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We study connectivity properties in a probabilistic model for a large mobile ad-hoc network. We consider
a large number of participants of the system moving randomly, independently and identically distributed
in a large domain, with a space-dependent population density of finite, positive order and with a fixed
time horizon. Messages are instantly transmitted according to a relay principle, that is, they are iteratively
forwarded from participant to participant over distances smaller than the communication radius until they
reach the recipient. In mathematical terms, this is a dynamic continuum percolation model.

We consider the connection time of two sample participants, the amount of time over which these two
are connected with each other. In the above thermodynamic limit, we find that the connectivity induced
by the system can be described in terms of the counterplay of a local, random and a global, deterministic
mechanism, and we give a formula for the limiting behaviour.

A prime example of the movement schemes that we consider is the well-known random waypoint model.
Here, we give a negative upper bound for the decay rate, in the limit of large time horizons, of the probability
of the event that the portion of the connection time is less than the expectation.

Keywords: ad-hoc networks; connectivity; dynamic continuum percolation; large deviations; random
waypoint model

1. Introduction and main results

1.1. Background and goals

Ad-hoc networks consist of individuals in a given domain that communicate with each other via a
relay principle: messages are forwarded from individual to individual as long as this transmission
is local, until the message finally arrives at the recipient. This requires of course that the sender is
connected with the recipient, that is, there is a chain of individuals connecting them such that all
links are not larger than a given radius, the transmission radius or communication radius. This
principle of message transmission within the system of participants, rather than via antennas
or fixed wires, has a number of advantages over a firmly installed communication system; for
example, its installation is cheap, it does not require much maintaining, it can accommodate
more information, etc. A disadvantage is of course that the connectivity is not always fulfilled,
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that is, it may be that two given individuals are not connected with each other and are therefore
not able to exchange messages.

The advantages of such a type of system increase if the ad-hoc network becomes mobile, that
is, if all the individuals independently move around in the given region and transmit the messages
at their present location, since in this case a fixed system of wires would be useless, and firmly
located antennas would be necessary, and this may easily lead to situations of overloads in peak
times. This is why mobile ad-hoc networks are increasingly in the discussion for various appli-
cations, like telecommunication, car-to-car applications for the distribution of information about
the traffic situation, downloading of large data packages and more [5,6,19]. However, before one
can seriously think about an introduction of a mobile ad-hoc system, one needs to know how
reliable it is and how much information it can reliably transmit and how well the participants of
the system are connected.

The mathematical analysis of the connectivity properties of a mobile ad-hoc network (usually
referred to in the literature as MANET), is the purpose of the present paper. We discuss a natural
probabilistic model and derive rigorous results about the quality of the connection in this system.
Roughly speaking, in our model, a large number N of participants randomly and independently
move around in a given domain D ⊂ Rd with d ≥ 2. The movement scheme considered is quite
general, but later we will discuss the prime example, the random waypoint model (RWP), in
detail. Each of the participants carries a device that possesses a fixed communication radius 2R

(the same for everybody). The domain is so large that the individuals are distributed according to
a spatial density that is of finite order, but may depend on the details of the domain (this models
subareas with more or less frequent visits, like forests, lakes or public places). We assume that
messages are transmitted instantly, that is, without loss of time. Then we ask, for two fixed given
participants, how large, during a given time interval [0, T ], the amount of time is during which
they are connected, their connection time τ

(N)
T . This is one of the most decisive quantities in such

a system, since it measures the quality of the entire system by means of two sample participants.
The regime in which we will be working is the limit of a large number of participants, coupled

with the limit of a large region such that the population density (number of participants per area
unit) is of finite positive order. In the language of statistical mechanics, this is the thermody-
namic limit. We will condition on the two sample trajectories. The connection time is obviously
a complex function of the entire system, but we will be able to quantify the influence of the large
number of the participants on the connectivity of the two sample participants in terms of a simple
function. This function is known from the theory of continuum percolation, which studies con-
nectivity through a union of randomly distributed balls. It turns out that the limiting connection
time has a global, deterministic part and a local, probabilistic part, the latter of which is described
in terms of the mentioned function. Furthermore, it also turns out that this limit is determinis-
tic, given the two sample participants. This is due to one of our assumptions on the movement
scheme, which requires that knowledge about the walker’s location at a later time point does not
fix the current location with positive probability. This assumption implies a certain independence
of the locations of the totality of the walkers at any two given times and leads to a deterministic
limit. This is presented in Sections 1.2 and 1.3.

From the practical point of view, a very large value of the connection time is highly desirable.
This can be guaranteed by a large value of the communication radius 2R. However, one also
would like to have rules at hand that tell how large this radius must be picked in order that the
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connection time exceeds a certain threshold. Some general answer to this question is given in
Section 1.3. We explain there that, under natural conditions, the main effect that may damage
the connection are time lags that any of the two sample participants spend close to the boundary
of the domain D, while, in the interior of D, the local connection quality of the system super-
exponentially fast tends to the optimum for R → ∞, depending on the local user density only.

Furthermore, another important question that we address is about the long-time behaviour of
the connection time. More precisely, we identify the limiting fraction of the connection time
by means of an ergodic theorem and estimate the probability of the unwanted event that the
connection time covers only an untypically low portion of the time interval. This is an event of
a downward large deviation, and we will show that its probability decays exponentially fast as
T → ∞, and we quantify an upper bound of the decay rate. For this question, we restrict to the
RWP and derive some recurrence properties that may be useful also for further investigations;
see Section 1.4.

The model that we consider is sometimes called a dynamic geometric random graph. Such
models were analysed in a series of papers by Peres and co-workers; see [17], for example.
However, in contrast to our setting, they do not consider the thermodynamic limit, study different
questions related to the large-time limit, and take Brownian motion or random walks as the
underlying movement scheme. Our purpose is to study a more realistic model for the random
movement of people.

1.2. Connection time of two participants in the thermodynamic limit

Let us introduce the model; our main result here is Theorem 1.2.
We consider a system of N particles (the participants of the mobile ad-hoc network), which

randomly move with time horizon [0, T ] within a given bounded open domain D in Rd . The
N movements are independent and identically distributed, and the common movement scheme
(path distribution) does not have to be Markovian; more precise assumptions follow below. The
underlying probability measure and expectation are denoted by P and E.

Later (see Section 1.4) we will be mostly interested in a particular movement scheme, namely
the random waypoint model (RWP). This motion dynamic is considered in information science
as a realistic model for the random movement of a human being, for example, a participant of a
telecommunication system [3,11,12,19]. A brief definition of the model is as follows. The walker
starts from some point, picks a random velocity and a random site (the first waypoint) and then
moves with this constant velocity on a straight line to that waypoint. Having arrived there, he
picks the next random velocity and random waypoint and moves there on a straight line with the
second velocity. This is iterated. All the waypoints are independent and identically distributed,
and the velocities as well, and the waypoints are independent from the velocities. This model
is a natural extension of the classical RWP, as we admit general distributions of the waypoints
and the velocities. On the other hand, we do not admit pause times that the walker spends at
waypoints.

Let us proceed with a general movement scheme. We equip every walker with a fixed com-
munication radius 2R ∈ (0,∞). That is, there is a direct connection between any two of them if
their distance is at most 2R. Two of the N participants, located at x and y, say, are (indirectly)



2146 H. Döring, G. Faraud and W. König

connected if and only if there is a sequence x1, . . . , xm of m other participants such that all the
distances between xi and xi−1 are at most 2R for any i = 1, . . . ,m + 1, where we put x0 = x

and xm+1 = y. In other words, the m + 2 balls around x0, . . . , xm+1 with radius R have pairwise
a non-trivial intersection along the chain x0, . . . , xm+1; in particular, there is a continuous path
from x to y within their union. This is fulfilled if and only if x and y lie in the same connected
component of the union of the balls of radius R centred at the N participants. In this way, we see
that our model is a dynamic continuum percolation process.

It is our goal to study the thermodynamic limit of this system, that is, we think of the volume of
the domain being of order N , the number of participants, and we assume that the trajectories are
coupled with N in an accordingly rescaled way. That is, the length scale is N1/d , and the density
of participants (their number per unit volume) is of finite positive order. Then it is clear that a
rescaled version of this picture is better suitable for a mathematical analysis. Hence, we consider
instead the equivalent situation of a fixed domain D and a fixed movement scheme (both not
depending on N ), and we put the communication radius equal to 2RN−1/d . We do not rescale
the time interval [0, T ] by N1/d , as this is a trivial change.

By X(i) = (X
(i)
s )s∈[0,T ] we denote the (random) trajectory of the ith participant, that is, a

random variable taking values in the set of functions [0, T ] → D. We assume that (making the
underlying probability space � explicit) the map (s,ω) �→ X

(i)
s (ω) is measurable from [0, T ]×�

into D. Let B(x, r) denote the open ball around x with radius r > 0. Then the set

D(N)
s = D ∩

N⋃
i=1

B
(
X(i)

s ,RN−1/d
)

is the communication zone at time s. We introduce the notion of connectivity at time s: for
x, y ∈ D we write

x
N←→
s

y ⇐⇒ x and y lie in the same component of D(N)
s . (1.1)

We will use this notion only for x = X
(1)
s and y = X

(2)
s . Hence, the two participants X(1),X(2)

are connected at time s if there is a polygon line from X
(1)
s to X

(2)
s consisting of line segments

of lengths at most 2RN−1/d with the vertices being the locations of other participants at time s.

Hence, X
(1)
s

N←→
s

X
(2)
s if and only if these two can exchange a message at time s. Note that

the indicator function 1{X(1)
s (ω)

N←→
s

X
(2)
s (ω)} is jointly measurable in s and ω, since it is a

polynomial function of the indicators 1{|X(i)
s (ω) − X

(j)
s (ω)| ≤ RN−1/d} with i, j ∈ {1, . . . ,N},

which are jointly measurable in s and ω.
The main object is the connection time

τ
(N)
T := ∣∣{s ∈ [0, T ]:X(1)

s

N←→
s

X(2)
s

}∣∣ =
∫ T

0
ds1

{
X(1)

s

N←→
s

X(2)
s

}
, (1.2)

the amount of time during which these two participants are connected up to T . By the above
mentioned joint measurability of the integrand, is well-defined and measurable. We will analyse
the connection time in the limit N → ∞.
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Let us state our assumptions on the random movement of the N walkers. We write {f > r} for
short for the set {x ∈ D:f (x) > r} and use analogous notation for similarly defined sets.

Assumption 1.1 (The movement scheme). The distribution of the random path X = (Xs)s∈[0,T ]
in D satisfies the following:

(i) For any s ∈ (0, T ], the distribution of the location Xs possesses a continuous Lebesgue
density fs :D → [0,∞).

(ii) For any s, s̃ ∈ (0, T ] satisfying s < s̃, a regular version of the conditional distribution of
Xs given Xs̃ exists and is non-atomic almost surely.

Sufficient for Assumption 1.1 is the existence of a jointly continuous Lebesgue density of Xs

and Xs̃ for any 0 < s < s̃ ≤ T . Condition (ii) is needed for the asymptotic independence of the
clusters at time s from the clusters at time s̃; it allows us to neglect those walkers that define both
clusters and to deal only with disjoint sets of participants that form the two clusters; see the proof
of Lemma 2.3. The reason why it is stated for s < s̃ is that it makes the proof of Lemma 2.3
simpler to understand. It is, however, possible to adapt it with the same assumption for s > s̃. We
leave the details of this to the reader.

We also remark that the map (s, x) �→ fs(x) is measurable. Indeed, by measurability of the
map (s,ω) �→ Xs(ω), the indicator 1{|Xs(ω) − x| ≤ ε} is (ω, s, x)-measurable for any ε > 0.
Therefore, by Fubini’s theorem, its expectation is (s, x)-measurable, and by continuity of fs , we
have fs(x) = limε↓0 P(|Xs − x| ≤ ε)/(Cεd), C being the volume of the unit ball in Rd , that is,
fs(x) is a limit of (s, x)-measurable functions.

Note that we do not require the continuity of the trajectories; regularity is only required for
the distributions at fixed times. Assumption 1.1 is satisfied for many diffusions in D and also for
many continuous-time random walks in D. For practical reasons, we are mainly interested in the
random waypoint model; see below.

