + u2

))
dz

]1/α}α

≤ C

{∫ 1

0
ds

[∫ ∞

0

du

(t2 + u2)β+1

]1/α}α

≤ C

{∫ 1

0
ds

[
1

s2β+1

]1/α}α

< ∞

since β < (α − 1)/2. Next,

J ′′
γ ≤ C

∫ ∞

1
dv

∫ ∞

0
du

∫ ∞

0
zβ dzhα

4 (u, v, z)

≤ C

∫ ∞

1
dv

∫ ∞

0

du

(u2 + v2)β+1
≤ C

∫ ∞

1

dv

v1+2β
< ∞.

Hence, Jγ < ∞ for γ > 1. The case 0 < γ < 1 follows by symmetry. This proves the existence of
V4γ for all choices of α,β, γ in (4.2). The remaining facts in (i) are similar as in Proposition 3.1.

(ii) Follows analogously as in Proposition 3.1(ii).
(iii) Follows from the definition of the integrand F4γ in (4.2).
(iv) The proof is completely similar to that of Proposition 3.1(iii), taking into account the form

of V4γ in (4.1) and the fact that h4(u, v, z) is everywhere positive on R
2 ×R+.

(v) Follows from the OSRF property in (ii) analogously as in Proposition 3.1(v). Proposi-
tion 4.1 is proved. �

The main result of this section is Theorem 4.1. Its proof is based on the asymptotics
of the Green function g4 in Lemma 4.1, below. The proof of Lemma 4.1 can be found at
http://arxiv.org/abs/1303.2209v3.

Lemma 4.1. For any (t, s, z) ∈R
2
0 × (0,∞)

lim
λ→∞g4

(
[λt], [λs],1 − z

λ2

)
= h4(t, s, z) = 2

π
K0

(
2
√

z
(
t2 + s2

))
. (4.5)

The convergence in (4.5) is uniform on any relatively compact set {ε < |t | + |s| < 1/ε} × {ε <

z < 1/ε} ⊂R
2
0 ×R+, ε > 0.

Moreover, there exists constants C,c > 0 such that for all sufficiently large λ and any (t, s, z) ∈
R

2
0 × (0, λ2) the following inequality holds:

g4

(
[λt], [λs],1 − z

λ2

)
< C

{
h4(t, s, z) + e−c

√
λ(|t |1/2+|s|1/2)

}
. (4.6)

http://arxiv.org/abs/1303.2209v3
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Theorem 4.1. Assume that the mixing density φ is bounded on [0,1) and satisfies (1.8), where

0 < β < α − 1, 1 < α ≤ 2, β �= (α − 1)/2. (4.7)

Let X4 be the aggregated 4N model in (1.9). Then for any γ > 0

n−H(γ )

[nx]∑
t=1

[nγ y]∑
s=1

X4(t, s)
f.d.d.−→ V4γ (x, y), x, y > 0, n → ∞, (4.8)

where H(γ ) and V4γ are given in (4.3) and (4.1), respectively. As a consequence, the RF X4
exhibits scaling transition at γ0 = 1 and enjoys Type I isotropic distributional LRD property in
the sense of Definition 2.4.

Proof. Similarly, as in the proof of Theorem 3.1, it suffices to prove the limit

lim
n→∞Jnγ = Jγ , (4.9)

where

Jnγ := n−αH(γ )
∑

(u,v)∈Z2

E

∣∣∣∣∣
p∑

j=1

θj

∑
1≤t≤[nxj ],1≤s≤[nγ yj ]

g4(t − u, s − v,A)

∣∣∣∣∣
α

,

(4.10)

Jγ :=
∫
R2×R+

∣∣Gγ (u, v, z)
∣∣α dμ, Gγ (u, v, z) :=

p∑
j=1

θjF4γ (xj , yj ;u,v, z),

for any p ∈N+, θj ∈R, (xj , yj ) ∈ R
2+, j = 1, . . . , p. The proof of (4.9) follows the same strategy

as in the case of Theorem 3.1, that is, we write Jnγ as a Riemann sum approximation

Jnγ =
∫
R2×R+

∣∣Gnγ (u, v, z)
∣∣αχn(z)μ(du,dv,dz), (4.11)

to the integral Jγ , where χn(z) → 1(n → ∞) boundedly in z > 0, and Gnγ : R2 ×R+ → R are
some functions tending to Gγ in (4.10). We use Lemma 4.1 and the dominated convergence the-
orem to deduce the convergence in (4.9). Because of the differences in the form of the integrand
in (4.2), several cases of γ and β need to be discussed separately. The approximation is similar
as in the proof of Theorem 3.1 and is discussed briefly below.

