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We prove functional central and non-central limit theorems for generalized variations of the anisotropic
d-parameter fractional Brownian sheet (fBs) for any natural number d. Whether the central or the non-
central limit theorem applies depends on the Hermite rank of the variation functional and on the smallest
component of the Hurst parameter vector of the fBs. The limiting process in the former result is another
fBs, independent of the original fBs, whereas the limit given by the latter result is an Hermite sheet, which
is driven by the same white noise as the original fBs. As an application, we derive functional limit theorems
for power variations of the fBs and discuss what is a proper way to interpolate them to ensure functional
convergence.

Keywords: central limit theorem; fractional Brownian sheet; Hermite sheet; Malliavin calculus;
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1. Introduction

Since the seminal works by Breuer and Major [7], Dobrushin and Major [9], Giraitis and Sur-
gailis [10], Rosenblatt [27] and Taqqu [28–31], much attention has been given to the study of the
asymptotic behaviour of normalized functionals of Gaussian fields, as these quantities arise nat-
urally in applications, for example, where models exhibiting long-range dependence are needed.
The aforementioned papers focus on nonlinear functionals of a stationary Gaussian field, for
which one can derive a central limit theorem (in a finite-dimensional sense or in a functional
sense) if the correlation function of the field decays sufficiently fast to zero; see [7] for a pre-
cise formulation. However, if the correlation function decays too slowly to zero, then only a
non-central limit theorem can be established, meaning that the limiting distribution fails to be
Gaussian; see, for example, [27].

In particular, these results apply to functionals of the fractional Brownian motion (fBm). Let
BH := {BH (t): t ∈ R} be a fBm with Hurst parameter H ∈ (0,1), which is the unique (in law)
H -self similar Gaussian process with stationary increments; see (3.2) and (3.3) below for the
definitions of these key properties. The behaviour of the so-called Hermite variations of BH ,
depending on the value of H , can be described as follows. Let k ∈ {1,2, . . .} and let Pk denote
the kth Hermite polynomial, the definition of which we recall in (2.5) below. Applying results
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from [7,9,10,31], one obtains that
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Above,
L→ denotes convergence in law, N(0, σ 2

1 (H, k)) denotes the centered Gaussian law with
variance σ 2

1 (H, k) > 0, whereas Hermite1,k(1−k(1−H)) stands for a so-called Hermite random
variable given by the value of an Hermite process, of order k with Hurst parameter 1 − k(1 −
H) ∈ ( 1

2 ,1), at time 1. Such an Hermite process can be represented as a k-fold multiple Wiener
integral with respect to Brownian motion, as proven by Taqqu [30,31]. Moreover, the process is
non-Gaussian if k ≥ 2. (More details on the Hermite process are provided in Section 2.4.) The
key observation here is that there are two regimes: Gaussian, subsuming cases (a) and (b), and
Hermite, case (c), depending on the Hurst parameter H and on the order k.

The convergences in all cases (a), (b), and (c) can be extended to more general functionals,
which we call generalized variations in this paper, obtained by replacing the Hermite polynomial
Pk with a function

f (u) :=
∞∑

k=k

akPk(u), u ∈ R, (1.1)

where k is the so-called Hermite rank of f . (Naturally, conditions on the summability of the
coefficients ak, ak+1, . . . have to be added.) In this setting, the prevailing regime (Gaussian or
Hermite) will depend on the Hurst parameter H and on the Hermite rank k analogously to the
simpler setting discussed above. In addition, functional versions of these asymptotic results (un-
der additional assumptions on the coefficients ak, ak+1, . . .) can be proven in the Skorohod space
D([0,1]); see [28,31].

In connection to applications that involve spatial or spatio-temporal modeling, processes of
multiple parameters are also of interest. Recently, there has been interest in understanding the
asymptotic behaviour of realized quadratic variations and power variations of ambit fields [5,21].
An ambit field is an anisotropic multiparameter process driven by white noise, or more gen-
erally, by an infinitely-divisible random measure. The problem of finding distributional limits
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(central or non-central limit theorems) for such power variations is, however, intricate because
the dependence structure of an ambit field can be very general; only a “partial” central limit
theorem is obtained in [21]. As a first approximation, it is thus useful to study this problem
with simpler processes that incorporate some of the salient features of ambit fields, such as the
non-semimartingality of one-parameter “marginal processes” (see [21], Section 2.2) and strong
dependence. A tractable process that incorporates some key features of ambit fields is the frac-
tional Brownian sheet (fBs), defined by Ayache et al. [1], which is a multi-parameter extension
of the fBm. In particular, it is a Gaussian process with stationary rectangular increments.

For concreteness, let Z := {Z(t): t ∈ [0,1]2} be a two-parameter anisotropic fBs with Hurst
parameter (H1,H2) ∈ (0,1)2; see Section 2.2 for a precise definition. In view of the asymptotic
behaviour in cases (a), (b), and (c) involving the fBm, it is natural to ask what is the asymptotic
behaviour of Hermite variations of Z with different values of H1 and H2. Consider, for example,
the “mixed” case where H1 < 1 − 1

2k
and H2 > 1 − 1

2k
, which has no counterpart in the one-

parameter setting. Because of the structure of the fBs, it is tempting to conjecture that in this
case the limiting law is a mixture of a Gaussian law and a marginal law of an Hermite process.
However, as shown in [25], this is not the case and once again only two limiting laws can be
obtained:

(a′) If (H1,H2) ∈ (0,1)2 \ (1 − 1
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,1)2, then
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Above, Z([ j1−1
n

,
j1
n
) × [ j2−1

n
,

j2
n
)) stands for the increment of Z over the rectangle [ j1−1

n
,

j1
n
) ×

[ j2−1
n

,
j2
n
), defined in Section 2.3 below, and ϕ(n,H1,H2) is a suitable scaling factor; see [25],

pages 9–10, for its definition. The limit in the case (b′) is the value of a two-parameter Hermite
sheet (see Section 2.4), of order k with Hurst parameter (1−k(1−H1),1−k(1−H2)) ∈ ( 1

2 ,1)2,
at point (1,1). Contrary to the one-parameter case, the results obtained in [25] are proved only
for one-dimensional laws; neither finite-dimensional (except in the particular setting of [24])
nor functional convergence (i.e., tightness in a function space) of Hermite variations has been
established so far. (In particular in the d-parameter realm with d ≥ 2, tightness is a non-trivial
issue, which has not been addressed in [25] or in the related paper [24].)

The first main result of this paper addresses the question about functional convergence in
the general, d-parameter case for any d ∈ N. We prove a functional central limit theorem,
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Theorem 2.4, for generalized variations of a d-parameter anisotropic fBs Z. (As mentioned
above, generalized variations extend Hermite variations by replacing Pk with a function f of
the form (1.1).) This result applies if at least one of the components of the Hurst parameter vec-
tor H = (H1, . . . ,Hd) ∈ (0,1)d of Z is less than or equal to 1 − 1

2k
, where k is the Hermite rank

of f . A novel feature of this result is that the limiting process is a new fBs, independent of Z,
with Hurst parameter vector H̃ = (H̃1, . . . , H̃d) given by

H̃ν :=

⎧⎪⎪⎨⎪⎪⎩
1

2
, Hν ≤ 1 − 1

2k
,

1 − k(1 − Hν), Hν > 1 − 1

2k
,

for ν ∈ {1, . . . , d}. Note, in particular, that if H ∈ (0,1 − 1
2k

]d , then the limit reduces to an
ordinary Brownian sheet. The proof of Theorem 2.4 is based on the limit theory for multiple
Wiener integrals, due to Nualart and Peccati [20], and its multivariate extension by Peccati and
Tudor [22]. To prove the functional convergence asserted in Theorem 2.4, we use the tightness
criterion of Bickel and Wichura [6] in the space D([0,1]d), which is d-parameter generalization
of D([0,1]), and a moment bound for nonlinear functionals of a stationary Gaussian process on
Z

d (Lemma 4.1).
The second main result of this paper is a functional non-central limit theorem, Theorem 2.7,

for generalized variations of Z in the remaining case where each of the components of H is
greater than 1 − 1

2k
. In this case, the limit is a d-parameter Hermite sheet and the convergence

holds in probability and also pointwise in L2(�). Assuming that Z is defined by a moving-
average representation with respect to a white noise W on R

d , we can give a novel and explicit
description of the limit; it is defined using the representation introduced by Clarke De la Cerda
and Tudor [8] with respect to the same white noise W . This makes the relation between Z and
the Hermite sheet precise and constitutes a step further compared to the existing literature (see
[15,25]), where the limiting Hermite process/sheet is simply obtained as an abstract limit of a
Cauchy sequence, from which the properties of the limiting object are deduced.

As an application of Theorems 2.4 and 2.7, we study the asymptotic behaviour of power vari-
ations of the fBs Z. As a straightforward consequence of our main results, we obtain a law of
large numbers for these power variations. We then study the more delicate question regarding the
asymptotic behaviour of rescaled fluctuations of power variations around the limit given by the
law of large numbers. In the case of odd power variations, the rescaled fluctuations have a limit,
either Gaussian or Hermite, but with even power variations, the fluctuations might not converge
in a functional way if d ≥ 2. We show that this convergence issue does not arise at all if one
considers instead continuous, multilinear interpolations of power variations.

The paper is organized as follows. In Section 2, we introduce the setting of the paper, some
key definitions and the statements of Theorems 2.4 and 2.7. The proofs of these two main results
are presented in Sections 3 and 4, the former section collecting the finite-dimensional and the
latter the functional arguments. Finally, the application to power variations is given in Section 5.
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2. Preliminaries and main results

2.1. Notation

We use the convention that N := {1,2, . . .} and R+ := [0,∞). The notation |A| stands for the
cardinality of a finite set A. For any y ∈ R, we write �y	 := max{n ∈ Z: n ≤ v}, {y} := y − �y	,
and (y)+ := max(y,0). The symbol γ denotes the standard Gaussian measure on R, that is,
γ (dy) := (2π)−1/2 exp(−y2/2)dy. From now on we fix d in N.

For any vectors s = (s1, . . . , sd) ∈R
d and t = (t1, . . . , td) ∈R

d , the relation s ≤ t (resp., s < t)
signifies that sν ≤ tν (resp., sν < tν ) for all ν ∈ {1, . . . , d}. We also use the notation

st := (s1t1, . . . , sd td) ∈ R
d,

s

t
:=

(
s1

t1
, . . . ,

sd

td

)
∈R

d,

�s	 := (�s1	, . . . , �sd	) ∈ Z
d, 〈s〉 := s1 · · · sd ∈R,

|s| := (|s1|, . . . , |sd |) ∈ R
d+, {s} := ({s1}, . . . , {sd}) ∈ [0,1)d .