We need to introduce some standard objects from (static, homogeneous) continuum per-
colation; see [13] and Section 2.1 below for general background. Let (Zi)i∈N be a standard
Poisson point process on Rd with intensity λ ∈ (0,∞). We define the percolation probability
θ(λ,R) as the probability that there is a path from B(0,R) to infinity that never leaves the set
UR = ⋃

i∈N B(Zi,R). In other words, θ(λ,R) is the probability that UR has an unbounded con-
nected component that intersects B(0,R).

The function θ will play a crucial role in the asymptotic description of our model. As we will
see below, the number θ(λ,R) describes, in our spatially rescaled picture, the probability that,
locally, a given participant belongs to the infinitely large cluster and has therefore connection
over a macroscopic part of the space.

We introduce two notions of (non-random) connectedness in the domain D as follows. By
“path” we mean a continuous polygon line in D with finitely many edges, whose vertices lie in
D ∩Qd (with possible exception of the first and last one). For � ∈ {≥,>} and x, y ∈ D, we write

x
�←→
s

y ⇐⇒ there exists a path from x to y within
{
fs � λc(R)

}
.

Note that the map (x, y, s) �→ 1{x �←→
s

y} is measurable, as (s, x) �→ fs(x) is and the notion of

a path involves only countably many operations.
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Furthermore, we introduce two versions of a limiting value of τ
(N)
T . For � ∈ {≥,>}, define

τ
(�)
T

(
X(1),X(2)

) =
∫ T

0
ds1

{
X(1)

s

�←→
s

X(2)
s

}
θ

(�)(
fs

(
X(1)

s

)
,R

)
θ

(�)(
fs

(
X(2)

s

)
,R

)
, (1.3)

where θ
(>)

(λ,R) = θ(λ−,R) = lims↑λ θ(s,R) and θ
(≥)

(λ,R) = θ(λ+,R) = lims↓λ θ(s,R) are
the left- and right-continuous versions of θ . Recall that these two functions coincide at least
everywhere outside the critical value λc(R). Note that τ

(�)
T (X(1),X(2)) is well-defined and mea-

surable by the measurability of all the θ -functions, the joint measurabilities of fs(x) in s and x

and of X
(i)
s (ω) in s and ω and of 1{x �←→

s
y} in x, y and s.

Our main result is the following.

Theorem 1.2. Fix T > 0 and R > 0, and assume that the distributions of the N i.i.d. ran-
dom movements X(1), . . . ,X(N) satisfy Assumption 1.1. Then, for P-almost all realisations of
(X(1),X(2)), in probability with respect to P(·|X(1),X(2)),

τ
(>)
T

(
X(1),X(2)

) ≤ lim inf
N→∞ τ

(N)
T ≤ lim sup

N→∞
τ

(N)
T ≤ τ

(≥)
T

(
X(1),X(2)

)
. (1.4)

For a proof of Theorem 1.2 see Section 2; for a discussion about whether or not the limit
in (1.4) exists and how it behaves for large R; see Section 1.3.

The assertion in (1.4) shows that the connectivity of the medium that is built out of
X(1),X(2), . . . ,X(N) is fully determined by just two effects: a global, deterministic one (ex-

pressed by the indicator on the event {X(1)
s

�←→
s

X
(2)
s } in (1.3)) and a local, stochastic one (ex-

pressed by the two θ -terms). Indeed, the two walkers at time s are connected if and only if:

• their positions x = X
(1)
s and y = X

(2)
s are connected by a deterministic path within the

supercritical region, that is, the set {fs � λc(R)} (with � =≥ for an upper bound and � =>

for a lower bound) and
• both x and y belong locally to the giant component of the static continuum percolation

process with density fs(x) and fs(y), respectively, and ball radius RN−1/d (note that these
two events are asymptotically independent).

1.3. Discussion

1.3.1. Does the limit in (1.4) exist?

Certainly, one expects that, in many cases, τ
(≥)
T and τ

(>)
T should coincide almost surely and

in (1.4) one should have a limit. This is certainly true under many additional abstract condi-
tions. However, it is difficult to give a satisfactory sufficient condition that is both reasonably
general and reasonably explicit and, therefore, we abstained from that. Let us indicate where the
difficulties lie.

In order to ensure coincidence of τ
(≥)
T and τ

(>)
T , one needs a condition that ensures that con-

nection within {fs ≥ λc(R)} implies connection within {fs > λc(R)} (at least for the sites X
(1)
s
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and X
(2)
s for almost all s) and another condition that ensures that the θ -terms in (1.3) coincide

for � => and � =≥, at least for almost all s.
Some sufficient conditions of the first type are certainly easy to check in many explicit situa-

tions, where the structure of the connectivity landscape given by the density fs is easy to control.
In general, difficulties can arise if, for s in some set with positive Lebesgue measure, some com-
ponents of {fs > λc(R)} are separated from each other by a component of {fs = λc(R)} that has
a complicated local structure. In dimension d = 2, for example, a line with some fractal structure
would pose such a question. In this case, it is unclear what local properties of the separation set
would imply what connectivity probabilities of the corresponding percolation process. Finding
clear criteria seems to be an open problem in the study of continuum percolation. We believe
that, for related reasons, one can construct situations in which τ

(≥)
T and τ

(>)
T do not coincide, the

limit in (1.4) does not exist or is random.
Sufficient conditions of the second type are, in a sense, much easier to formulate, as the

function θ(·,R) is known to be continuous outside the critical point λc(R), [13], Theorem 3.9,
and, therefore, only times s have to be considered such that both X

(1)
s and X

(2)
s lie in the set

{fs = λc(R)}. In fact, in dimension d = 2, continuity is also known in the critical point [13],
Theorem 4.5, such that here the θ -terms do coincide for any s. But in general dimension, conti-
nuity in the critical point is unknown. Hence, in cases where the set {fs = λc(R)} has a positive
Lebesgue measure (which can happen only for countably many values of R), there is a positive
probability that one of the two walkers belongs to its interior for a positive portion of the time,
and then the θ -terms may substantially differ.

1.3.2. Behaviour of the limit in (1.4) for R → ∞
From a practical point of view, installing a MANET makes sense only if the degree of connectiv-
ity in the system can be guaranteed to be extremely high, at least with high probability. Hence,
it is a major goal to find sufficient conditions for a large value (i.e., close to T ) of the commu-
nication time. Making the communication radius R large is certainly such a criterion, but it is
also important to know how strongly this parameter influences the connectivity. Based on Theo-
rem 1.2, we want to illustrate some partial answer to this question, that is, we want to comment
on the behaviour of the asymptotic lower bound for the connection time, τ

(>)
T .

This lower bound consists, for any time s ∈ [0, T ], of two components: the values of θ in the
two locations of the sample trajectories, and the decision whether or not they are globally con-
nected through the super-critical area {fs > R−dλc(1)}. An important fact (see [15], Corollary
of Theorem 3) is that θ(λ,R) converges super-exponentially quickly toward 1 for R → ∞, more
precisely, for any ε > 0 and some Cε > 0,

θ(λ,R) ≥ 1 − e−λRd |B(0,2)|(1−ε), λRd ≥ Cε. (1.5)

This shows that the “bad” event of being not connected at a given time s does predominantly not
come from the θ -term, but from the non-connectivity, that is, from the indicator on the counter-
event of {X(1)

s
>←→
s

X
(2)
s }. It is a natural assumption that the density fs is, for every s ∈ [0, T ],

bounded away from zero in most of the domain D, except possibly close to the boundary of D

and that fs decays polynomially toward the boundary of D. Then the difference T − τ
(>)
T can
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be upper bounded by some polynomially decaying term, which depends on the time that at least
one of the two walkers spends polynomially close to the boundary, and some term of the form
e−CRd

for the remaining time. But the time that one of the walkers spends close to the boundary
of D is polynomially small in R in probability, since the density is small there. The conclusion is
that bad connectivity properties of the system predominantly come from the time that the users
spend close to the boundary of D, at least if the domain is homogeneously filled with users.

1.4. Further investigations for the random waypoint model

Let us now concentrate on the random waypoint model, which was introduced at the beginning
of Section 1.2. Below we show that, under suitable conditions, the RWP is amenable to Theo-
rem 1.2, and we study the large-T average of the connection time and long-time deviations from
the mean in terms of large-deviation estimates.

We have to introduce some notation. We assume that the domain D is compact and convex.
Let (Wi)i∈N be a sequence of i.i.d. points in D, drawn from a distribution W on D, the waypoint
measure. Furthermore, let (Vi)i∈N be an i.i.d. sequence of velocities drawn from some distri-
bution V on (0,∞), the velocity measure. The walker starts from an initial location X0 ∈ D,
heading with constant initial velocity V1 toward the waypoint W1 on a straight line. Having ar-
rived at W1, the walker immediately moves along the straight line from W1 to W2 with velocity
V2 and so on.

This is an extension of the classical RWP, as we admit D as any convex compact domain,
W as any distribution on D, and V as any distribution on (0,∞). On the other hand, we do
not admit pause times that the walker spends at waypoints, as this would destroy the validity of
Assumption 1.1(ii); in fact, also the statement of Theorem 1.2 would have to be altered.

We denote by Un = |Wn+1 − Wn|/Vn+1 the time that it takes the walker to go from the nth to
the (n + 1)th waypoint. Then Tn = U0 + U1 + · · · + Un−1 is the time at which the walker arrives
at the nth waypoint, Wn. We put T0 = 0. Introduce the time-change N(t) = inf{n ∈ N:Tn > t},
then WN(t) is the waypoint that the walker is heading to at time t , VN(t) is his current velocity,
and TN(t) − t is the time difference after which he arrives there. The position of the walker at
time t is denoted by Xt . Then

Xt = WN(t) + WN(t)−1 − WN(t)

|WN(t)−1 − WN(t)|VN(t)(TN(t) − t). (1.6)

We define all these processes as right-continuous. Note that the location process X = (Xt )t∈[0,∞)

is not Markov, but the process

Y = (Yt )t∈[0,∞) = (Xt ,WN(t),VN(t))t∈[0,∞) (1.7)

is a continuous-time Markov process on the state space D = D × D × [v−, v+].
We need to assume some regularity. Throughout the paper, we assume that the waypoint mea-

sure W and the velocity measure V possess continuous Lebesgue densities on D and on some
interval [v−, v+] ⊂ (0,∞), respectively. In particular, the velocities are bounded away from 0
and from ∞.

We now check that we can apply Theorem 1.2 to the RWP.
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Lemma 1.3 (The RWP satisfies Assumption 1.1). We initialise the RWP by drawing W0 ∈ D

and a velocity V0 from some distributions on D, respectively, on [v−, v+] having continuous
densities, such that all the random variables W0,W1,V0 are independent, and put X0 = W0 and
Xt as in (1.6). Then the RWP satisfies Assumption 1.1.

Proof. We first show that Assumption 1.1(i) is satisfied. Indeed, fix s ∈ (0,∞) and note that, on
the event {s ≤ T1},

Xs = X0 + sV1
W1 − W0

|W1 − W0| ,
which has obviously a continuous density, since W0, V1 and W1 have and are independent. On
the event {Tj < s ≤ Tj+1} with j ∈ N, we represent

Xs = Wj + (s − Tj )Vj+1
Wj+1 − Wj

|Wj+1 − Wj | ,

which also has a continuous density, since Wj , Vj+1 and Wj+1 have and are independent (and
Tj is a continuous function of them). Hence, Xs1{Tj < s ≤ Tj+1} has a continuous density.
Summing on j ∈N0, we also see by use of Dini’s theorem that also Xs has a continuous density.