For ε > 0, denote Wε := {(u, v, z) ∈ R
2 × R+ : |u| + |v| < 1/ε, ε < z < 1/ε},Wc

ε := (R2 ×
R+) \ Wε . Similarly, as in Theorem 3.1, (4.9) follows from

lim
n→∞

∫
Wε

∣∣Gnγ (u, v, z) − Gγ (u, v, z)
∣∣α dμ = 0 ∀ε > 0, (4.12)

and

lim
ε→0

lim sup
n→∞

∫
Wc

ε

∣∣Gnγ (u, v, z)
∣∣α dμ = 0. (4.13)



Aggregation of autoregressive random fields 2427

Case γ = γ0 = 1. In this case, (4.10) and (4.11) hold with Gγ0(u, v, z) := ∑p

j=1 θj ×∫ xj

0

∫ yj

0 h4(t − u, s − v, z)dt ds and

Gnγ0(u, v, z) :=
p∑

j=1

θj

∫ 
nxj �/n

0

∫ 
nyj �/n

0
g4

(
�nt� − �nu�, �ns� − �nv�,1 − z

n2

)
× 1

(
0 < z < n2)dt ds.

Then, by splitting Gnγ0(u, v, z) − Gγ0(u, v, z) = ∑3
i=1 �ni(u, v, z) and using Lemma 4.1 simi-

larly as in the proof of Theorem 3.1, Case γ = 1/2, relation (4.12) can be obtained.
Consider (4.13). Since Gγ0 ∈ Lα(μ), see the proof of Proposition 4.1(i), relation (4.13) holds

with Gnγ0 replaced by Gγ0 . Hence and with (4.6) in mind, it suffices to check (4.13) with Gnγ0

replaced by G̃n(u, v, z) := 1(0 < z < n2)
∫ 1

0

∫ 1
0 e−c(

√
n|t−u|+√

n|s−v|) dt ds, which follows from

J̃n :=
∫
R2×R+

(
G̃n(u, v, z)

)α dμ = O
(
n2(β−α+1)

) = o(1). (4.14)

We have J̃n ≤ Cn2β+2{∫
R
(
∫ 1

0 e−c
√

n|t−u| dt)α du}2, where
∫
R
(
∫ 1

0 e−c
√

n|t−u| dt)α du ≤∫
{|u|<2}(· · ·)α du + ∫

{|u|≥2}(· · ·)α du =: i′n + i′′n . Here, i′n ≤ C(
∫ 3

0 e−c
√

nv dv)α ≤ C/nα and

i′′n ≤ C
∫ ∞

2 e−cα
√

n(u−1) du = O(e−c′√n), c′ > 0. This proves (4.14) and (4.13).
Case γ > 1, (α − 1)/2 < β < α − 1. We have (4.11) with Gγ (u, v, z) = ∑p

j=1 θj 1(0 < v <

yj )
∫ xj

0 dt
∫
R

h4(t − u, s, z)ds and

Gnγ (u, v, z) :=
p∑

j=1

θj

∫ 
nxj �/n

0
dtn−1


nγ yj �∑
s=1

g4

(
�nt� − �nu�, s − ⌈

nγ v
⌉
,1 − z

n2

)
× 1

(
0 < z < n2)

=
p∑

j=1

θj

∫ 
nxj �/n

0
dt

∫
R

g4

(
�nt� − �nu�, �ns�,1 − z

n2

)
× 1

(
0 < z < n2,1 − ⌈

nγ v
⌉ ≤ �ns� ≤ ⌊

nγ yj

⌋ − ⌈
nγ v

⌉)
ds

=:
p∑

j=1

θj

∫ xj

0
dt

∫
R

fnj (t, s;u,v, z)ds,

cf. (3.22). From (1.12), (4.6) and γ > 1, for any u, t ∈ R, u �= t , v ∈ R \ {0, yj }, j = 1, . . . , p, s,
and z > 0, we have point-wise convergences

g4

(
�nt� − �nu�, �n�,1 − z

n2

)
1
(
0 < z < n2) → h4(t − u, s, z),

1
(
1 − ⌈

nγ v
⌉ ≤ �ns� ≤ ⌊

nγ yj

⌋ − ⌈
nγ v

⌉) → 1(0 < v < yj )
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implying fnj (t, s, u, v, z) → h4(t − u, s, z)1(0 < v < yj ) similarly as in (3.24) in the proof of
Theorem 3.1. The remaining details of the proof of (4.12) and (4.13) are similar as in Theo-
rem 3.1, Case γ > 1/2,0 < β < α − 1.

