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Determinantal point processes (DPPs) have recently proved to be a useful class of models in several areas of
statistics, including spatial statistics, statistical learning and telecommunications networks. They are models
for repulsive (or regular, or inhibitive) point processes, in the sense that nearby points of the process tend
to repel each other. We consider two ways to quantify the repulsiveness of a point process, both based
on its second-order properties, and we address the question of how repulsive a stationary DPP can be.
We determine the most repulsive stationary DPP, when the intensity is fixed, and for a given R > 0 we
investigate repulsiveness in the subclass of R-dependent stationary DPPs, that is, stationary DPPs with
R-compactly supported kernels. Finally, in both the general case and the R-dependent case, we present
some new parametric families of stationary DPPs that can cover a large range of DPPs, from the stationary
Poisson process (the case of no interaction) to the most repulsive DPP.

Keywords: compactly supported covariance function; covariance function; pair correlation function;
R-dependent point process

1. Introduction

Determinantal point processes (DPPs) were introduced in their general form by Macchi [28] in
1975 to model fermions in quantum mechanics, though some specific DPPs appeared much ear-
lier in random matrix theory. DPPs actually arise in many fields of probability and have deserved
a lot of attention from a theoretical point of view, see for instance [19] and [34].

DPPs are repulsive (or regular, or inhibitive) point processes, meaning that nearby points of
the process tend to repel each other (this concept will be clearly described in the following).
This property is adapted to many statistical problems where DPPs have been recently used, for
instance in telecommunication to model the locations of network nodes [7,29] and in statistical
learning to construct a dictionary of diverse sets [23]. Other examples arising from biology,
ecology and forestry are studied in [26] and its associated on-line supplementary file [25].

The growing interest for DPPs in the statistical community is due to that their moments are
explicitly known, parametric families can easily been considered, their density on any compact
set admits a closed form expression making likelihood inference feasible and they can be sim-
ulated easily and quickly. Section 2 summarizes some of these properties and we refer to [26]
for a detailed presentation. These features make the class of DPPs a competitive alternative to
the usual class of models for repulsiveness, namely the Gibbs point processes. In contrast, for
Gibbs point processes, no closed form expression is available for the moments, the likelihood
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involves an intractable normalizing constant and their simulation requires Markov chain Monte
Carlo methods.

However, DPPs cannot model all kinds of repulsive point patterns. For instance, as deduced
from Section 3, stationary DPPs cannot involve a hardcore distance between points, contrary
to the Matérn hardcore point processes, the RSA (random sequential absorption) model and
hardcore Gibbs models; see [20], Section 6.5. In this paper, we address the question of how
repulsive a stationary DPP can be. We also investigate for a given R > 0 the repulsiveness in the
subclass of R-dependent stationary DPPs, that is, stationary DPPs with R-compactly supported
kernels, which are of special interest for statistical inference in high dimension, see Section 4.
In both cases, we present in Section 5 some parametric families of stationary DPPs that cover
a large range of DPPs, from the stationary Poisson process to the most repulsive DPP.

To quantify the repulsiveness of a stationary point process, we consider its second-order prop-
erties. Let X be a stationary point process in R

d with intensity (i.e. expected number of points
per unit volume) ρ > 0 and second order intensity function ρ(2)(x, y). Denoting dx an infinitesi-
mal region around x and |dx| its Lebesgue measure, ρ|dx| may be interpreted as the probability
that X has a point in dx. For x �= y, ρ(2)(x, y)|dx||dy| may be viewed as the probability that X

has a point in dx and another point in dy. A formal definition is given in Section 2. Note that
ρ(2)(x, y) = ρ(2)(0, y − x) is a symmetric function and depends only on y − x because of our
stationarity assumption.

In spatial statistics, the second-order properties of X are generally studied through the pair
correlation function (in short p.c.f.), defined for any x ∈R

d by

g(x) = ρ(2)(0, x)

ρ2
.

Since ρ(2) is unique up to a set of Lebesgue measure zero (see [5]), so is g. As it is implicitly
done in the literature (see [20,36]), we choose the version of g with as few discontinuity points
as possible. It is commonly accepted (see, e.g., [36]) that if g(x) = 1 then there is no interaction
between two points separated by x, whereas there is attraction if g(x) > 1 and repulsiveness if
g(x) < 1. Therefore, when we below compare the global repulsiveness of two stationary point
processes, we assume they share the same intensity.

Definition 1.1. Let X and Y be two stationary point processes with the same intensity ρ and
respective pair correlation function gX and gY . Assuming that both (1 − gX) and (1 − gY ) are
integrable, we say that X is globally more repulsive than Y if

∫
(1 − gX) ≥ ∫

(1 − gY ).

The quantity
∫
(1 − g) is already considered in the on-line supplementary material [25] of

[26] as a measure for repulsiveness. It can be justified in several ways. First, it is a natural
geometrical method to quantify the distance from g to 1 (corresponding to no interaction), where
the area between g and 1 contributes positively to the measure of repulsiveness when g < 1
and negatively if g > 1. Second, denoting K and K0 the Ripley’s K-functions of X and of
the stationary Poisson process with intensity ρ respectively (see [30], Definition 4.6), we have∫
(1 − g) = limr→∞(K0(r) − K(r)). We also refer to [25] for an equivalent interpretation in
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terms of the reduced Palm distribution. Finally, it is worth mentioning that for any stationary
point processes, we have

∫
(1 − g) ≤ 1/ρ, see [24], equation (2.5).

Additional criteria could be introduced to quantify the global repulsiveness of a point process,
relying for instance on

∫
(1 − g)p for a given p > 0, or involving higher moments of the point

process through the joint intensities of order k > 2 (see Definition 2.1). However, the theoretical
study becomes more challenging in these cases and we do not consider these extensions.

Repulsiveness is often interpreted in a local sense: This is the case for hardcore point processes,
where a minimal distance δ is imposed between points and so g(x) = 0 whenever |x| < δ where
for a vector x, |x| denotes its Euclidean norm. As already mentioned, a DPP cannot involve any
hardcore distance, but we may want its p.c.f. to satisfy g(0) = 0 and stay as close as possible to
0 near the origin. This leads to the following criteria to compare the local repulsiveness of two
point processes. We denote by ∇g and �g the gradient and the Laplacian of g, respectively.

Definition 1.2. Let X and Y be two stationary point processes with the same intensity ρ and
respective pair correlation function gX and gY . Assuming that gX is twice differentiable at 0
with gX(0) = 0, we say that X is more locally repulsive than Y if either gY (0) > 0, or gY is not
twice differentiable at 0, or gY is twice differentiable at 0 with gY (0) = 0 and �gY (0) ≥ �gX(0).

As suggested by this definition, a stationary point process is said to be locally repulsive if its
p.c.f. is twice differentiable at 0 with g(0) = 0. In this case ∇g(0) = 0 because g(x) = g(−x).
Therefore, to compare the behavior of two such p.c.f.s near the origin, specifically the curva-
tures of their graphs near the origin, the Laplacian operator is involved in Definition 1.2. As an
example, a stationary hardcore process is locally more repulsive than any other stationary point
process because in this case g(0) = 0 and �g(0) = 0.

We show in Section 3 that Definitions 1.1 and 1.2 agree for the natural choice of what can be
considered as the most repulsive DPP. A realization of the latter on [−5,5]2 is represented in
Figure 1(d) when ρ = 1. For comparison, letting ρ = 1 for all plots, Figure 1 shows realizations
of: (a) the stationary Poisson process, which is a situation with no interaction; (b)–(c) two DPPs
with intermediate repulsiveness, namely DPPs with kernels (5.1) where σ = 0 and α = 0.2,0.4,
respectively, as presented in Section 5.1; (e) the type II Matérn hardcore process with hardcore
radius 1√

π
. Notice that 1√

π
is the maximal hardcore radius that a type II Matérn hardcore process

with unit intensity can reach; see [20], Section 6.5. It corresponds to an infinite intensity of
the underlying Poisson process and our simulation is only an approximation. These models are
sorted from (a) to (e) by their ascending repulsiveness in the sense of Definition 1.2. Specifically,
g(0) = 1 for (a) while g(0) = 0 and �g(0) is 50,12.5,2π and 0 from (b) to (e), respectively.
This order is clearly apparent in Figure 1(f), where the theoretical p.c.f.s are represented as radial
functions, all aforementioned models being isotropic. Concerning global repulsiveness, we have
that

∫
(1 − g) is 0,0.12,0.50,1 and 0.76 from (a) to (e), respectively. The fact that the Matérn

hardcore model is globally less repulsive than the DPP in (d) is due to that its p.c.f. can be
larger than one. This shows the limitation of Definition 1.1 in the study of repulsiveness and
the importance of introducing Definition 1.2. Overall, Figure 1 illustrates that even if stationary
DPPs cannot be as (locally) repulsive as hardcore point processes, which may be an important
limitation in practice, they nonetheless cover a rather large variety of repulsiveness from (a)
to (d).
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Figure 1. Realizations on [−5,5]2 of (a) the stationary Poisson process, (b)–(d) DPPs with kernels (5.1)
where σ = 0 and α = 0.2,0.4, 1√

π
, (e) the type II Matérn hardcore process with hardcore radius 1√

π
.