Let us now verify Assumption 1.1(ii). For any x ∈ D, P(Xs = x|Xs̃ = y) = 0 is clear on the
event

⋃
j∈N{s ≤ Tj < s̃}, since there was a change of direction between time s and s̃. On the

counter-event,
⋃

j∈N0
{Tj < s < s̃ ≤ Tj+1}, we have

P(Xs = x|Xs̃ = y) = P

(
Vj+1 = |Xs̃ − x|

s̃ − s
,

Wj+1 − Wj

|Wj+1 − Wj | = Xs̃ − x

|Xs̃ − x|
∣∣∣ Xs̃ = y

)

≤ P

(
Vj+1 = |y − x|

s̃ − s

∣∣∣ Xs̃ = y

)
= 0

because the speed is independent from the location and has a continuous density. �

1.4.1. Long-time limit

Let us consider the long-time behaviour of τ
(�)
T = τ

(�)
T (X(1),X(2)) defined in (1.3) for � ∈ {>,≥}

for the RWP. We will show in Section 3.1 that the RWP is Harris ergodic and in particular pos-
sesses an invariant distribution, toward which it converges as the time grows to infinity. In partic-
ular, the distribution of the location of the RWP, Xt , converges in total variation sense toward a
probability measure μ∗ on D, and it has a continuous Lebesgue density f∗:D → [0,∞). How-
ever, it is not so easy to deduce convergence of 1

T
τ

(�)
T from this, and we are not able to do so in

all cases. For � ∈ {>,≥}, introduce

p(�)∗ =
∫

D

μ∗(dx)

∫
D

μ∗(dy)1
{
x

�←→∗ y
}
θ

(�)(
f∗(x),R

)
θ

(�)(
f∗(y),R

) ∈ [0,1], (1.8)

where
�←→∗ denotes connectedness within the set {f∗ � λc(R)}. Then p

(�)∗ is a measure for con-

nectedness of two independent sites in D drawn from the limiting distribution of Xt . Further-
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more, introduce

τ
(�,∗)
T =

∫ T

0
ds1

{
X(1)

s

�←→∗ X(2)
s

}
θ

(�)(
f∗

(
X(1)

s

)
,R

)
θ

(�)(
f∗

(
X(2)

s

)
,R

)
, (1.9)

the special case of τ
(�)
T for all the random waypoint walkers starting in the invariant distribution.

Lemma 1.4 (Ergodic limit). Let X(1) and X(2) be two independent copies of X. Then for � ∈
{>,≥},

lim
T →∞

1

T
τ

(�,∗)
T

(
X(1),X(2)

) = p(�)∗ almost surely and in L1(P), (1.10)

We will give a proof of this lemma in Section 3.3; it is based on a time-discrete Markov chain
that is introduced in Section 1.4.2.

Remark 1.5. The previous result is stated with the trajectories of the walkers started from the
invariant state. In general, it is not clear if 1

T
τ

(�)
T converges toward p

(�)∗ . Indeed, the critical

point is the convergence of 1{x �←→
s

y} toward 1{x �←→∗ y} for x, y ∈ D as s → ∞, which is not

true in many counter-examples, as one can easily find. However, one can check that, under the
additional assumption that fs → f∗ as s → ∞ uniformly in D, then, in probability,

lim sup
T →∞

1

T
τ

(≥)
T

(
X(1),X(2)

) ≤ p(≥)∗ and lim inf
T →∞

1

T
τ

(>)
T

(
X(1),X(2)

) ≥ p(>)∗ . (1.11)

We remark here that, in cases where the limit in (1.4) exists, we expect that the limits T → ∞
and N → ∞ can also be interchanged without changing the value, that is,

p(>)∗ = lim
N→∞ lim

T →∞
1

T
τ

(N)
T .

Indeed, in the limit T → ∞, the ergodic theorem leads to the average connection probability
for two out of N i.i.d. sites drawn from the invariant distribution, and then the identification
of the limit N → ∞ follows from Theorem 1.2, applied to the RWP starting in the invariant
distribution. We decided to leave the details of the proof to the reader.

1.4.2. Large-T deviations

In our next result, we describe the downward deviations of τ
(>,∗)
T (X(1),X(2)), more precisely, the

probability of the event {τ (>,∗)
T ≤ Tp} for p ∈ (0,p

(>)∗ ), in the limit T → ∞. This is certainly an
interesting question, since one would like to effectively bound the probability of the unwanted
event of being connected over less than the average portion in the long-time limit. We show that
this probability decays even exponentially fast, and we give an explicit bound for the decay rate.
Because of (1.4), such a bound for τ

(>,∗)
T (rather than for τ

(≥,∗)
T ) gives a useful upper deviation

bound for τ
(N)
T . We write P∗ for the probability measure of the RWP if both copies Y (1) and Y (2)

start from the invariant distribution.
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Theorem 1.6. For any p ∈ (0,p
(>)∗ ),

lim sup
T →∞

1

T
logP∗

(
τ

(>,∗)
T ≤ Tp

)
< 0. (1.12)

The proof of Theorem 1.6 is in Section 3.4. It describes an explicit upper bound for the left-
hand side of (1.12) in terms of a variational problem. The main novelty lies in the proof, which
describes the probability in question in terms of an interesting Markov chain with nice properties,
such that the theory of large deviations may be applied in a standard way. This Markov chain is
an object of independent interest, as it may serve also for other long-time investigations of the
model, as well as for computer simulations.

2. Proof of Theorem 1.2

In this section, we prove our first main result, Theorem 1.2. As a preparation, we first summarise
in Section 2.1 all relevant available information about continuum percolation. In Section 2.2, we
find the limit of the expectation of the connection time, and in Section 2.3 we finish the proof.

2.1. Static continuum percolation

Let us collect some facts from (static) continuum percolation; see [13] or [14]. Throughout the
paper, we assume that d ≥ 2. Let (Zi)i∈N be a Poisson point process in Rd with intensity λ > 0.
Fix a radius R > 0 and consider the union UR of the balls B(Zi,R) over i ∈ N. We say that two
sites x, y ∈ Rd are connected if they belong to the same connected component of UR . Connected
components of UR are called clusters. By C(x), we denote the cluster that contains x ∈ Rd . The
percolation probability θ(λ,R) is defined as the probability that C(0) is unbounded, which we
phrase that 0 is connected with ∞. By scaling, θ(λ,R) = θ(λRd,1). Furthermore, it is known
that the map λ �→ θ(λ,R) is increasing and that there is a λc(R) > 0 such that θ(λ,R) = 0 for
λ < λc(R) and θ(λ,R) > 0 for λ > λc(R). Another characterisation of the critical threshold is
that |C(0)| = ∞ with positive probability for λ > λc(R) and |C(0)| < ∞ with probability 1 for
λ < λc(R). In the supercritical case, there exists, with probability one, a unique cluster with
infinite Lebesgue measure, which we call C∞. In the subcritical case, there is no cluster with
infinite Lebesgue measure, almost surely, and the random variable |C(0)| has finite exponential
moments. The map λ �→ θ(λ,R) is continuous in any point, with a possible exception at the
critical point, λc(R) [20], Theorem 1.1. The continuity at the critical point is an open question,
but is widely conjectured to be true. For numerical estimations, we refer to [18].

Actually, it is not θ that we will work with in our model, for the following reason. Certainly,
the points Zi play the role of the locations of the participants in our telecommunication system.
It will turn out that a given participant located at Zi is well connected with the main part of
the system if B(Zi,R) has a non-trivial intersection with C∞; it is not necessary that Zi itself
belongs to C∞. Hence, we will be working with a slightly different notion of percolation: define
θ(λ,R) as the probability that the ball B(0,R) is connected with ∞, that is, that there is an
unbounded connected component of UR which intersects B(0,R) (obviously, above criticality,
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this component has to be C∞). Obviously, θ ≤ θ , and θ shares the above mentioned properties
with θ ; however, with possibly different numerical values. In particular, θ possesses the same
scaling properties, and is an increasing function of λ, and is positive above some threshold and
zero below. One can also easily check that the percolation threshold is the same for the two
definitions, and that the proof of the continuity for the usual definition extends to this definition.

2.2. Limiting expectation of the connection time

We fix T > 0 for the remainder of the section. In the following, we abbreviate

P1,2(·) = P
(·|X(1),X(2)

)
and E1,2[·] = E

[·|X(1),X(2)
]
.

Use (1.2) and Fubini’s theorem to see that

E1,2
[
τ

(N)
T

] =
∫ T

0
dsP1,2

(
X(1)

s

N←→
s

X(2)
s

)
.

We are going to approximate the event {X(1)
s

N←→
s

X
(2)
s } by the event that X

(1)
s and X

(2)
s are

separated from each other, but connected through either {fs > λc(R)} or through {fs ≥ λc(R)}
and belong locally to the macroscopic part of the communication zone. More precisely, for s ∈
[0, T ], δ > 0 and N ∈ N, we introduce the events

G
(i)
N,s,δ = {

X(i)
s

N←→
s

∂
[
X(i)

s + (−δ/2, δ/2)d
]}

, i ∈ {1,2},

that X
(i)
s and at least some point of the boundary of the δ/2-box around X

(i)
s lie in the same

connected component of the union of the RN−1/d -balls around X
(1)
s , . . . ,X

(N)
s . Note that G

(i)
N,s,δ

is not modified by changing the locations of the walkers outside the δ-box around X
(i)
s .

We will give bounds for the connection time τ
(N)
T in terms of

τ
(N,δ,�)
T

(
X(1),X(2)

) =
∫ T

0
ds

2∏
i=1

1
G

(i)
N,s,δ

1
{∣∣X(1)

s − X(2)
s

∣∣ ≥ 3δ
}
1
{
X(1)

s

�←→
s

X(2)
s

}
,

in the limit N → ∞, followed by δ ↓ 0. We will use τ
(N,δ,>)
T as a lower bound and τ

(N,δ,≥)
T as

an upper bound for τ
(N)
T . Recall the quantities τ

(�)
T defined in (1.3), which will serve as limiting

objects of τ
(N,δ,�)
T .

Proposition 2.1 (Limiting expectation of τ
(N)
T ). Let the distributions of the N i.i.d. walkers

satisfy Assumption 1.1(i). Then, for P-almost all X(1) and X(2), provided that R is chosen such
that

∫ T

0 ds1{fs(X
(i)
s ) = λc(R)} = 0, for i = 1,2:
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(i)

lim sup
δ↓0

lim sup
N→∞

E1,2
(
τ

(N)
T − τ

(N,δ,≥)
T

)+ = 0, (2.1)

lim inf
δ↓0

lim inf
N→∞ E1,2

(
τ

(N)
T − τ

(N,δ,>)
T

)− = 0. (2.2)

(ii) For any � ∈ {>,≥},
lim
δ↓0

lim
N→∞E1,2

[
τ

(N,δ,�)
T

] = τ
(�)
T

(
X(1),X(2)

)
. (2.3)

The main step in the proof is the following.

Lemma 2.2. Let the distributions of the N i.i.d. walkers satisfy Assumption 1.1(i). Then, for
P-almost all X(1) and X(2), for almost any s ∈ [0, T ] and on the event {fs(X

(1)
s ) �= λc(R)} ∩

{fs(X
(2)
s ) �= λc(R)} ∩ {X(1)

s �= X
(2)
s }:

(i)

lim sup
δ↓0

lim sup
N→∞

P1,2
[(

X(1)
s

N←→
s

X(2)
s

) \ (
G

(1)
N,s,δ ∩ G

(2)
N,s,δ ∩ {

X(1)
s

≥←→
s

X(2)
s

})]
(2.4)

= 0,

lim sup
δ↓0

lim sup
N→∞

P1,2
[(

G
(1)
N,s,δ ∩ G

(2)
N,s,δ ∩ {

X(1)
s

>←→
s

X(2)
s

}) \ (
X(1)

s

N←→
s

X(2)
s

)]
(2.5)

= 0.

(ii)

θ
(
fs

(
X(1)

s

)−,R
)
θ
(
fs

(
X(2)

s

)−,R
) ≤ lim inf

δ↓0
lim inf
N→∞ P1,2

(
G

(1)
N,s,δ ∩ G

(2)
N,s,δ

)
≤ lim sup

δ↓0
lim sup
N→∞

P1,2
(
G

(1)
N,s,δ ∩ G

(2)
N,s,δ

)
(2.6)

≤ θ
(
fs

(
X(1)

s

)+,R
)
θ
(
fs

(
X(2)

s

)+,R
)
.

Proof. Fix s and let us abbreviate x = X
(1)
s and y = X

(2)
s . Under P1,2, only the sites

X
(3)
s , . . . ,X

(N)
s are random (in fact, they are i.i.d. with density fs ), but the notion of connected-

ness and components induced by the point process refer to all the balls B(X
(i)
s ,RN−1/d) with

i = 1,2, . . . ,N .
Let us prove (ii). First, we consider the case that fs(x) < λc(R) or fs(y) < λc(R), in which

case the events {X(1)
s

>←→
s

X
(2)
s } and {X(1)

s
≥←→
s

X
(2)
s } are not fulfilled. Without loss of gener-

ality, let us assume that fs(x) < λc(R). Choose δ > 0 so small that the δ-box around x does
not contain y and that fs < λc(R) within that box. We apply [16], Proposition 2, for ε = δ/4
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and obtain that, with P1,2-probability tending to 1 as N → ∞, any connected component of⋃N
i=3 B(X

(i)
s ,RN−1/d) in this cube has a diameter bounded from above by ε. In particular, with

P1,2-probability tending to 1, x is not connected with the boundary of the cube x + (−δ, δ)d .
Therefore, (2.6) is trivial, as all terms are zero.