Case γ > 1,0 < β < (α−1)/2. We have (4.11) with Gγ (u, v, z) = ∑p

j=1 θjxj

∫ yj

0 h4(−u, s−
v, z)ds and

Gnγ (u, v, z) :=
p∑

j=1

θj

∫ 
nxj �/n

0
dt

∫ 
nγ yj �/nγ

0
g4

(
�nt� − ⌈

nγ u
⌉
,
⌈
nγ s

⌉ − ⌈
nγ v

⌉
,1 − z

n2γ

)
× 1

(
0 < z < n2γ

)
=:

p∑
j=1

θj

∫ 
nxj �/n

0
dt

∫ 
nγ yj �/nγ

0
fn(t, s;u,v, z)ds,

where fn(t, s;u,v, z) → f (s;u,v, z) := h4(−u, s − v, z) tends to a limit independent of t , as
n → ∞. Again, we omit the details of the proof of (4.12) and (4.13) which are similar as in
Theorem 3.1, Case γ > 1/2,−(α − 1)/2 < β < (α − 1)/2.

Case 0 < γ < 1 in (4.8) follows from case γ > 1 by lattice isotropy of the 4N model. This
ends the proof of (4.8). The second statement of the theorem follows from Proposition 4.1. The-
orem 4.1 is proved. �

The following proposition obtains the asymptotic behavior of the covariance function
r4(t, s) = EX4(t, s)X4(0,0) of the aggregated Gaussian RF X4 in (1.9) (α = 2). The proof of
Proposition 4.2 uses Lemma 4.1 and is omitted. �

Proposition 4.2. Assume α = 2 and the conditions of Theorem 4.1. Then for any (t, s) ∈R
2
0

lim
λ→∞λ2βr4

([λt], [λs]) = σ 2φ1�(β + 1)�(β)

π

(
t2 + s2)−β

. (4.15)

5. Auxiliary results

This section obtains conditions for the existence of a stationary solution of a general random-
coefficient nearest-neighbor autoregressive RF in (5.1). We also discuss contemporaneous ag-
gregation of (5.1) under the assumption that the innovations belong the domain of attraction of
α-stable law, 0 < α ≤ 2.

5.1. Existence of random-coefficient autoregressive RF

Consider a general random-coefficient nearest-neighbor autoregressive RF on Z
2:

X(t, s) =
∑

|u|+|v|=1

a(u, v)X(t + u, s + v) + ε(t, s), (t, s) ∈ Z
2, (5.1)
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where {ε(t, s); (t, s) ∈ Z
2} are i.i.d. r.v.’s with finite pth moment, p ∈ (0,2], and a(t, s) ≥ 0, |t |+

|s| = 1 are random coefficients independent of {ε(t, s)} and satisfying

A :=
∑

|t |+|s|=1

a(t, s) ∈ (0,1) a.s. (5.2)

Set also a(t, s) := 0, (t, s) ∈ Z
2, |t | + |s| �= 1. Clearly, the 3N and 4N models in (1.6) and (1.7)

are particular cases of (5.1).
Let us discuss solvability of (5.1). We will show that under certain conditions this equation

admits a stationary solution given by the convergent series

X(t, s) =
∑

(u,v)∈Z2

g(t − u, s − v,a)ε(u, v), (t, s) ∈ Z
2, (5.3)

where g(t, s,a), (t, s) ∈ Z
2,a = (a(t, s); |t | + |s| = 1) ∈ [0,1)4 is the (random) Green function

defined as

g(t, s,a) :=
∞∑

k=0

a�k(t, s), (5.4)

where a�k(t, s) is the k-fold convolution of a(t, s), (t, s) ∈ Z
2 defined recursively by

a�0(t, s) = δ(t, s) :=
{

1, (t, s) = (0,0),

0, (t, s) �= (0,0),

a�k(t, s) =
∑

(u,v)∈Z2

a�(k−1)(u, v)a(t − u, s − v), k ≥ 1.

Note that (5.4) can be rewritten as

g(t, s,a) =
∞∑

k=0

Akpk(t, s), (5.5)

cf. (1.10), where A is defined in (5.2) and pk(t, s) = P(Wk = (t, s)|W0 = (0,0)) is the k-step
probability of nearest-neighbor random walk {Wk,k = 0,1, . . .} on Z

2 with one-step transition
probabilities

p(t, s) := a(t, s)

A
≥ 0, (t, s) ∈ Z

2. (5.6)

Generally, the pk(t, s)’s depend also on a = (a(t, s); |t | + |s| = 1) ∈ [0,1)4 but this dependence
is suppressed below for brevity. Note that the series in (5.5) absolutely converges a.s., moreover,

∑
(t,s)∈Z2

g(t, s,a) =
∞∑

k=0

Ak
∑

(t,s)∈Z2

pk(t, s) =
∞∑

k=0

Ak = 1

1 − A
< ∞ a.s. (5.7)
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according to (5.2). From (5.7), it follows that the Fourier transforms p̂(x, y) :=∑
|t |+|s|=1 e−i(tx+sy)p(t, s) and

ĝ(x, y,a) :=
∑

(t,s)∈Z2

e−i(tx+sy)g(t, s,a) =
∞∑

k=0

Ak
∑

(t,s)∈Z2

e−i(tx+sy)pk(t, s)

