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Zellner’s g-prior is a popular prior choice for the model selection problems in the context of normal re-
gression models. Wang and Sun [J. Statist. Plann. Inference 147 (2014) 95–105] recently adopt this prior
and put a special hyper-prior for g, which results in a closed-form expression of Bayes factor for nested
linear model comparisons. They have shown that under very general conditions, the Bayes factor is consis-
tent when two competing models are of order O(nτ ) for τ < 1 and for τ = 1 is almost consistent except
a small inconsistency region around the null hypothesis. In this paper, we study Bayes factor consistency
for nonnested linear models with a growing number of parameters. Some of the proposed results generalize
the ones of the Bayes factor for the case of nested linear models. Specifically, we compare the asymptotic
behaviors between the proposed Bayes factor and the intrinsic Bayes factor in the literature.

Keywords: Bayes factor; growing number of parameters; model selection consistency; nonnested linear
models; Zellner’s g-prior

1. Introduction

We reconsider the classical linear regression model

Y = 1nα + Xpβp + ε, (1.1)

where Y = (y1, . . . , yn)
′ is an n-vector of responses, Xp is an n×p design matrix of full column

rank, containing all potential predictors, 1n is an n× 1 vector of ones, α is an unknown intercept,
and βp is a p-vector of unknown regression coefficients. Throughout the paper, it is assumed
that the random error for all models follows the multivariate normal distribution, denoted by
ε ∼ N(0n, σ

2In), where 0n is an n × 1 vector of zeros, σ 2 is an unknown positive scalar, and In

is an n-dimensional identity matrix. Without loss of generality, we also assume that the columns
of Xp have been centered, so that each column has mean zero.

In the class of linear regression models, we often assume that there is an unknown subset of the
important predictors which contributes to the prediction of Y or has an impact on the response
variable Y. This is by natural a model selection problem where we would like to select a linear
model by identifying the important predictors in this subset. Suppose that we have two such
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linear regression models Mj and Mi , with dimensions j and i,

Mj : Y = 1nα + Xjβj + ε, (1.2)

Mi : Y = 1nα + Xiβ i + ε, (1.3)

where Xi is an n× i submatrix of Xp and β i is an i×1 vector of unknown regression coefficients.
As commented by Kass and Raftery [11], a natural way to compare the two competing models is
the Bayes factor, which has nice model selection consistency properties. Here, consistency means
that the true model will be eventually selected if enough data is provided, assuming that the true
model exists. Our particular interest in this paper is to study the model selection consistency of
Bayes factor when the model dimension grows with the sample size. To be more specific, we
consider the following three asymptotic scenarios:

Scenario 1. i = O(na1) and j = O(na2) with 0 ≤ a1 ≤ a2 < 1.
Scenario 2. i = O(na1) and j = O(na2) with 0 ≤ a1 < a2 = 1.
Scenario 3. i = O(na1) and j = O(na2) with a1 = a2 = 1.

When the two models Mi and Mj are nested, Moreno, Girón and Casella [18] study the consis-
tency of the intrinsic Bayes factor under the three asymptotic scenarios. Later on, Wang and Sun
[22] derive an explicit closed-form Bayes factor associated with Zellner’s g-prior for comparing
the two models. They show that under very general conditions, the Bayes factor is consistent
when the two models are of order O(nτ ) for τ < 1 and for τ = 1 is almost consistent except
a small inconsistency region around the null hypothesis. Such a small set of models around the
null hypothesis can be characterized in terms of a pseudo-distance between models defined by
Moreno and Girón [17]. Finally, Wang and Sun [22] compare the proposed results with the ones
for the intrinsic Bayes factor due to [18].

It should be noted that Mi and Mj are not necessarily nested in many practical situations.
As commented by Pesaran and Weeks [20], “in econometric analysis, nonnested models arise
naturally when rival economic theories are used to explain the same phenomenon, such as un-
employment, inflation or output growth.” In fact, the problem of comparing nonnested models has
been studied in a fairly large body of ecomometric and statistical literature from both practical
and theoretical viewpoints, dating back to [10]. For instance, Cox [4] develops a likelihood ratio
testing procedure and shows that under appropriate conditions, the proposed approach and its
variants have well-behaved asymptotic properties. Watnik and Johnson [25] consider the asymp-
totic behavior of three different testing procedures (the J-test, the JA-test, and the modified Cox
test) for the analysis of nonnested linear models under the alternative hypothesis. The interested
reader is referred to [24] and [25] for detailed descriptions of the three testing procedures.

Girón et al. [7] consider the intrinsic Bayes factor for comparing pairs of nonnested models
based on the two different encompassing criteria: encompassing from above and encompassing
from below. Later on, Moreno and Girón [17] present a comparative analysis of the intrinsic
Bayes factor under the two criteria in linear regression models. Recently, Girón et al. [8] study
the consistency of the intrinsic Bayes factor for the case of nonnested linear models under the
first two asymptotic scenarios above. The latter two papers mainly focus on the consistency of the
intrinsic Bayes factor when the model dimension grows with the sample size, whereas under the
same asymptotic scenario, the researchers should also be interested in the consistency of Bayes
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factor based on Zellner’s g-prior, which is a popular prior choice for the model selection prob-
lems in linear regression models. To the best of our knowledge, the latter has just received little
attention over the years, even though it is of the utmost importance to address the consistency
issue for nonnested models.

In this paper, we investigate Bayes factor consistency associated with Zellner’s g-prior for the
problem of comparing nonnested models under the three asymptotic scenarios above. Specifi-
cally, we compare the asymptotic results between the proposed Bayes factor and the intrinsic
Bayes factor due to [8]. The results show that the asymptotic behaviors of the two Bayes factors
are quite comparable in the first two scenarios. It is remarkable that we also study the consistency
of the proposed Bayes factor under Scenario 3, whereas such a scenario is still an open problem
for the intrinsic Bayes factor highlighted by Girón et al. [8].