To prove (2.6) in the remaining case fs(x) ≥ λc(R) and fs(y) ≥ λc(R), we show now

that the two events G
(1)
N,s,δ and G

(2)
N,s,δ are asymptotically independent with P1,2-probabilities

tending to θ(fs(x),R) and θ(fs(y),R), respectively. Let μs denote the measure with den-
sity fs . Indeed, first note that, for every sufficiently large N such that the ball diameter
2RN−1/d is less than the distance between x + (−δ, δ)d and y + (−δ, δ)d . Hence, the po-
sitions of the points falling in x + (−δ, δ)d and y + (−δ, δ)d are independent, condition-
ally on their numbers. These two numbers are binomially distributed with parameters N and
μs(x + (−δ, δ)d)) and μs(y + (−δ, δ)d), respectively. Therefore, by the law of large numbers,
they stochastically dominate, with P1,2-probability tending to 1, the Poisson law with param-
eters N(μs(x + (−δ, δ)d) − η(2δ)d) and N(μs(y + (−δ, δ)d) − η(2δ)d), respectively, for any
η > 0. Note that the events G

(1)
N,s,δ and G

(2)
N,s,δ are monotonic in the intensity, that is, their P1,2-

probability is not larger than the P1,2-probability of the same event under continuum percolation
in x + (−δ, δ)d and y + (−δ, δ)d with intensity parameters fs(x) − 2η and fs(y) − 2η, respec-
tively, and ball diameter RN−1/d . Since we are now considering Poisson point processes, the
events are independent. Their respective probabilities converge toward θ(fs(x) − 2η,R) and
θ(fs(y) − 2η,R). Since this is true for any η, we can use the continuity of θ(·,R), to obtain
the lower bound in (2.6). The upper bound is proved in a similar manner, using that θ(λ) is the
limiting probability that the origin is connected with the boundary of a centred cube for diverging
radius. This finishes the proof of (ii).

In order to show (i), we are going to decompose into four separate cases. First, we consider the
case that fs(x) < λc(R) or fs(y) < λc(R). As before, let us assume that fs(x) < λc(R). With
P1,2-probability tending to 1, x is not connected with the boundary of the cube x + (−δ, δ)d and,
therefore, neither with y, by the previous argument. This proves (2.4) and (2.5) in this case.

In the second part of the proof, we assume that x and y belong to the same component of

{fs > λc(R)}, in which case both events {X(1)
s

>←→
s

X
(2)
s } and {X(1)

s
≥←→
s

X
(2)
s } are fulfilled. Pick

some auxiliary parameter η > 0 that is smaller than fs(x) − λc(R) and smaller than fs(y) −
λc(R). Now, using the continuity of fs in accordance with Assumption 1.1(i), pick δ > 0 so
small that x + (−δ, δ)d and y + (−δ, δ)d have positive distance and that fs takes values in
[fs(x) − η,fs(x) + η] in x + (−δ, δ)d and values in [fs(y) − η,fs(y) + η] in y + (−δ, δ)d

and such that there exists a set of the form U = ⋃m
i=0 2δzi + [−δ, δ]d in {fs > λc(R)} with

m ∈ N, z1, . . . , zm ∈ Zd such that zi and zi−1 are nearest neighbours for any i = 1, . . . ,m and
x + (−δ, δ)d ⊂ U and y + (−δ, δ)d ⊂ U and fs > λc(R) inside U . That this is possible is easy
to see by elementary continuity and compactness arguments. Since U is a compact subset of
{fs > λc(R)}, the density fs is even bounded away from λc(R) on U .

Let C(s,N)
x,δ and C(s,N)

y,δ , respectively, denote the largest component of the union of the RN−1/d -

balls around the points X
(1)
s , . . . ,X

(N)
s which lie in x + (−δ, δ)d , respectively, in y + (−δ, δ)d .

According to [16], Proposition 3, with P1,2-probability tending to 1 as N → ∞, these are the
only ones in the respective boxes whose size (measured in terms of the number of i such that X

(i)
s
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belongs to it) is of order N , and they are also uniquely determined by requiring their diameter of
positive order. In particular, as N → ∞, the probability of the symmetric difference between the
events {x ∈ C(s,N)

x,δ } and G
(1)
N,s,δ (resp., {y ∈ C(s,N)

y,δ } and G
(2)
N,s,δ) goes to zero. By [16], Proposi-

tion 4, such a unique cluster, C(s,N)
U also exists for the set U . Hence, with P1,2-probability tending

to 1, both C(s,N)
x,δ and C(s,N)

y,δ belong to C(s,N)
U . This implies that with probability tending to 1 as

N → ∞, the symmetric difference between the event {x N←→
s

y} and the event G
(1)
N,s,δ ∩ G

(2)
N,s,δ

goes to zero, which implies (2.5) and (2.4).

In the third case, we have fs(x) > λc(R) and fs(y) > λc(R), and x
≥←→
s

y, but not x
>←→
s

y,

in which case (2.5) is trivial, as the event inside the probability is empty. To prove (2.4), it is
enough to see that, deterministically, the existence of a path between x and y implies G

(1)
N,s,δ

and G
(2)
N,s,δ .

In the fourth case, we have fs(x) > λc(R) and fs(y) > λc(R), but not x
≥←→
s

y. Here, (2.5)

is again trivial, as the event inside the probability is empty. To prove (2.4), it is enough to check
that, with probability tending to 1, x and y are not connected in the union of the RN−1/d -balls
around the points X

(1)
s , . . . ,X

(N)
s . Here, it is intuitively clear that any path between x and y has

to cross a non-trivial zone where fs < λc(R) and that this disconnects x and y in the limit. Let
us give a proof.

First, we argue that there is a (deterministic) compact set � ⊂ D and ε, γ > 0 such that � ⊂
{fs ≤ λc(R) − ε} and every path connecting x and y passes through � for at least γ space units.

Indeed, since x
≥←→
s

y does not hold, x and y lie in disjoint components of {fs ≥ λc(R)}. Hence,

both these components have a positive distance η to the remainder of {fs ≥ λc(R)}, since these
three sets are compact and mutually disjoint. Abbreviate

�α = {
z ∈ D: dist

(
z,

{
fs ≥ λc(R)

}) ≥ α
}
, α > 0,

and pick � = �η/16. Then every path from x to y passes at least a distance γ = η−2η/16 = 7η/8
through �. By continuity of fs , this set � is compact and is contained in {fs ≤ λc(R) − ε} for
some ε > 0.

Second, we argue that, with P1,2-probability tending to 1 as N → ∞, any connected com-
ponent of

⋃N
i=3 B(X

(i)
s ,RN−1/d) in � has a diameter at most γ /2. Indeed, consider the neigh-

bourhood �̃ = �η/32 of �, then, for N sufficiently large, the connected components inside � do
not depend on the configuration outside �̃. By continuity of fs , on �̃, the function fs is still
bounded away from λc(R), say it is bounded from above by λc(R)− ε̃ for some ε̃ > 0. We upper
bound the probability of having any connected component inside �̃ of diameter bigger than γ /2
against the same probability under the homogeneous Poisson point process with intensity param-
eter λc(R) − ε̃/2 on some cube that contains �̃ (see the above argument). Now, as this intensity
parameter is subcritical, this probability tends to 0 as N → ∞.

Now we finish the proof of (2.4) and (2.5) in the fourth case. Indeed, the existence of a connec-
tion from x to y through

⋃N
i=1 B(X

(i)
s ,RN−1/d) implies the existence of at least one connected

component of this set in � of diameter at least γ , since any path from x to y passes at least a
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distance γ through �. But, as we saw in the second step, the probability of this existence tends
to 0 as N → ∞. �

Proof of Proposition 2.1. Observe that

E1,2
(
τ

(N)
T − τ

(N,δ,≥)
T

)+

≤
∫ T

0
ds

(
P1,2

[(
X(1)

s

N←→
s

X(2)
s

) \ (
G

(1)
N,s,δ ∩ G

(2)
N,s,δ ∩ {

X(1)
s

≥←→
s

X(2)
s

})]
× 1

{∣∣X(1)
s − X(2)

s

∣∣ > 3δ
}
1
{
fs

(
X(1)

s

) �= λc(R)
}
1
{
fs

(
X(2)

s

) �= λc(R)
}

+ 1
{∣∣X(1)

s − X(2)
s

∣∣ < 3δ
} + 1

{
fs

(
X(1)

s

) = λc(R)
} + 1

{
fs

(
X(2)

s

) = λc(R)
})

.

Hence, by (2.4),

lim sup
δ↓0

lim sup
N→∞

E1,2
(
τ

(N)
T − τ

(N,δ,≥)
T

) ≤
∫ T

0
ds1

{∣∣X(1)
s − X(2)

s

∣∣ = 0
}
,

according to our assumption on R. Note that, almost surely,
∫ T

0 ds1{|X(1)
s − X

(2)
s | = 0} = 0,

since X
(1)
s and X

(2)
s are independent with density fs for any s ∈ [0, T ]. Hence, the proof of (2.1)

is finished. The proof of (2.2) is done in the same way using (2.5). Hence, part (i) is proved.
Now we turn to the proof of (ii).
Note that our assumptions exclude that fs(X

(i)
s ) = λc(R) outside a set of measure zero. There-

fore this does not appear in the integral. Furthermore, θ is continuous except maybe for λc(R).
Therefore, for almost every s, (2.6) reformulates to

lim
δ↓0

lim inf
N→∞ P1,2

(
G

(1)
N,s,δ ∩ G

(2)
N,s,δ

) = lim
δ↓0

lim sup
N→∞

P1,2
(
G

(1)
N,s,δ ∩ G

(2)
N,s,δ

)
= θ

(
fs

(
X(1)

s

)
,R

)
θ
(
fs

(
X(2)

s

)
,R

)
.

Thus, (ii) follows by Lebesgue’s theorem. �

2.3. Finish of the proof

The second main step in proving Theorem 1.2 is the following lemma. Recall that P1,2 denotes
the conditional distribution given X(1) and X(2).

Lemma 2.3 (τ (N,δ,�)
T is asymptotically deterministic). Let the distributions of the N i.i.d. walk-

ers satisfy Assumption 1.1(i) and (ii). Then, for any � ∈ {>,≥}, for almost every paths X(1),X(2),
the difference τ

(N,δ,�)
T − E1,2[τ (N,δ,�)

T ] vanishes as N → ∞, followed by δ ↓ 0, in P1,2-

probability, provided that R is chosen such that
∫ T

0 ds1{fs(X
(i)
s ) = λc(R)} = 0 for i = 1,2.



Connection times in large ad-hoc mobile networks 2159

Proof. The claimed convergence follows, by Chebyshev’s inequality, from the fact that the P1,2-
variance of τ

(N,δ,�)
T vanishes. Writing V1,2 for the P1,2-variance, this is equal to

V1,2
(
τ

(N,δ,�)
T

) =
∫ T

0
ds

∫ T

0
d̃s1

{∣∣X(1)
s − X(2)

s

∣∣ > 3δ
}
1
{
X(1)

s

�←→
s

X(2)
s

}
× 1

{∣∣X(1)
s̃ − X

(2)
s̃

∣∣ > 3δ
}
1
{
X

(1)
s̃

�←→̃
s

X
(2)
s̃

}
(2.7)

× [
P1,2

(
G

(1)
N,s,δ ∩ G

(2)
N,s,δ ∩ G

(1)
N,̃s,δ ∩ G

(2)
N,̃s,δ

)
− P1,2

(
G

(1)
N,s,δ ∩ G

(2)
N,s,δ

)
P1,2

(
G

(1)
N,̃s,δ ∩ G

(2)
N,̃s,δ

)]
.

We now show, for any s �= s̃, that the limit superior of the term in the last line is not positive.
This finishes the proof by Lebesgue’s theorem.