=
∞∑

k=0

Ak
(
p̂(x, y)

)k = 1

1 − Ap̂(x, y)

are well-defined and continuous on �2 := [−π,π]2, a.s. From Parseval’s identity,∑
(t,s)∈Z2

∣∣g(t, s,a)
∣∣2 = (2π)−2

∫
�2

dx dy

|1 − Ap̂(x, y)|2 . (5.8)

Let

q1 := p(0,1) + p(0,−1) = 1 − p(1,0) − p(−1,0) =: 1 − q2, q := min(q1, q2),
(5.9)

μ1 := p(1,0) − p(−1,0), μ2 := p(0,1) − p(0,−1), μ :=
√

μ2
1 + μ2

2.

Note qi ∈ [0,1] and q1 = 0 (resp., q2 = 0) means that random walk {Wk} is concentrated on
the horizontal (resp., vertical) axis of the lattice Z

2. Condition μ = 0 means that {Wk} has zero
mean. Denote

�(A,q,μ) := min

(
1

q(1 − A)
,

1

μ
√

q(1 − A)

)(
1 + log+

(
μ2

q(1 − A)

))
. (5.10)

The main result of this section is Theorem 5.1, below, which provides sharp sufficient condi-
tions for the convergence of the series in (5.3) involving the quantity �(A,q,μ) in (5.10). The
proof of Theorem 5.1 uses the following Lemma 5.1. The proof of this lemma is given at the end
of this subsection.

Lemma 5.1. There exists a (non-random) constant C < ∞ such that∫
�2

dx dy

|1 − Ap̂(x, y)|2 ≤ C�(A,q,μ). (5.11)

Theorem 5.1. (i) Assume there exists 0 < p ≤ 2 such that

E
∣∣ε(0,0)

∣∣p < ∞ and Eε(0,0) = 0 for 1 ≤ p ≤ 2. (5.12)

Then there exists a stationary solution of random-coefficient equation (5.1) given by (5.3), where
the series converges conditionally a.s. and in Lp for any a = (a(t, s) ≥ 0, |t | + |s| = 1) ∈ [0,1)4

satisfying (5.2).
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(ii) In addition to (5.12), assume that q > 0 a.s. and{
E
[
�(A,q,μ)p−1(1 − A)p−2

]
< ∞, if 1 < p ≤ 2,

E
[
(1 − A)2p−3

]
< ∞, if 0 < p ≤ 1.

(5.13)

Then the series in (5.3) converges unconditionally in Lp , moreover,

E
[∣∣X(t, s)

∣∣p] ≤ C

{
E
[
�(A,q,μ)p−1(1 − A)p−2

]
< ∞, 1 < p ≤ 2,

E
[
(1 − A)2p−3

]
< ∞, 0 < p ≤ 1.

(5.14)

Proof. Part (i) follows similarly as in [43], proof of Proposition 1. Let us prove part (ii). We shall
use the following inequality; see [50], also [43], (2.7). Let 0 < p ≤ 2, and let ξ1, ξ2, . . . be random
variables with E|ξi |p < ∞. For 1 ≤ p ≤ 2, assume in addition that the ξi ’s are independent and
have zero mean Eξi = 0. Then E|∑i ξi |p ≤ 2

∑
i E|ξi |p . The last inequality and the fact that (5.3)

converges conditionally in Lp (see part (i)) imply that

E
[∣∣X(t, s)

∣∣p|a] ≤ 2E
∣∣ε(0,0)

∣∣p ∑
(u,v)∈Z2

∣∣g(u, v,a)
∣∣p. (5.15)

Accordingly, it suffices to prove that

E
∑

(t,s)∈Z2

∣∣g(t, s,a)
∣∣p < ∞. (5.16)

For p = 2, (5.16) is immediate from (5.8) and (5.11). Next, using (5.8), (5.11) and Hölder’s
inequality, for any 1 < p < 2 we obtain∑

(t,s)∈Z2

∣∣g(t, s,a)
∣∣p =

∑
(t,s)∈Z2

∣∣g(t, s,a)
∣∣2(p−1)∣∣g(t, s,a)

∣∣2−p

≤
( ∑

(t,s)∈Z2

∣∣g(t, s,a)
∣∣2)p−1( ∑

(t,s)∈Z2

∣∣g(t, s,a)
∣∣)2−p

(5.17)

≤ C�(A,q,μ)p−1(1 − A)p−2.