The remainder of this paper is organized as follows. In Section 2, we present an explicit closed-
form expression of Bayes factor based on the null-based approach. In Section 3, we address the
consistency of Bayes factor for nonnested models under the three asymptotic scenarios. Addition-
ally, we compare the proposed results with the ones of the intrinsic Bayes factor. An application
of the results in Section 3 to the ANOVA models is provided in Section 4. Some concluding
remarks are presented in Section 5, with additional proofs given in the Appendix.

2. Bayes factor

Within a Bayesian framework, one of the common ways for the model selection problems is to
compare models in terms of their posterior probabilities given by

P(Mj |Y) = p(Mj)p(Y|Mj)∑
i p(Mi)p(Y|Mi)

= p(Mj )BF[Mj : Mb]∑
i p(Mi)BF[Mi : Mb] , (2.1)

where p(Mj ) is the prior probability for model Mj and p(Mj |Y) is the marginal likelihood of
Y given Mj , and BF[Mj : Mb] is the Bayes factor, which compares each model Mj to the base
model Mb and is defined as

BF[Mj : Mb] = p(Y|Mj)

p(Y|Mb)
. (2.2)

The Bayes factor in (2.2) depends on the base model Mb , which is often chosen arbitrarily
in practical situations. There are two common choices for Mb: one is the null-based approach
by using the null model (M0), the other is the full-based approach by choosing the full model
(MF ). This paper focuses on the null-based approach because (i) the null model is commonly
used as the base model when using Zellner’s g-priors in most of the literature [14] and (ii) unlike
the full model, the dimension of the null model is independent of the sample size. This is crucial
in addressing the consistency of Bayes factor with an increasing model dimension. Accordingly,
we compare the reducing model Mj with M0:

Mj : Y = 1nα + Xjβj + ε, (2.3)

M0 : Y = 1nα + ε. (2.4)
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Zellner’s g-prior [27] is often to choose the same noninformative priors for the common pa-
rameters that appear in both models and to assign Zellner’s g-prior for others that are only in
the larger model. The reasonability of this choice is that if the common parameters are orthogo-
nal (i.e., the expected Fisher information matrix is diagonal) to the new parameters in the larger
model, the Bayes factor is quite robust to the choice of the same (even improper) priors for the
common parameters; see [12]. Since α and σ 2 are the common orthogonal parameters in (2.3)
and (2.4), we consider the following prior distributions for (α,σ 2,βj )

M0 : p(
α,σ 2) ∝ 1

σ 2
,

(2.5)

Mj : p(
α,σ 2,βj

) ∝ 1

σ 2
and βj |σ 2 ∼ N

(
0, gσ 2(X′

j Xj

)−1)
.

The amount of information in Zellner’s g-prior is controlled by a scaling factor g, and thus the
choice of g is quite critical. A nice review of various choices of g-priors was provided by Liang
et al. [14] and later discussed further by Ley and Steel [13]. In most of the developments of the
g-priors, the expression of Bayes factor may not have an analytically tractable form, so numerical
approximations will generally be employed, whereas it may not be an easy task for practitioners
to choose an appropriate one. In particular, standard approximation, such as Laplace approxima-
tion, becomes quite challenging when the number of parameters grows with the sample size.

It is remarkable that Maruyama and George [16] propose an explicit closed-form expression of
Bayes factor based on combined use of a generalization of Zellner’s g-prior and the beta-prime
prior for g:

π(g) = gb(1 + g)−a−b−2

B(a + 1, b + 1)
I(0,∞)(g), (2.6)

where a > −1, b > −1, and B(·, ·) is a beta function. Noting that Zellner’s g-prior is a special
case of the generalization of Zellner’s g-prior in [16], we obtain the following result and the
proof directly follows Theorem 3.1 of [16] and is thus omitted for simplicity.

Theorem 1. Under the prior in (2.6) with b = (n − j − 1)/2 − a − 2, the Bayes factor for
comparing Mj and M0 can be simplified as

BF[Mj : M0] = �(j/2 + a + 1)�((n − j − 1)/2)

�(a + 1)�((n − 1)/2)

(
1 − R2

j

)−(n−j−1)/2+a+1
, (2.7)

where R2
j is the usual coefficient of the determination of model Mj .

The Bayes factor in (2.7) is very attractive for practitioners because of its explicit expression
without integral representation, which is not available for other choices of the hyperparameter b.
One may argue that such an expression comes at a certain cost on interpreting the role of the
prior for g, since this prior depends on both the sample size and the model size through the
hyperparameter b. It is noteworthy that this type of the prior has been studied in the literature.
For example, Bayarri et al. [1] propose a truncated version of the beta-prime prior for g, such



2084 M. Wang and Y. Maruyama

that g > (n + 1)/(j + 3) − 1. A similar type of the prior has also been considered by Ley and
Steel [13].

At this point, we provide several arguments justifying the specification of the hyperparameters
as follows. (i) The choice of b = (n − j − 1)/2 − a − 2 yields an implicit O(n) choice of g [16],
that is, g = O(n), which will prevent the hyper-g prior from asymptomatically dominating the
likelihood function; (ii) as the sample size grows, the right tail of the beta-prime prior behaves
like g−(a+2), leading to a very fat tail for small values of a, an attractive property suggested by
Gustafson, Hossain and MacNab [9]; (iii) with a choice of a = −1/2 and some transformation
θ = (X′X)1/2β , the prior makes the asymptotic tail behavior of

p
(
θ |σ 2) =

∫ ∞

0
p
(
θ |σ 2, g

)
π(g)dg (2.8)

become the multivariate Cauchy for sufficient large θ ∈ Rp , recommended by Zellner [27];
(iv) the resulting Bayes factor in (2.7) enjoys nice theoretical properties and good performances
in practical applications; see, for example, [16,22,23], among others, and (v) when the model
dimension j is bounded, the Bayes factor in (2.7) is asymptotically equivalent to the Schwarz
approximation.