We abbreviate x = X
(1)
s and x̃ = X

(1)
s̃ and y = X

(2)
s and ỹ = X

(2)
s̃ . Without loss of generality,

we assume that s < s̃, x �= y and x̃ �= ỹ. Furthermore we also may and will assume that x
≥←→
s

y

and x̃
≥←→̃
s

ỹ. Without loss of generality, all the four terms fs(x), fs(y), f̃s (̃x) and f̃s(ỹ) are

larger than λc(R). Let, as in the proof of Lemma 2.2, C(s,N)
x,δ denote the biggest component of

the union of the RN−1/d -balls around X
(1)
s ,X

(2)
s , . . . ,X

(N)
s within x + (−δ, δ)d , analogously for

y, s̃, x̃ and ỹ.
We recall from the proof of Lemma 2.2 that the probability of the symmetric difference be-

tween G
(i)
N,t,δ and the event {X(i)

t ∈ C(t,N)

X
(i)
t ,δ

}, i = 1,2 and t = s, s̃, tends to 0 as N goes to infinity,

followed by δ ↓ 0. This reduces the problem to showing that

lim sup
δ↓0

lim sup
N→∞

[
P1,2

(
x ∈ C(s,N)

x,δ , y ∈ C(s,N)
y,δ , x̃ ∈ C (̃s,N)

x̃,δ , ỹ ∈ C (̃s,N)
ỹ,δ

)
(2.8)

− P1,2
(
G

(1)
N,s,δ ∩ G

(2)
N,s,δ

)
P1,2

(
G

(1)
N,̃s,δ ∩ G

(2)
N,̃s,δ

)] ≤ 0.

We pick δ > 0 smaller than 1
3 min{|x − y|, |̃x − ỹ|}. Let us give some heuristic explanation of

the following argument. To get (2.8), we only have to prove that, with probability tending to 1

as N → ∞, the partial clusters C(s,N)
x,δ ∪ C(s,N)

y,δ , and C (̃s,N)
x̃,δ ∪ C (̃s,N)

ỹ,δ , depend only on two disjoint

sub-collections of X(3), . . . ,X(N) or at least on sub-collections with a small overlap. What we
mean precisely here is that the density of the walkers in C (̃s,N)

x̃,δ ∪ C (̃s,N)
ỹ,δ is roughly the same if

we remove those points that were in C(s,N)
x,δ ∪ C(s,N)

y,δ . Therefore, we need Assumption 1.1(ii) to
describe the position of the walkers at time s, given their position at time s̃. In more technical
terms, it says the following. By B(D) we denote the Borel σ -field on D. Let a version of the
conditional distribution of Xs given Xs̃ = y be given, that is, a Markov kernel Ks,̃s :D×B(D) →
B(D) such that, almost surely, P(Xs ∈ A|Xs̃ = y) = Ks,̃s(y,A) for any A ∈ B(D). Then we
require that Ks,̃s(y, {x}) = 0 for any x ∈ D. Indeed, this assumption implies that, for any y ∈ D,

lim
δ↓0

P
(
Xs ∈ B(x, δ)|Xs̃ = y

) = lim
δ↓0

Ks,̃s

(
y,B(x, δ)

) = Ks,̃s

(
y, {x}) = 0. (2.9)
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Since the probability on the left-hand side is continuous in y and monotonous in δ, the conver-
gence is even uniform in y ∈ D, according to Dini’s theorem. Hence, we can multiply this term
with f̃s(y), integrate over y ∈ D and interchange this integration with the limit δ ↓ 0. Now we
can see heuristically the statement as follows. According to a large-N ergodic theorem, there are
only of order Nδ2d walkers that are at time s in B(x, δ) and at time s̃ in B(̃x, δ), analogously
with y and ỹ. Hence, among all the � Nδd walkers present in B(̃x, δ) at time s̃, those ones
who were in B(x, δ) at time s are negligible for small δ. This implies the claimed asymptotic
independence.

Let us turn to the proof. We need to introduce a bit of notation. For A ⊂ {1, . . . ,N}, we write
C(s,A)

x,δ for the largest cluster in the δ-box around x that is built out of all the X
(i)
s with i ∈ A only.

We put

A(N)
s = {

i ∈ {1, . . . ,N}:X(i)
s /∈ B(x, δ) ∪ B(y, δ)

}
.

Now we use the triangle inequality to bound

P1,2
(
x ∈ C(s,N)

x,δ , y ∈ C(s,N)
y,δ , x̃ ∈ C (̃s,N)

x̃,δ , ỹ ∈ C (̃s,N)
ỹ,δ

)
≤ P1,2

(
x ∈ C(s,N)

x,δ , y ∈ C(s,N)
y,δ , x̃ ∈ C (̃s,A

(N)
s )

x̃,δ , ỹ ∈ C (̃s,A
(N)
s )

ỹ,δ

)
(2.10)

+ P1,2
(̃
x ∈ C (̃s,N)

x̃,δ \ C (̃s,A
(N)
s )

x̃,δ

) + P1,2
(
ỹ ∈ C (̃s,N)

ỹ,δ \ C (̃s,A
(N)
s )

ỹ,δ

)
.

Since C(s,N)
x,δ and C(s,N)

y,δ depend only on the X
(i)
s with i in the complement of A

(N)
s , the first

two events in the first term on the right-hand side are independent from the last two events.
Lemma 2.2(ii) and the continuity of θ(·,R) imply that the probability of the intersection of the
first two events converges toward θ(fs(x),R)θ(fs(y),R). Note that the particles that the point

processes C (̃s,A
(N)
s )

x̃,δ and C (̃s,A
(N)
s )

ỹ,δ puts are given by trajectories that do not visit any of the two
balls B(x, δ) and B(y, δ) at time s; more precisely, they are picked according to the density

f
(s,δ)
s̃ (z) = P

(
Xs /∈ B(x, δ) ∪ B(y, δ),Xs̃ ∈ dz

)
/dz

(2.11)
= Ks,̃s

(
z,

(
B(x, δ) ∪ B(y, δ)

)c)
f̃s(z).

Hence, the probability of the intersection of the last two events converges toward

θ
(
f

(s,δ)
s̃ (̃x),R

)
θ
(
f

(s,δ)
s̃ (ỹ),R

)
.

A glance at (2.11) shows that f
(s,δ)
s̃ (z) converges, as δ ↓ 0, for any z ∈ D, toward P(Xs �=

x,Xs �= y,Xs̃ ∈ dz)/dz, which is, by Assumption 1.1(i) (or also by (ii)), equal to f̃s(z). Since
f̃s (̃x) and f̃s(ỹ) are larger than the critical value, we may use continuity of θ .

All together, we have that the first term of the right-hand side of (2.10) converges, as N → ∞
followed by δ ↓ 0, toward

θ
(
fs(x),R

)
θ
(
fs(y),R

)
θ
(
f̃s (̃x),R

)
θ
(
f̃s(ỹ),R

)
. (2.12)
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Furthermore, Assumption 1.1(ii) also implies that

lim sup
N→∞

P1,2
(̃
x ∈ C (̃s,N)

x̃,δ \ C (̃s,A
(N)
s )

x̃,δ

)
(2.13)

vanishes as δ ↓ 0. Indeed, we know that C (̃s,A
(N)
s )

x̃,δ ⊂ C (̃s,N)
x̃,δ , therefore the above limit superior is

equal to θ(f̃s (̃x)) − θ(f
(s,δ)
s̃ (̃x)). Hence, the convergence of f

(s,δ)
s̃ and the continuity of θ give

the result. We proceed analogously for the last term in (2.10) and get that the limit superior as
N → ∞ and δ ↓ 0 of the left-hand side of (2.10) is not larger than the expression in (2.12).
Now use Lemma 2.2(ii) for the second term in (2.8) to see that from this the desired assertion
follows. �

Proof of Theorem 1.2. First note that both assertions of (1.4) easily follow from Proposition 2.1,
in conjunction with Lemma 2.3, provided that R is chosen such that∫ T

0
ds1

{
fs

(
X(i)

s

) = λc(R)
} = 0 for i = 1,2. (2.14)

Furthermore, note that, almost surely, (2.14) holds for almost all R. Indeed, this follows from

E

(∫ ∞

0
dR

∫ T

0
ds1

{
fs

(
X(i)

s

) = λc(R)
})

=
∫ T

0
ds

∫
D

dxfs(x)

∫ ∞

0
dR1

{
fs(x) = R−dλc(1)

} = 0.

Hence, for a given (random) exceptional R, we pick sequences (Rk)k∈N and (R′
k)k∈N such that

Rk ↓ R and R′
k ↑ R and Rk and R′

k satisfy (2.14) for any k in place of R. Since τ
(N)
T is an

increasing function of R, we may estimate it from above and below by replacing R with Rk and
R′

k , respectively, and applying Proposition 2.1 and Lemma 2.3 with these. This yields (1.4) with

τ
(≥)
T and τ

(>)
T replaced by their versions for R replaced with Rk and with R′

k , respectively.
The only thing that we need to do is to show the right-upper semicontinuity of the map

R �→ τ
(≥)
T and the left-lower semicontinuity of the map R �→ τ

(>)
T . To show these, note that

θ
(≥)

(·,R) = θ(Rd · +,1) is right-continuous and θ
(>)

(·,R) = θ(Rd · −,1) is left-continuous.

Furthermore, for any x, y ∈ D and any s ∈ [0, T ], the map R �→ 1{x ≥←→
s

y} is right-upper semi-

continuous, and the map R �→ 1{x >←→
s

y} is left-lower semicontinuous. The latter assertion is

quite easy to see; let us show the former. Assume that, for all ε > 0, x and y are connected
through the set {fs ≥ λc(R + ε)}. Recall that λc(R) = R−dλc(1) is decreasing in R. If x and y

were not connected through the set {fs ≥ λc(R)}, then they would lie in different components of
this set. By compactness, these components have a positive distance to each other. Hence, there is
a hyperplane in D through the complement of {fs ≥ λc(R)} that separates these two components.
Since this hyperplane is compact, fs assumes a maximum on it, which is strictly smaller than
λc(R). Hence, every curve from x to y must cross this hyperplane, that is, must pass a point with
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an fs -value bounded away from λc(R). This means that, for some sufficiently small ε > 0, x and

y are not connected through {fs ≥ λc(R + ε)}. Hence, lim supε↓0 1{x ≥,R+ε←→
s

y} ≤ 1{x ≥,R←→
s

y},
where we wrote

≥,R←→
s

for connectedness through the set {fs ≥ λc(R)}. Using Lebesgue’s the-

orem shows the claimed continuity properties of τ
(≥)
T and τ

(>)
T in R and finishes the proof of

Theorem 1.2. �

3. Long-time investigations for the random waypoint model

In this section, we prove Lemma 1.4 and Theorem 1.6, that is, we restrict ourselves to the ran-
dom waypoint model (RWP) introduced in Section 1.4 and study the long time behaviour of
the limiting connection time both in terms of an ergodic theorem and a large-deviations result.
First, we prove in Section 3.1 the convergence of the RWP to its invariant distribution. The
proof of Lemma 1.4 is based on a certain discrete-time Markov chain, whose ergodic and mixing
properties are derived in Section 3.2. The proof then follows in Section 3.3. Finally, we prove
Theorem 1.6 in Section 3.4.

3.1. Recurrence and ergodicity of the RWP

Since we want to study long-time properties of the connection time, we will need recurrence and
ergodic properties of the RWP, which we provide in this section. For the special case of W being
the uniform distribution on D, most of our results in this section are already contained in [12],
but our Proposition 3.2 below also contains a statement on convergence in total variation, which
will be important in Lemma 3.4 below. For the reader’s convenience, we provide all necessary
proofs; they are independent of [12], but use different variants of the Markov renewal theorem
available in the literature.

The trajectory is divided into trips, by which we mean the parts from leaving a waypoint to
arriving at the next one. P(0) and E(0) denote probability and expectation if the process starts at
time 0 at the beginning of a trip at the zeroth of the waypoints, that is, if the initial waypoint W0
has distribution W .

In [12], Theorem 6, another variant of Y is considered, and it is argued that process possesses
a unique invariant distribution. Projecting on our first coordinate, the location of the walker, the
distribution of X in equilibrium is given by the formula

μ∗(dx) = 1

Z

∫ 1

0
dsE(0)

(
V1

|W1 − W0| ;W0 + s(W1 − W0) ∈ dx

)
, (3.1)

where Z is a normalisation. It turns out below that this formula persists also for a general way-
point measure. In particular μ∗ has a continuous density. We refer in particular to [11] for a
general methodology to describe this measure. See [2], Section 5, and [8], Sections III and IV,
for explicit formulas, approximations and simulations for special cases of domains D and way-
point measures W , like uniform distributions on rectangles and balls.
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For the sake of illustration, we give an explicit value in d = 2 in the simplest case where
the domain is the unit disk, the waypoint measure W is the uniform measure on it and the
velocity is chosen to be constant. In this case, the density of the waypoint location in the invariant
distribution is given by

f∗(x) = 45

64π

(
1 − |x|2)∫ π

0

√
1 − |x|2 cos2(ϕ)dϕ, x ∈ B(0,1).