Next, consider the case 0 < p ≤ 1. Using (5.5), the inequality |∑i xi |p ≤ ∑
i |xi |p and Hölder’s

inequality, we obtain

∑
(t,s)∈Z2

∣∣g(t, s,a)
∣∣p ≤

∞∑
k=0

Akp
∑

|t |+|s|≤k

p
p
k (t, s)

≤
∞∑

k=0

Akp

{ ∑
|t |+|s|≤k

pk(t, s)

}p{ ∑
|t |+|s|≤k

1

}1−p

(5.18)

≤ C

∞∑
k=0

Akpk2(1−p) ≤ C

(1 − Ap)3−2p
≤ C

(1 − A)3−2p
,
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where the last inequality follows from 1 − xp ≥ p(1 − x), x ∈ [0,1]. Note that C in (5.17)–
(5.18) are non-random. Hence, (5.16) follows from (5.13) and the bounds in (5.17)–(5.18), prov-
ing the unconditional convergence of (5.3). Inequality (5.14) is a consequence of (5.17)–(5.18)
and (5.15). �

Proof of Lemma 5.1. Write I for the left-hand side of (5.11). Since (5.11) holds trivially for
0 ≤ A ≤ 1/2, we assume 1/2 < A < 1 in the sequel. We have

1 − Ap̂(x, y) = (1 − A) + A
∑

|t |+|s|=1

p(t, s)
(
1 − ei(tx+sy)

)
= (1 − A) + A

[
q2

(
1 − cos(x)

) + q1
(
1 − cos(y)

)] − iA
(
μ1 sin(x) + μ2 sin(y)

)
and ∣∣1 − Ap̂(x, y)

∣∣2 = (
(1 − A) + A

[
q2

(
1 − cos(x)

) + q1
(
1 − cos(y)

)])2

+ A2(μ1 sin(x) + μ2 sin(y)
)2

(5.19)
≥ (1/4)

{(
(1 − A) + q

[(
1 − cos(x)

) + (
1 − cos(y)

)])2

+ μ2(ν1 sin(x) + ν2 sin(y)
)2}

,

where νi := μi/μ, i = 1,2, ν2
1 + ν2

2 = 1. Split I = I1 + I2, where I1 := ∫
[−π/4,π/4]2 , I2 :=∫

�2\[−π/4,π/4]2 . Changing the coordinates sin(x) = u, sin(y) = v, ν1u + ν2v = s,−ν2u + ν1v =
t, r2 = t2 + s2, s = r sin(φ) we get

I1 = C

∫
[−1/

√
2,1/

√
2]2

1√
(1 − u2)(1 − v2)

× dudv

{((1 − A) + q[(1 − √
1 − u2) + (1 − √

1 − v2)])2 + μ2(ν1u + ν2v)2}
≤ C

∫
u2+v2≤1

dudv

((1 − A) + q[u2 + v2])2 + μ2(ν1u + ν2v)2

= C

∫
t2+s2≤1

ds dt

((1 − A) + q[s2 + t2])2 + μ2s2

= C

∫ 1

0

∫ π/2

0

rdr dφ

((1 − A) + qr2)2 + μ2r2 sin2(φ)
.

Using sin(φ) ≥ (1/2)φ,φ ∈ [0,π/2) with W := ((1−A)+qx)2

x
, we obtain

I1 ≤ C

∫ 1

0

∫ 1

0

dx dy

((1 − A) + qx)2 + μ2xy2

≤ C

∫ 1

0

dx

x

∫ 1

0

dy

W + μ2y2
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≤ C

∫ 1

0

dx

x
√

W

∫ 1/
√

W

0

du

1 + μ2u2

≤ C

μ

∫ 1

0

dx

x
√

W
min

(
1,

μ√
W

)
= C

(
I ′

1 + I ′′
1

)
,

where

I ′
1 := 1

μ

∫ 1

0

dx

x
√

W
1(μ >

√
W), I ′′

1 :=
∫ 1

0

dx

xW
1(μ <

√
W).

Here,

I ′′
1 ≤ min

(∫ ∞

0

dx

((1 − A) + qx)2
,

1

μ

∫ ∞

0

dx

x1/2((1 − A) + qx)

)
(5.20)

≤ C min

(
1

q(1 − A)
,

1

μ
√

q(1 − A)

)
.

Since I ′
1 = 0 for μ2 ≤ q(1 − A) we obtain

I ′
1 ≤ 1

μ

∫ 1

0

dx

x1/2((1 − A) + qx)
1
(
μ2 > q(1 − A)

)
(5.21)

≤ C

μ
√

q(1 − A)
1
(
μ2 > q(1 − A)

)
.