Theorem 2. When the model dimension j is fixed, for large sample sizes n, the Bayes factor
in (2.7) is equivalent to the Schwarz approximation given by

BF[Mj : M0] ≈ exp

[
−j

2
logn − n

2
log

(
1 − R2

j

)]
. (2.9)

Proof. See the Appendix. �

One of the most attractive properties in the Bayesian approaches is the model selection consis-
tency, which means the true model (assuming it exists) will be selected if enough data is provided.
This property has been intensively studied under different asymptotic scenarios as the sample size
approaches infinity. For example, when the model dimension is fixed, see [3,13,14,16], to name
just a few. Of particular note is that the consistency of various Bayes factors in the listed refer-
ences behaves very similarly, because for sufficiently large values of n, the intrinsic Bayes factor
and Bayes factors associated with mixtures of g-priors (e.g., g = n and Zellner–Siow prior) can
all be approximated by the Schwarz approximation in (2.9); see Theorem 2 of [19]. Also, we can
show that this approximation is valid for the Bayes factor with the hyper-g prior in [14].

When the model dimension grows with the sample size, Moreno, Girón and Casella [18] study
the consistency of the intrinsic Bayes factors for comparing nested models, and a generalization
of the consistency to nonnested models has been addressed by Girón et al. [8]. More recently,
Wang and Sun [22] address the consistency of Bayes factor associated with Zellner’s g-prior for
nested models, whereas its consistency for the case of nonnested models is also of the utmost
importance. We shall particularly be interested in comparing the asymptotic behaviors between
the proposed Bayes factor and the intrinsic Bayes factor under the same asymptotic scenario.
The presented results provide researchers a valuable theoretical base for the comparison among
nested and nonnested models, which naturally appears in practical situations.
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3. Bayes factor consistency for nonnested linear models

In this section, we consider the model selection consistency of Bayes factor for comparing
nonnested models under the three asymptotic scenarios. The Bayes factor in (2.7) may not be
directly applied to the problem of comparing nonnested models, whereas we can calculate the
Bayes factor between Mj and M0, BF[Mj : M0], and the Bayes factor between Mi and M0,
BF[Mi : M0]. Thereafter, the Bayes factor for comparing Mj and Mi can be formulated as

BF[Mj : Mi] = BF[Mj : M0]
BF[Mi : M0] . (3.1)

The Bayes factor for comparing Mj and Mi in (1.2) and (1.3) is thus given by

BF[Mj : Mi] = �(j/2 + a + 1)�((n − j − 1)/2)

�(i/2 + a + 1)�((n − i − 1)/2)

(1 − R2
j )

−(n−j−1)/2+a+1

(1 − R2
i )

−(n−i−1)/2+a+1
. (3.2)

Let MT stand for the true model

MT : Y = 1nα + XT βT + ε.

According to [5], the Bayes factor is said to be consistent when

plim
n→∞

BF[Mj : Mi] = ∞,

if Mj is the true model MT , whereas

plim
n→∞

BF[Mj : Mi] = 0,

if Mi is the true model MT , where ‘plim’ stands for convergence in probability and the probabil-
ity distribution is the sampling distribution under MT . For notational simplicity, let

δji = 1

σ 2
β ′

j

X′
j (In − Hi )Xp

n
βj ,

where Hi = Xi (X′
iXi )

−1Xi with Xi being an n × i submatrix of Xp . According to [8], the value
of δji can be viewed as a pseudo-distance between Mj and Mi , in which the two models are not
necessarily nested. Such a pseudo-distance has the following properties: (i) it is always equal to
0 from any model Mj to itself, that is, δjj = 0; (ii) if Mi is nested in Mj , it is also equal to 0,
that is, δij = 0, and (iii) for any model Mk , we have δki ≥ δkj if Mi is nested in Mj . To study the
model selection consistency, it is usually assumed that when the sample size approaches infinity,
the limiting value of δji , denoted by δ∗

ji , always exists, where

δ∗
ji = lim

n→∞
1

σ 2
β ′

j

X′
j (In − Hi )Xj

n
βj . (3.3)



2086 M. Wang and Y. Maruyama

In what follows, let limn→∞[M]Zn represent the limit in probability of the random sequence
{Zn : n ≥ 1} under the assumption that we are sampling from model M . We present one useful
lemma which is critical for deriving the main theorems in this paper, and the proof of the lemma
is directly from Lemma 1 of [8] and is not shown here for simplicity.

Lemma 1. Suppose that we are interested in comparing two models Mi and Mp with dimensions
i and p, respectively, where Mi is nested in Mp . As n approaches infinity, both i and p grow with
n as i = O(na1) and p = O(na2) for 0 ≤ a1 ≤ a2 ≤ 1. When sampling from the true model MT ,

(i) if 0 ≤ a1 ≤ a2 < 1, it follows that

lim
n→∞[MT ]

{
1 − R2

p

1 − R2
i

}
= 1 + δ∗

tp

1 + δ∗
t i

.

(ii) If 0 ≤ a1 < a2 = 1, it follows that

lim
n→∞[MT ]

{
1 − R2

p

1 − R2
i

}
= 1 + δ∗

tp − 1/r

1 + δ∗
t i

,

where r = limn→∞ n/p > 1.
(iii) If a1 = a2 = 1, it follows that

lim
n→∞[MT ]

{
1 − R2

p

1 − R2
i

}
= 1 + δ∗

tp − 1/r

1 + δ∗
t i − 1/s

,

where r = limn→∞ n/p > 1 and s = limn→∞ n/i > 1.

We are now in a position to characterize the consistency of Bayes factor in (3.2) for comparing
nonnested linear models. We begin with Scenario 1, that is, the dimensions of models Mi and
Mj are i = O(na1) and j = O(na2) with 0 ≤ a1 ≤ a2 < 1, respectively. The following theorem
summarizes Bayes factor consistency when either of the two models is the true model.

Theorem 3. Let M0 be the null model nested in both nonnested models Mi and Mj , whose
dimensions are i and j , respectively. Suppose that i = O(na1) and j = O(na2) with 0 ≤ a1 ≤
a2 < 1 and that δ∗

ij > 0 and δ∗
ji > 0. The Bayes factor in (3.2) is consistent whichever the true

model is.