An approximation with a mean square error ≤ 0.0065 and an absolute error ≤ 0.067 is given by
f∗(x) = 2

π
(1 − |x|2); see [18] and [2], equation (18).

In the following, we give detailed proofs for ergodic properties of the RWP, based on the
Markov renewal theorem in the form provided by [10]. Alternative proofs could be based on the
form given in [12], Theorem 6.

We first show that the sequence of the trips is positive Harris recurrent. More precisely, we
consider the sequence T = (Tn)n∈N = (Wn−1,Wn,Vn)n∈N in D. Since (Wn)n∈N0 and (Vn)n∈N
are independent i.i.d. sequences, T is obviously a Markov chain. Furthermore, it is also easy to
see that T is positive Harris recurrent, since it satisfies

Py(Tn ∈ A) =W ⊗W ⊗ V(A), n ≥ 2, y ∈D,A ⊂D mb., (3.2)

where we wrote Py for the probability measure under which the walker starts from Y(0) = y. We
use this to prove the convergence of Yt introduced in (1.7). The proof goes in two step. The first
one (see Lemma 3.1) applies the Markov renewal theorem using the fact that Yt is a time change
of T and gives a good understanding and a description of the limit law (in particular it states the
existence of an invariant distribution with finite mass). However, as we will see, this approach
only gives weak convergence. In a second step, we use Harris recurrence (see Proposition 3.2) to
obtain convergence in total variation. Of course it is then easy to check that the convergence has
to be toward the same limit. By Pα , we denote the probability measure under which the process
(Yt )t∈[0,∞) starts from the distribution α.

Lemma 3.1. For any bounded continuous function g:D ×R+ →R+, and for any y ∈ D,

lim
t→∞Ey

[
g(TN(t), TN(t) − t)

] = 1

E[U1]
∫
D
PW⊗W⊗V [T1 ∈ dz,U1 ∈ dλ]

∫ λ

0
g(z, s)ds. (3.3)

Proof. We apply [10], Theorem 1, which immediately implies the assertion, noting that the
measure ψ in [10] is indeed equal to W ⊗ W ⊗ V by [10], Lemma 2, that is, we only have to
check the validity of Conditions I.1–I.4 of [10].

Conditions I.1 and I.2 are trivial here, while Condition I.3 is the usual non-lattice assumption.
It states that there is a non-lattice sequence (ζν)ν∈N in R such that, for each ν ∈ N and δ > 0,
there exists some y ∈ D, such that, for every ε > 0, there exists a measurable set A with positive
W ⊗W ⊗ V-measure, integers m1, m2 and τ ∈ R such that, for x ∈ A,

Px

[
d(Tm1, y) < ε, |Tm1 − τ | ≤ δ

]
> 0 and

(3.4)
Px

[
d(Tm2, y) < ε, |Tm2 − τ − ζν | ≤ δ

]
> 0,

d being the usual Euclidean distance on D.
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We will prove this assumption with an arbitrary y = (w0,w1, v1) inside the support of
W ⊗ W ⊗ V , not depending on ν nor on δ, and with A = {x ∈ D:d(x, y) < ε}, where we
assumed without loss of generality that 2εv−1− + diam(D)εv−2− < δ/3. Furthermore, we put
τ := |w1 − w0|/v1 and pick any non-lattice sequence (ζν)ν∈N inside the support of τ + |w0 −
w1|/V1. Furthermore, put m1 = 1 and m2 = 3. By continuity of the densities of W and V ,
the W ⊗ W ⊗ V-measure of A is positive. Putting x = (w′

0,w
′
1, v

′
1) ∈ A and denoting by

T1(x) = |w′
1 − w′

0|/v′
1 the (deterministic) value of T1 starting from x, we see that

∣∣T1(x) − τ
∣∣ ≤ |w′

1 − w′
0 − (w1 − w0)|

v′
1

+ |w1 − w0|
∣∣∣∣ 1

v1
− 1

v′
1

∣∣∣∣
(3.5)

≤ 2ε

v−
+ diam(D)ε

v2−
<

δ

3
.

Noting that T1 = x with Px -probability one, we see that the first part of (3.4) is satisfied; the
probability is even equal to one.

Now we turn to the proof of the second. Keep x ∈ A fixed. Recall that Tn = U0 + U1 +
· · · + Un−1 and that Un = |Wn+1 − Wn|/Vn for any n. Note that, under Px , T3 has distribution
W ⊗ W ⊗ V , and therefore Px(d(T3, y) < ε) =W ⊗ W ⊗ V(A) > 0. On the event {d(T3, y) <

ε}, with Px -probability one, (3.5) shows that |U0 − τ | < δ/3, and a the same calculation with x

replaced by T3 shows that |U2 − τ | < δ/3. By our choice of ζν and by continuity of the densities
of W and V , we easily see that the event {|U1 + τ − ζν | ≤ δ/3} has positive Px -probability on
{d(T3, y) < ε}, since

|U1 + τ − ζν | ≤ |W2 − W1 − (w0 − w1)|
v−

+
∣∣∣∣ |w0 − w1|

V2
− (ζν − τ)

∣∣∣∣
≤ 2ε

v−
+

∣∣∣∣ |w0 − w1|
V2

− (ζν − τ)

∣∣∣∣,
and the probability (with respect to V2) to have the last term smaller than diam(D)εv−2− is posi-
tive. Since

|T3 − τ − ζν | = |U0 + U1 + U2 − τ − ζν | ≤ |U0 − τ | + |U1 + τ − ζν | + |U2 − τ |,
we now see that also the last condition in (3.4) is satisfied.

Condition I.4 states that, for any x ∈ D, δ > 0, there exists r0(x, δ) > 0 such that for any
measurable function f :DN ×RN0 → R, and for all y with d(y, x) < r0(x, δ),

Ex

[
f

(
(Ti )i∈N, (Ui)i∈N0

)]
(3.6)

≤ Ey

[
lim

n→∞ sup
{
f

(
(ti)i∈N, (ui)i∈N0

)
:d(ti ,Ti ) + |ui − Ui | < δ for i ≤ n

}] + δ sup |f |.

This assumption is in general difficult to prove, but here things are simple, as Ti and Ui

are independent of the starting point for i ≥ 3. We can do the following coupling: write
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x = (w
(x)
0 ,w

(x)
1 , v

(x)
1 ) and y = (w

(y)

0 ,w
(y)

1 , v
(y)

1 ). We draw a sequence of i.i.d. waypoints and
speeds (Wi,Vi)i≥2 according to W ⊗ V . Define, for z ∈ {x, y},

W
(z)
0 = w

(z)
0 , W

(z)
1 = w

(z)
1 , V

(z)
1 = v

(z)
1 ,

(
W

(z)
i ,V

(z)
i

)
i≥2 = (Wi,Vi)i≥2, (3.7)

and put T (z)
i = (W

(z)
i−1,W

(z)
i , V

(z)
i ). It is then clear that (T (z)

i )i∈N is a realisation of (Ti )i∈N under

Pz and that for any i ≥ 3, T (x)
i = T (y)

i . We saw in the verification of Condition I.3 that, if
d(x, y) < r , then with obvious notation,

d
(
T (x)

i ,T (y)
i

)
< r, d

(
U

(x)
i ,U

(y)
i

)
< r

(
2

v−
+ diam(D)

v2−

)
.

Taking r0(δ) such that both right-hand sides are < δ, immediately gives Condition I.4. �

Using (1.6), we easily derive the above mentioned weak convergence of Xt toward μ∗ iden-
tified in (3.1), as Xt may be written as an explicit continuous function of TN(t) and TN(t) − t .
We now give a refined result, using the notion of Harris recurrence for continuous-time Markov
chains. First, note that the process

Y = (Yt )t∈[0,∞) =
(
TN(t),

TN(t) − t

UN(t)−1

)
t∈[0,∞)

is a continuous-time Markov chain on D × [0,1] with right-continuous paths. The second com-
ponent of Y runs from 0 to 1 with linear speed between the arrival times at the waypoints. It is
also easy to express Yt as a continuous functional of Yt .

Proposition 3.2. (Yt )t∈[0,∞) is a strongly aperiodic Harris recurrent chain, and its distribution
converges in total variation toward the unique invariant distribution. As a consequence, the con-
vergence in Lemma 3.1 is true for any measurable bounded function g. Furthermore, an ergodic
theorem holds for (Yt )t∈[0,∞).

Proof. We use the characterisation of Harris recurrence given in [9], Theorem 1, with the mea-
sure ν given by W ⊗W ⊗V ⊗λ, where λ is the Lebesgue measure on [0,1]. It is easy to see that
any set A with positive ν-measure will be hit by the process (Yt )t∈[0,∞). Indeed, without loss of
generality, we can assume that A is a product set. By independence it will certainly happen that
one of the Tn will fall into the D-component of A. Then as TN(t)−t

UN(t)−1
visits all of [0,1] between

two waypoints, it follows that also A will be hit by Y , implying Harris recurrence.
This implies in particular the existence of a unique (up to multiplicative constants) invariant

measure. It is not difficult to check that this measure has to be the one appearing in Lemma 3.1, up
to the normalisation. In particular, it has finite total mass. As a consequence, Y is strongly Harris
recurrent. We also have that this process has spread-out cycles, in the sense of [1], page 202. In
fact, the hitting times of any set under any starting point are spread out. Indeed, the first hitting
times might be deterministic (if the initial condition implies that the set is hit during the first
travel of the walker), but then one can easily check that, due to the existence of a density for the
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speed, the hitting times also have a continuous density. Therefore, using [1], Proposition VII.3.8,
this implies convergence in total variation of Yt toward its invariant distribution. The ergodic
theorem can be found in [1], Proposition VII.3.7. �

Note that, at this point, it would be possible to use the above result to get a simple proof of
Lemma 1.4. However, we would like to present a different proof, as we need to introduce the
important discrete-time Markov chain (Zj )j∈N0 , that will be useful for the sequel. This proof
can be found in Section 3.3.

3.2. Recurrence and mixing properties of Z

In this section, we introduce an important tool for our proofs of Lemma 1.4 and Theorem 1.6,
a discrete-time Markov chain Z = (Zj )j that registers the locations, waypoints and velocities
of two independent RWPs at all the times at which one of them arrives at a new waypoint. In
this section, we study recurrence and the mixing properties of this chain, in Sections 3.3 and 3.4
we will use it to derive the long-time average and large-deviations properties of the connection
time. For proving just the former of the two results in Lemma 1.4, some straight-forward ergodic
arguments would be also sufficient, however, we will need the identification of the ergodic limit
in terms of the Markov chain Z in order to prove the large-deviations result in Theorem 1.6. We
show that (Zk)k∈N0 is a time-homogeneous, ψ -mixing and Harris ergodic Markov chain. It is
an object of independent interest, as it may serve also for other long-time investigations of the
model, as well as for computer simulations.

The Markov chain Z is defined as follows. We consider the times 0 ≤ S1 < S2 < · · · at which
any of the two walkers arrives at his waypoint. Formally, S0 = 0 and

Sj = inf
{
t > Sj−1:W(1)

N(1)(t)
�= W

(1)

N(1)(Sj−1)
or W

(2)

N(2)(t)
�= W

(2)

N(2)(Sj−1)

}
, j ∈N, (3.8)

where the superscripts (1) and (2) mark the two walkers. Put

Zj = (
Y (1)(Sj ), Y

(2)(Sj )
)

(3.9)
= ((

X
(1)
Sj

,W
(1)

N(1)(Sj )
, V

(1)

N(1)(Sj )

)
,
(
X

(2)
Sj

,W
(2)

N(2)(Sj )
, V

(2)

N(2)(Sj )

)) ∈D2, j ∈N0.

That is, Z = (Zj )j∈N0 is the trace-Markov chain of two independent copies of the RWP,
observed at the times at which any of the two arrives at a waypoint; it is a time-change of
(Y (1), Y (2)). It is easy to see that (Zj )j is a time-homogeneous Markov chain on D2. This
chain does not explicitly record the location of the random walker at any fixed time, but the
time that passes between the waypoint arrivals can be deduced from the information contained
in Z. Hence, it is well-suitable for deducing asymptotic assertions for long time. First we derive
a mixing property, which will later be used for the large-deviations principle.