(f) Their associated theoretical p.c.f.s. The intensity is ρ = 1 for all models and (d) represents the most
repulsive stationary DPP in this case.

We recall the definition of a stationary DPP and some related basic results in Section 2. Sec-
tion 3 is devoted to the study of repulsiveness in stationary DPPs, both in the sense of Defini-
tions 1.1 and 1.2. In Section 4, we focus on repulsiveness for the subclass of stationary DPPs with
compactly supported kernels. Then, in Section 5, we present three parametric families of DPPs
which cover a large range of repulsiveness and have further interesting properties. Section 6 gath-
ers the proofs of our theoretical results. Further comments and illustrations are provided in the
supplementary material [3].

2. Stationary DPPs

In this section, we review the definition and some properties of stationary DPPs. For a detailed
presentation, including the nonstationary case, we refer to the survey by Hough et al. [19].

Basics of point processes may be found in [5,6]. Let us recall that a point process X is simple
if two points of X never coincide, almost surely. The joint intensities of X are defined as follows.
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Definition 2.1. If it exists, the joint intensity of order k (k ≥ 1) of a simple point process X is
the function ρ(k) : (Rd)k → R

+ such that for any family of mutually disjoint subsets D1, . . . ,Dk

in R
d ,

E

k∏
i=1

X(Di) =
∫

D1

· · ·
∫

Dk

ρ(k)(x1, . . . , xk) dx1 · · · dxk,

where X(D) denotes the number of points of X in D and E is the expectation over the distribu-
tion of X.

In the stationary case, ρ(k)(x1, . . . , xk) = ρ(k)(0, x2 − x1, . . . , xk − x1), so that the intensity ρ

and the second-order intensity function ρ(2) introduced previously become the particular cases
associated to k = 1 and k = 2, respectively.

Definition 2.2. Let C :Rd →R be a function. A point process X on R
d is a stationary DPP with

kernel C, in short X ∼ DPP(C), if for all k ≥ 1 its joint intensity of order k satisfies the relation

ρ(k)(x1, . . . xk) = det[C](x1, . . . , xk)

for almost every (x1, . . . , xk) ∈ (Rd)k , where [C](x1, . . . , xk) denotes the matrix with entries
C(xi − xj ), 1 ≤ i, j ≤ k.

It is actually possible to consider a complex-valued kernel C, but for simplicity we restrict
ourselves to the real case. A first example of stationary DPP is the stationary Poisson process
with intensity ρ. It corresponds to the kernel

C(x) = ρ1{x=0} ∀x ∈ R
d . (2.1)

However, this example is very particular and represents in some sense the extreme case of a
DPP without any interaction, while DPPs are in general repulsive as discussed at the end of this
section.

Definition 2.2 does not ensure existence or unicity of DPP(C), but if it exists, then it is unique;
see [19]. Concerning existence, a general result, including the nonstationary case, was proved
by Macchi [28]. It relies on the Mercer representation of C on any compact set. Unfortunately,
this representation is known only in a few cases, making the conditions impossible to verify
in practice for most functions C. Nevertheless, the situation becomes simpler in our stationary
framework, where the conditions only involve the Fourier transform of C. We define the Fourier
transform of a function h ∈ L1(Rd) as

F(h)(t) =
∫
Rd

h(x)e2iπx·t dx ∀t ∈R
d . (2.2)

By Plancherel’s theorem, this definition is extended to L2(Rd); see [35]. If C is a covariance
function, as assumed in the following, we have FF(C) = C so F−1 = F and from [31], Theo-
rem 1.8.13, F(C) belongs to L1(Rd).
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Proposition 2.3 (Lavancier, Møller and Rubak [26]). Assume C is a symmetric continuous
real-valued function in L2(Rd). Then DPP(C) exists if and only if 0 ≤ F(C) ≤ 1.

In other words, Proposition 2.3 ensures existence of DPP(C) if C is a continuous real-valued
covariance function in L2(Rd) with F(C) ≤ 1. Henceforth, we assume the following condition.

Condition K(ρ). A kernel C is said to verify condition K(ρ) if C is a symmetric continuous
real-valued function in L2(Rd) with C(0) = ρ and 0 ≤F(C) ≤ 1.

The assumption 0 ≤ F(C) ≤ 1 is in accordance with Proposition 2.3, while the others as-
sumptions in condition K(ρ) are satisfied by most statistical models of covariance functions,
the main counterexample being (2.1). Standard parametric families of kernels include the Gaus-
sian, the Whittle–Matérn and the generalized Cauchy covariance functions, where the condition
F(C) ≤ 1 implies some restriction on the parameter space; see [26].

By Definition 2.2, all moments of a DPP are explicitly known. In particular, assuming condi-
tion K(ρ), the intensity of DPP(C) is ρ and denoting g its p.c.f. we have

1 − g(x) = C(x)2

ρ2
(2.3)

for almost every x ∈R
d . Consequently, g ≤ 1, and so we have repulsiveness. Moreover, the study

of repulsiveness of stationary DPPs, as defined in Definitions 1.1 and 1.2, reduces to considera-
tions on the kernel C when condition K(ρ) is assumed.

3. Most repulsive DPPs

We first present the most globally repulsive DPPs in the sense of Definition 1.1. They are intro-
duced in the on-line supplementary file associated to [26] (see [25]), from which the following
proposition is easily deduced.

Proposition 3.1 (Lavancier, Møller and Rubak [26]). In the sense of Definition 1.1, DPP(C)

is the most globally repulsive DPP among all DPPs with kernel satisfying condition K(ρ) if and
only if F(C) is even and equals almost everywhere an indicator function of a Borel set with
volume ρ.

According to Proposition 3.1, the set of the most globally repulsive DPPs in the sense of
Definition 1.1 is infinite. This is illustrated in the supplementary material [3]. A natural choice
is DPP(CB) where F(CB) is the indicator function of the Euclidean ball centered at 0 with
volume ρ. In dimension d , this gives CB = F(1{|·|d≤ρτd }) with τ = {	(d/2 + 1)/πd/2}1/d and
by [17], Appendix B.5,

CB(x) =
√

ρ	(d/2 + 1)

πd/4

Jd/2(2
√

π	(d/2 + 1)1/dρ1/d |x|)
|x|d/2

∀x ∈R
d , (3.1)

where Jd/2 is the Bessel function of the first kind. For example, we have
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• for d = 1, CB(x) = sinc(x) = sin(πρ|x|)
π |x| ,

• for d = 2, CB(x) = jinc(x) = √
ρ

J1(2
√

πρ|x|)√
π |x| .

This choice was already favored in [26]. However, there is no indication from Proposition 3.1
to suggest CB instead of another kernel given by the proposition. This choice becomes clear if
we look at the local repulsiveness as defined in Definition 1.2.

Proposition 3.2. In the sense of Definition 1.2, the most locally repulsive DPP among all DPPs
with kernel satisfying condition K(ρ) is DPP(CB).

Thus, from Propositions 3.1 and 3.2, we deduce the following corollary.

Corollary 3.3. The kernel CB is the unique kernel C verifying condition K(ρ) such that DPP(C)

is both the most globally and the most locally repulsive DPP among all stationary DPPs with
intensity ρ > 0.

Borodin and Serfaty in [4] characterize in dimension d ≤ 2 the disorder of a point process by
its “renormalized energy”. In fact, the smaller the renormalized energy, the more repulsive the
point process. Theorem 3 in [4] establishes that DPP(CB) minimizes the renormalized energy
among all stationary DPPs. This result confirms Corollary 3.3, that the most repulsive stationary
DPP, if any has to be chosen, is DPP(CB). However, a stationary DPP has a finite renormalized
energy if and only if it is given by Proposition 3.1 ([4], Theorem 1), which indicates that most
stationary DPPs have an infinite renormalized energy. Hence, this criteria is not of practical use
to compare the repulsiveness between two arbitrary DPPs.