Proof. See the Appendix. �

Under the same asymptotic scenario, Girón et al. [8] also conclude that the intrinsic Bayes
factor is consistent whichever the true model is when δ∗

ij > 0 and δ∗
ji > 0. Such an agreement of

the consistency between the two Bayes factors is due to the fact that the dominated term is exactly
the same on their asymptotic approximations under Scenario 1. It is noteworthy that Theorem 3 is
also valid for other chosen base model nested in both models Mi and Mj , even though the main
result of the theorem is derived based on the null-based approach. Moreover, Theorem 3 can
be directly applied to the case in which the dimensions of the two competing models are fixed,
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because it can be viewed as a limiting case with both limn→∞ n/j and limn→∞ n/i approaching
infinity.

Corollary 1. Suppose we are interested in comparing two models Mi and Mj with dimensions
i and j , respectively, and that both dimensions are fixed. The Bayes factor in (3.2) is consistent
under both models provided that δ∗

ij > 0 and δ∗
ji > 0.

We now investigate Bayes factor consistency when the dimension of one of the nonnested
models is of order O(n). The main results are provided in the following theorem.

Theorem 4. Let M0 be the null model nested in both nonnested models Mi and Mj whose
dimensions are i and j , respectively. Suppose that i = O(na1) and j = O(na2) with 0 ≤ a1 <

a2 = 1 and that there exists a positive constant r such that r = limn→∞ n/j > 1.

(a) The Bayes factor in (3.2) is consistent under Mi , provided that δ∗
ij > 0.

(b) The Bayes factor in (3.2) is consistent under Mj provided that

δ∗
ji ∈ (

κ
(
r, δ∗

j0

)
, δ∗

j0

]
, (3.4)

and δ∗
j0 > δ(r), where κ(r, s) = [r(1 + s)]1/r − 1 and

δ(r) = r1/(r−1) − 1. (3.5)

Proof. See the Appendix. �

Some of the interesting findings can be drawn from the theorem as follows. First, the lower
bound of δ∗

j0, denoted by δ(r), is exactly the same as the one in Theorem 2 of [22] for comparing
nested linear models. Second, Theorem 4 can be extended to the case of nested model compar-
isons (i.e., Mi is nested in Mj ) by assuming that M0 = Mi . Third, the Bayes factor depends on
the choice of the base model through the value of δ∗

j0, and therefore, to enlarger the consistency
region in (3.4), we need to make δ∗

j0 be as large as possible. This justifies that the null model M0

would be the best choice as the base model. Fourth, the lower bound of δ∗
ji , denoted by κ(r, δ∗

j0),
is a bounded decreasing function in r and satisfies that for any δ∗

j0 > 0,

lim
r→∞κ

(
r, δ∗

j0

) = 0.

Finally, under the same scenario, Girón et al. [8] consider the consistency of the intrinsic Bayes
factor and conclude that the intrinsic Bayes factor is consistent under Mi if δ∗

ij > 0 and is con-
sistent under Mj , provided that δ∗

j0 > ξ(r) with

ξ(r) = r − 1

(r + 1)(r−1)/r − 1
− 1, (3.6)

and

δ∗
ji ∈ (

η
(
r, δ∗

j0

)
, δ∗

j0

]
, (3.7)
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Figure 1. The inconsistency region comparisons (below the curves) for the proposed Bayes factor and the
intrinsic Bayes factor under Scenario 2.

where η(r, s) = r+s

(1+r)(r−1)/r − 1.
It is interesting to observe that the asymptotic behaviors of the two Bayes factors depend on

the pseudo-distance between models δ∗
ji bounded by δ∗

j0. Figure 1 shows that the upper bounds
of their inconsistency regions tend to each other as r increases. Moreover, Figure 2 provides
their lower bounds with different values of δ∗

j0. When δ∗
j0 is small, the consistency region of the

proposed Bayes factor is included by the one of the intrinsic Bayes factor, whereas the difference
between the two regions is small; see Figure 2(a). However, when δ∗

j0 gets larger, the consistency

(a) σ∗
j0 = 0.5 (b) σ∗

j0 = 20

Figure 2. The lower bounds of the consistency regions in (3.4) and (3.7) with different limiting values of
δj0 under Scenario 2.
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region of the proposed Bayes factor will contain the one of the intrinsic Bayes factor, whereas
the difference between the two regions becomes significantly as δ∗

j0 increases; see Figure 2(b).
Thus, we may conclude that as δ∗

j0 increases, the proposed Bayes factor outperforms the intrinsic
Bayes factor from a theoretical viewpoint.

It deserves mentioning that the existence of an inconsistency region around the null hypothesis
is quite reasonable from a practical point of view, because the nontrue smaller model Mi is
parsimonious under large-p situation and is generally selected when conducting model selection,
if the true larger model Mj is not so distinguishable from Mi . From the prediction view of
point, Maruyama [15] has demonstrated the reasonability of the inconsistency region for the
one-way fixed-effect ANOVA model, which could be viewed as a special case of the classical
linear models in (1.1) after some reparameterization. A theoretical justification of this line of
thought for a more general model is still under investigation and will be reported elsewhere.

The first two theorems mainly focus on the consistency of Bayes factor for the case in which
at least one model is of order O(nα) for α < 1. It is worthy of investigating the consistency
issue for the case where both models are of order O(n): the growth rates of the two model
dimensions are as fast as n. Such a scenario remians an open problem for the intrinsic Bayes
factor commented by Girón et al. [8]. We summarize the consistency of the proposed Bayes
factor under this scenario in the following theorem.

Theorem 5. Let M0 be the null model nested in both nonnested models Mi and Mj with dimen-
sions i = O(n) and j = O(n), respectively. Suppose that there exist positive constants r and s

such that r = limn→∞ n/j > 1 and s = limn→∞ n/i > 1. Without loss of generality, we assume
that r ≤ s.