Lemma 3.3. The sequence (Zj )j is ψ -mixing under any starting distribution, that is,

lim
k→∞ sup

A∈F0
0 ,B∈F∞

k

∣∣∣∣ P(A ∩ B)

P(A)P(B)
− 1

∣∣∣∣ = 0,
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where Fk
m := σ(Zm, . . . ,Zk).

Proof. Introduce the event

Ek = {∃l,m ∈ {1, . . . , k − 1} : W(1)
0 �= W

(1)

N(1)(Sl )
�= W

(1)

N(1)(Sk)
and W

(2)
0 �= W

(2)

N(2)(Sm)
�= W

(2)

N(2)(Sk)

}
that both walkers choose at least two new waypoints by time Sk . Then, conditional on
Ek , any A ∈ F0

0 and B ∈ F∞
k are independent. Indeed, on the event Ek , A depends on

X
(1)
0 ,W

(1)
1 ,V

(1)
1 ,X

(2)
0 ,W

(2)
1 ,V

(2)
1 only, while B depends only on the variables W

(1)
l , V

(1)
l , W

(2)
l ,

V
(2)
l for some l ≥ 3 and on X

(1)
Sl

,X
(2)
Sl

with l ≥ 2; note that, for i ∈ {1,2}, X
(i)
Sl

is a function of

W
(i)

N(i)(Sl )
,W

(i)

N(i)(Sl )−1
and V

(i)

N(i)(Sl )
only, and N(i)(Sl) ≥ 3 on Ek . Using the independence of A

and B on Ek , a small calculation yields that

P(A ∩ B)

P(A)P(B)
= P(Ek|A)P(Ek|B)

P(Ek)
+ P

(
Ec

k|A ∩ B
) P(A ∩ B)

P(A)P(B)
.

Hence, the assertion follows from

lim
k→∞ sup

A∈F0
0 ,B∈F∞

k

P
(
Ec

k|A ∩ B
) = 0. (3.10)

We show now that (3.10) holds. The event Ec
k splits into the event that the first walker has chosen

not more than one new waypoint by time Sk , but the second has chosen at least k − 1 new
waypoints, and the same event with first and second walker reversed. Let us only look at the
first of these two events. On this event, the time Sk is not larger than 2 diam(D)/v−, since a
choice of a new waypoint is done after diam(D)/v− time units at the latest, since all ways are no
longer than diam(D) and all velocities are no less than v−. Since the time that passes between

the second walker picks his (j − 1)st and the j th waypoint is |W(2)
j − W

(2)
j−1|/V

(2)
j , we have that

its sum over j ∈ {1, . . . , k − 1} is not larger than 2 diam(D)/v−. Hence, on this event we have

k−1∑
j=1

∣∣W(2)
j − W

(2)
j−1

∣∣ ≤ 2
v+
v−

diam(D).

Leaving out the summands for j = 1 and j = k − 1, this remaining sum is still upper bounded by
the right-hand side, and it does not depend on Z0 nor on Zk,Zk+1, . . . . Hence, the probability for
this sum being smaller than the right-hand side is an upper bound for the half of P(Ec

k |A∩B) that
we are considering, and it does not depend on A nor on B . Since the right-hand side is constant
and since the waypoints are not deterministic, the probability for this event tends to 0 as k → ∞.
This shows that (3.10) holds and ends the proof. �

The following lemma says that Z is Harris recurrent, has a unique invariant distribution and
is non-lattice, which is summarised by saying that it is Harris ergodic. In particular, it satisfies
an ergodic theorem, that is, for any bounded measurable function f , the averages 1

N

∑N
i=1 f (Zi)

converge almost surely to the integral of f with respect to the invariant distribution.
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Lemma 3.4. The chain Z is Harris ergodic.

Proof. Harris recurrence of Z is equivalent to the existence of a non-trivial σ -finite measure ϕ

such that Z is ϕ-recurrent, see [1], Corollary VII.3.12. Therefore, we have to show that there ex-
ists some σ -finite measure ϕ such that every measurable set F ⊂D2 with ϕ(F ) > 0 is recurrent.

We denote the invariant measure of the process (Y
(1)
t )t∈[0,∞) by γ . Define ϕ = γ ⊗ W ⊗

W ⊗V , which is obviously σ -finite. Let F ⊂D2 be measurable with ϕ(F ) > 0. We are going to
show that the hitting time of F is almost surely finite. Note that ϕ(F ) > 0 implies, by Fubini’s
theorem, that, for some ε > 0, the set F̃ of all T satisfying

∫
1F ((Y,T ))γ (dY) > ε has positive

W ⊗W ⊗ V measure.
First, consider the sequence (nk)k∈N0 of times at which the second walker arrives at a way-

point, that is, (Snk
)k∈N0 = (T

(2)
k )k∈N0 . The first component of the process (Znk

)k∈N0 is a RWP
sampled at times which are given by an independent renewal process, and the second compo-
nent has the same law as (Tk+1)k∈N0 . According to (3.2) and [1], Corollary VII.3.12, the second
component is (W ⊗W ⊗V)-positive recurrent. In particular there exists a subsequence (̃nk)k of
(nk)k such that the second component of Zñk

belongs to F̃ for any k ∈ N0. Also (Sñk
)k∈N0 is a

transient Markov renewal process, independent of Y (1).
Now conditioning on the second component process, Y (2), (Y

(1)
Sñk

)k∈N0 is given by sampling

the, by Proposition 3.2 Harris ergodic, process Y (1) at a deterministic, sequence of times that
increase to infinity. Still conditioning on Y (2), the event that Zñk

∈ F has probability asymptot-
ically lower bounded by ε. It is then obvious by ergodicity that this event will occur infinitely
often.

According to [1], Corollary VII.3.12, this proves Harris recurrence of (Zn)n∈N, and in partic-
ular the existence of a unique invariant measure, [1], Theorem VII.3.5. Now as we want positive
Harris recurrence, we are going to show that this measure is finite.

Note that the previous arguments, together with [1], Proposition VII.3.7, give that

lim
N→∞

1

N

N∑
k=1

1{Zñk
∈F } = γ

(
F (1)

)
> 0.

Note that nk/k → 2, since the arrival times of Y (1) and Y (2) are disjoint and have asymptoti-
cally the same distribution. Hence, since W ⊗W ⊗ V(F (2)) is equal to the probability that Y (2)

hits F (2), we have ñk/k → 2/W ⊗W ⊗ V(F (2)) by the ergodic theorem. Noting the symmetry
in the two components, we see that

lim
N→∞

1

N

N∑
k=1

1{Zk∈F } = 1

2

(
γ ⊗W ⊗W ⊗ V(F ) +W ⊗W ⊗ V ⊗ γ (F )

)
.

Since the right-hand side is a probability measure in F , (Zn)n∈N is positive Harris recurrent.
Note that we proved the ergodic theorem in the course of the proof, as well as gave an explicit
form for the invariant measure.

We also see from this proof that the sequence of hitting times of F is non-lattice, since the
sequence (̃nk)k∈N is non-lattice, because (nk)k∈N is non-lattice. �
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3.3. Longtime average of the connection time

Here, we give a proof of the ergodic limit in Lemma 1.4 using the Markov chain Z defined
in (3.9). As we mentioned above, a simpler proof can be done using ergodic theory, but we
will later need the representation of the ergodic limit in terms of Z. We saw in Section 3.2 that
(Zk)k∈N0 is a time-homogeneous, ψ -mixing and Harris ergodic Markov chain on D2. In this

section, we prove the ergodic limit in Lemma 1.4, giving an explicit formula for the limit p
(>)∗ .

The main object in the proof of Theorem 1.6 in Section 3.4 is the empirical pair measure of Z,
for which a large-deviation principle is known to hold.

We are going to express τ
(�,∗)
T in terms of Z. To this end, we define, for any zk =

((x
(1)
k ,w

(1)
k , v

(1)
k ); (x(2)

k ,w
(2)
k , v

(2)
k )) ∈ D2,

M(1)(z1, z2) = |x(1)
2 − x

(1)
1 |

v
(1)
2

,

(3.11)

F�(z1, z2) =
∫ 1

0
dsθ

(�)(
f∗

(
p1(s)

)
,R

)
θ

(�)(
f∗

(
p2(s)

)
,R

)
1
{
p1(s)

�←→∗ p2(s)
}
,

where pi(s) = sx
(i)
2 + (1 − s)x

(i)
1 , s ∈ [0,1], denotes the path of the ith walker from x

(i)
1 to x

(i)
2 .

Then M(1) is the time that elapses while the two walkers move from one waypoint arrival to the
next one, and F� describes the proportion of time that the two are connected with each other on
that way.

Recalling (3.9), we have, for any n ∈N,

Sn =
n∑

j=1

(Sj − Sj−1) =
n∑

j=1

|X(1)
Sj

− X
(1)
Sj−1

|
VN(1)(Sj )

=
n∑

j=1

M(1)(Zj−1,Zj ). (3.12)

Now we express τ
(�,∗)
T for T replaced by the waypoint arrival time. For any n ∈ N, we have

τ
(�,∗)
Sn

=
n∑

j=1

∫ Sj

Sj−1

dsθ
(�)(

f∗
(
X(1)

s

)
,R

)
θ

(�)(
f∗

(
X(2)

s

)
,R

)
1
{
X(1)

s

�←→∗ X(2)
s

}

=
n∑

j=1

(Sj − Sj−1)

(3.13)

×
∫ 1

0
dsθ

(�)(
f∗

(
p1(s)

)
,R

)
θ

(�)(
f∗

(
p2(s)

)
,R

)
1
{
p1(s)

�←→∗ p2(s)
}

=
n∑

j=1

M(1)(Zj−1,Zj )F�(Zj−1,Zj ),

where pi(s) = X
(i)
Sj−1

+ s(X
(i)
Sj

− X
(i)
Sj−1

).
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Now the proof of Lemma 1.4 is quite obvious. According to [1], Thoerem VII.3.6, based
on Lemma 3.4, implies that the distribution of Zk converges toward its invariant distribution,
which we want to call π . Hence, (Zj−1,Zj ) converges to its invariant distribution π ⊗P , where
we wrote P :D × F → [0,1] for its transition kernel, writing F for the σ algebra on D. This
convergence is in total variation sense. Since M(1) and F� are bounded and measurable, we have
that

lim
n→∞

1

n
Sn =

∫
M(1)d(π ⊗ P) and lim

n→∞
1

n
τ

(�,∗)
Sn

=
∫

M(1)F� d(π ⊗ P).

Pick nT = sup{n ∈ N:Sn ≤ T }, then it is easy to see that 1
T

nT → 1/
∫

M(1) d(π ⊗P) as T → ∞,
almost surely and in probability. It is only an exercise to prove that the above limits are also true
if n is replaced by nT . Furthermore, it is also easy to see that 1

T
(τ

(�,∗)
T − τ

(�,∗)
SnT

) vanishes almost

surely and in probability as T → ∞. Hence, we have

p(�)∗ = lim
T →∞

1

T
τ

(�,∗)
T =

∫
M(1)F� d(π ⊗ P)∫
M(1) d(π ⊗ P)

. (3.14)

This ends the proof of Lemma 1.4 with the identification of the limit p
(�)∗ as the right-hand side

of (3.14).

3.4. Proof of Theorem 1.6

Now we turn to the proof of Theorem 1.6, that is, we prove the upper bound for the downwards
deviations of the normalised connection time, 1

T
τ

(>,∗)
T , for the RWP in the limit T → ∞. Let

us abbreviate τ
(>,∗)
T by τT . We are going to give an explicit upper bound for the probability of

the event {τT ≤ Tp} for any p ∈ (0,p
(>)∗ ). In order to formulate it, we need to introduce some

more notation, which mostly stems from the theory of large deviations. See [7] for more about
this theory.