Further, when s ∈ R
d+, we write st := (s

t1
1 , . . . , s

td
d ) ∈ R

d+, and when s ≤ t , we write [s, t) :=
[s1, t1) × · · · × [sd , td) ⊂ R

d . Occasionally, we use the norm ‖s‖∞ := max(|s1|, . . . , |sd |) for
s ∈R

d .
For the sake of clarity, we will consistently use the following convention: i, i(1), i(2), . . . are

multi-indices (vectors) in Z
d and j, j1, j2, . . . are indices (scalars) in Z.

2.2. Anisotropic fractional Brownian sheet

We consider an anisotropic, d-parameter fractional Brownian sheet (fBs) Z := {Z(t): t ∈ R
d}

with Hurst parameter H ∈ (0,1)d , which is a centered Gaussian process with covariance

R
(d)
H (s, t) := E

[
Z(s)Z(t)

] =
d∏

ν=1

R
(1)
Hν

(sν, tν), s, t ∈ R
d, (2.1)

where

R
(1)
Hν

(sν, tν) := 1
2

(|sν |2Hν + |tν |2Hν − |sν − tν |2Hν
)
, sν, tν ∈R,

is the covariance of a fractional Brownian motion with Hurst parameter Hν .
In what follows, it will be convenient to assume that the fBs Z has a particular representation.

To this end, let us denote by B0(R
d) the family of Borel sets of Rd with finite Lebesgue measure.

Let (�,F ,P) be a complete probability space that supports a white noise W := {W(A): A ∈
B0(R

d)}, which is a centered Gaussian process with covariance

E
[
W(A)W(B)

] = Lebd(A ∩ B), A,B ∈ B0
(
R

d
)
,
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where Lebd(·) denotes the Lebesgue measure on R
d . The process Z can be defined as a Wiener

integral with respect to W (see, e.g., [19] for the definition), namely

Z(t) :=
∫

G
(d)
H (t, u)W(du), t ∈ R

d, (2.2)

where the kernel

G
(d)
H (t, u) :=

d∏
ν=1

G
(1)
Hν

(tν, uν), t, u ∈R
d , (2.3)

is defined using the one-dimensional Mandelbrot–Van Ness [13] kernel

G
(1)
Hν

(tν, uν) := 1

χ(Hν)

(
(tν − uν)

Hν−1/2
+ − (−uν)

Hν−1/2
+

)
, tν, uν ∈ R, (2.4)

with the normalizing constant

χ(Hν) :=
(

1

2Hν

+
∫ ∞

0

(
(1 + y)Hν−1/2 − yHν−1/2)dy

)1/2

.

We refer to [1] for a proof that the process Z defined via (2.2) does indeed have the covariance
structure (2.1). The fBs admits a continuous modification (see [3], page 1040), so we may assume
from now on that Z is continuous.

2.3. Increments and generalized variations

Given a function (or a realization of a stochastic process) h :Rd → R, we define the increment
of h over the half-open hyperrectangle [s, t) ⊂R

d for any s ≤ t by

h
([s, t)) :=

∑
i∈{0,1}d

(−1)d−∑d
ν=1 iν h

(
(1 − i)s + it

)
.

(Note that iν above stands for the νth component of the multi-index i.) This definition can be
recovered by differencing iteratively with respect to each of the arguments of the function h.

Thus, the increment can be seen as a discrete analogue of the partial derivative ∂d

∂t1···∂td
.

Remark 2.1. It is useful to note that if there exists functions hν :R → R, ν ∈ {1, . . . , d}, such
that h(t) = h1(t1) · · ·hd(td) for any t ∈ R

d , then

h
([s, t))=

d∏
ν=1

(
hν(tν) − hν(sν)

)
,

which is easily verified by induction with respect to d using iterative differencing.
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Let us fix a sequence (m(n))n∈N ⊂N
d of multi-indices with the property

m(n) := min
(
m1(n), . . . ,md(n)

) −→
n→∞∞

and a function f ∈ L2(R, γ ) such that
∫
R

f (u)γ (du) = 0. Our aim is to study the asymptotic

behaviour of a family {U(n)
f : n ∈ N} of d-parameter processes, generalized variations of Z,

defined by

U
(n)
f (t) :=

∑
1≤i≤�m(n)t	

f

(〈
m(n)H

〉
Z

([
i − 1

m(n)
,

i

m(n)

)))
, t ∈ [0,1]d , n ∈N.

In this definition, 〈m(n)H 〉 = m1(n)H1 · · ·md(n)Hd according to the notation and conventions
set forth in Section 2.1. The realizations of U

(n)
f belong to the space D([0,1]d), which for

d ≥ 2 is a generalization of the space D([0,1]) of càdlàg functions on [0,1]. We refer to [6],
page 1662, for the definition of the space D([0,1]d). In particular, C([0,1]d) ⊂ D([0,1]d). We
endow D([0,1]d) with the Skorohod topology described in [6], page 1662. Convergence to a
continuous function in this topology is, however, equivalent to uniform convergence (see, e.g.,
[21], Lemma B.2, for a proof in the case d = 2).

2.4. Functional limit theorems for generalized variations

We will now formulate two functional limit theorems for the family {U(n)
f : n ∈ N} of generalized

variations, defined above. The class of admissible functions f needs to be restricted somewhat,
however, and the choice of f and the Hurst parameter H of Z will determine which of the limit
theorems applies. Also, we need to rescale U

(n)
f in suitable way that, likewise, depends on both

f and H .
To this end, recall that the Hermite polynomials,

P0(u) := 1, Pk(u) := (−1)keu2/2 dk

duk
e−u2/2, u ∈R, k ∈ N, (2.5)

form a complete orthogonal system in L2(R, γ ). Thus, we may expand f in L2(R, γ ) as

f (u) =
∞∑

k=k

akPk(u), (2.6)

where the Hermite coefficients ak, ak+1, . . . ∈ R are such that ak �= 0 and

∞∑
k=k

k!a2
k < ∞. (2.7)

The index k is called the Hermite rank of f , and the proviso
∫
R

f (u)γ (du) = 0 ensures that
k ≥ 1. We will assume that the Hermite coefficients decay somewhat faster than what (2.7) en-
tails.
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Assumption 2.2. The Hermite coefficients ak, ak+1, . . . of the function f satisfy

∞∑
k=k

3k/2
√

k!|ak| < ∞.

Let us define a sequence (c(n))n∈N ⊂R
d+ of rescaling factors by setting for any ν ∈ {1, . . . , d}

and n ∈ N,

cν(n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mν(n)2−2k(1−Hν), Hν ∈
(

1 − 1

2k
,1

)
,

mν(n) log
(
mν(n)

)
, Hν = 1 − 1

2k
,

mν(n), Hν ∈
(

0,1 − 1

2k

)
.

Remark 2.3. Note that lim supn→∞
mν(n)
cν(n)

< ∞ and that, in fact, limn→∞ mν(n)
cν(n)

= 0 if Hν ∈
[1 − 1

2k
,1).

Now we can define a family {U(n)

f : n ∈N} of rescaled generalized variations as

U
(n)

f (t) := U
(n)
f (t)

〈c(n)〉1/2
, t ∈ [0,1]d, n ∈ N.

Our first result is the following functional central limit theorem (FCLT) for generalized varia-
tions. Its proof is carried out in Section 3.2 and Section 4.2.

Theorem 2.4 (FCLT). Let f be as above such that Assumption 2.2 holds and suppose that
H ∈ (0,1)d \ (1 − 1

2k
,1)d . Then

(
Z,U

(n)

f

) L−→
n→∞

(
Z,	

1/2
H,f Z̃

)
in D

([0,1]d)2
, (2.8)

where Z̃ is a d-parameter fBs with Hurst parameter H̃ ∈ [ 1
2 ,1)d , independent of Z (defined,

possibly, on an extension of (�,F ,P)), and

	H,f :=
∞∑

k=max(k,2)

k!a2
k

〈
b(k)

〉 ∈R. (2.9)



Limit theorems for the fractional Brownian sheet 1679

The vectors H̃ ∈ [ 1
2 ,1)d and b(k) ∈ R

d+, k ≥ max(k,2), that appear above are defined by setting
for any ν ∈ {1, . . . , d},

H̃ν :=

⎧⎪⎪⎨⎪⎪⎩
1

2
, Hν ∈

(
0,1 − 1

2k

]
,

1 − k(1 − Hν), Hν ∈
(

1 − 1

2k
,1

)
,

(2.10)

and

b(k)
ν :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈Z

( |j + 1|2Hν − 2|j |2Hν + |j − 1|2Hν

2

)k

, Hν ∈
(

0,1 − 1

2k

)
,

2

(
(2k − 1)(k − 1)

2k2

)k

=: ι(k), Hν = 1 − 1

2k
, k = k,

H
k
ν (2Hν − 1)k

(1 − k(1 − Hν))(1 − 2k(1 − Hν))
=: κ(Hν, k), Hν ∈

(
1 − 1

2k
,1

)
, k = k,

0, Hν ∈ [1 − 1

2k
,1), k > k.

(2.11)

Remark 2.5. (1) The counterpart of the convergence (2.8) for finite-dimensional laws holds with-
out Assumption 2.2; see Proposition 3.3 below.

(2) We may use max(k,2), instead of k, as the lower bound for the summation index k in (2.9)
since ι(1) = 0 and

∑
j∈Z

|j + 1|2Ȟ − 2|j |2Ȟ + |j − 1|2Ȟ

2

=
∑
j∈Z

|j |2Ȟ − |j − 1|2Ȟ

2
−
∑
j∈Z

|j |2Ȟ − |j − 1|2Ȟ

2
= 0

for any Ȟ ∈ (0, 1
2 ). (Then,

∑
j∈Z | |j |2Ȟ −|j−1|2Ȟ

2 | < ∞ by the mean value theorem.)
(3) The convergence (2.8) can be understood in the framework of stable convergence in law,

introduced by Rényi [23]. Equivalently to (2.8), U
(n)

f converges to 	
1/2
H,f Z̃ as n → ∞ stably in

law with respect to the σ -algebra generated by {Z(t): t ∈ [0,1]d}.

Theorem 2.4 excludes the case H ∈ (1 − 1
2k

,1)d . Then, the generalized variations do have a
limit, but the limit is non-Gaussian, unless k = 1. To describe the limit, we need the following
definition, due to Clarke De la Cerda and Tudor [8].