4. Most repulsive DPPs with compactly supported kernels

In this section, we assume that the kernel C is compactly supported, that is, there exists R > 0
such that C(x) = 0 if |x| > R. In this case, X ∼ DPP(C) is an R-dependent point process in the
sense that if A and B are two Borel sets in R

d separated by a distance larger than R, then X ∩ A

and X ∩ B are independent, which is easily verified using Definition 2.2. This situation can be
particularly interesting for likelihood inference in presence of a large number of points. Assume
we observe {x1, . . . , xn} on a compact window W ⊂ R

d , then the likelihood is proportional to
det[C̃](x1, . . . , xn) where C̃ expresses in terms of C and inherits the compactly supported prop-
erty of C; see [26,28]. While this determinant is expensive to compute if C̃ is not compactly
supported and n is large, the situation becomes more convenient in the compactly supported
case, since [C̃](x1, . . . , xn) is sparse when R is small with respect to the size of W . We are thus
interested in DPPs with kernels satisfying the following condition.

Condition Kc(ρ,R). A kernel C or DPP(C) is said to verify condition Kc(ρ,R) if C verifies
condition K(ρ) and C is compactly supported with range R, that is, C(x) = 0 for |x| ≥ R.
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The following proposition shows that any kernel satisfying condition K(ρ) can be arbitrarily
approximated by kernels verifying Kc(ρ, r) for r large enough. We define the function h by

h(x) = exp

(
1

|x|2 − 1

)
1{|x|<1} ∀x ∈R

d . (4.1)

For a function f ∈ L2(Rd), put ‖f ‖ =
√∫ |f (t)|2 dt and denote [f ∗ f ] the self-convolution

product of f .

Proposition 4.1. Let C be a kernel verifying condition K(ρ) and h be defined by (4.1). Then, for
all r > 0, the function Cr defined by

Cr(x) = 1

‖h‖2
[h ∗ h]

(
2x

r

)
C(x) ∀x ∈R

d , (4.2)

verifies Kc(ρ, r). Moreover, we have the convergence

lim
r→+∞Cr = C, (4.3)

uniformly on all compact sets.

In particular, by taking C = CB in Proposition 4.1, it is always possible to find a kernel Cr

verifying Kc(ρ, r) that yields a repulsiveness (local or global) as close as we wish to the repul-
siveness of CB , provided that r is large enough. However, given a maximal range of interaction
R, it is clear that the maximal repulsiveness implied by kernels verifying Kc(ρ,R) cannot reach
the one of CB , since the support of CB is unbounded and DPP(CB) is the unique most repulsive
DPP according to Corollary 3.3. In the following, we study the DPP’s repulsiveness for a given
range R > 0.

In comparison with condition K(ρ), the assumption that C is compactly supported in condition
Kc(ρ,R) makes the optimization problems related to Definitions 1.1–1.2 much more difficult to
investigate. As a negative result, we know very little about the most globally repulsive DPP, in
the sense of Definition 1.1, under condition Kc(ρ,R). From relation (2.3), this is equivalent to
find a kernel C with maximal L2-norm under the constraint that C verifies Kc(ρ,R). Without the
constraint F(C) ≤ 1, this problem is known as the square-integral Turán problem with range R

see, e.g., [22]. For this less constrained problem, it is known that a solution exists, but no explicit
formula is available, cf. [8]. For d = 1, it has been proved that the solution is unique and there
exists an algorithm to approximate it; see [14]. In this case, numerical approximations show that
the solution with range R verifies condition Kc(ρ,R) only if R ≤ 1.02/ρ. This gives the most
globally repulsive DPP verifying Kc(ρ,R) in dimension d = 1, when R ≤ 1.02/ρ, albeit without
explicit formula. Its p.c.f. is represented in Figure 2. For other values of R, or in dimension d ≥ 2,
no results are available, to the best of our knowledge.

Let us now turn to the investigation of the most locally repulsive DPP, in the sense of Defi-
nition 1.2, under condition Kc(ρ,R). Recall that without the compactly supported constraint of
the kernel, we showed in Section 3 that the most locally repulsive DPP, namely DPP(CB), is also
(one of) the most globally repulsive DPP.
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Figure 2. In dimension d = 1, comparison between the p.c.f. of DPP(T1.02), DPP(CB) and DPP(CR) for
R = 1.02,M,2M .

For ν > 0, we denote by jν the first positive zero of the Bessel function Jν and by J ′
ν the

derivative of Jν . We refer to [1] for a survey about Bessel functions and their zeros. Further,
define the constant M > 0 by

Md = 2d−2j2
(d−2)/2	(d/2)

ρπd/2
.

We have Mρ = π2/8 ≈ 1.234 when d = 1, Mρ1/2 = j0/π
1/2 ≈ 1.357 when d = 2 and Mρ1/3 =

π1/3 ≈ 1.465 when d = 3.

Proposition 4.2. If R ≤ M , then in the sense of Definition 1.2, there exists an unique isotropic
kernel CR such that DPP(CR) is the most locally repulsive DPP among all DPPs with kernel
verifying Kc(ρ,R). It is given by CR = u ∗ u where

u(x) = κ
J(d−2)/2(2j(d−2)/2|x|/R)

|x|(d−2)/2
1{|x|<R/2}, (4.4)

with κ2 = 4	(d/2)

ρπd/2R2 (J ′
(d−2)/2(j(d−2)/2))

−2.

In this proposition CR is only given as a convolution product. Nonetheless, an explicit expres-
sion is known in dimension d = 1 and d = 3; see [9]. On the other hand, the Fourier transform
is known in any dimension since F(CR) = F(u)2. We get from the proof in Section 6.3, for all
x ∈R

d ,

F(CR)(x) = ρπd/2Rdj2
(d−2)/2	

(
d

2

)(
J(d−2)/2(πR|x|)

(πR|x|)(d−2)/2(j2
(d−2)/2 − (πR|x|)2)

)2

. (4.5)

If R ≥ M , we have not been able to obtain a closed form expression of the most locally
repulsive stationary DPP. However, under some extra regularity assumptions, we can state the
following general result about its existence and the form of the solution.
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Condition M(ρ,R). A function u is said to verify condition M(ρ,R) if u(x) = 0 for |x| > R
2 ,

u is a radial function and u ∈ L2(Rd) with ‖u‖2 = ρ.

Proposition 4.3. For any R > 0, there exists an isotropic kernel CR such that DPP(CR) is
the most locally repulsive DPP among all DPPs with kernel C verifying Kc(ρ,R). It can
be expressed as CR = u ∗ u where u satisfies M(ρ,R). Furthermore, if we assume that
supx∈Rd F(C)(x) =F(C)(0) and u is twice differentiable on its support, then u is of the form

u(x) =
(

β + γ
J(d−2)/2(|x|/α)

|x|(d−2)/2

)
1{|x|<R/2}, (4.6)

where α > 0, β ≥ 0 and γ are three constants linked by the conditions M(ρ,R) and∫
Rd u(x) dx ≤ 1.

In the case R ≤ M , this proposition is a consequence of Proposition 4.2 where β = 0, α =
R/(2j(d−2)/2) and γ = κ . When R > M , it is an open problem to find an explicit expression of
the kernel CR without any extra regularity assumptions. Even in this case, (4.6) only gives the
form of the solution and the constants α, β and γ are not explicitly known. In particular, the
choice β = 0 does not lead to the most locally repulsive DPP when R > M , contrary to the case
R ≤ M . In fact, the condition M(ρ,R) allows us to express β and γ as functions of α, R and ρ,
but then some numerical approximation are needed to find the value of α in (4.6), given R and ρ,
such that DPP(CR) is the most locally repulsive DPP. We detail these relations in Section 5.3,
where we start from (4.6) to suggest a new parametric family of compactly supported kernels.

Contrary to what happens in the noncompactly supported case of Section 3, the most locally
repulsive DPP is not the most globally repulsive DPP under Kc(ρ,R). This is easily checked in
dimension d = 1 when R ≤ 1.02/ρ implying R ≤ M : In this case the most globally repulsive
DPP under Kc(ρ,R) is DPP(TR), where TR is the solution of the square-integral Turán problem
with range R, and the most locally repulsive DPP is DPP(CR) where CR is given by (4.4).
However, according to the results of Section 3 corresponding to R = ∞, we expect that DPP(CR)

has a strong global repulsiveness even for moderate values of R. This is confirmed in Figure 2,
that shows the p.c.f. of DPP(CR) when d = 1, ρ = 1 and R = 1.02, R = M ≈ 1.234 and R =
2M , where in this case we take CR = u ∗ u with u given by (4.6) and the constants are obtained
by numerical approximations. The p.c.f.s of DPP(T1.02) and DPP(CB) are added for sake of
comparison. Considering the behavior of the p.c.f. near the origin, we note that even if DPP(T1.02)

is the most globally repulsive DPP under Kc(ρ,R) when R ≤ 1.02/ρ, its local repulsiveness is
not very strong. On the other hand, DPP(CR) seems to present strong global repulsiveness for
the values of R considered in the figure.