(a) The Bayes factor in (3.2) is consistent under Mi provided that

δ∗
ij ∈

(
r − 1

r

{[
s1/s

r1/r

(
1 + δ∗

i0

)1/s−1/r
]r/(r−1)

− 1

}
, δ∗

i0

]
, (3.8)

and that δ∗
i0 > 0 satisfying

(
1 + δ∗

i0

1 − 1/r

)1−1/r

>
(1/r)1/r

(1/s)1/s

(
1 + δ∗

i0

)1/s−1/r
. (3.9)

(b) The Bayes factor in (3.2) is consistent under Mj provided that

δ∗
ji ∈ (

φ
(
r, s, δ∗

j0

)
, δ∗

j0

]
, (3.10)

where

φ(a, b, c) = b − 1

b

[
a1/a

b1/b
(1 + c)1/a−1/b − 1

]b/(b−1)

,

and that δ∗
j0 > 0 satisfying

(
1 + δ∗

j0

1 − 1/s

)1−1/s

>
r1/r

s1/s

(
1 + δ∗

j0

)1/r−1/s
. (3.11)
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Proof. See the Appendix. �

Unlike the first two asymptotic scenarios, Theorem 5(a) shows that under Scenario 3, there
exists an inconsistency region around the alternative hypothesis when Mi is true and that the
consistency under Mi depends on the chosen base model M0 through the distance δ∗

i0 only. The
existence of the inconsistency region is quite reasonable because there are many candidates to
be the base model, which could have a dimension of order O(na1) with a1 ≤ 1. In particular,
we observe that the inconsistency region disappears for the case in which r = s. This is also
very understandable, because with the same growth rates, the parsimonious model is typically
preferred in terms of model selection. Furthermore, it can be easily shown that the inequality
in (3.9) and the lower bound of the consistency region in (3.8) are both valid for any δ∗

i0 > 0 if
s1/s ≤ r1/r , indicating that for any δ∗

i0 > 0, the inconsistency region disappears whenever s ≥ r ≥
e ≈ 2.718. In order to enlarger the consistency region in (3.8), we need to choose a base model to
maximize the distance δ∗

i0. Finally, when s tends to infinity, the inconsistency region disappears
for any δ∗

i0 > 0 and r > 1, which shows that Theorem 5(a) just reduces to Theorem 4(a).
Theorem 5(b) shows that the consistency region under Mj depends on the chosen base model

through δ∗
j0 only. Thus, the base model should be chosen as small as possible to maximize the

value of δ∗
j0. Note that when r = s, the inconsistency region disappears under Mj . Also, if the rate

of growth of Mi is smaller than that of Mj (i.e., s tends to infinity), then with lims→∞ s1/s = 1,
the inequality in (3.11) turns to be

δ∗
j0 > r1/(r−1) − 1 = δ(r), (3.12)

which becomes inequality in (3.5) in Theorem 4, and the lower bound in (3.10) is

lim
s→∞φ

(
r, s, δ∗

j0

) = lim
s→∞

s − 1

s

[
r1/r

s1/s

(
1 + δ∗

j0

)1/r−1/s − 1

]s/(s−1)

= [
r
(
1 + δ∗

j0

)]1/r − 1 = κ
(
r, δ∗

j0

)
.

This illustrates that Theorem 4(b) is just a special of Theorem 5(b) when s approaches infinity.
We may thus conclude that when s tends to infinity, Theorem 5 reduces to Theorem 4.

We have compared the consistency of the proposed Bayes factor with the one of the intrinsic
Bayes factor due to [8] under the first two asymptotic scenarios above. A brief summary of com-
parisons between the two Bayes factors is presented in Table 1. We observe that the consistency

Table 1. The consistency regions of the Bayes factor in (3.2) and the intrinsic Bayes factor due to [8] for
different choices of a1 and a2

Rate of divergence The proposed Bayes factor The intrinsic Bayes factor

0 < a1 = a2 = 1 Mj : δ∗
j0 > ψ(r) and δ∗

ji
∈ (φ(r, s, δ∗

j0), δ∗
j0] Mj : unknown

0 ≤ a1 < a2 = 1 Mj : δ∗
j0 > δ(r) and δ∗

ji
∈ (κ(r, δ∗

j0), δ∗
j0] Mj : δ∗

j0 > ξ(r) and δ∗
ji

∈ (η(r, δ∗
j0), δ∗

j0]
0 ≤ a1 ≤ a2 < 1 Mj : δ∗

ij
> 0 and δ∗

ji
> 0 Mj : δ∗

ij
> 0 and δ∗

ji
> 0
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results presented here are similar to the ones for the intrinsic Bayes factor studied by Girón et
al. [8]. The similarity occurs, mainly because the asymptotic behaviors of the two Bayes factors
depend on a limiting value of (1 − R2

j )/(1 − R2
i ) summarized in Lemma 1. The consistency of

the intrinsic Bayes factor is still an open problem under Scenario 3. We presume that under Sce-
nario 3, the consistency of the intrinsic Bayes factor also behaves similarly with the one of the
proposed Bayes factor, but some further investigation about this presumption is required.

4. Application

It is well known that the ANalysis Of VAriance (ANOVA) models are extremely important in
exploratory and confirmatory data analysis in various fields, including agriculture, biology, ecol-
ogy, and psychology studies. One major difference between the ANOVA models and the classical
linear model is that the matrix [1n,Xp] does not necessarily have full column rank in ANOVA
setting. Some constraints are thus required for making the model be identifiable. Here, under the
sum-to-zero constraint [6], the ANOVA model with constraints for uniqueness can be reparame-
terized into the classical linear model without constraints; see [26].

As an illustration, Maruyama [15] and Wang and Sun [21] reparameterize the ANOVA models
with the sum-to-zero constraint into the classical linear model in (1.1). Thereafter, based on Zell-
ner’s g-prior with the beta-prime prior for g, they obtain an explicit closed-form Bayes factor,
which can be treated as a special case of the Bayes factor in (2.7). Consequently, the asymptotic
results of the proposed Bayes factor can be easily applied to various ANOVA models. The appli-
cation to the one-way ANOVA model is straightforward and is thus omitted here for simplicity.
In this section, we mainly consider the results for the two-way balanced ANOVA model with
the same number of observations per cell. It deserves mentioning that the results can also be
generalized to cover the unbalanced case.