Definition 2.6. An anisotropic, d-parameter Hermite sheet Ẑ := {Ẑ(t): t ∈ R
d+} of order k ≥ 2

with Hurst parameter H̃ ∈ ( 1
2 ,1)d is defined as a k-fold multiple Wiener integral (see Section 3.2)
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with respect to the white noise W ,

Ẑ(t) :=
∫

· · ·
∫

Ĝ
(k)

H̃

(
t, u(1), . . . , u(k)

)
W

(
du(1)

) · · ·W(
du(k)

) := IW
k

(
Ĝ

(k)

H̃
(t, ·)) (2.12)

for any t ∈ R
d+. In (2.12), the kernel Ĝ

(d,k)

H̃
(t, ·) ∈ L2(Rkd) is given by

Ĝ
(k)

H̃

(
t, u(1), . . . , u(k)

)
:= 1

χ̂ (H̃ , k)

∫
[0,t)

k∏
κ=1

d∏
ν=1

(
yν − u(κ)

ν

)−1/2−(1−H̃ν )/k

+ dy, u(1), . . . , u(k) ∈ R
d,

using the normalizing constant

χ̂ (H̃ , k) :=
d∏

ν=1

(
B(1/2 − (1 − H̃ν)/k, (2(1 − H̃ν))/k)

H̃ν(2H̃ν − 1)

)1/2

,

where B stands for the beta function.

The Hermite sheet Ẑ is self-similar and has the same correlation structure as a fBs with Hurst
parameter H̃ . In the case k = 1, the process Ẑ is Gaussian (in fact, it coincides with a fractional
Brownian sheet with Hurst parameter H̃ ) but for k ≥ 2 it is non-Gaussian. In the case k = 2, the
name Rosenblatt sheet (and Rosenblatt process, when d = 1; see [32]) is often used, in honor of
Murray Rosenblatt’s seminal paper [26]. See also the recent papers [12,33] for more details on
the Rosenblatt distribution, including proofs that this distribution is infinitely divisible.

As our second main result, we obtain the following functional non-central limit theorem (FN-
CLT) for generalized variations. The proof of this result is carried out in Section 3.3 and Sec-
tion 4.2.

Theorem 2.7 (FNCLT). Let f be as above such that Assumption 2.2 holds and suppose that
H ∈ (1 − 1

2k
,1)d . Then

U
(n)

f

P−→
n→∞	

1/2
H,f Ẑ in D

([0,1]d), (2.13)

where Ẑ is a d-parameter Hermite sheet of order k with Hurst parameter H̃ , given by (2.10),
and 	H,f is given by (2.9).

Remark 2.8. (1) The convergence (2.13) holds pointwise in L2(�,F ,P), even when Assump-
tion 2.2 does not hold; see Proposition 3.5 below.

(2) Unlike in Theorem 2.4, the non-central limit Ẑ is defined on the original probability space
(�,F ,P). In particular, Ẑ is driven by the same white noise W as Z.

(3) In the special case k = 1, the limit in (2.13) is Gaussian. In fact, then 	H,f = a2
1 and

Ẑ = Z.
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Remark 2.9. Our method of proving the convergence of finite-dimensional distributions of U
(n)

f ,
using chaotic expansions, is particularly suitable for providing estimates on the speed of conver-
gence (e.g., in the Wasserstein distance) as is done in [18] following the original idea presented
in [16], which combines the Malliavin calculus and Stein’s method. In addition, the study of
weighted variations of the fBs is still partially incomplete, especially with regards to functional
convergence (see [24]). To keep the length of this paper within limits – and since proving func-
tional convergence of weighted variations requires slightly different methods – we have decided
to treat these two questions in a separate paper.

3. Finite-dimensional convergence

In this section, we begin the proofs of Theorems 2.4 and 2.7. To be more precise, we prove the
finite-dimensional statements corresponding to (2.8) and (2.13); see Propositions 3.3 and 3.5,
respectively. As a preparation, we study the correlation structure of the increments of the fBs Z

and recall the chaotic expansion of functionals of Z.

3.1. Correlation structure of increments

In what follows, it will be convenient to use the shorthand

Z
(n)
i := 〈

m(n)H
〉
Z

([
i − 1

m(n)
,

i

m(n)

))
, 1 ≤ i ≤ m(n),n ∈ N. (3.1)

For any n ∈ N, the family {Z(n)
i : 1 ≤ i ≤ m(n)} is clearly centered and Gaussian. We will next

derive its correlation structure.
To describe the correlation structure of the rescaled increments (3.1), let {B

Ȟ
(t): t ∈R} be an

auxiliary fractional Brownian motion with Hurst parameter Ȟ ∈ (0,1). Using the kernel (2.4),
we may represent it as

B
Ȟ

(t) :=
∫
R

G
(1)

Ȟ
(t, u)dB(u), t ∈ R,

where {B(t): t ∈R} is a standard Brownian motion. Recall that B
Ȟ

is Ȟ -self similar, that is,{
B

Ȟ
(at): t ∈ R

} L= {
aȞ B

Ȟ
(t): t ∈R

}
for any a > 0, (3.2)

and has stationary increments, that is,{
B

Ȟ

([s, s + t)
)
: t ∈ R

} L= {
B

Ȟ

([0, t)
)
: t ∈R

}
for any s ∈R. (3.3)

The discrete parameter process

B
Ȟ

([j, j + 1
)
), j ∈ Z,



1682 M.S. Pakkanen and A. Réveillac

which is stationary by (3.3), is called a fractional Gaussian noise. Its correlation function can be
expressed as

r
Ȟ

(j) := E
[
B

Ȟ

([j, j + 1)
)
B

Ȟ

([0,1)
)]

= |j + 1|2Ȟ − 2|j |2Ȟ + |j − 1|2Ȟ

2
, j ∈ Z.

One can show, for example, using the mean value theorem, that there exists a constant C(Ȟ ) > 0
such that ∣∣r

Ȟ
(j)

∣∣ ≤ C(Ȟ )|j |−2(1−Ȟ ), j ∈ Z. (3.4)

Thus, if k > 1
2 and Ȟ ∈ (0,1 − 1

2k
), then∑

j∈Z

∣∣r
Ȟ

(j)
∣∣k < ∞. (3.5)

If Ȟ ∈ [1 − 1
2k

,1), then the series (3.5) diverges. In this case, it is still useful to have estimates
for the partial sums corresponding to (3.5). Using (3.4), one can prove that there exists a constant
C′(Ȟ , k) > 0 such that

∑
|j |<l

∣∣r
Ȟ

(j)
∣∣k ≤

⎧⎪⎪⎨⎪⎪⎩
C′(Ȟ , k) log l, Ȟ = 1 − 1

2k
,

C′(Ȟ , k)l1−2k(1−Ȟ ), Ȟ ∈
(

1 − 1

2k
,1

)
.

(3.6)

We can now describe the correlations of the rescaled increments (3.1) using the correlation
function of the fractional Gaussian noise as follows.

Lemma 3.1 (Correlation structure). For any n ∈ N, and 1 ≤ i(1), i(2) ≤ m(n),

E
[
Z

(n)

i(1)Z
(n)

i(2)

]=
d∏

ν=1

rHν

(
i(1)
ν − i(2)

ν

)
.

Proof. Using first the linearity of Wiener integrals and then the product structure (2.3) of the
kernel G

(d)
H and Remark 2.1, we obtain for any s, t ∈ [0,1]d such that s ≤ t ,

Z
([s, t)) =

∫
G

(d)
H

([s, t), u)W(du)

(3.7)

=
∫ d∏

ν=1

G
(1)
Hν

([sν, tν), uν

)
W(du).
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Thus, by Fubini’s theorem,

E
[
Z

([
i(1) − 1

m(n)
,

i(1)

m(n)

))
Z

([
i(2) − 1

m(n)
,

i(2)

m(n)

))]

=
d∏

ν=1

∫
G

(1)
Hν

([
i
(1)
ν − 1

mν(n)
,

i
(1)
ν

mν(n)

)
, v

)
G

(1)
Hν

([
i
(2)
ν − 1

mν(n)
,

i
(2)
ν

mν(n)

)
, v

)
dv

=
d∏

ν=1

E
[
BHν

([
i
(1)
ν − 1

mν(n)
,

i
(1)
ν

mν(n)

))
BHν

([
i
(2)
ν − 1

mν(n)
,

i
(2)
ν

mν(n)

))]
.

For any ν ∈ {1, . . . , d}, the fractional Brownian motion BHν is Hν -self similar and has stationary
increments, cf. (3.2) and (3.3), so we obtain

E
[
BHν

([
i
(1)
ν − 1

mν(n)
,

i
(1)
ν

mν(n)

))
BHν

([
i
(2)
ν − 1

mν(n)
,

i
(2)
ν

mν(n)

))]
= rHν (i

(1)
ν − i

(2)
ν )

mν(n)2Hν
,

from which the assertion follows. �

3.2. Multiple Wiener integrals and central limit theorem

The proofs of Theorems 2.4 and 2.7 rely on particular representations of generalized variations
in terms of multiple Wiener integrals with respect to the underlying white noise W . We will now
briefly review the theory of multiple Wiener integrals and how these integrals can be used to
prove central limit theorems. As an application, we take the first step in the proof of Theorem 2.4
by establishing the convergence of finite-dimensional laws.

In what follows, we write H := L2(Rd). Recall that H is a separable Hilbert space when we
endow it with the usual inner product. For any k ∈N, we denote by H⊗k the k-fold tensor power
of H and by H�k ⊂ H⊗k the symmetrization of H⊗k . Note that we can make the identification
H⊗k ∼= L2(Rkd). For any h ∈ H�k , we may define the k-fold multiple Wiener integral IW

k (h)

of h with respect to W . This is done, using Hermite polynomials, by setting for any κ ∈ N, any
orthonormal h1, . . . , hκ ∈ H , and for any k1, . . . , kκ ∈N such that k1 + · · · + kκ = k,

IW
k

(
κ⊙

j=1

h
⊗kj

j

)
:= k!

κ∏
j=1

Pkj

(∫
hj (u)W(du)

)
, (3.8)

where � denotes symmetrization of the tensor product, and extended to general integrands h ∈
H�k using a density argument. It is worth stressing that the multiple Wiener integral is linear
with respect to the integrand and has zero expectation. Moreover, by (3.8), for h ∈ H one has

IW
1 (h) =

∫
h(u)W(du), (3.9)
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and if ‖h‖H = 1, then for any k ∈ N it holds that h⊗k ∈ H�k and

Pk

(
IW

1 (h)
) = IW

k

(
h⊗k

)
. (3.10)

Multiple Wiener integrals have the following isometry and orthogonality properties: for any k1,
k2 ∈ N, h1 ∈ H�k1 , and h2 ∈ H�k2 ,

E
[
IW
k1

(h1)I
W
k2

(h2)
] =

{
k1!〈h1, h2〉H⊗k1 , k1 = k2,

0, k1 �= k2.
(3.11)

Recall that any random variable Y ∈ L2(�,F ,P) has a chaotic expansion in terms of kernels
FY

k ∈ H�k , k ∈ N, as

Y = E[Y ] +
∞∑

k=1

IW
k

(
FY

k

)
, (3.12)

where the series converges in L2(�,F ,P) (see, e.g., [11], Theorem 13.26). Since the apperance
of the seminal paper of Nualart and Peccati [20], the convergence of random variables admitting
expansions of the form (3.12) to a Gaussian law has been well understood, based on convenient
characterizations using the properties of the kernels. To describe the key result, recall that for
any k1, k2, r ∈ N such the r < min{k1, k2}, the r th contraction of h1 ∈ H⊗k1 and h2 ∈ H⊗k2 is
defined as

(h1 ⊗r h2)
(
t (1), . . . , t (k1+k2−2r)

)
:= 〈

h1
(
t (1), . . . , t (k1−r), ·), h2

(·, t (k1−r+1), . . . , t (k1+k2−2r)
)〉

H⊗r

for any t (1), . . . , t (k1+k2−2r) ∈ R
d . The following multivariate central limit theorem for chaotic

expansions appears in [4], Theorem 5, where it is proven using the results in [22].