5. Parametric families of DPP kernels

A convenient parametric family of kernels {Cθ }θ∈�, where � ⊂ R
q for some q ≥ 1, should

ideally:

(a) provide a closed form expression for Cθ , for any θ ,
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(b) provide a closed form expression for F(Cθ ), for any θ ,
(c) be flexible enough to include a large range of DPPs, going from the Poisson point process

to DPP(CB).

The second property above is needed to check the condition of existence F(Cθ ) ≤ 1, but it is
also useful for some approximations in practice. Indeed, the algorithm for simulating DPP(C)

on a compact set S, as presented in [19], relies on the Mercer representation of C on S, which
is rarely known in practice. In [26], this decomposition is simply approximated by the Fourier
series of C where, up to some rescaling, the kth Fourier coefficients is replaced by F(C)(k). The
same approximation is used to compute the likelihood. This method has proved to be accurate in
most cases, both from a practical and a theoretical point of view, provided ρ is not too small, and
to be computationally efficient; see [26].

In addition to (a)–(c), we may also require that Cθ is compactly supported with maximal
range R, following the motivation explained in Section 4, in which case the maximal possible
repulsiveness is given by DPP(CR). Or we may require that F(Cθ ) is compactly supported, in
which case the Fourier series mentioned in the previous paragraph becomes a finite sum and no
truncation is needed in practice. Note, however, that Cθ and F(Cθ ) cannot both be compactly
supported.

Several standard parametric families of kernels are available, including the well-known
Whittle–Matérn and the generalized Cauchy covariance functions, where the condition F(Cθ ) ≤
1 implies some restriction on the parameter space; see [26]. Although they encompass a closed
form expression for both Cθ and F(Cθ ), they are not flexible enough to reach the repulsiveness
of DPP(CB). Another family of parametric kernels is considered in [26], namely the power ex-
ponential spectral model, that contains as limiting cases CB and the Poisson kernel (2.1). For this
reason, this family is more flexible than the previous ones, but then only F(Cθ ) is given and no
closed expression is available for Cθ . For all these families, none of Cθ and F(Cθ ) is compactly
supported.

Below, we present alternative families of parametric kernels. The first two ones, so-called
Bessel-type and Laguerre–Gaussian families, fulfil the three requirements (a)–(c) above and the
Bessel-type family has the additional property that the Fourier transform of the kernels is com-
pactly supported. Moreover, we introduce new families of compactly supported kernels, inspired
by Proposition 4.1 and Proposition 4.3.

5.1. Bessel-type family

For all σ ≥ 0, α > 0, ρ > 0, we consider the Bessel-type kernel

C(x) = ρ2(σ+d)/2	

(
σ + d + 2

2

)
J(σ+d)/2(2|x/α|√(σ + d)/2)

(2|x/α|√(σ + d)/2)(σ+d)/2
, x ∈R

d . (5.1)

This positive definite function first appears in [32], where it is called the Poisson function. It has
been further studied in [12] and [13], where it is called the Bessel-type function. For obvious
reasons, we prefer the second terminology when applied to point processes. For any x ∈ R, we
denote by x+ = max(x,0) its positive part.
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Proposition 5.1. Let C be given by (5.1), then its Fourier transform is, for all x ∈ R
d ,

F(C)(x) = ρ
(2π)d/2αd	((σ + d + 2)/2)

(σ + d)d/2	((σ + 2)/2)

(
1 − 2π2α2|x|2

σ + d

)σ/2

+
(5.2)

and DPP(C) exists if and only if α ≤ αmax where

αd
max = (σ + d)d/2	((σ + 2)/2)

ρ(2π)d/2	((σ + d + 2)/2)
.

In this case, DPP(C) defines a stationary and isotropic DPP with intensity ρ. Moreover, if σ = 0
and α = αmax, then C = CB where CB is defined in (3.1). In addition, for any ρ > 0 and α > 0,
we have the convergence

lim
σ→+∞C(x) = ρe−(|x|/α)2

, (5.3)

uniformly on all compact sets.

The Bessel-type family contains CB as a particular case and the Poisson kernel as a limiting
case, when α → 0. Moreover, F(C) is compactly supported; see (5.2). The plots in Figure 1(b)–
(d) show some realizations of this model when σ = 0 and α = 0.2,0.4, αmax, respectively. The
supplementary material [3] includes more simulations and shows the behavior of the p.c.f. for
different values of the parameters.

5.2. Laguerre–Gaussian family

Let us first recall the definition of the Laguerre polynomials. We denote by N the set
{0,1,2, . . .} and by N

∗ the set N \ {0}. For integers 0 ≤ k ≤ m and numbers α, define(
m+α

k

) = (m+α)···(m+α+1−k)
k

if k > 0 and
(
m+α

k

) = 1 if k = 0.

Definition 5.2. The Laguerre polynomials are defined for all m ∈N and α ∈ R by

Lα
m(x) =

m∑
k=0

(
m + α

m − k

)
(−x)k

k! ∀x ∈ R.

For all m ∈N
∗, α > 0, ρ > 0 and x ∈ R

d , we consider the Laguerre–Gaussian function

C(x) = ρ(
m−1+d/2

m−1

)L
d/2
m−1

(
1

m

∣∣∣∣xα
∣∣∣∣2)

e−1/m|x/α|2 . (5.4)

This kernel already appears in the literature; see, for example, [11] for an application in approx-
imation theory. The following proposition summarizes the properties that are relevant for its use
as a DPP kernel.
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Proposition 5.3. Let C be given by (5.4), then its Fourier transform is, for all x ∈R
d ,

F(C)(x) = ρ(
m−1+d/2

m−1

)αd(mπ)d/2e−m(πα|x|)2
m−1∑
k=0

(π
√

m|αx|)2k

k! (5.5)

and DPP(C) exists if and only if α ≤ αmax where

αd
max =

(
m−1+d/2

m−1

)
ρ(mπ)d/2

.

In this case, DPP(C) is stationary and isotropic with intensity ρ. Moreover, for any ρ > 0 and
α > 0, we have the convergence

lim
m→+∞C(x) = ρ	

(
d

2
+ 1

)
Jd/2(2|x/α|)

|x/α|d/2
(5.6)

uniformly on all compact sets. In particular, for α = αmax,

lim
m→+∞C(x) = CB(x) (5.7)

uniformly on all compact sets and where CB is defined in (3.1).

This family of kernels contains the Gaussian kernel, being the particular case m = 1, and
includes as limiting cases the Poisson kernel (2.1) (when α → 0) and CB , in view of (5.7). Some
illustrations of this model are provided in the supplementary material [3], including graphical
representations of the p.c.f. and some realizations.

5.3. Families of compactly supported kernels

As suggested by Proposition 4.1, we can consider the following family of compactly supported
kernels, parameterized by the range R > 0,

C1(x) = 1

‖h‖2
[h ∗ h]

(
2x

R

)
CB(x) ∀x ∈R

d , (5.8)

where h is given by (4.1). The Poisson kernel (2.1) and CB are two limiting cases, when re-
spectively R → 0 and R → +∞. However, this family of kernels has several drawbacks: No
closed form expression is available for C1, nor for F(C1). Moreover, when the range R is fixed,
DPP(C1) is not the most repulsive DPP; see Proposition 4.3 and the graphical representations in
the supplementary material [3]. This is the reason why we turn to another family of compactly
supported kernels.

Following Proposition 4.3, we introduce a new family of compactly supported kernels with
range R, given as a convolution product of functions as in (4.6). Specifically, let R > 0, ρ > 0
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and α > 0 such that R/(2α) is not a zero of the Bessel function J(d−2)/2 and consider the kernel
C2 = u ∗ u with

u(x) = √
ρβ(R,α)

(
1 − Rd/2−1

2d/2−1Jd/2−1(R/(2α))

Jd/2−1(|x/α|)
|x|d/2−1

)
1{|x|≤R/2}, (5.9)

where

β(R,α) =
[

Rd−1πd/2

2d−1	(d/2)

(
R

d
− 4α

Jd/2(R/(2α))

Jd/2−1(R/(2α))

+ R

2

(
1 − Jd/2−2(R/(2α))Jd/2(R/(2α))

J 2
d/2−1(R/(2α))

))]−1/2

.