Consider a factorial design with two treatment factors A and B having p and q levels, respec-
tively, with a total of pq factorial cells. Suppose yijl is the lth observation in the (i, j)th cell
defined by the ith level of A and the j th level of B , satisfying the following model

yijl = μ + αi + βj + γij + εij l, εij l ∼ N
(
0, σ 2), (4.1)

for i = 1, . . . , p, j = 1, . . . , q , and l = 1, . . . , r . The number of parameters is pqr . We shall be
interested in the following five submodels:

M0: No effect of A and no effect of B , that is, αi = 0, βj = 0, and γij = 0 for all i and j .
M1: Only effect of A, that is, βj = 0 and γij = 0 for all i and j .
M2: Only effect of B , that is, αi = 0 and γij = 0 for all i and j .
M3: The additive model (without interaction), that is, γij = 0 for all i and j .
M4: The full model (with interaction).

By using the sum-to-zero constraint, Maruyama derives an explicit closed-form Bayes factor
associated with Zellner’s g-prior for the regression coefficients of the reparameterized model
(i.e., equation (4.7) of [15]) and the beta-prime distribution for the scaling factor g. Moreover,
Maruyama studies the consistency of Bayes factor under different asymptotic scenarios. When
both p and q approach infinity and r is fixed, Maruyama concludes that the Bayes factor is
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consistent except under the full model M4, and that when sampling from M4, the Bayes factor is
consistent only if

δ∗
43 > H

(
r, δ∗

10 + δ∗
20

)
, (4.2)

where δ∗
ji is equal to the limit of the sum of squares of the differences between the coefficients

of model Mi and the coefficients of model Mj as n tends to infinity, and H(r, c) with positive c

is the (unique) positive solution of

(x + 1)r

r
− (x + 1) − c = 0. (4.3)

Such an inconsistency region occurs due to the model comparison between M4 and M3. Of
particular note is that when comparing M4 and M3, we are in the case of Theorem 4 with a2 = 1
and that any null hypothesis will result in a model Mi with a reduced set of parameters that will
satisfy a1 < a2 of Theorem 4. Consequently, when sampling from the full model M4, the Bayes
factor in (3.2) is consistent only if δ∗

4i ≤ δ∗
40 and

δ∗
4i >

[
r
(
1 + δ∗

40

)]1/r − 1. (4.4)

When comparing models M4 and M3, the consistency region in (4.4) becomes

δ∗
43 >

[
r
(
1 + δ∗

10 + δ∗
20 + δ∗

43

)]1/r − 1,

which is equivalent to

(δ∗
43 + 1)r

r
− (

δ∗
43 + 1

) − (
δ∗

10 + δ∗
20

) = 0. (4.5)

This is exactly coincident with equation (4.3) provided by Maruyama [15]. It deserves mention-
ing that an extension of the results of the preceding section to higher-order designs is straightfor-
ward.

5. Concluding remarks

In this paper, we have investigated the consistency of Bayes factor for nonnested linear models
for the case in which the model dimension grows with the sample size. It has been shown that
in some cases, the proposed Bayes factor is consistent whichever the true model is, and that in
others, the consistency depends on the pseudo-distance between the larger model and the base
model. Specifically, the pseudo-distance can be used to characterize the inconsistency region of
Bayes factor. By comparing the consistency issues between the proposed Bayes factor and the
intrinsic Bayes factor, we observe that the asymptotic results presented here are similar to the
ones for the intrinsic Bayes factor. It would be interesting to see the finite sample performance
of the two Bayes factors, which is currently under investigation and will be reported elsewhere.
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The consistency of Bayes factor further indicates that besides the three commonly used fami-
lies of hyper-g priors in [14], the beta-prime prior is also a good candidate for the scaling factor g

in Zellner’s g-prior. Such a comment has also been claimed by Wang and Sun [22] when studying
Bayes factor consistency for nested linear models with a growing number of parameters. From
a theoretical point of view, we may conclude that like the intrinsic Bayes factor, the proposed
Bayes factor should also serve as a powerful tool for model selection in the class of normal
regression models due to its comparable asymptotic performance.

It is worth investigating the issues of consistency of Bayes factor based on mixtures of g-priors
due to [14] under the three asymptotic scenarios. However, in most of the developments of the
g-priors, the expression of Bayes factor may not have an analytically tractable form, and some
efficient approximations are required. Standard approximation technique, such as Laplace ap-
proximation, becomes quite challenging when the number of parameters grows with the sample
size, because the error in approximations needs to be uniformly small over the class of all pos-
sible models. Such a situation has also been encountered by Berger, Ghosh and Mukhopadhyay
[2] when studying the ANOVA models. We plan to address these issues in our future work.

Finally, it deserves mentioning that we mainly address Bayes factor consistency based on
a special choice of the hyperparameter b in the beta-prime prior, which results in an explicit
closed-form expression of Bayes factor. In an ongoing project, we investigate the effects of b on
the consistency of Bayes factor, especially for the case when b does not actually depend on n.

Appendix

It is well known that the asymptotic approximation of the gamma function, given by Stirling’s
formula, can be approximated by

�(γ1x + γ2) ≈ √
2πe−γ1x(γ1x)γ1x+γ2−1/2, (A.1)

when x is sufficiently large. Here, “f ≈ g” is used to indicate that the ratio of the two sides
approaches one as x tends to infinity, that is,

lim
x→∞

�(γ1x + γ2)√
2πe−γ1x(γ1x)γ1x+γ2−1/2

= 1.

Proof of Theorem 2. When the model dimension is j is bounded and the sample size n is large,
it follows directly from Stirling’s formula that

�

(
n − j − 1

2

)
≈ √

2πe−n/2
(

n

2

)(n−j)/2−1

and �

(
n − 1

2

)
≈ √

2πe−n/2
(

n

2

)n/2−1

.