Relations (5.20) and (5.21) yield

I1 ≤ C min

(
1

q(1 − A)
,

1

μ
√

q(1 − A)

)
. (5.22)

Below we prove the bound

I2 ≤ C

{
(1 − A + q)−2, μ ≤ 1 − A + q,

μ−1(1 − A + q)−1(1 + log
(
μ/(1 − A + q)

))
, μ > 1 − A + q,

(5.23)

with C independent of A,q,μ, as elsewhere in this proof. Since 1 − A + q ≥ √
q(1 − A), the

desired inequality (5.11), viz., I ≤ C�(A,q,μ), follows from (5.22) and (5.23).
Let us prove (5.23). For μ ≤ 1 − A + q it follows trivially from (5.19). Let μ > 1 − A + q in

the rest of the proof. From (5.19), we obtain that

I2 ≤ C

∫
�2\[−π/4,π/4]2

dx dy

(1 − A + q)2 + μ2(ν1 sin(x) + ν2 sin(y))2

(5.24)

≤ C

∫
[0,π/2]2

dx dy

(1 − A + q)2 + μ2(ν̃1 sin(x) + ν̃2 sin(y))2
,
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where |ν̃i | = |νi |, i = 1,2 satisfy ν̃2
1 + ν̃2

2 = 1. Then

I2 ≤ C

∫
[0,1]2

(1 − u2)−1/2(1 − v2)−1/2 dudv

(1 − A + q)2 + μ2(ν̃1u + ν̃2v)2

≤ C

μ2

∫
[0,1]2

dudv

(ε2 + (ν̃1u + ν̃2v)2)
√

(1 − u)(1 − v)
with ε := 1 − A + q

μ
≥ 0.

We claim that ∫
[0,1]2

dudv

(ε2 + (ν̃1u + ν̃2v)2)
√

(1 − u)(1 − v)
≤ C

ε

(
1 + log+(1/ε)

)
(5.25)

with C < ∞ independent of ε > 0 and ν̃i , i = 1,2, ν̃2
1 + ν̃2

2 = 1. Bound (5.25) proves (5.23) and
hence (5.11) and the lemma, too. Therefore, it remains to prove (5.25).

By symmetry, it suffices to prove (5.25) for ν̃1 ≥ 1/
√

2,0 ≥ ν̃2 ≥ −1/
√

2, or

J :=
∫

[0,1]2

dudv

(ε2 + (u − rv)2)
√

(1 − u)(1 − v)
≤ C

ε

(
1 + log+(1/ε)

)
(5.26)

uniformly in r ∈ [0,1].
We have J = 1√

r

∫ r

0
dv√
r−v

∫ 1
0

du

(ε2+(u−v)2)
√

1−u
= 1√

r

∫ r

0
dv√
r−v

∫ 1
0

dz

(ε2+(1−z−v)2)
√

z
= ∑2

i,j=1 Jij ,

where

J11 := 1√
r

∫ r

0

1(1 − v > 2ε)dv√
r − v

∫ 1

0

1(|1 − z − v| > ε)dz

(ε2 + (1 − z − v)2)
√

z
,

J12 := 1√
r

∫ r

0

1(1 − v > 2ε)dv√
r − v

∫ 1

0

1(|1 − z − v| < ε)dz

(ε2 + (1 − z − v)2)
√

z
,

J21 := 1√
r

∫ r

0

1(1 − v < 2ε)dv√
r − v

∫ 1

0

1(|1 − z − v| > ε)dz

(ε2 + (1 − z − v)2)
√

z
,

J22 := 1√
r

∫ r

0

1(1 − v < 2ε)dv√
r − v

∫ 1

0

1(|1 − z − v| < ε)dz

(ε2 + (1 − z − v)2)
√

z
.

Bound (5.26) will be proved for each Jij , i, j = 1,2.
Estimation of J22. We have

J22 ≤ 1√
r

∫ r

0

1(1 − v < 2ε)dv√
r − v

1

ε2

∫ 1

0

1(|1 − z − v| < ε)dz√
z

≤ 1√
r

∫ r

0

1(1 − v < 2ε)dv√
r − v

1

ε2

∫ 3ε

0

dz√
z

≤ C√
rε3/2

∫ r

0

1(1 − v < 2ε)dv√
r − v

(5.27)

≤ C√
rε3/2

∫ r

r−2ε

dv√
r − v

1(r > 1 − 2ε) ≤ C

ε
1(r > 1 − 2ε).
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Estimation of J21. We have

J21 ≤
∫ 1

0

1(1 − rv < 2ε)dv√
1 − v

∫ 1

0

1(|1 − z − rv| > ε)dz

(1 − z − rv)2√z
(5.28)

=
∫ 2ε

0

dx√
x

∫ 1

0

1(|x − z| > ε)dz

(x − z)2√z
≤ 1

ε

∫ 2

0

dx√
x

∫ ∞

0

1(|x − z| > 1)dz

(x − z)2√z
≤ C

ε

since the last double integral converges.
Estimation of J12. We have

J12 ≤ 1√
r

∫ r

0

1(1 − v > 2ε)dv√
r − v

1

ε2

∫ 1

0

1(|(1 − v) − z| < ε)dz√
z

≤ C√
r

∫ r

0

1(1 − v > 2ε)dv√
r − v

1

ε2

∫ 1−v+ε

1−v−ε

dz√
z

(5.29)

≤ C√
rε2

∫ r

0

1(1 − v > 2ε)dv√
r − v

(
√

1 − v + ε − √
1 − v − ε)

≤ C√
rε2

∫ r

0

1(1 − v > 2ε)dv√
r − v

ε√
1 − v

≤ C log(1/ε)

ε
.