Proposition 5.4. Let C2 = u ∗ u where u is given by (5.9), then its Fourier transform is F(u)2

where for all x ∈R
d

F(u)(x)

= √
ρβ(R,α)

(
R

2|x|
)d/2−1(

R

2|x|Jd/2
(
πR|x|) + π

J(d−2)/2(R/(2α))

× RαJ ′
(d−2)/2(R/(2α))J(d−2)/2(πR|x|) − 2πRα2J(d−2)/2(R/(2α))|x|J ′

(d−2)/2(πR|x|)
1 − 4π2|αx|2

)
.

Moreover, DPP(C2) exists if and only if α is such that |F(u)| ≤ 1. In this case, DPP(C2) defines
a stationary and isotropic R-dependent DPP with intensity ρ.

The choice of u in (5.9) comes from (4.6) where γ has been chosen such that u is continuous
at |x| = R/2 and where β is deduced from the relation C2(0) = ‖u‖2 = ρ. Given ρ and R, the
remaining free parameter in this parametric family becomes α. The restriction that R/(2α) must
not be a zero of J(d−2)/2 can be alleviated by setting in these cases β = 0 in (4.6) and choose
γ so that C2(0) = ρ. Then the most locally repulsive DPP (4.4) when R ≤ M would be part of
the parametric family. However, these kernels can be arbitrarily approximated by some kernel
given by (5.9) for some value of α, so we do not include these particular values of α in the family
above.

The condition |F(u)| ≤ 1 on α, given R and ρ, must be checked numerically. In most cases, the
maximal value of F(u) holds at the origin and we simply have to check whether |F(u)(0)| ≤ 1.
No theoretical results are available to claim the existence of an admissible α, but from our ex-
perience, there seems to exist an infinity of admissible α for any R and ρ. Moreover, while the
most locally repulsive DPP when R ≤ M is known and corresponds to (4.4), the most repulsive
DPP when R > M in the above parametric family seems to correspond to the maximal value of
α such that |F(u)| ≤ 1, denoted αmax.

The parametric family given by C2 is mainly of interest since it covers a large range of repul-
sive DPPs while the kernels are compactly supported. Moreover, the closed form expression of



Quantifying repulsiveness of determinantal point processes 2015

F(C2) is available and this family contains the most locally repulsive DPP with range R, in view
of Proposition 4.3, at least when R ≤ M . Some illustrations are provided in the supplementary
material [3].

6. Proofs

6.1. Proof of Proposition 3.2

As the kernel CB verifies condition K(ρ), it defines a DPP with intensity ρ and its associated
p.c.f. gB given by (2.3) vanishes at 0. By the analytic definition of Bessel functions; see [1],
relation (9.1.10)],

CB(x) =
√

ρ	(d/2 + 1)

πd/4

+∞∑
n=0

(−1)n(
√

π	(d/2 + 1)1/dρ1/d)2n

22nn!	(n + 1 + d/2)
|x|2n.

Thus, CB is twice differentiable at 0 and by (2.3), so is gB . By Definition 1.2, any DPP having
a p.c.f. g that does not vanish at 0 or is not twice differentiable at 0 is less locally repulsive than
DPP(CB). Consequently, we assume in the following of the proof that g(0) = 0 and g is twice
differentiable at 0. The problem therefore reduces to minimize �g(0) under the constraint that g

is the p.c.f. of a DPP with kernel C verifying condition K(ρ).
According to condition K(ρ), the Fourier transform of the kernel C is well defined and belongs

to L1(Rd), as noticed below (2.2). Therefore, we can define the function f = F(C)
‖F(C)‖1

where

‖F(C)‖1 = ∫
Rd |F(C)(x)|dx and consider it as a density function of a random variable X =

(X1, . . . ,Xd) ∈ R
d . Denote by f̂ (t) = E(eit ·X) the characteristic function of X. We have

f̂ (t) = C(t/(2π))

‖F(C)‖1
∀t ∈ R

d . (6.1)

Thus, f̂ is twice differentiable at 0, so by the usual properties of the characteristic function
(see [33]), X has finite second-order moments and

E
(
X2

i

) = −∂2f̂

∂x2
i

(0) +
(

∂f̂

∂xi

(0)

)2

, i = 1, . . . , d. (6.2)

On the other hand, as already noticed in Section 1, ∇g(0) = 0 and so ∂C
∂xi

(0) = 0 for i =
1, . . . , d . By differentiating both sides of (6.1),

∂f̂

∂xi

(0) = 1

2π‖F(C)‖1

∂C

∂xi

(0) = 0, i = 1, . . . , d (6.3)

and

∂2f̂

∂x2
i

(0) = 1

4π2‖F(C)‖1

∂2C

∂x2
i

(0), i = 1, . . . , d. (6.4)
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Then, by (6.2)–(6.4),

E
(|X|2) = E

(
d∑

i=1

X2
i

)
= −�f̂ (0) = − 1

4π2‖F(C)‖1
�C(0).

Moreover,

E
(|X|2) =

∫
Rd

|x|2f (x)dx =
∫
Rd

|x|2 F(C)

‖F(C)‖1
(x) dx.

Hence,

�C(0) = −4π2
∫
Rd

|x|2F(C)(x) dx. (6.5)

By (2.3) and since ∇C(0) = 0,

�g(0) = �

(
1 − C2

ρ2

)
(0) = − 1

ρ2

(
d∑

i=1

2C(0)
∂2C

∂x2
i

(0) + 2

(
∂C

∂xi

(0)

)2
)

(6.6)

= − 2

ρ

d∑
i=1

∂2C

∂x2
i

(0) = − 2

ρ
�C(0).

Finally, we deduce from (6.5) and (6.6) that

�g(0) = 8π2

ρ

∫
Rd

|x|2F(C)(x) dx.

Thus, the two following optimization problems are equivalent.

Problem 1. Minimizing �g(0) under the constraint that g is the p.c.f. of a DPP with kernel C

satisfying condition K(ρ).

Problem 2. Minimizing
∫
R

|x|2F(C)(x) dx under the constraint that C is a kernel which is twice
differentiable at 0 and verifies the condition K(ρ).

The latter optimization problem is a special case of [27], Theorem 1.14, named bathtub princi-
ple, which gives the unique solution F(C) = 1{|·|d≤ρτd } in agreement with (3.1). This completes
the proof.

6.2. Proof of Proposition 4.1

Notice that h is symmetric, real-valued, infinitely differentiable and verifies h(x) = 0 for x ≥ 1;
see [31], Section 3.2. Thus, ‖h‖ is finite and ‖h‖ �= 0, so Cr is well defined.
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Since h ∗ h(0) = ‖h‖2, we have Cr(0) = ρ. By product convolution properties, h ∗ h is
symmetric, real-valued, infinitely differentiable and compactly supported with range 2. Thus,
by (4.2), Cr is symmetric, real-valued, infinitely differentiable and compactly supported with
range r . Then Cr belongs to L1(Rd) ∩ L2(Rd). In particular, F(Cr) is well defined pointwise.
By well-known properties of the Fourier transform, for all x ∈R

d ,

F(Cr)(x) = rd

2d‖h‖2

[
F(h)2

(
r

2
·
)

∗F(C)(·)
]
(x). (6.7)

Since h is symmetric, F(h) is real valued, so F(h)2 ≥ 0. Thus, as F(C) ≥ 0 by condition K(ρ),
we have F(Cr) ≥ 0. Further, since 0 ≤F(C) ≤ 1,

rd

2d‖h‖2

∫
Rd

F(h)2
(

rt

2

)
F(C)(x − t) dt ≤ rd

2d‖h‖2

∫
Rd

F(h)2
(

rt

2

)
dt. (6.8)

By the substitution u = rt/2 and Parseval’s equality, the right-hand side of (6.8) equals 1. Finally,
(6.7) and (6.8) give F(Cr) ≤ 1, that is, 0 ≤ F(Cr) ≤ 1.

It remains to show the convergence result (4.3), which reduces to prove that 1
‖h‖2 [h ∗ h]( 2

r
·)

tends to 1 uniformly on all compact set when r → ∞. This follows from h ∗ h(0) = ‖h‖2 and
the uniform continuity of h ∗ h on every compact set.

6.3. Proof of Proposition 4.2

The proof is based on a theorem from Ehm, Gneiting and Richards [9] recalled below with only
slight changes in the presentation.