The Bayes factor in (2.7) is asymptotically equivalent

BF[Mj : Mi] ≈
√

2πe−n/2(n/2)(n−j)/2−1

√
2πe−n/2(n/2)n/2−1

(
1 − R2

j

)−(n−j−1)/2+a+1

≈
(

n

2

)−j/2(
1 − R2

j

)−n/2 ≈ exp

[
−j

2
logn − n

2
log

(
1 − R2

j

)]
.
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This completed the proof. �

We now investigate the model selection consistency of Bayes factor in (3.2) under the three
different asymptotic scenarios mentioned above. For simplicity of notation, let ci represent a
finite constant for i = 1,2, . . . ,5 throughout the following proofs. When (j/2 + a + 1) and
(n − j − 1)/2 are sufficiently large, it follows directly from Stirling’s formula that

�

(
j

2
+ a + 1

)
≈ √

2πe−j/2
(

j

2

)j/2+a+1/2

and

�

(
n − j − 1

2

)
≈ √

2πe−(n−j)/2
(

n − j

2

)(n−j)/2−1

.

Proof of Theorem 3. Under Scenario 1, i = O(na1) and j = O(na2) with 0 ≤ a1 ≤ a2 < 1, by
using the two approximation equations above, it follows that

BF[Mj : Mi] = �(j/2 + a + 1)�((n − j − 1)/2)

�(i/2 + a + 1)�((n − i − 1)/2)

(1 − R2
j )

−(n−j−1)/2+a+1

(1 − R2
i )

−(n−i−1)/2+a+1

= c1
jj/2+a+1(n − j)(n−j)/2+1

ii/2+a+1(n − i)(n−i)/2+1

(1 − R2
j )

−(n−j)/2

(1 − R2
i )

−(n−i)/2
(A.2)

= c1
(j/n)j/2

(i/n)i/2

(
j

i

)a+1(1 − j/n

1 − i/n

)[
(1 − j/n)1−j/n

(1 − i/n)1−i/n

(1 − R2
j )

−(1−j/n)

(1 − R2
i )

−(1−i/n)

]n/2

.

(a) We first show the Bayes factor consistency when the true model is Mi . As n tends to
infinity, we observe that the dominated term in brackets of equation (A.2) can be approximated
by

(1 − j/n)1−j/n

(1 − i/n)1−i/n

(1 − R2
j )

−(1−j/n)

(1 − R2
i )

−(1−i/n)
≈

(1 − R2
j

1 − R2
i

)−1

,

because of j/n and i/n approaching to zero as n approaches infinity. From Lemma 1(a) and the
fact that δii = 0, we observe that under Mi , it follows

BF[Mj : Mi] = c2
(j/n)j/2

(i/n)i/2

(
j

i

)a+1(1 − j/n

1 − i/n

)(
1 + δij

1 + δii

)−n/2

= c2
(j/n)j/2

(i/n)i/2

(
j

i

)a+1(1 − j/n

1 − i/n

)
(1 + δij )

−n/2,

which approaches zero as δij > 0, indicating that the Bayes factor in (3.2) is consistent when Mi

is true.
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(b) Consistency under Mj is provided as follows. By using Lemma 1(a), it follows that under
model Mj , the Bayes factor in (3.2) can be further approximated by

BF[Mj : Mi] = c3
(j/n)j/2

(i/n)i/2

(
j

i

)a+1(1 − j/n

1 − i/n

)(
1 + δjj

1 + δji

)−n/2

= c3
(j/n)j/2

(i/n)i/2

(
j

i

)a+1(1 − j/n

1 − i/n

)
(1 + δji)

n/2,

because δjj = 0. It should be noted that as n tends to infinity, the fifth dominated term approaches
infinity if δji > 0. Therefore, the Bayes factor also approaches infinity as δji > 0, proving the
consistency under Mj . This completes the proof the theorem. �

Proof of Theorem 4. Under Scenario 2, i = O(na1) and j = O(na2) with 0 ≤ a1 < a2 = 1, by
using the two approximation equations above, it follows that

BF[Mj : Mi] = �(j/2 + a + 1)�((n − j − 1)/2)

�(i/2 + a + 1)�((n − i − 1)/2)

(1 − R2
j )

−(n−j−1)/2+a+1

(1 − R2
i )

−(n−i−1)/2+a+1

= c4
(j/i)a+1

(i/n)i/2

(
1 − j/n

1 − i/n

)
(A.3)

×
[(

j

n

)j/n
(1 − j/n)1−j/n

(1 − i/n)1−i/n

(1 − R2
j )

−(1−j/n)

(1 − R2
i )

−(1−i/n)

]n/2

.

(a) If the true model is Mi , from Lemma 1(b) and the fact that δii = 0, we observe that the
dominated term in brackets of (A.3) can be approximated by

(
j

n

)j/n
(1 − j/n)1−j/n

(1 − i/n)1−i/n

(1 − R2
j )

−(1−j/n)

(1 − R2
i )

−(1−i/n)

≈
(

1

r

)1/r(
1 − 1

r

)1−1/r(1 − R2
j

1 − R2
i

)−(1−1/r)(
1 − R2

i

)1/r

≈
(

1

r

)1/r( 1 − 1/r

1 − 1/r + δij

)1−1/r( 1

1 + δi0

)1/r

.

Accordingly, the approximation of Bayes factor in (3.2) is given by

BF[Mj : Mi] ≈ c4
(j/i)a+1

(i/n)i/2

[(
1

r

)1/r( 1 − 1/r

1 − 1/r + δij

)1−1/r( 1

1 + δi0

)1/r]n/2

,

which approaches zero as n tends to infinity, and therefore, the consistency under Mi is proved.
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(b) If the true model is Mj , from Lemma 1(b) and the fact that δjj = 0, we observe that the
dominated term in brackets of (A.3) can be approximated by

(
j

n

)j/n
(1 − j/n)1−j/n

(1 − i/n)1−i/n

(1 − R2
j )

−(1−j/n)

(1 − R2
i )

−(1−i/n)

≈
(

1

r

)1/r(
1 − 1

r

)1−1/r(1 − R2
j

1 − R2
i

)−1(
1 − R2

j

)1/r

≈
(

1

r

)1/r(
1 − 1

r

)1−1/r(1 − 1/r

1 + δji

)−1(1 − 1/r

1 + δj0

)1/r

≈
(

1

r

)1/r

(1 + δji)

(
1

1 + δj0

)1/r

.