Indeed, if r ∈ [0,1/2] then 1√
r

∫ r

0
1(1−v>2ε)dv√

r−v
√

1−v
≤ C√

r

∫ r

0
dw√

w
≤ C, and if r ∈ [1/2,1], ε ≤ 1/2 then

with z = w − (2ε + r − 1)

1√
r

∫ r

0

1(1 − v > 2ε)dv√
r − v

√
1 − v

≤ C

∫ r

0

1(w > 2ε + r − 1)dw√
w

√
1 − r + w

≤ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 1

0

dz√
z
√

z + 2ε
, 2ε > 1 − r ,∫ r

0

dw√
w

√
1 − r + w

, 1 − r ≥ 2ε,

≤ C log(1/ε).

Estimation of J11. We have

J11 ≤ 1√
r

∫ 1

1−r

1(w > 2ε)dw√
w − (1 − r)

∫ 1

0

1(|z − w| > ε)dz

(z − w)2√z
(5.30)

≤ C

ε
√

r

∫ 1/ε

(1−r)/ε

L(w)1(w > 2)dw√
w − (1 − r)/ε

,

where L(w) := ∫ ∞
0

1(|z−w|>1)dz

(z−w)2√z
≤ Cw−1/2 for w ≥ 1. W.l.g., let ε ∈ (0,1/2]. First, let (1 −

r)/ε < 1, then r ∈ (1/2,1] and w − 1−r
ε

> w/2 for w > 2. The above facts imply that

J11 ≤ C

ε

∫ 1/ε

1

dw

w
≤ C log(1/ε)

ε
when (1 − r)/ε < 1, (5.31)
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with C independent of r, ε. Next, let (1 − r)/ε ≥ 1 then from (5.30), L(w) = O(w−1/2) and the
change of variables w − 1−r

ε
= 1−r

ε
x we obtain

J11 ≤ C

ε
√

r

∫ r/(1−r)

0

dx√
x
√

1 + x
≤ C

ε
√

r

{(
r/(1 − r)

)1/2
, r ∈ [0,3/4],

log
(
r/(1 − r)

)
, r ∈ [3/4,1],

(5.32)

≤ C log(1/ε)

ε
when (1 − r)/ε ≥ 1.

Bounds (5.31), (5.32) prove (5.26) for J11, thereby completing the proof of (5.26). Lemma 5.1 is
proved. �

5.2. Aggregation of autoregressive RF

Definition 5.2. Write ε ∈ D(α), 0 < α ≤ 2 if

(i) α = 2 and Eε = 0, σ 2 := Eε2 < ∞, or
(ii) 0 < α < 2 and there exist some constants c1, c2 ≥ 0, c1 + c2 > 0 such that

lim
x→∞xαP(ε > x) = c1 and lim

x→−∞|x|αP(ε ≤ x) = c2;

moreover, Eε = 0 whenever 1 < α < 2, while for α = 1 we assume that the distribution of ε is
symmetric.

Remark 5.1. Condition ε ∈ D(α) implies that the r.v. ε belongs to the domain of normal attrac-
tion of an α-stable law; in other words,

N−1/α
N∑

i=1

εi
d−→ Z, N → ∞, (5.33)

where Z is an α-stable r.v.; see [18], pages 574–581. The characteristic function of r.v. Z in (5.33)
is given by

EeiθZ = e−|θ |αω(θ), θ ∈R, (5.34)

where ω(θ) depends only on sign(θ) and α, c1, c2, σ in Definition 5.2. See, for example, [18],
pages 574–581.

Let {Xi(t, s)}, i = 1,2, . . . be independent copies of (5.3) with i.i.d. innovations ε(t, s) ∈
D(α),0 < α ≤ 2. The aggregated field {X(t, s); (t, s) ∈ Z

2} is defined as the limit in distribu-
tion:

N−1/α
N∑

i=1

Xi(t, s)
f.d.d.−→ X(t, s), (t, s) ∈ Z

2,N → ∞. (5.35)
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Introduce an independently scattered α-stable random measure M on Z
2 × [0,1)4 with charac-

teristic functional

E exp

{
i

∑
(t,s)∈Z2

θt,sMt,s(Bt,s)

}
= exp

{
−

∑
(t,s)∈Z2

|θt,s |αω(θt,s)
(Bt,s)

}
, (5.36)

where 
(B) := P(a = (a(t, s), |t | + |s| = 1) ∈ B) is the mixing distribution, θt,s ∈ R, B,Bt,s ⊂
[0,1)4 are arbitrary Borel sets, and ω is the same as in (5.34). According to the termi-
nology in [46], Definition 3.3.1, M is called an α-stable measure with control measure
Re(ω(1))
(da) proportional to the mixing distribution 
, and a constant skewness intensity
Im(ω(1))/Re(ω(1)) tan(πα/2).