Lemma 3.2 (CLT for chaotic expansions). Let κ ∈ N and suppose that for any n ∈ N, we are
given random variables Y

(n)
1 , . . . , Y

(n)
κ ∈ L2(�,F ,P) such that for any j ∈ {1, . . . , κ},

Y
(n)
j =

∞∑
k=1

IW
k

(
F

(n)
k (j, ·)),

where F
(n)
k (j, ·) ∈ H�k , k ∈N. Let us assume that the following conditions hold:

(a) For any j ∈ {1, . . . , κ},

lim sup
n→∞

∞∑
k=K

k!∥∥F (n)
k (j, ·)∥∥2

H⊗k −→
K→∞ 0.

(b) There exists a sequence �,�1,�2, . . . of positive semidefinite d × d-matrices such that
for any (j1, j2) ∈ {1, . . . , κ}2 and k ∈N,

k!〈F (n)
k (j1, ·),F (n)

k (j2, ·)
〉
H⊗k −→

n→∞�k(j1, j2),

and that
∑∞

k=1 �k = �.



Limit theorems for the fractional Brownian sheet 1685

(c) For any j ∈ {1, . . . , κ}, k ≥ 2, and r ∈ {1, . . . , k − 1},∥∥F (n)
k (j, ·) ⊗r F

(n)
k (j, ·)∥∥2

H⊗2(k−r) −→
n→∞ 0.

Then we have (
Y

(n)
1 , . . . , Y (n)

κ

) L−→
n→∞Nκ(0,�),

where Nκ(0,�) stands for the κ-dimensional Gaussian law with mean 0 and covariance ma-
trix �.

We apply now Lemma 3.2 to establish the following finite-dimensional version of Theo-
rem 2.4.

Proposition 3.3 (CLT for finite-dimensional laws). Suppose that H ∈ (0,1)d \ (1 − 1
2k

,1)d .

Let κ ∈N and (t(1), . . . , t (κ)) ∈ ([0,1]d)κ . Then(
Z
(
t (1)

)
, . . . ,Z

(
t (κ)

)
,U

(n)

f

(
t (1)

)
, . . . ,U

(n)

f

(
t (κ)

)) L−→
n→∞N2κ

(
0,

[

 0
0 �

])
, (3.13)

where 
 is the covariance matrix of the random vector (Z(t(1)), . . . ,Z(t(κ))) and

�(j1, j2) := 	H,f R
(d)

H̃

(
t (j1), t (j2)

)
, (j1, j2) ∈ {1, . . . , κ}2.

Remark 3.4. In the case H ∈ (0,1 − 1
2k

]d , the convergence

(
U

(n)

f

(
t (1)

)
, . . . ,U

(n)

f

(
t (κ)

)) L−→
n→∞Nκ(�)

follows from the classical results of Breuer and Major [7].

Proof of Proposition 3.3. By (3.9), we have Z(t) = IW
1 (G

(d)
H (t, ·)) for any t ∈ [0,1]d . In par-

ticular, by (3.7) and linearity, we find that for any n ∈N and 1 ≤ i ≤ m(n),

Z
(n)
i = IW

1

(
h

(n)
i

)
,

where

h
(n)
i := 〈

m(n)H
〉
g

(n)
i , g

(n)
i := G

(d)
H

([
i − 1

m(n)
,

i

m(n)

)
, ·
)

, (3.14)

satisfying ‖h(n)
i ‖H = 1, due to the relation (3.11) and Lemma 3.1. The expansion (2.6) and the

connection of Hermite polynomials and multiple Wiener integrals (3.10) allows then us to write

U
(n)

f (t) =
∞∑

k=k

IW
k

(
F

(n)
k (t, ·)), t ∈ [0,1]d , n ∈N, (3.15)
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where

F
(n)
k (t, ·) := ak

〈c(n)〉1/2

∑
1≤i≤�m(n)t	

(
h

(n)
i

)⊗k
, k ≥ k. (3.16)

For the remainder of the proof, let s, t ∈ {t (1), . . . , t (κ)}. Let us first look into condition (a) of
Lemma 3.2. By Lemma 3.1 and the relation (3.11), we obtain for any n ∈N and k ≥ k,

〈
F

(n)
k (s, ·),F (n)

k (t, ·)〉
H⊗k = a2

k

〈c(n)〉
∑

1≤i(1)≤�m(n)s	

∑
1≤i(2)≤�m(n)t	

〈(
h

(n)

i(1)

)⊗k
,
(
h

(n)

i(2)

)⊗k 〉
H⊗k

= a2
k

〈c(n)〉
∑

1≤i(1)≤�m(n)s	

∑
1≤i(2)≤�m(n)t	

〈
h

(n)

i(1) , h
(n)

i(2)

〉k
H

(3.17)

= a2
k

d∏
ν=1

1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)tν	∑
j2=1

rHν (j1 − j2)
k.

Let k0 ∈ N be large enough so that Hν ∈ (0,1 − 1
2k0

) for any ν ∈ {1, . . . , d}. Then we have for
any k ≥ k0,

0 ≤
d∏

ν=1

1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)sν	∑
j2=1

rHν (j1 − j2)
k

≤
d∏

ν=1

1

cν(n)

mν(n)∑
j1=1

mν(n)∑
j2=1

∣∣rHν (j1 − j2)
∣∣k0

≤
d∏

ν=1

(
sup
n∈N

mν(n)

cν(n)

)∑
j∈Z

∣∣rHν (j)
∣∣k0 < ∞,

which follows from Remark 2.3 and the elementary estimate

sup
1≤j1≤�

�∑
j2=1

∣∣rHν (j1 − j2)
∣∣q ≤

∑
|j |<�

∣∣rHν (j)
∣∣q, � ∈N, q ∈R+. (3.18)

Thus, by (2.7), we have for K ≥ k0,

0 ≤ lim sup
n→∞

∞∑
k=K

k!∥∥F (n)
k (s)

∥∥2
H⊗k ≤

∞∑
k=K

k!a2
k

d∏
ν=1

(
sup
n∈N

mν(n)

cν(n)

)∑
j∈Z

∣∣rHν (j)
∣∣k0 −→

K→∞ 0,

and the condition (a) is verified.
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To check condition (b) of Lemma 3.2, note that we can write for any ν ∈ {1, . . . , d}, assuming
without loss of generality that tν ≥ sν ,

1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)tν	∑
j2=1

rHν (j1 − j2)
k

= 1

2

(
1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)sν	∑
j2=1

rHν (j1 − j2)
k + 1

cν(n)

�mν(n)tν	∑
j1=1

�mν(n)tν	∑
j2=1

rHν (j1 − j2)
k (3.19)

− 1

cν(n)

�mν(n)tν	−�mν(n)sν	∑
j1=1

�mν(n)tν	−�mν(n)sν	∑
j2=1

rHν (j1 − j2)
k

)
.

We will now compute the limit of (3.19) separately in the following three possible cases:

(i) Hν ∈ (1 − 1
2k

,1),

(ii) Hν = 1 − 1
2k

,

(iii) Hν ∈ (0,1 − 1
2k

).

In the case (i), we obtain, by Lemma A.1 of [25],

1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)sν	∑
j2=1

rHν (j1 − j2)
k

=
(�mν(n)sν	

mν(n)

)2−2k(1−Hν)⌊
mν(n)sν

⌋−2+2k(1−Hν)
�mν(n)sν	∑

j1=1

�mν(n)sν	∑
j2=1

rHν (j1 − j2)
k

−→
n→∞κ(Hν, k)s

2−2k(1−Hν)
ν = κ(Hν, k)sH̃ν

ν ,

where κ(Hν, k) is given by (2.11). (In fact, Lemma A.1 of [25] requires that k ≥ 2, but it is
straightforward to check that the limits stated therein are valid also when k = 1.) With k > k we
may choose ε > 0 so that k + ε < min( 1

2(1−Hν)
, k), whence

∣∣∣∣∣ 1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)sν	∑
j2=1

rHν (j1 − j2)
k

∣∣∣∣∣≤ 1

cν(n)

mν(n)∑
j1=1

mν(n)∑
j2=1

∣∣rHν (j1 − j2)
∣∣k+ε

≤ 1

mν(n)1−2k(1−Hν)

∑
|j |<mν(n)

∣∣rHν (j)
∣∣k+ε (3.20)

−→
n→∞ 0
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by the estimate (3.6). Treating the other summands on the right-hand side of (3.19) similarly, we
arrive at

lim
n→∞

1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)tν	∑
j2=1

rHν (j1 − j2)
k

=
⎧⎨⎩

κ(Hν, k)

2

(
sH̃ν
ν + t H̃ν

ν − (tν − sν)
H̃ν

)= κ(Hν, k)R
(1)

H̃ν
(sν, tν), k = k,

0, k > k.

In the case (ii), rearranging and applying Lemma A.1 of [25] yields

1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)sν	∑
j2=1

rHν (j1 − j2)
k

=
(

1 + log(�mν(n)sν	/mν(n))

log(mν(n))

) �mν(n)sν	/mν(n)

�mν(n)sν	 log(�mν(n)sν	)
�mν(n)sν	∑

j1=1

�mν(n)sν	∑
j2=1

rHν (j1 − j2)
k

−→
n→∞ ι(k)sν,

where ι(k) is given by (2.11). When k > k, we have Hν ∈ (0,1 − 1
2k

) and, consequently,∣∣∣∣∣ 1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)sν	∑
j2=1

rHν (j1 − j2)
k

∣∣∣∣∣≤ 1

log(mν(n))

∑
j∈Z

∣∣rHν (j)
∣∣k −→

n→∞ 0.

Again, a similar treatment of the other summands on right-hand side of (3.19) establishes that

lim
n→∞

1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)tν	∑
j2=1

rHν (j1 − j2)
k

=
⎧⎨⎩

ι(k)

2

(
sν + tν − (tν − sν)

)= ι(k)R
(1)

H̃ν
(sν, tν), k = k,

0, k > k.