Therefore, the Bayes factor in (3.2) under Mj turns out to be

BF[Mj : Mi] = c5
(j/i)a+1

(i/n)i/2

[(
1

r

)1/r

(1 + δji)

(
1

1 + δj0

)1/r]n/2

. (A.4)

To show the consistency under Mj , it is sufficient to show that the dominated term in brackets
of (A.4) is strictly larger than one when n tends to infinity. This is equivalent to

(
1

r

)1/r

(1 + δji)

(
1

1 + δj0

)1/r

> 1,

which gives that

δji >
[
r(1 + δj0)

]1/r − 1.

On the other hand, we have δji ≤ δj0, which provides that

δj0 ≥ δji >
[
r(1 + δj0)

]1/r − 1,

indicating that

δj0 > r1/(r−1) − 1 = δ(r).

In order for the interval where the distance δji should lie

δji ∈ ([
r(1 + δj0)

]1/r − 1, δj0
]

to be nonempty, a necessary and sufficient condition is that δj0 > δ(r). This completes the proof.
�
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Proof of Theorem 5. Under Scenario 3, i = O(na1) and j = O(na2) with a1 = a2 = 1, by using
the two approximations equations, it follows that

BF[Mj : Mi] = �(j/2 + a + 1)�((n − j − 1)/2)

�(i/2 + a + 1)�((n − i − 1)/2)

(1 − R2
j )

−(n−j−1)/2+a+1

(1 − R2
i )

−(n−i−1)/2+a+1

= c5

(
j

i

)a+1(1 − j/n

1 − i/n

)
(A.5)

×
[
(j/n)j/n

(i/n)i/n

(1 − j/n)1−j/n

(1 − i/n)1−i/n

(1 − R2
j )

−(1−j/n)

(1 − R2
i )

−(1−i/n)

]n/2

.

(a) If the true model is Mi , from Lemma 1(c) and the fact that δii = 0, we observe that the
dominated term in brackets of (A.5) can be approximated by

(j/n)j/n

(i/n)i/n

(1 − j/n)1−j/n

(1 − i/n)1−i/n

(1 − R2
j )

−(1−j/n)

(1 − R2
i )

−(1−i/n)

≈ (1/r)1/r

(1/s)1/s

(1 − 1/r)1−1/r

(1 − 1/s)1−1/s

(1 − R2
j

1 − R2
i

)−(1−1/r)(
1 − R2

i

)1/r−1/s

(A.6)

≈ (1/r)1/r

(1/s)1/s

(1 − 1/r)1−1/r

(1 − 1/s)1−1/s

(
1 + δij − 1/r

1 − 1/s

)−(1−1/r)(1 − 1/s

1 + δi0

)1/r−1/s

≈ (1/r)1/r

(1/s)1/s

[1 + δij /(1 − 1/r)]−(1−1/r)

(1 + δi0)1/r−1/s
.

For the Bayes factor to be consistent, it is sufficient to show that the dominated term in (A.6) is
strictly less than 1 as n approaches infinity. This is equivalent to

(
1 + δij

1 − 1/r

)1−1/r

>
(1/r)1/r

(1/s)1/s
(1 + δi0)

1/s−1/r ,

which implies that

δij >
r − 1

r

{[
s1/s

r1/r
(1 + δi0)

1/s−1/r

]r/(r−1)

− 1

}
.

In addition, from the property of the pseudo-distance, we have δi0 ≥ δij . Therefore, it follows
that

δi0 ≥ δij >
r − 1

r

{[
s1/s

r1/r
(1 + δi0)

1/s−1/r

]r/(r−1)

− 1

}
,
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indicating that the value of δij must satisfy

(
1 + δi0

1 − 1/r

)1−1/r

>
(1/r)1/r

(1/s)1/s
(1 + δi0)

1/s−1/r .

Under the conditions stated in the theorem, we take limits and obtain that the Bayes factor tends
to zero, and thus, the Bayes factor is consistent under Mi .

(b) If the true model is Mj , from Lemma 1(c) and the fact that δjj = 0, we observe that the
dominated term in brackets of (A.5) can be approximated by

(j/n)j/n

(i/n)i/n

(1 − j/n)1−j/n

(1 − i/n)1−i/n

(1 − R2
j )

−(1−j/n)

(1 − R2
i )

−(1−i/n)

≈ (1/r)1/r

(1/s)1/s

(1 − 1/r)1−1/r

(1 − 1/s)1−1/s

(1 − R2
j

1 − R2
i

)−(1−1/s)(
1 − R2

j

)1/r−1/s

(A.7)

≈ (1/r)1/r

(1/s)1/s

(1 − 1/r)1−1/r

(1 − 1/s)1−1/s

(
1 − 1/r

1 + δji − 1/s

)−(1−1/s)(1 − 1/r

1 + δj0

)1/r−1/s

≈ (1/r)1/r

(1/s)1/s

[1 + δji/(1 − 1/s)]1−1/s

(1 + δj0)1/r−1/s
.

For the Bayes factor to be consistent, it is sufficient to show that the dominated term in (A.7) is
strictly larger than one as n approaches infinity. This is equivalent to

(1/r)1/r

(1/s)1/s

[1 + δji/(1 − 1/s)]1−1/s

(1 + δj0)1/r−1/s
> 1.

Simple algebra shows that

δji >
s − 1

s

{[
r1/r

s1/s
(1 + δj0)

1/r−1/s

]s/(s−1)

− 1

}
.

On the other hand, we also have δj0 ≥ δji , which provides that

δj0 ≥ δji >
s − 1

s

{[
r1/r

s1/s
(1 + δj0)

1/r−1/s

]s/(s−1)

− 1

}
, (A.8)

indicating that (
1 + δj0

1 − 1/s

)1−1/s

>
r1/r

s1/s
(1 + δj0)

1/r−1/s .

In order for the interval where the distance δji should lie

δji ∈
(

s − 1

s

[
r1/r

s1/s
(1 + δj0)

1/r−1/s − 1

]s/(s−1)

, δj0

]
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to be nonempty, a necessary and sufficient condition is that δj0 satisfies inequality in (A.8). This
completes the proof. �
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