Proposition 5.1. Let ε(0,0) ∈ D(α),0 < α ≤ 2. Assume that the mixing distribution satisfies the
following condition: there exists ε > 0 such that⎧⎪⎨⎪⎩

E
[
�(A,q,μ)

]
< ∞, if α = 2,

E
[
�p−1(A,q,μ)(1 − A)p−2

]
< ∞, if 1 < α < 2,p = α ± ε,

E
[
(1 − A)2α−3−ε

]
< ∞, if 0 < α ≤ 1,

(5.37)

where �(A,q,μ) is defined in (5.10). Then the limit aggregated RF in (5.35) exists and has the
stochastic integral representation

X(t, s) =
∑

(u,v)∈Z2

∫
[0,1)4

g(t − u, s − v,a)Mu,v(da), (t, s) ∈ Z
2. (5.38)

Remark 5.2. Note for the 3N and 4N models, we have μ = 1, q = 1/3,�(A,1/3,1) ≤
C√
1−A

(1 + | log(1 − A)|) and μ = 0, q = 1/4,�(A,1/4,0) ≤ C/(1 − A), respectively. As a
consequence, for the aggregated 3N and 4N models and a regularly varying (mixing) density
of A in (1.8), condition (5.37) for 1 < α ≤ 2 reduces to β > −(α − 1)/2 and β > 0, respectively.

Proof of Proposition 5.1. Let T ⊂ Z
2 be a finite set, θt,s ∈ R, (t, s) ∈ T , and SN =

N−1/α
∑N

i=1 Ui be a sum of i.i.d. r.v.’s with common distribution

U :=
∑

(t,s)∈T

θt,sX(t, s) =
∑

(u,v)∈Z2

G(u,v,a)ε(u, v),

G(u, v,a) :=
∑

(t,s)∈T

θt,sg(t − u, s − v,a).

It suffices to prove that SN
d−→ S(N → ∞), where S := ∑

(t,s)∈T θt,sX(t, s) is a α-stable r.v.
with characteristic function

EeiwS = exp

{
−|w|α

∑
(u,v)∈Z2

E
[∣∣G(u,v,a)

∣∣αω
(
wG(u,v,a)

)]}
.
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For this, it suffices to prove that r.v. U belongs to the domain of attraction of r.v. S (in the sense
of (5.33)) or U ∈ D(α), see Remark 5.1; in other words, that

EU2 = ES2 < ∞ for α = 2, (5.39)

and, for 0 < α < 2,

lim
x→∞xαP(U > x) =

∑
(u,v)∈Z2

E
[∣∣G(u,v,a)

∣∣α{c11
(
G(u,v,a) > 0

) + c21
(
G(u,v,a) < 0

)}]
,

(5.40)

lim
x→−∞|x|αP(U ≤ x) =

∑
(u,v)∈Z2

E
[∣∣G(u,v,a)

∣∣α{c11
(
G(u,v,a) < 0

) + c21
(
G(u,v,a) > 0

)}]
,

where ci, i = 1,2 are the asymptotic constants in Definition 5.2 satisfied by ε(0,0) ∼ D(α).
Here, (5.39) follows from definitions of U and S and Theorem 5.1 with p = 2. To prove (5.40),
we use [28], Theorem 3.1. Accordingly, it suffices to check that there exists ε > 0 such that for
0 < α < 2, α �= 1,∑

(u,v)∈Z2

E
∣∣G(u,v,a)

∣∣α+ε
< ∞ and

∑
(u,v)∈Z2

E
∣∣G(u,v,a)

∣∣α−ε
< ∞, (5.41)

and

E

( ∑
(u,v)∈Z2

∣∣G(u,v,a)
∣∣α−ε

)(α+ε)/(α−ε)

< ∞ for α = 1.

Since T ⊂ Z
2 is a finite set, it suffices to show (5.41) with G(u,v,a) replaced by g(u, v,a).

Let 1 < α < 2 and p = α ± ε ∈ (1,2) in (5.37). Then
∑

(u,v)∈Z2 E|g(u, v,a)|p ≤ CE[�(A,q,

μ)p−1(1 − A)p−2] < ∞ follows from (5.17) and (5.37). In the case 0 < α < 1, relations (5.41)
immediately follow from (5.18) and (5.37) with p = α ± ε ∈ (0,1). For α = 1, (5.41) follows
from (5.18) in a similar way. �
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