As a consequence of Lemma 3.3, also (Zj−1,Zj )j∈N is a ψ -mixing and bounded Markov
chain. As a nice consequence, we now have a large-deviation principle (LDP) for the empirical
pair measure of the Zn, defined as

Qn := 1

n

n∑
j=1

δ(Zj−1,Zj ) ∈M1(D ×D), (3.15)

see [4], Theorem 1 under the mixing condition (S) and the remark on page 554, which states that
ψ -mixing implies (S). The rate function in [4], Theorem 1, is given by

I (Q) = sup
f ∈B(D2,R)

{∫
D2

Q(dx,dy)f (x, y) − �(f )

}
,

where �(f ) = limn→∞ 1
n

logE∗[e
∑n

j=1 f (Zj−1,Zj )], and B(D2,R) is the set of all bounded, Borel
measurable functions on D2 to R.
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We denote by M(s)
1 (D×D) the set of probability measures Q on D×D whose two marginals

coincide. We denote any of the two marginals of such a Q by Q, that is, Q(A) = Q(A × D) =
Q(D × A) for A ∈ B(D). Now we use [7], Theorem 6.5.2 for the state space � = D2 and then
Theorem 6.5.12 for k = 1 to identify the rate function as

I (Q) = H(Q|Q ⊗ P) =
∫
D

∫
D

Q(dx,dy) log
Q(dx,dy)

Q(dx)P (x,dy)
if Q � Q ⊗ P, (3.16)

and I (Q) = ∞ otherwise, for Q ∈M(s)
1 (D ×D).

Explicitly, the LDP states that the level sets {Q ∈ M(s)
1 (D × D): I (Q) ≤ c} are compact for

any c ∈R, and that we have the estimates

lim sup
n→∞

1

n
logP∗(Qn ∈ F) ≤ − inf

F
I and lim inf

n→∞
1

n
logP∗(Qn ∈ G) ≥ − inf

G
I,

for any closed, respectively, open, subset F and G of M(s)
1 (D ×D).

Theorem 1.6 follows from the following theorem. We now prefer the notation 〈f,P 〉 for
the integral of a function f with respect to a measure P . We recall from (3.14) that p

(>)∗ =
〈M(1)F>,π ⊗ P 〉/〈M(1), π ⊗ P 〉, where π is the invariant distribution of Z.

Theorem 3.5. For any p ∈ (0,p
(>)∗ ),

lim sup
T →∞

1

T
logP∗(τT ≤ Tp) ≤ −χp, (3.17)

where

χp = inf

{
I (Q)

〈M(1),Q〉 :Q ∈M(s)
1 (D ×D),

〈M(1)F>,Q〉
〈M(1),Q〉 ≤ p

}
. (3.18)

Moreover, the infimum is attained, and χp is positive.

The term 〈M(1),Q〉 is the average time that elapses between two subsequent arrivals at way-
points, if the two walkers move in such a way that the distribution of the location, velocity and
next waypoint at two subsequent such arrivals is given by Q, and 〈M(1)F>,Q〉 is the average
portion of connection time on such a way, and I (Q) is the negative rate of the probability that the
two follow that strategy Q per number of waypoints. Hence, the upper bound in (3.17) is intuitive
and can be interpreted. Note that F> is lower semicontinuous, as the indicator of connectedness
of two points through {f∗ > λc(R)} is a countable sum of indicators of open sets. However, in
general F> may not be upper semicontinuous. This makes it questionable whether or not also the
lower bound in (3.17) holds, since the map Q �→ 〈Q,M(1)F>〉 is in general not continuous.

Proof of Theorem 3.5. That the infimum in (3.18) is attained is easily seen as follows. By
lower semicontinuity of F> and a result of Fatou-type (see, e.g., [7], Theorem D.12), the map
Q �→ 〈Q,M(1)F>〉 is also lower semicontinuous. Since also I is lower semicontinuous and has
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compact level sets and the map Q �→ 〈Q,M(1)〉 is continuous, it easily follows that the infimum
in (3.18) is even a minimum.

Now we argue that χp is positive. Indeed, the only minimiser of I on M(s)
1 (D×D) is the mea-

sure π ⊗ P , where we recall that π is the invariant distribution of Z and P its transition kernel.
To see this, note that, for any Q satisfying I (Q) = 0, we have Q(dx,dy) = Q(dx)P (x,dy) by
the equality discussion in Jensen’s inequality, and from the marginal property it follows that
Q is invariant for P , that is, equal to π by uniqueness of the invariant distribution for the
chain Z. Hence, also the only minimiser of Q �→ I (Q)/〈M(1),Q〉 is π ⊗ P , and it satisfies
p

(>)∗ = 〈M(1)F>,π ⊗ P 〉/〈M(1), π ⊗ P 〉, see below (3.14). Therefore, it is not contained in the
admissibility set on the right of (3.18) and is therefore not equal to its minimiser. Hence, χp is
positive.

Now we prove (3.17). We are going to express the time T and the variable τT in terms of
integrals over Qn. We write

Zj = ((
X

(1)
Sj

,W
(1)

N(1)(Sj )
, V

(1)

N(1)(Sj )

)
,
(
X

(2)
Sj

,W
(2)

N(2)(Sj )
, V

(2)

N(2)(Sj )

))
.

From (3.12) and (3.13) we have, for any n ∈ N,

Sn = n
〈
M(1),Qn

〉
and τSn = n

〈
M(1)F>,Qn

〉
,

recalling the definition of M(1) and of F> in (3.11), where pi(s) = X
(i)
Sj−1

+ s(X
(i)
Sj

− X
(i)
Sj−1

).
Hence, we can already give a heuristic proof of Theorem 3.5 as follows. The LDP for (Qn)n∈N
roughly says that P∗(Qn ≈ Q) ≈ e−nI (Q) for any strategy Q ∈ M(s)

1 (D2). Taking n such that
T ≈ Sn, we have that n ≈ T/〈M(1),Qn〉 and τT /T ≈ 〈M(1)F>,Qn〉/〈M(1),Qn〉. Hence, we
should have

P∗(τT ≤ pT ) ≈ P∗
(〈
M(1)F>,Qn

〉
/
〈
M(1),Qn

〉 ≤ p
)

≈ exp

(
−n inf

{
I (Q):Q ∈ M(s)

1

(
D2), 〈M(1)F>,Q〉

〈M(1),Q〉 ≤ p

})

≈ e−T χp ,

with χp as defined in Theorem 3.5. The main difficulty in making this line of argument rigorous
lies in the randomness of n.

Let us now give a rigorous proof of the upper bound in (3.17). Fix p ∈ (0,p
(>)∗ ) and pick a

large auxiliary parameter K and a small one, δ > 0. First, we distinguish all the n no larger than
KT such that T ≈ Sn:

1 ≤
�KT �∑

n=�T/L�
1{Sn ≤ T < Sn+1} + 1{T ≥ S�KT �+1}.

On the first event, {Sn ≤ T < Sn+1}, we have

τT ≥ τSn = n
〈
Qn,M

(1)F>

〉 ≥ (T − L)
〈M(1)F>,Qn〉
〈M(1),Qn〉 ≥ T (1 − δ)

〈M(1)F>,Qn〉
〈M(1),Qn〉 ,
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where the last inequality is true for all sufficiently large T (depending only on δ and L), which
we want to assume from now.

Observe that M(1) is bounded from above by L = diam(D)/v−, with probability 1 with respect
to Q for any Q ∈ M(s)

1 (D2), since D is bounded and all velocities are at least v−. Hence, we
have Sj − Sj−1 ≤ L for any j ∈ N and therefore also 0 < Sn/n ≤ L for any n ∈ N. Therefore,
the indicator on the event {Sn ≤ T < Sn+1} can be upper bounded as

1{Sn ≤ T < Sn+1} ≤ 1{T − L ≤ Sn ≤ T } ≤ 1

{
(1 − δ)

T

n
≤ 〈

M(1),Qn

〉 ≤ T

n

}
.

This implies the upper bound

P∗(τT ≤ pT ) ≤
�KT �∑

n=�T/L�
P∗

( 〈M(1)F>,Qn〉
〈M(1),Qn〉 ≤ p

1 − δ
, (1 − δ)

T

n
≤ 〈

M(1),Qn

〉 ≤ T

n

)

+ P∗(T ≥ S�KT �+1).

The last term is an error term, as we will show later that

lim
K→∞ lim sup

T →∞
1

T
logP∗(T ≥ S�KT �+1) = −∞. (3.19)

Now we cut the sum over n into pieces of length T ε, where ε > 0 is a small auxiliary parame-
ter:

�KT �∑
n=�T/L�

=
�K/ε�∑

i=1+�1/Lε�

∑
(i−1)T ε<n≤iT ε

.

For fixed i and (i − 1)T ε < n ≤ iT ε, we can estimate, for any large T ,

P∗
( 〈M(1)F>,Qn〉

〈M(1),Qn〉 ≤ p

1 − δ
, (1 − δ)

T

n
≤ 〈

M(1),Qn

〉 ≤ T

n

)
≤ P∗(Qn ∈ Ai), (3.20)

where

Ai =
{
Q ∈M(s)

1

(
D2):

〈M(1)F>,Q〉
〈M(1),Q〉 ≤ p

1 − δ
,

1 − δ

iε
≤ 〈

M(1),Q
〉 ≤ 1

(i − 1)ε

}
.

Recall that F> is lower semicontinuous. By [7], Theorem D.12, the map Q �→ 〈Q,M(1)F>〉 is
also lower semicontinuous. Hence, Ai is closed in the weak topology. Now we apply the upper
bound in the above mentioned LDP, to obtain, as T → ∞,

sup
(i−1)T ε<n≤iT ε

P∗(Qn ∈ Ai) ≤ e−T χ̃p(δ,ε)eo(T ),
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where

χ̃p(δ, ε) = (i − 1)ε inf
{
I (Q):Q ∈ Ai

}
= (i − 1)ε inf

{
I (Q):Q ∈ M(s)

1

(
D2), 〈M(1)F>,Q〉

〈M(1),Q〉 ≤ p

1 − δ
,

1 − δ

iε
≤ 〈

M(1),Q
〉 ≤ 1

(i − 1)ε

}

≥ inf

{
I (Q)

(
1 − δ

〈M(1),Q〉 − ε

)
:Q ∈M(s)

1

(
D2), 〈M(1)F>,Q〉

〈M(1),Q〉 ≤ p

1 − δ
,

1 − δ

iε
≤ 〈

M(1),Q
〉 ≤ 1

(i − 1)ε

}

≥ inf

{
I (Q)

(
1 − δ

〈M(1),Q〉 − ε

)
:Q ∈M(s)

1

(
D2), 〈M(1)F>,Q〉

〈M(1),Q〉 ≤ p

1 − δ

}
=: χp(δ, ε).

It is easy to see that limε↓0,δ↓0 χp(δ, ε) = χp as defined in (3.18). Hence, the upper bound
in (3.17) is proved, subject to (3.19), which we prove now.

Note that {Sn:n ∈ N0} = {T (1)
n :n ∈ N0} ∪ {T (2)

n :n ∈ N0}, where T
(i)
n denotes the arrival time

of the ith walker at the nth waypoint. The j th step U
(1)
j of the first of these processes is the

duration of the first walker’s travel from the j th to the (j + 1)st waypoint. Hence,

P∗(T ≥ S�KT �+1) ≤ 2P∗
(
T ≥ T

(1)
�KT/2�+1

) ≤ 2P∗
(
T ≥ T̃

(1)
�KT/4�

)
,

where T̃
(1)
n = ∑n−1

j=0 U
(1)
2j denotes the random walk consisting of the even steps only. Hence, we

are now looking at downward deviations of the random walk (T̃
(1)
n )n∈N, whose steps U

(1)
2j are

i.i.d. with support in [0,L]. Therefore, Cramér’s theorem yields

lim sup
T →∞

1

T
logP∗

(
T̃

(1)
�KT/4� ≤ T

) ≤ K

4
lim sup
T →∞

1

KT/4
logP∗

(
T̃

(1)
�KT/4� ≤ 4

K
�KT/4�

)

≤ −K

4
sup
λ<0

(
λ

4

K
− logE∗

[
eλU

(1)
0

])

= − sup
λ<0

(
λ − K

4
logE∗

[
eλU

(1)
0

])
.

Note that the essential infimum of U
(1)
0 is equal to zero, as we assumed that the waypoint measure

has a continuous density. Indeed, if the waypoint walker stands in his waypoint, with probability
1 there is a non-trivial ball around the location in which the waypoint measure has a positive
density and, therefore, arbitrarily small travels to the next waypoint have a positive probability.
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Hence, logE∗[eλU
(1)
0 ] = o(|λ|) as λ → −∞ and, therefore, it is possible to pick a sequence

λK → ∞ as K → ∞ such that λK − K
4 logE∗[eλKU

(1)
0 ] → ∞ as K → ∞. This implies that

(3.19) holds and finishes the proof of Theorem 3.5. �
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