Definition 6.1. Let H denote the normalized Haar measure on the group SO(d) of rotations in
R

d and let C be a kernel verifying condition Kc(ρ,R). The radialization of the kernel C is the
kernel rad(C) defined by

rad(C)(x) =
∫

SO(d)

C
(
j (x)

)
H(dj).

Note that for any isotropic kernel C, C = rad(C). We say that C1 = C2 up to a radialization if
C1 and C2 are kernels verifying condition Kc(ρ,R) and rad(C1) = rad(C2).

Define γd > 0 by γ 2
d = 4jd−2

(d−2)/2

πd/2	(d/2)J 2
d/2(j(d−2)/2)

and set cd = 4j2
(d−2)/2

4dπd/2	(d/2)
where j(d−2)/2 is in-

troduced before Proposition 4.2.

Theorem 6.2 (Ehm, Gneiting and Richards [9]). Let � be a twice differentiable characteristic
function of a probability density f on R

d and suppose that �(x) = 0 for |x| ≥ 1. Then

−��(0) =
∫

|x|2f (x)dx ≥ 4j2
(d−2)/2
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with equality if and only if, up to a radialization, � = ωd ∗ ωd , where

ωd(x) =
⎧⎨⎩γd

	(d/2)

j
(d−2)/2
(d−2)/2

J(d−2)/2(2j(d−2)/2|x|)
|x|(d−2)/2 , if |x| ≤ 1

2 ,

0, otherwise.

The corresponding minimum variance density is

f (x) = cd	

(
d

2

)2( 2(d−2)/2J(d−2)/2(|x|/2)

|x/2|(d−2)/2(j2
(d−2)/2 − (|x|/2)2)

)2

.

According to Definition 1.2 and by the same arguments as in the proof of Proposition 3.2
and (6.6), we seek a kernel C which is twice differentiable at 0 such that �C(0) is maximal
among all kernels verifying condition Kc(ρ,R).

In a first step, we exhibit a candidate for the solution to this optimization problem and in a
second step we check that it verifies all required conditions.

Step 1. We say that a function C verifies K̃c(ρ,R) if it verifies Kc(ρ,R) without necessarily
verifying F(C) ≤ 1. Notice that a function C verifies K̃c(ρ,R) if and only if the function

�(x) = C(Rx)

ρ
, x ∈R

d , (6.9)

verifies K̃c(1,1). Therefore, we have a one-to-one correspondence between K̃c(ρ,R) and
K̃c(1,1).

On the other hand, if a function � verifies condition K̃c(1,1), it is by Bochner’s theorem
the characteristic function of a random variable X. Moreover, the function � is continuous and
compactly supported, so it is in L1(Rd) and the random variable X has a density f ; see [33].
Thus, by Theorem 6.2, any function � twice differentiable at 0 and verifying condition K̃c(1,1)

satisfies

��(0) ≤ −4j2
(d−2)/2. (6.10)

By differentiating both sides of (6.9), we have

��(0) = R2

ρ
�C(0). (6.11)

Thus, by (6.10) and (6.11), for any kernel C which is twice differentiable at 0 and verifies
K̃c(ρ,R),

�C(0) = ρ��(0)

R2
≤ −4ρj2

(d−2)/2

R2
. (6.12)

By Theorem 6.2, the equality in (6.12) holds if and only if � = ωd ∗ ωd and we name CR the
corresponding kernel C given by (6.9).



Quantifying repulsiveness of determinantal point processes 2019

Step 2. The kernel CR is the candidate to our optimization problem, however, it remains to
prove that it verifies condition Kc(ρ,R). We have seen in step 1 that CR verifies K̃c(ρ,R) and
is twice differentiable at 0. We must show that F(CR) ≤ 1. By Theorem 6.2, the function � =
ωd ∗ ωd is the characteristic function of a probability density f . Thus, for all x ∈R

d ,

F(�)(x) = (2π)df (2πx) = (2π)dcd	

(
d

2

)2( 2(d−2)/2J(d−2)/2(|πx|)
|πx|(d−2)/2(j2

(d−2)/2 − (|πx|)2)

)2

. (6.13)

By (6.9) and the Fourier transform dilatation we thereby obtain (4.5).
Moreover, the Bessel functions are nonnegative up to their first nonnegative zero so ωd ≥ 0,

which implies that � ≥ 0. Hence, by (6.13),

F(�)(x) =
∣∣∣∣∫

Rd

�(t)e2iπx·t dt

∣∣∣∣ ≤
∫
Rd

�(t) dt =F(�)(0) = 2dπdcd

j4
(d−2)/2

. (6.14)

Thus, by (6.9) and the Fourier transform dilatation,

F(CR)(x) ≤ F(CR)(0) = 2dRdρπdcd

j4
(d−2)/2

= Rd

Md
. (6.15)

Since by hypothesis R ≤ M , we have F(CR) ≤ 1.

6.4. Proof of Proposition 4.3

According to Definition 1.2 and by the same arguments as in the proof of Proposition 3.2
and (6.6), we seek a kernel C which is twice differentiable at 0 such that �C(0) is maximal
among all kernels verifying condition Kc(ρ,R). By (6.5), this is equivalent to solve the follow-
ing Problem A.

Problem A. Minimize
∫
Rd |x|2F(C)(x) dx under the constraints that C is twice differentiable

at 0 and verifies Kc(ρ,R).

The proof of Proposition 4.3 is based on the following three lemmas. In the first lemma, the
gradient ∇u has to be considered in the sense of distribution when u ∈ L2(Rd) is not differen-
tiable.

Lemma 6.3. A kernel CR is solution to Problem A if and only if there exists a function u such
that, up to a radialization, CR = u ∗ u where u minimizes

∫
Rd |∇u(x)|2 dx among all functions

u verifying M(ρ,R) and F(u)2 ≤ 1.

The existence statement in Proposition 4.3 is given by the following lemma.

Lemma 6.4. There exists a solution to Problem A.
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By Lemma 6.3, CR = u ∗ u where u is the solution of the given optimization problem. Then,
under the additional constraint supx∈Rd F(C)(x) = F(C)(0), we have supx∈Rd (F(u)(x))2 =
(F(u)(0))2. Since F(u)2(0) = (

∫
Rd u(t) dt)2, the constraint F(u)2 ≤ 1 in Lemma 6.3 becomes

(
∫
Rd u(t) dt)2 ≤ 1. Notice that −u is also a solution of the optimization problem. Thus, we can

assume without loss of generality that
∫
Rd u(t) dt ≥ 0, so that the constraint (

∫
Rd u(t) dt)2 ≤ 1

becomes
∫
Rd u(t) dt ≤ 1. In this situation, the optimization problem addressed in Lemma 6.3 can

be solved by variational calculus. However, an explicit form of the solution is available only if we
assume that u ∈ C2(B(0, R

2 )), meaning that u is twice continuously differentiable on its support.
It is given by the following lemma, which completes the proof of Proposition 4.3.

Lemma 6.5. If a function u minimizes
∫
Rd |∇u(x)|2 dx among all functions u verifying

M(ρ,R), u ∈ C2(B(0, R
2 )) and

∫
Rd u(x) dx ≤ 1, then u is of the form

u(x) =
(

β + γ
J(d−2)/2(|x|/α)

|x|(d−2)/2

)
1{|x|<R/2},

where α > 0, β ≥ 0 and γ are three constants linked by the conditions M(ρ,R) and∫
Rd u(x) dx ≤ 1.