Finally, in the case (iii), we deduce in a straightforward manner that for any k ≥ k,

lim
n→∞

1

cν(n)

�mν(n)sν	∑
j1=1

�mν(n)tν	∑
j2=1

rHν (j1 − j2)
k = 1

2

∑
j∈Z

rHν (j)k
(
sν + tν − (tν − sν)

)
=

∑
j∈Z

rHν (j)kR
(1)

H̃ν
(sν, tν)

using Lemma A.1 of [25].
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Returning to the expression (3.17), we have shown that for any k ≥ k,

k!〈F (n)
k (s),F

(n)
k (t)

〉
H⊗k −→

n→∞ k!a2
k

〈
b(k)

〉
R

(d)

H̃
(s, t). (3.21)

When k = 1, we need to check, additionally, that the covariance matrix appearing in the
limit (3.13) is block-diagonal. To this end, note that it follows from the assumption H ∈
(0,1)d \ ( 1

2 ,1)d , that b
(1)
ν = 0 for some ν ∈ {1, . . . , d}, which in turn implies that∥∥F (n)

1 (s, ·)∥∥2
H

−→
n→∞ 0.

By the Cauchy–Schwarz inequality, we have then〈
F

(n)
1 (s, ·),G(d)

H (t, ·)〉H −→
n→∞ 0,

which ensures block diagonality, and concludes the verification of condition (b).
In order to check condition (c) of Lemma 3.2, let k ≥ max(k,2) and r ∈ {1, . . . , k − 1}. Using

the bilinearity of contractions and inner products, we obtain∥∥F (n)
k (t, ·) ⊗r F

(n)
k (t, ·)∥∥2

H⊗2(k−r)

= a4
k

〈c(n)〉2

∑
1≤i(j)≤�m(n)t	

j∈{1,2,3,4}

〈(
h

(n)

i(1)

)⊗k ⊗r

(
h

(n)

i(2)

)⊗k
,
(
h

(n)

i(3)

)⊗k ⊗r

(
h

(n)

i(4)

)⊗k 〉
H⊗2(k−r)

= a4
k

〈c(n)〉2

∑
1≤i(j)≤�m(n)t	

j∈{1,2,3,4}

〈
h

(n)

i(1) , h
(n)

i(2)

〉r
H

〈
h

(n)

i(3) , h
(n)

i(4)

〉r
H

〈
h

(n)

i(1) , h
(n)

i(3)

〉k−r

H

〈
h

(n)

i(2) , h
(n)

i(4)

〉k−r

H

= a4
k

d∏
ν=1

1

cν(n)2

�mν(n)tν	∑
j1,j2,j3,j4=1

rHν (j1 − j2)
r rHν (j3 − j4)

r rHν (j1 − j3)
k−r rHν (j2 − j4)

k−r .

Following the proof of Lemma 4.1 of [17], we apply the bound∣∣rHν (j1)
∣∣r ∣∣rHν (j2)

∣∣k−r ≤ ∣∣rHν (j1)
∣∣k + ∣∣rHν (j2)

∣∣k, j1, j2 ∈ Z,

which is a consequence of Young’s inequality, and use repeatedly (3.18) to deduce that

∥∥F (n)
k (t, ·) ⊗r F

(n)
k (t, ·)∥∥2

H⊗2(k−r) ≤ 16da4
k

d∏
ν=1

mν(n)φν(n)

cν(n)2
, (3.22)

where

φν(n) :=
∑

|j1|<mν(n)

∣∣rHν (j1)
∣∣r ∑

|j2|<mν(n)

∣∣rHν (j2)
∣∣k−r

∑
|j3|<mν(n)

∣∣rHν (j3)
∣∣k.
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We need to analyze the asymptotic behaviour of φν(n) as n → ∞. This can be accomplished
by considering separately the three possible cases:

(i′) Hν ∈ (1 − 1
2k

,1),
(ii′) Hν = 1 − 1

2k
,

(iii′) Hν ∈ (0,1 − 1
2k

).

In the case (i′) we have clearly Hν ∈ (1 − 1
2(k−r)

,1) ∩ (1 − 1
2r

,1), and by the estimate (3.6), it
follows that

φν(n) ≤ C′′(Hν, k, r)mν(n)3−4k(1−Hν),

where C′′(Hν, k, r) := C′(Hν, r)C
′(Hν, k − r)C′(Hν, k). Since Hν ∈ (1 − 1

2k
,1) ⊂ (1 − 1

2k
,1),

we obtain

lim sup
n→∞

mν(n)φν(n)

cν(n)2
≤ lim sup

n→∞
C′′(Hν, k, r)

mν(n)4(k−k)(1−Hν)
< ∞.

Let us then consider to the case (ii′). We have still Hν ∈ (1 − 1
2(k−r)

,1) ∩ (1 − 1
2r

,1), so by (3.6)
we find that

φν(n) ≤ C′′(Hν, k, r)mν(n)2−2k(1−Hν) log
(
mν(n)

)= C′′(Hν, k, r)mν(n) log
(
mν(n)

)
.

Necessarily Hν ∈ [1 − 1
2k

,1), whence there is an index n0 ∈ N such that cν(n) ≥ mν(n) ×
log(mν(n)) for all n ≥ n0. We deduce then that

lim
n→∞

mν(n)φν(n)

cν(n)2
≤ lim

n→∞
C′′(Hν, k, r)

log(mν(n))
= 0.

In the remaining case (iii′) we have
∑

j∈Z |rHν (j)|k < ∞. Since there is n0 ∈N such that cν(n) ≥
mν(n) for all n ≥ n0, we find that

lim
n→∞

mν(n)φν(n)

cν(n)2

≤ lim
n→∞

1

mν(n)

∑
|j1|<mν(n)

∣∣rHν (j1)
∣∣r ∑

|j2|<mν(n)

∣∣rHν (j2)
∣∣k−r

∑
j3∈Z

∣∣rHν (j3)
∣∣k = 0

by Lemma 2.2 of [17].
Finally, let us return to the upper bound (3.22). The crucial observation is that the assumption

H ∈ (0,1)d \ (1 − 1
2k

,1)d implies that there is at least one coordinate ν ∈ {1, . . . , d} that falls

within case (ii′) or (iii′). Thus,∥∥F (n)
k (t, ·) ⊗r F

(n)
k (t, ·)∥∥2

H⊗2(k−r) −→
n→∞ 0,

concluding the verification of the condition (c), and the convergence (3.13) follows. �
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3.3. Convergence to the Hermite sheet

We prove next a pointwise version of Theorem 2.7 in L2(�). The argument is based mainly
on the chaotic expansion (3.15) and the isometry property (3.11) of multiple Wiener integrals.
However, compared to the proof of Proposition 3.3, we need to analyze the asymptotic behaviour
of the associated kernels more carefully.

Proposition 3.5 (Pointwise NCLT). Suppose that H ∈ (1 − 1
2k

,1)d . Then, for any t ∈ [0,1]d ,

U
(n)

f (t)
L2(�)−→
n→∞	

1/2
H,f Ẑ(t), (3.23)

where Ẑ is the Hermite sheet appearing in Theorem 2.7.

Proof. Fix t ∈ [0,1]d . By the chaotic expansion (3.15), we have for any n ∈ N,

U
(n)

f (t) = IW
k

(
F

(n)
k (t, ·))+

∞∑
k=k+1

IW
k

(
F

(n)
k (t, ·)).

Using the property (3.11) and Parseval’s identity, we find that

E

[( ∞∑
k=k+1

IW
k

(
F

(n)
k (t, ·)))2]

=
∞∑

k=k+1

k!∥∥F (n)
k (t, ·)∥∥2

H⊗k .

Since H ∈ (1− 1
2k

,1)d , we may choose ε ∈ (0,1] so that H ∈ (1− 1
2(k+ε)

,1)d . Combining (3.17)
and (3.20), we find that

∞∑
k=k+1

k!∥∥F (n)
k (t, ·)∥∥2

H⊗k ≤
∞∑

k=k+1

k!a2
k

d∏
ν=1

1

mν(n)1−2k(1−Hν)

∑
|j |<mν(n)

∣∣rHν (j)
∣∣k+ε −→

n→∞ 0,

where convergence to zero is a consequence of the bound (3.6). Thus, it remains to show that

IW
k

(
F

(n)
k (t, ·))L2(�)−→

n→∞ IW
k

(
	

1/2
H,f Ĝ

(k)

H̃
(t, ·))= 	

1/2
H,f Ẑ(t),

which follows by (3.11), if we can show that

F
(n)
k (t, ·) H⊗k−→

n→∞	
1/2
H,f Ĝ

(k)

H̃
(t, ·). (3.24)

In the special case k = 1, the convergence (3.23) follows already. Namely,

IW
1

(
F

(n)
1 (t, ·)) = a1Z

(�m(n)t	
m(n)

)
L2(�)−→
n→∞a1Z(t) = 	

1/2
H,f Z(t) = 	

1/2
H,f Ẑ(t)

by the L2-continuity of Z. Thus, we can assume that k ≥ 2 from now on.
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We will prove the convergence (3.24) in two steps. First, we show that (F
(n)
k (t, ·))n∈N is a

Cauchy sequence in H⊗k . Later, we characterize the limit. Let n1, n2 ∈N and consider

∥∥F (n1)
k (t, ·) − F

(n2)
k (t, ·)∥∥2

H⊗k

(3.25)
= ∥∥F (n1)

k (t, ·)∥∥2
H⊗k + ∥∥F (n2)

k (t, ·)∥∥2
H⊗k − 2

〈
F

(n1)
k (t, ·),F (n2)

k (t, ·)〉
H⊗k .

By Definition (3.16), we have

〈
F

(n1)
k (t, ·),F (n2)

k (t, ·)〉
H⊗k

= a2
k

〈
m(n1)

〉k−1〈
m(n2)

〉k−1 ∑
1≤i(1)≤�m(n1)t	

∑
1≤i(2)≤�m(n2)t	

〈
g

(n1)

i(1) , g
(n2)

i(2)

〉k
H⊗k ,

where g
(n)
i is given by (3.14). Mimicking the proof of Lemma 3.1, we obtain

〈
g

(n1)

i(1) , g
(n2)

i(2)

〉
H⊗k

=
d∏

ν=1

∫
G

(1)
Hν

([
i
(1)
ν − 1

mν(n1)
,

i
(1)
ν

mν(n1)

)
, v

)
G

(1)
Hν

([
i
(2)
ν − 1

mν(n2)
,

i
(2)
ν

mν(n2)

)
, v

)
dv

=
d∏

ν=1

E
[
BHν

([
i
(1)
ν − 1

mν(n1)
,

i
(1)
ν

mν(n1)

))
BHν

([
i
(2)
ν − 1

mν(n2)
,

i
(2)
ν

mν(n2)

))]

=
d∏

ν=1

Hν(2Hν − 1)

∫ i
(1)
ν /mν(n1)

(i
(1)
ν −1)/mν(n1)

∫ i
(2)
ν /mν(n2)

(i
(2)
ν −1)/mν(n2)

|v1 − v2|−2(1−Hν) dv1 dv2,

where the final equality follows (see, e.g., [14], page 574) since Hν > 1 − 1
2k

> 1
2 for any ν ∈

{1, . . . , d}. Adapting the argument used in [15], pages 1064–1065, we deduce that

lim
n1,n2→∞

〈
F

(n1)
k (t, ·),F (n2)

k (t, ·)〉
H⊗k

= a2
k

d∏
ν=1

H
k
ν (2Hν − 1)k

∫ t

0

∫ t

0
|v1 − v2|−2k(1−Hν) dv1 dv2

(3.26)

= a2
k

d∏
ν=1

t2H̃ν
ν H

k
ν (2Hν − 1)k

∫ 1

0

∫ 1

0
|v1 − v2|−2k(1−Hν) dv1 dv2

= a2
k

d∏
ν=1

t2H̃ν
ν κ(Hν, k) = a2

k

〈
b(k)

〉
R

(d)

H̃
(t, t).
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Thus, by (3.21) and (3.25),

lim
n1,n2→∞

∥∥F (n1)
k (t, ·) − F

(n2)
k (t, ·)∥∥2

H⊗k = 0,

whence (F
(n)
k (t, ·))n∈N is a Cauchy sequence.

To characterize the limit of (F
(n)
k (t, ·))n∈N, let us consider for any s(1), . . . , s(k) ∈R

d ,

F
(n)
k

(
t, s(1), . . . , s(k)

)
= ak

〈
m(n)

〉k−1 ∑
1≤i≤�m(n)t	

k∏
κ=1

G
(d)
H

([
i − 1

m(n)
,

i

m(n)

)
, s(κ)

)

= ak

〈
m(n)

〉k−1 ∑
1≤i≤�m(n)t	

k∏
κ=1

d∏
ν=1

G
(1)
Hν

([
iν − 1

mν(n)
,

iν

mν(n)

)
, s(κ)

ν

)

= ak

d∏
ν=1

1

mν(n)

�mν(n)tν	∑
j=1

k∏
κ=1

mν(n)G
(1)
Hν

([
j − 1

mν(n)
,

j

mν(n)

)
, s(κ)

ν

)
,

where the second equality is a consequence of Remark 2.1. Since

G
(1)
Hν

([
j − 1

mν(n)
,

j

mν(n)

)
, s(κ)

ν

)

= 1

χ(Hν)

((
j

mν(n)
− s(κ)

ν

)Hν−1/2

+
−
(

j − 1

mν(n)
− s(κ)

ν

)Hν−1/2

+

)
,

it follows from Lemma 3.6, below, that

F
(n)
k (t, ·) −→

n→∞C′′′(ak,H, k)Ĝ
(k)

H̃
(t, ·) a.e. on R

kd (3.27)

for some constant C′′′(ak,H, k) > 0. By the Cauchy property of (F
(n)
k (t, ·))n∈N, the conver-

gence (3.27) holds also in H⊗k . Clarke De la Cerda and Tudor [8], pages 4–6, have shown that
E[Ẑ(t)2] = k!‖Ĝ(k)

H̃
(t, ·)‖2

H⊗k = R
(d)

H̃
(t, t). In view of (3.26), we find that

C′′′(ak,H, k)2 = k!a2
k

〈
b(k)

〉= 	H,f ,

whence (3.24) follows. �

The following technical lemma was essential in the proof of Proposition 3.5.
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Lemma 3.6. Suppose that k ≥ 2, Ȟ ∈ ( 1
2 ,1), and v > 0. Then

1

n

�nv	∑
j=1

k∏
κ=1

n

((
j

n
− sκ

)Ȟ−1/2

+
−
(

j − 1

n
− sκ

)Ȟ−1/2

+

)
(3.28)

−→
n→∞

(
Ȟ − 1

2

)k ∫ v

0

k∏
κ=1

(u − sκ)
Ȟ−3/2
+ du

for almost any s = (s1, . . . , sk) ∈R
k .

Proof. We may assume that s := max(s1, . . . , sk) < v, as otherwise (3.28) is trivially true. In
fact,

∫ v

0

k∏
κ=1

(y − sκ)
Ȟ−3/2
+ dy =

∫ v

s

k∏
κ=1

(y − sκ)Ȟ−3/2 dy.

We split the sum on the left-hand side of (3.28) for any n ∈N, such that �nv	 > �ns	 + 3, as

1

n

�nv	∑
j=1

k∏
κ=1

n

((
j

n
− sκ

)Ȟ−1/2

+
−
(

j − 1

n
− sκ

)Ȟ−1/2

+

)

= 1

n

�ns	+2∑
j=�ns	+1

k∏
κ=1

n

((
j

n
− sκ

)Ȟ−1/2

−
(

j − 1

n
− sκ

)Ȟ−1/2

+

)

+ 1

n

�nv	∑
j=�ns	+3

k∏
κ=1

n

((
j

n
− sκ

)Ȟ−1/2

−
(

j − 1

n
− sκ

)Ȟ−1/2)
=: S(1)

n + S(2)
n .

Using the mean value theorem, we obtain for any y ∈ R and n, j ∈ N, such that j−1
n

> y, the
bounds

n

((
j

n
− y

)Ȟ−1/2

−
(

j − 1

n
− y

)Ȟ−1/2)
≤
(

Ȟ − 1

2

)(
j − 1

n
− y

)Ȟ−3/2

, (3.29)

n

((
j

n
− y

)Ȟ−1/2

−
(

j − 1

n
− y

)Ȟ−1/2)
≥
(

Ȟ − 1

2

)(
j

n
− y

)Ȟ−3/2

. (3.30)
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Since we are aiming to prove (3.28) for almost any s ∈ R
k , we may assume (by symmetry) that

s = s1 > sκ for any κ ∈ {2, . . . , k}. Then we have for j ∈ {1,2},

lim sup
n→∞

k∏
κ=2

n

((�ns	 + j

n
− sκ

)Ȟ−1/2

−
(�ns	 + j − 1

n
− sκ

)Ȟ−1/2

+

)
< ∞

by (3.29), and

0 ≤
(�ns	 + j

n
− s1

)Ȟ−1/2

−
(�ns	 + j − 1

n
− s1

)Ȟ−1/2

+
≤
(�ns	 + 2

n
− s1

)Ȟ−1/2

−→
n→∞ 0.

Hence, we find that S
(1)
n → 0 as n → ∞.

Finally, invoking (3.29), we obtain

S(2)
n ≤

(
Ȟ − 1

2

)k 1

n

�nv	∑
j=�ns	+3

k∏
κ=1

(
j − 1

n
− sκ

)Ȟ−3/2

=
(

Ȟ − 1

2

)k ∫ �nv	/n

(�ns	+2)/n

k∏
κ=1

(�ny	 + 1

n
− 1

n
− sκ

)Ȟ−3/2

dy

≤
(

Ȟ − 1

2

)k ∫ (�nv	−1)/n

(�ns	+1)/n

k∏
κ=1

(y − sκ)Ȟ−3/2 dy −→
n→∞

(
Ĥ − 1

2

)k ∫ v

s

k∏
κ=1

(y − sκ)Ȟ−3/2 dy

and similarly by (3.30),

S(2)
n ≥

(
Ȟ − 1

2

)k 1

n

�nv	∑
j=�ns	+3

k∏
κ=1

(
j

n
− sκ

)Ȟ−3/2

=
(

Ȟ − 1

2

)k ∫ �nv	/n

(�ns	+2)/n

k∏
κ=1

(�ny	 + 1

n
− sκ

)Ȟ−3/2

dy

≥
(

Ȟ − 1

2

)k ∫ (�nv	+1)/n

(�ns	+3)/n

k∏
κ=1

(y − sκ)Ȟ−3/2 dy −→
n→∞

(
Ȟ − 1

2

)k ∫ v

s

k∏
κ=1

(y − sκ)Ȟ−3/2 dy.

(The convergence of the bounding integrals above, as n → ∞, is ensured by Lebesgue’s domi-
nated convergence theorem.) Thus, the convergence (3.28) follows from the sandwich lemma.

�

4. Functional convergence

To show that Theorems 2.4 and 2.7 indeed hold in the functional sense, we need to establish
tightness of the relevant families of processes in the space D([0,1]d). To this end, we use the
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tightness criterion due to Bickel and Wichura [6], Theorem 3. To apply this criterion, we need to

bound the fourth moments of the increments of U
(n)

f uniformly over n ∈N.

4.1. Moment bound and diagrams

As a preparation for the proof of tightness, we establish a moment bound for nonlinear function-
als of stationary Gaussian processes indexed by N

d . The bound is a multi-parameter extension
of Proposition 4.2 of [29], albeit under more restrictive assumptions.

Lemma 4.1 (Moment bound). Let f be as in Section 2 and {Yi : i ∈ N
d} a Gaussian process

such that E[Yi] = 0 and E[Y 2
i ] = 1 for any i ∈ N

d . Moreover, suppose that there exists a function
ρ: Z

d → [−1,1] such that E[Yi(1)Yi(2) ] = ρ(i(1) − i(2)) for any i(1), i(2) ∈ N
d . If p ∈ {2,3, . . .}

and the Hermite coefficients ak, ak+1, . . . of the function f satisfy

C′′′′(f,p) :=
∞∑

k=k

(p − 1)k/2
√

k!|ak| < ∞,

then for any l ∈N
d ,∣∣∣∣E[(〈l〉−1/2

∑
1≤i≤l

f (Yi)

)p]∣∣∣∣≤ (
2dC′′′′(f,p)2

∑
|i|<l

∣∣ρ(i)
∣∣k)p/2

.

The proof of Proposition 4.2 of [29] is based on a graph theoretic argument that involves multi-
graphs. We prove Lemma 4.1 using slightly different (but essentially analogous) formalism based
on diagrams, defined below. Breuer and Major [7] used diagrams to prove their central limit
theorem for nonlinear functionals of Gaussian random fields via the method of moments. In fact
in the proof of Lemma 4.1, we adapt some of the arguments used in [7].

Definition 4.2. Let p ∈ {2,3, . . .} and (k1, . . . , kp) ∈ N
p be such that k1 + · · · + kp is an even

number. A diagram of order (k1, . . . , kp) is a graph G = (VG,EG) with the following three
properties:

(1) We have VG =⋃p

j=1{(j,1), . . . , (j, kj )}.
(2) The degree of any vertex v ∈ VG is one.
(3) Any edge ((j, k), (j ′, k′)) ∈ EG has the property that j �= j ′.