Proof of Lemma 6.3. Let C be a kernel which is twice differentiable at 0 and verifies the con-
dition Kc(ρ,R). This implies that C is twice differentiable everywhere. Moreover, the quantity∫
Rd |x|2F(C)(x) dx is invariant under radialization of the kernel C; see [9], relation (44). Thus,

we can consider C as a radial function. Then, by [9], Theorem 3.8, there exists a countable set A

and a sequence of real valued functions {uk}k∈A in L2(Rd) such that

C(x) =
∑
k∈A

uk ∗ uk(x). (6.16)

Further, the convergence of the series is uniform and for each k ∈ A, the support of uk lies in
B(0, R

2 ). Thus,

∫
Rd

|x|2F(C)(x) dx =
∫
Rd

|x|2
∑
k∈A

∣∣F(uk)(x)
∣∣2

dx =
∑
k∈A

d∑
j=1

∫
Rd

∣∣xjF(uk)(x)
∣∣2

dx, (6.17)

where xj denotes the j th coordinate of the vector x. In addition, we note that uk ∈ L2(Rd) so
| · |F(uk)(·) ∈ L2(Rd) by (6.17). Then, by [27], Theorem 7.9, ∇uk ∈ L2(Rd) where ∇uk has to
be viewed in the distributional sense and

F(∂juk)(x) = 2iπxjF(uk)(x). (6.18)

Thus, from (6.17) and (6.18) and the Parseval equality,∫
Rd

|x|2F(C)(x) dx =
∑
k∈A

∫
Rd

|∇uk(x)|2
4π2

dx.
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As every term in the sum above is positive and since this equality holds for every kernel C, the
minimum of

∫
Rd |x|2F(C)(x) dx is reached if and only if this sum reduces to one term where

uk = u. Then we have C = u ∗ u and∫
Rd

|x|2F(C)(x) dx =
∫
Rd

|∇u(x)|2
4π2

dx. (6.19)

Therefore, minimizing
∫
Rd |x|2F(C)(x) dx is equivalent to minimize

∫
Rd |∇u(x)|2 dx. Hence, it

remains to see what the constraints on the kernel C means for the function u. Since C = u ∗ u,
where u is one of the function in the decomposition (6.16), u is a so-called real valued Boas–Kac
root of C; see [9]. Thus, since C is radial, we have by [9], Theorem 3.1, that u is radial and verifies
u(x) = 0 for |x| ≥ R

2 . Since C verifies Kc(ρ,R), we have C(0) = ρ and 0 ≤ F(C) ≤ 1. These
constraints are equivalent on u to

∫
Rd u(x)2 dx = ρ and F(u)2 ≤ 1, respectively. Therefore,

u verifies condition M(ρ,R) and F(u)2 ≤ 1. �

Proof of Lemma 6.4. According to Lemma 6.3, CR is a is solution to Problem A if and only if
CR = u ∗ u where u minimizes

∫
Rd |∇u(x)|2 dx among all functions u verifying M(ρ,R) and

F(u)2 ≤ 1. We prove the existence of such a minimum u.
Let � denote the open Euclidean ball B(0, R

2 ). Consider the Sobolev space

H 1(�) = {
f : � →R, f ∈ L2(�),∇f ∈ L2(�)

}
,

with the norm ‖f ‖H 1(�) = (‖f ‖2 +‖∇f ‖2)
1
2 . For a review on Sobolev spaces, see, for example,

[10] or [27]. For any f ∈ H 1(�), we consider its extension to R
d by setting f (x) = 0 if x /∈ �,

so that f ∈ L2(Rd). Let us further denote E the set of functions f ∈ H 1(�) verifying M(ρ,R)

and F(f )2 ≤ 1.
If the minimum u above exists but u /∈ H 1(�), then

∫
�

|∇u(x)|2 dx = ∞, which means that E
is empty, otherwise u would not be the solution of our optimization problem. But E is not empty
(see, e.g., the functions in Section 5.3), so if u exists, u ∈ H 1(�). Let (wk)k∈N be a minimizing
sequence in E , that is, ∫

�

∣∣∇wk(x)
∣∣2

dx −→
k→+∞ inf

v∈E

∫
�

∣∣∇v(x)
∣∣2

dx, (6.20)

where for all k, wk ∈ E . By (6.20) and since for all k,
∫
�

|wk(x)|2 dx = ρ, the sequence {wk} is
bounded in H 1(�). Then, by the Rellich–Kondrachov compactness theorem (see [10]), it follows
that, up to a subsequence, {wk} converges in L2(Rd) to a certain function w ∈ L2(Rd) verifying∫

�

∣∣∇w(x)
∣∣2

dx = inf
v∈E

∫
�

∣∣∇v(x)
∣∣2

dx. (6.21)

We now prove that w ∈ E , so that u = w is the solution of our optimization problem. First,
w ∈ H 1(�) as justified earlier and so w ∈ L2(Rd). Second, as rotations are isometric functions
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and since any wk is radial by hypothesis, we have for any j ∈ SO(d){∫
Rd

∣∣w(x) − wk(x)
∣∣2

dx → 0

}
⇐⇒

{∫
Rd

∣∣w(
j (x)

) − wk

(
j (x)

)∣∣2
dx → 0

}
⇐⇒

{∫
Rd

∣∣w(
j (x)

) − wk(x)
∣∣2

dx → 0

}
.

Hence, by uniqueness of the limit, the function w is radial and in particular, its Fourier transform
is real. Further, since w is the limit in L2(Rd) of wk , w verifies the following properties:

• w is compactly supported in B(0, R
2 ), because wk ∈ E for all k.

• w ∈ L2(Rd) by Rellich–Kondrachov theorem.
• ∫

Rd |w(x)|2 dx = ∫
Rd |wk(x)|2 dx = ρ since a sphere in L2(Rd) is closed.

Therefore, w verifies M(ρ,R). Third, for every k, wk being compactly supported and in L2(Rd),
wk ∈ L1(Rd) so we can consider F(wk)(x) for every x ∈ R

d and by the Cauchy–Schwarz in-
equality ∣∣F(w)(x) −F(wk)(x)

∣∣ ≤ a

√∫
Rd

∣∣w(t) − wk(t)
∣∣2

dt ∀x ∈ R
d,

where a is a positive constant. Thereby the convergence of wk to w in L2(Rd) implies the point-
wise convergence of F(wk) to F(w). Finally, from the relation

F(wk)(x) ≤ 1 ∀x ∈ R
d,∀k ∈N,

we deduce F(w) ≤ 1. �

Proof of Lemma 6.5. We denote as before � = B(0, R
2 ). The optimization problem in

Lemma 6.5 is a variational problem with isoperimetric constraints. By [15], Chapter 2, Theo-
rem 2, every solution must solve

�u + λ1u − λ2

2
= 0 on �,

(6.22)
u = 0 on ∂�.

In equation (6.22), λ1 and λ2 are the Lagrange multipliers associated to the constraints
∫

u2 = ρ

and
∫

u ≤ 1, respectively. By the Karush–Kuhn–Tucker theorem (see [18], Section VII), λ2 ≥ 0.
Moreover, a solution to the partial differential equation with boundary condition (6.22) is ob-
tained by linear combination of a homogeneous solution and a particular solution. By [10],
Section 6.5, Theorem 2, the Laplacian operator −� has only positive eigenvalues. Hence, the
associated homogeneous equation �u + λ1u = 0 can have a solution only if λ1 > 0.

In addition, the function u is radial by hypothesis, so there exists a function ũ on R such that
u(x) = ũ(|x|) for all x ∈ R

d . The partial differential equation (6.22) then becomes

ũ′′(t) + d − 1

t
ũ′(t) + λ1ũ(t) − λ2

2
= 0 ∀t ∈

]
0,

R

2

[
,

ũ

(
R

2

)
= 0.
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As λ1 is positive, we obtain from [38], Section 4.31, relations (3) and (4), that a solution to this
equation is of the form

ũ(t) =
(

λ2

2λ1
+ c1

J(d−2)/2(
√

λ1t)

t (d−2)/2
+ c2

Y(d−2)/2(
√

λ1t)

t (d−2)/2

)
1{0<t<R/2}, (6.23)

where Y(d−2)/2 denotes the Bessel function of the second kind. By hypothesis, the function u

is continuous on � and so at 0. Since Y(d−2)/2 has a discontinuity at 0 (see, e.g., [1]) and the
remaining terms in (6.23) are continuous, we must have c2 = 0. Then, by renaming the constant
c1 by γ and letting α = 1/

√
λ1, β = λ2/(2λ1), we obtain that if u is solution to the optimization

problem of Lemma 6.5, then u writes

u(x) =
(

β + γ
J(d−2)/2(|x|/α)

|x|(d−2)/2

)
1{x∈�}, (6.24)

where α > 0 and β ≥ 0. �

6.5. Proof of Proposition 5.1

Let C be given by (5.1). According to Proposition 2.3, DPP(C) exists and has intensity ρ if C

verifies the condition K(ρ). By [1], equation (9.1.7), we have C(0) = ρ. It is immediate that C

is a symmetric continuous real-valued function. Since Bessel functions are analytic and by the
asymptotic form in [1], (9.2.1), it is clear that C belongs to L2(Rd). It remains to obtain F(C)

and verify the condition 0 ≤F(C) ≤ 1.
Define

pσ (x) = J(σ+d)/2(|x|)
|x|(σ+d)/2

∀x ∈ R
d . (6.25)

As pσ is radial, by [17], Appendix B.5,

F(pσ )(x) = 2π

|x|(d−2)/2

∫ +∞

0
rd/2pσ (r)J(d−2)/2

(
2πr|x|)dr.