We denote the class of diagrams of order (k1, . . . , kp) by G(k1, . . . , kp). For the sake of com-
pleteness we set G(k1, . . . , kp) := ∅ when k1 +· · ·+ kp is an odd number (no diagrams can then
exist by the handshaking lemma of graph theory). Let us also define two functions λ1 and λ2 of
an edge e = ((j, k), (j ′, k′)) ∈ EG, where j < j ′, by setting λ1(e) := j and λ2(e) := j ′.

Diagrams are connected to Hermite polynomials and Gaussian random variables via the so-
called diagram formula, which is originally due to Taqqu [29], Lemma 3.2. Below, we state a
version of the formula that appears in [7], page 431.
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Lemma 4.3 (Diagram formula). Let p ∈ {2,3, . . .} and let Y1, . . . , Yp be jointly Gaussian ran-
dom variables with E[Yi] = 0 and E[Y 2

i ] = 1 for any i ∈ {1, . . . , p}. For any (k1, . . . , kp) ∈ N
p ,

we have

E

[
p∏

j=1

Pkj
(Yj )

]
=

∑
G∈G(k1,...,kp)

∏
e∈EG

E[Yλ1(e)Yλ2(e)],

where a sum over an empty index set is interpreted as zero.

Remark 4.4. The diagram formula can be used to estimate the cardinalities of classes of dia-
grams. As pointed out by Bardet and Surgailis [2], page 461, using Lemma 4.3 and Lemma 3.1
of [29] in the special case Y := Y1 = · · · = Yp , we obtain∣∣G(k1, . . . , kp)

∣∣= E

[
p∏

j=1

Pkj
(Y )

]
≤ (p − 1)(k1+···+kp)/2

√
k1! · · ·kp!. (4.1)

Proof of Lemma 4.1. Fix l ∈ N
d . Let us define for any K ≥ k, a polynomial function

fK(x) =
K∑

k=k

akPk(x), x ∈R.

By Fatou’s lemma, Lemma 4.3 and inequality (4.1), it follows that

E
[∣∣f (Yi) − fK(Yi)

∣∣p] ≤
∞∑

k1,...,kp=K+1

|ak1 · · ·akp |∣∣G(k1, . . . , kp)
∣∣

≤
( ∞∑

k=K+1

(p − 1)k/2
√

k!|ak|
)p

−→
K→∞ 0

for any i ∈ N
d . Thus, if ε > 0, then there exists K(l) ∈ N such that∣∣∣∣E[(〈l〉−1/2

∑
1≤i≤l

f (Yi)

)p]
− E

[(
〈l〉−1/2

∑
1≤i≤l

fK(l)(Yi)

)p]∣∣∣∣≤ ε, (4.2)

by Minkowski’s inequality and the fact that Xn
Lp(�)−→ X implies E[Xp

n ] → E[Xp] when p ∈
{2,3, . . .}. Lemma 4.3 yields now the expansion

E
[(

〈l〉−1/2
∑

1≤i≤l

fK(l)(Yi)

)p]

= 〈l〉−p/2
∑

1≤i(j)≤l

j∈{1,...,p}

K(l)∑
k1,...,kp=k

ak1 · · ·akp

∑
G∈G(k1,...,kp)

∏
e∈EG

E[Yi(λ1(e))Yi(λ2(e)) ]

=
K(l)∑

k1,...,kp=k

ak1 · · ·akp

∑
G∈G(k1,...,kp)

IG(l),



1698 M.S. Pakkanen and A. Réveillac

where

IG(l) := 〈l〉−p/2
∑

1≤i(j)≤l

j∈{1,...,p}

∏
e∈EG

ρ
(
i(λ1(e)) − i(λ2(e))

)
, G ∈ G(k1, . . . , kp). (4.3)

By Lemma 4.5 below and inequality (4.1), we obtain the bound∣∣∣∣∣
K(l)∑

k1,...,kp=k

ak1 · · ·akp

∑
G∈G(k1,...,kp)

IG(l)

∣∣∣∣∣
≤
(

K(l)∑
k=k

(p − 1)k/2
√

k!|ak|
)p(

2d
∑
|i|<l

∣∣ρ(i)
∣∣k)p/2

≤
(

2dC′′′′(f,p)2
∑
|i|<l

∣∣ρ(i)
∣∣k)p/2

.

In view of (4.2),∣∣∣∣E[(〈l〉−1/2
∑

1≤i≤l

f (Yi)

)p]∣∣∣∣≤ (
2dC′′′′(f,p)2

∑
|i|<l

∣∣ρ(i)
∣∣k)p/2

+ ε,

and letting ε → 0 concludes the proof. �

The key ingredient in the proof of Lemma 4.1 was the following uniform bound for the abso-
lute value of the quantity IG(l). We will derive this bound by adapting the asymptotic analysis of
the moments of a nonlinear functional of a Gaussian random field, carried out in [7], pages 435–
436.

Lemma 4.5. For any k1, . . . , kp ≥ k, G ∈ G(k1, . . . , kp), and l ∈ N
d ,

∣∣IG(l)
∣∣ ≤ (

2d
∑
|i|<l

∣∣ρ(i)
∣∣k)p/2

,

where IG(l) is defined by (4.3).

Proof. As pointed out by Breuer and Major [7], page 435, the quantity IG(l) is invariant under
permutation of the levels of the diagram G. More precisely, if σ is a permutation of the set
{1, . . . , p}, then we define a new diagram G̃ ∈ G(kσ(1), . . . , kσ(p)) such that ((j, k), (j ′, k′)) ∈ EG̃

if and only if ((σ−1(j), k), (σ−1(j ′), k′)) ∈ EG. For such a diagram G̃ it holds that IG(l) =
IG̃(l). Relying on this invariance property we assume, without loss of generality, that

k1 ≤ k2 ≤ · · · ≤ kp−1 ≤ kp. (4.4)
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Let us introduce the notation kG(j) := |{e ∈ EG: λ1(e) = j}| ∈ {0,1, . . . , kj } for any j ∈
{1, . . . , p}. Since λ1(e) < λ2(e) for any e ∈ EG, we have

∣∣IG(l)
∣∣ ≤ 〈l〉−p/2

∑
1≤i(κ)≤l

κ∈{1,...,p}

p∏
j=1

∏
e∈EG

λ1(e)=j

∣∣ρ(i(j) − i(λ2(e))
)∣∣

(4.5)

= 〈l〉−p/2
∑

1≤i(κ)≤l

κ∈{2,...,p}

p∏
j=2

∏
e∈EG

λ1(e)=j

∣∣ρ(i(j) − i(λ2(e))
)∣∣ ∑

1≤i(1)≤l

∏
e∈EG

λ1(e)=1

∣∣ρ(i(1) − i(λ2(e))
)∣∣.

Using Young’s inequality (see [7], page 435) and the trivial estimate

sup
1≤i≤l

∑
1≤i(1)≤l

∣∣ρ(i(1) − i
)∣∣q ≤

∑
|i|<l

∣∣ρ(i)
∣∣q, q ≥ 0,

one can show that

sup
1≤i(κ)≤l

κ∈{2,...,p}

∑
1≤i(1)≤l

∏
e∈EG

λ1(e)=1

∣∣ρ(i(1) − i(λ2(e))
)∣∣≤ ∑

|i|<l

∣∣ρ(i)
∣∣kG(1)

.

Applying this procedure, mutatis mutandis, to (4.5) repeatedly we arrive at

∣∣IG(l)
∣∣ ≤ 〈l〉−p/2

p∏
j=1

∑
|i|<l

∣∣ρ(i)
∣∣kG(j)

. (4.6)

By Hölder’s inequality, we have for any j ∈ {1, . . . , p},
∑
|i|<l

∣∣ρ(i)
∣∣kG(j) ≤ 〈2l〉1−kG(j)/kj

(∑
|i|<l

∣∣ρ(i)
∣∣kj

)kG(j)/kj

≤ 〈2l〉1−kG(j)/kj

(∑
|j |<l

∣∣ρ(i)
∣∣k)kG(j)/kj

,

where we use the proviso kj ≥ k to deduce the second inequality. Returning to (4.6), we have
thus established that

∣∣IG(l)
∣∣≤ (

2d
)p/2〈2l〉p/2−∑p

j=1 kG(j)/kj

(∑
|i|<l

∣∣ρ(i)
∣∣k)∑p

j=1 kG(j)/kj

. (4.7)

Breuer and Major [7], page 436, have shown that whenever (4.4) holds, we have

p∑
j=1

kG(j)

kj

− p

2
≥ 0 (4.8)
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(see also Remark 4.6, below). By (4.8), we may use the rough estimate
∑

|i|<l |ρ(i)|k ≤ 〈2l〉 to
deduce that(∑

|i|<l

∣∣ρ(i)
∣∣k)∑p

j=1 kG(j)/kj

=
(∑

|i|<l

∣∣ρ(i)
∣∣k)∑p

j=1 kG(j)/kj −p/2(∑
|i|<l

∣∣ρ(i)
∣∣k)p/2

(4.9)

≤ 〈2l〉
∑p

j=1 kG(j)/kj −p/2
(∑

|i|<l

∣∣ρ(i)
∣∣k)p/2

.

The assertion follows now by applying (4.9) to (4.7). �

Remark 4.6. Strictly speaking, the inequality (4.8) is shown in [7] as a part of a more exten-
sive argument that uses the assumption that the diagram G is not regular (see [7], page 432,
for the definition of regularity). However, the assumption of non-regularity of G is completely
immaterial concerning the validity of (4.8) and, in fact, not used in the proof in [7], page 436.

4.2. Tightness

Furnished with the moment bound of Lemma 4.1, we prove the following lemma that enables us
to complete the proofs of Theorems 2.4 and 2.7.

Lemma 4.7 (Tightness). Suppose that H ∈ (0,1)d and that Assumption 2.2 holds. Then, the

family {U(n)

f : n ∈N} is tight in D([0,1]d).

Proof. The assertion follows from Theorem 3 of [6], provided that

sup
n∈Nd

sup
s,t∈[0,1]d

s<t

E[U(n)

f ([s, t))4]
〈t − s〉2

< ∞. (4.10)

But since for any n ∈N, the realization of U
(n)

f is constant on any set of the form[
i − 1

m(n)
,

i

m(n)

)
, 1 ≤ i ≤ m(n),

it suffices to show (see [6], page 1665) that

sup
n∈N

sup
s,t∈En

s<t

E[U(n)

f ([s, t))4]
〈t − s〉2

< ∞, (4.11)

where En := {i/m(n): 0 ≤ i ≤ m(n)}, instead of (4.10).
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Using Lemmas 3.1 and 4.1, we arrive at

sup
n∈N

sup
s,t∈En

s<t

E[U(n)

f ([s, t))4]
〈t − s〉2

= sup
n∈N

〈
m(n)

c(n)

〉2

sup
1≤l≤m(n)

E
[(

〈l〉−1/2
∑

1≤i≤l

f
(
X

(n)
i

))4]

≤ sup
n∈N

(
2dC′′′′(f,4)

d∏
ν=1

ψν(n)

)2

,

where

ψν(n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

mν(n)1−2k(1−Hν)

∑
|j |<mν(n)

∣∣rHν (j)
∣∣k ≤ C′(Hν, k), Hν ∈

(
1 − 1

2k
,1

)
,

1

log(mν(n))

∑
|j |<mν(n)

∣∣rHν (j)
∣∣k ≤ C′(Hν, k), Hν = 1 − 1

2k
,

∑
|j |<mν(n)

∣∣rHν (j)
∣∣k ≤

∑
j∈Z

∣∣rHν (j)
∣∣k < ∞, Hν ∈

(
0,1 − 1

2k

)
.