By [16], Formula 6.575, we have for σ > −2

F(pσ )(x) = 2π

|2πx|(d−2)/2

(1 − |2πx|2)σ/2
+ |2πx|(d−2)/2

2σ/2	(σ/2 + 1)
= 2d/2−σ/2πd/2 (1 − |2πx|2)σ/2

+
	((σ + 2)/2)

.

Since C(x) = ρ2(σ+d)/2	(σ+d+2
2 )pσ (2 x

α

√
σ+d

2 ), we obtain (5.2) by dilatation of the Fourier
transform.

We have obviously F(C) ≥ 0. Since σ ≥ 0, F(C) attains its maximum at 0. Thus, F(C) ≤ 1
if and only if

F(C)(0) = ρ(2π)d/2αd	((σ + d + 2)/2)

(σ + d)d/2	((σ + 2)/2)
≤ 1,

which is equivalent to αd ≤ (σ+d)d/2	((σ+2)/2)

ρ(2π)d/2	((σ+d+2)/2)
.
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Finally, when σ = 0 and α = αmax, DPP(C) exists and a straightforward calculation gives
C = CB . The convergence result (5.3) may be found in [12] and is a direct application of [32],
relation (1.8).

6.6. Proof of Proposition 5.3

Define, for all m ∈ N,

fm(x) = L
d/2
m

(|x|2)e−|x|2 ∀x ∈R
d . (6.26)

This function is radial, thus by [17], Appendix B.5, we have

F(fm)(x) = 2π

|x|(d−2)/2

∫ +∞

0
rd/2L

d/2
m

(
r2)e−r2

J(d−2)/2(2πr|x|) dr.

According to [21], we have

F(fm)(x) = 2π

|x|(d−2)/2

(−1)m

2

( |2πx|
2

)(d−2)/2

e−|2πx|2/4L−1−m
m

( |2πx|2
4

)

= πd/2(−1)me−|πx|2
m∑

k=0

( −1
m − k

)
(−1)k|πx|2k

k!

= πd/2(−1)me−|πx|2
m∑

k=0

(−1)m−k (−1)k|πx|2k

k! .

Therefore,

F(fm)(x) = πd/2e−|πx|2
m∑

k=0

|πx|2k

k! .

As C(x) = ρ

(m−1+d/2
m−1 )

fm−1(
1√
m

x
α
), we obtain (5.5) by dilatation and linearity of the Fourier trans-

form.
Clearly, F(C) ≥ 0. Thus, we investigate the condition F(C) ≤ 1 for the existence of DPP(C).

We notice from (5.5) that

F(C)(x) = ae−b|x|2
m−1∑
k=0

bk|x|2k

k! , (6.27)

where a and b are positive constants. Since F(C) depends on the variable x only through its
norm, we consider the function h define for all r ≥ 0 by h(r) = F(C)((r,0, . . . ,0)), so that for
all x ∈ R

d , F(C)(x) = h(|x|). For every r > 0, h is differentiable at r and a straightforward
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calculation leads to

h′(r) = ae−br2

(
−2br

m−1∑
k=0

bkr2k

k! +
m−1∑
k=1

2k
bkr2k−1

k!

)
= −2ae−br2 bmr2m−1

(m − 1)! .

Thus, the function h is decreasing on (0,+∞). Since h is continuous on R
+, its maximum is

attained at zero, so for every x ∈R
d ,

F(C)(x) ≤ F(C)(0) = ρ(mπ)d/2(
m−1+d/2

m−1

)αd.

Hence, F(C) ≤ 1 if and only if αd ≤ (m−1+d/2
m−1 )

ρ(mπ)d/2 . Moreover C is radial and since L
d/2
m−1(0) =(

m−1+d/2
m−1

)
, see [1], relation (22.4.7), we have C(0) = ρ. Therefore, C verifies the condition K(ρ)

and by Proposition 2.3, DPP(C) exists and is stationary with intensity ρ > 0.
It remains to prove the convergence results (5.6) and (5.7). An immediate application of [37],

Theorem 8.1.3, gives the convergence (5.6), see also [2], Proposition 1. Moreover,

lim
m→+∞αmax = 1√

π	(d/2 + 1)1/dρ1/d
. (6.28)

Hence, by (5.6) and (6.28), we obtain the convergence (5.7).

6.7. Proof of Proposition 5.4

By the discussion in Section 4, DPP(C) exists and is an R-dependent DPP with intensity ρ

if C verifies Kc(ρ,R). Since u ∈ L2(Rd), the kernel C is continuous by [27], Theorem 2.20.
Moreover, u(x) = 0 for |x| > R

2 , so by product convolution properties, C(x) = 0 for |x| > R.
Hence, C belongs to L2(Rd). Since u is radial, so is C. It remains to verify that 0 ≤ F(C) ≤ 1
and C(0) = ρ.

By product convolution properties, we have C(0) = ∫
Rd u(x)2 dx. From the definition of u

in (5.9), we have∫
Rd u2(x) dx

ρβ(R,α)2

=
∫
Rd

(
1 − 2

(
R

2

)d/2−1 J(d−2)/2(|x/α|)
J(d−2)/2(R/(2α))|x|(d−2)/2

+
(

R

2

)d−2 J 2
(d−2)/2(|x/α|)

J 2
(d−2)/2(R/(2α))|x|d−2

)
1{|x|≤R/2} dx

= 2πd/2

	(d/2)

∫ R/2

0

(
rd−1 − 2

(
R

2

)(d−2)/2 J(d−2)/2(r/α)

J(d−2)/2(R/(2α))
rd/2

+
(

R

2

)d−2 J 2
(d−2)/2(r/α)

J 2
(d−2)/2(R/(2α))

r

)
dr.
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By properties of Bessel functions (see [1]), we notice that for all b ∈ R, a primitive of

xJ 2
(d−2)/2(bx) is given by x2

2 (J 2
(d−2)/2(xb) − Jd/2−2(xb)Jd/2(xb)). It follows from [17], Ap-

pendix B.3, that∫
Rd u2(x) dx

ρβ(R,α)2
= πd/2Rd

d	(d/2)2d−1
− 4

(
R

2

)d−1
πd/2α

	(d/2)

Jd/2(R/(2α))

Jd/2−1(R/(2α))

+
(

R

2

)d
πd/2

	(d/2)

(
1 − Jd/2−2(R/(2α))Jd/2(R/(2α))

J 2
d/2−1(R/(2α))

)
.

Thus, by the definition of β(R,α), we obtain that
∫
Rd u(x)2 dx = ρ.

We now calculate F(C). We have F(C) = F(u)2. Since u is radial, F(u) is real valued and
so F(C) ≥ 0. In addition, we have by [17], Appendix B.5 and (5.9),

F(u)(x) = √
ρβ(R,α)

2π

|x|(d−2)/2

(∫ R/2

0
rd/2J(d−2)/2

(
2πr|x|)dr

− Rd/2−1

2d/2−1Jd/2−1(R/(2α))

∫ R/2

0
rJ(d−2)/2

(
r

α

)
J(d−2)/2

(
2πr|x|)dr

)
.

Since α > 0, we have by [17], Appendix B.3 and [16], formula (6.521),

F(u)(x)

= √
ρβ(R,α)

2π

|x|(d−2)/2

(
Rd/2

π2d/2+1

Jd/2(πR|x|)
|x| + Rd/2−1

2d/2Jd/2−1(R/(2α))
(6.29)

× RαJ ′
(d−2)/2(R/(2α))J(d−2)/2(πR|x|) − 2πα2RJ(d−2)/2(R/(2α))|x|J ′

(d−2)/2(πR|x|)
1 − 4π2|αx|2

)
from which we deduce the Fourier transform of u in Proposition 5.4. Therefore, if α is such that
F(u)2 ≤ 1, then F(C) ≤ 1 and so C verifies Kc(ρ,R).

Acknowledgments

The authors are grateful to Jean-François Coeurjolly for illuminating comments and to anony-
mous referees for numerous suggestions and comments which helped to improve this paper.

Supplementary Material

Supplement to “Quantifying repulsiveness of determinantal point processes” (DOI: 10.
3150/15-BEJ718SUPP; .pdf). We provide some illustrations of the nonuniqueness of the most
globally repulsive DPP in the sense of Definition 1.1, as stated in Proposition 3.1. We also show
the p.c.f.s and some realizations associated to different values of the parameters for the paramet-
ric families of DPPs introduced in Section 5.
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