(The first two inequalities above follow from the estimate (3.6).) We have, thus, verified the
tightness condition (4.11). �

Proof of Theorem 2.4. Recall that, for a family of pairs of random elements, tightness
of marginals implies joint tightness. Thus, it follows from Lemma 4.7 that the family

{(Z,U
(n)

f ): n ∈ N} is tight in D([0,1]d)2. The assertion follows then from Proposition 3.3 and
Theorem 2 of [6]. �

Proof of Theorem 2.7. Analogously to the proof of Theorem 2.4, above, we deduce from

Lemma 4.7 that {(	1/2
H,f Ẑ,U

(n)

f ): n ∈ N} is tight in D([0,1]d)2. Moreover, Proposition 3.5 im-
plies that

U
(n)

f (t)
P−→

n→∞	
1/2
H,f Ẑ(t), t ∈ [0,1]d ,

which, in turn, implies the corresponding convergence of finite-dimensional laws. Thus, by The-
orem 2 of [6], we have(

	
1/2
H,f Ẑ,U

(n)

f

) L−→
n→∞

(
	

1/2
H,f Ẑ,	

1/2
H,f Ẑ

)
in D

([0,1]d)2
. (4.12)

Since the limit in (4.12) belongs to C([0,1]d)2 and since substraction is a continuous operation
on C([0,1]d)2 (with respect to the Skorohod topology), the continuous mapping theorem implies
that

U
(n)

f − 	
1/2
H,f Ẑ

L−→
n→∞ 0 in D

([0,1]d). (4.13)
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It remains to note that the convergence (4.13) holds also in probability as the limit is determinis-
tic. �

5. Application to power variations

5.1. Convergence of power variations and their fluctuations

As an application of Theorems 2.4 and 2.7, we study the asymptotic behaviour of signed power
variations of the fBs Z. Let p ∈ N be fixed throughout this section. We consider a family
{V (n)

p : n ∈N} of d-parameter processes, given by

V (n)
p (t) := 〈

m(n)pH−1〉 ∑
1≤i≤�m(n)t	

Z

([
i − 1

m(n)
,

i

m(n)

))p

, t ∈ [0,1]d, n ∈N.

The realizations of V
(n)
p belong to the space D([0,1]d), as was the case with generalized varia-

tions. To describe the asymptotic behaviour of V
(n)
p , we introduce

vp(t) := γp〈t〉, t ∈ [0,1]d ,

ρp(y) := yp − γp, y ∈ R,

where γp is the pth moment of the standard Gaussian law, that is,

γp :=
∫
R

ypγ (dy) =

⎧⎪⎪⎨⎪⎪⎩
0, p is odd,
p/2∏
j=1

(2j − 1), p is even.

Since the function ρp is a polynomial, it belongs to L2(R, γ ) and is a linear combination of
finitely many Hermite polynomials. Moreover, it is easy to check that the Hermite rank of ρp is
given by

k = kp =
{

1, p is odd,

2, p is even.

Thus, the Hermite coefficients of ρp satisfy Assumption 2.2. In what follows, we denote by
	H,ρp the constant given by (2.9), substituting f with ρp therein.

As a straightforward application of Theorems 2.4 and 2.7, we can prove a functional law of
large numbers (FLLN) for V

(n)
p as n → ∞, namely,

V (n)
p

P−→
n→∞vp in D

([0,1]d).
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It would then be natural to expect that the rescaled fluctuation process

〈m(n)〉
〈c(n)〉1/2

(
V (n)

p (t) − vp(t)
)
, t ∈ [0,1]d , (5.1)

has a non-trivial limit as n → ∞. In fact, we can write for any t ∈ [0,1]d and n ∈N,

〈m(n)〉
〈c(n)〉1/2

(
V (n)

p (t) − vp(t)
)= U

(n)

ρp
(t) − β(n)

p (t), (5.2)

where

β(n)
p (t) := 〈m(n)〉

〈c(n)〉1/2

(
vp(t) − vp

(�m(n)t	
m(n)

))
≥ 0.

If the remainder β
(n)
p were asymptotically negligible in D([0,1]d), the limit of the fluctuation

process (5.1) when n → ∞ would be easy to deduce from Theorems 2.4 and 2.7. If p is odd,
then indeed β

(n)
p = 0 = vp for any n ∈N. However, when p is even, the situation is more delicate.

In the special case d = 1, it is not difficult to see that β
(n)
p (t) < c(n)−1/2 → 0 when n → ∞ for

any t ∈ [0,1]. But when d ≥ 2, the fluctuations of β
(n)
p may be non-negligible or even explosive

when n → ∞, as the following example shows.

Example 5.1. Consider the case where p is even, d ≥ 2, m(n) := (n, . . . , n) for any n ∈ N, and
H ∈ (0, 3

4 )d . Then we have by the mean value theorem,

β(n)
p (t) = nd/2−1

d∑
ν=1

(∏
κ �=ν

ξ (n)
κ (t)

)
{ntν}, t ∈ [0,1]d , n ∈N,

where ξ (n)(t) is some convex combination of n−1�nt	 and t . We will now show that β
(n)
p cannot

converge to a continuous function in D([0,1]d) as n → ∞ (similar, but slightly longer, argument
shows that a discontinuous limit in D([0,1]d) is also impossible).

To this end, suppose that β
(n)
p → β in D([0,1]d), where β ∈ C([0,1]d). Then it follows that

β
(n)
p → β uniformly. By the continuity of β , there exists an open set E ⊂ [ 2

3 ,1]d such that

sup
s,t∈E

∣∣β(s) − β(t)
∣∣ ≤ 1

2d
. (5.3)

Note that there exists n0 ∈ N such that E ∩ En �= ∅ for any n ≥ n0, where En = {i/m(n): 0 ≤
i ≤ m(n)}. Moreover, we can find n1 ≥ n0 such that

inf
t∈E

∏
κ �=ν

ξ (n)
κ (t) ≥ 1

2d−1
for any n ≥ n1.
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Thus, we find that for any n ≥ n1,

sup
t∈E

β(n)
p (t) ≥ nd/2−1

2d−1
, (5.4)

while

inf
t∈E

β(n)
p (t) = 0. (5.5)

But when β
(n)
p → β uniformly, the estimate (5.3) is not compatible with (5.4) and (5.5), which is

a contradiction. (This also shows that β
(n)
p cannot converge to β along a subsequence.)

5.2. Multilinear interpolations

We have just seen that the rescaled fluctuations (5.1) of the power variations V
(n)
p , n ∈ N, around

their FLLN limit vp do not necessarily satisfy a functional limit theorem in D([0,1]d) when

d ≥ 2 and p is even. Note that it is implicit in the definition of V
(n)
p that the corresponding partial

sums are interpolated in a piecewise constant manner. Such an interpolation can have very poor
precision in higher dimensions. In fact, interpolating V

(n)
p using a more appropriate, multilinear

method enables functional convergence in the general case.

Definition 5.2. For any n ∈ N, we define a (piecewise) multilinear interpolation operator
Ln :R[0,1]d → C([0,1]d) acting on a function g : [0,1]d → R, sampled on the lattice En, by

(Lng)(t) :=
∑

i∈{0,1}d
g

(�m(n)t	 + i

m(n)

)
α

(n)
i (t), t ∈ [0,1]d , (5.6)

where the weights

α
(n)
i (t) := 〈{

m(n)t
}i(1 − {

m(n)t
})1−i 〉

, i ∈ {0,1}d,

belong to [0,1] and satisfy ∑
i∈{0,1}d

α
(n)
i (t) = 1. (5.7)

Remark 5.3. (1) In the cases d = 1 and d = 2, the definition (5.6) reduces to the well-known
(piecewise) linear and bilinear interpolation formulae, respectively.

(2) The definition (5.6) involves slight abuse of notation. Namely,

�m(n)t	 + i

m(n)
/∈ [0,1]d (5.8)

when tν = 1 and iν = 1 for some ν ∈ {1, . . . , d}. But then α
(n)
i (t) = 0, whence (5.8) is of no

concern.
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The fluctuation process, analogous to (5.1), obtained by substituting the power variation V
(n)
p

with its multilinear interpolation Ṽ
(n)
p := LnV

(n)
p satisfies the following functional limit theorem.

In particular, it applies with any d ∈N and p ∈N.

Theorem 5.4 (Interpolated power variations). (1) If H ∈ (0,1)d \ (1 − 1
2kp

,1)d , then

(
Z,

〈m(n)〉
〈c(n)〉1/2

(
Ṽ (n)

p − vp

)) L−→
n→∞(Z,	H,ρp Z̃) in C

([0,1]d)2,

where Z̃ is the fBs of Theorem 2.4.
(2) If H ∈ (1 − 1

2kp
,1)d , then

〈m(n)〉
〈c(n)〉1/2

(
Ṽ (n)

p − vp

) P−→
n→∞	H,ρp Ẑ in C

([0,1]d),
where Ẑ is the Hermite sheet of Theorem 2.7.

Remark 5.5. As mentioned above, the remainder term β
(n)
p in the decomposition (5.2) is asymp-

totically negligible in D([0,1]d) if d = 1 or p is odd. In these special cases, multilinear interpo-
lations can be dispensed with, to wit the convergences of Theorem 5.4 hold also with the original
power variation V

(n)
p in place of Ṽ

(n)
p , in the spaces D([0,1]d)2 and D([0,1]d), respectively.

The proof of Theorem 5.4 is based on the following two simple lemmas concerning the multi-
linear interpolation operators. First, we show that the function vp is a fixed point of the operator
Ln for any n ∈N.

Lemma 5.6 (Fixed point). We have Lnvp = vp for any n ∈N.

Proof. Let t ∈ [0,1]d and n ∈ N. By rearranging, we obtain that

(Lnvp)(t) =
∑

i∈{0,1}d
γp

〈�m(n)t	 + i

m(n)

{
m(n)t

}i(1 − {
m(n)t

})1−i
〉

= γp

d∏
ν=1

∑
j∈{0,1}

�mν(n)tν	 + j

mν(n)

{
mν(n)tν

}j (1 − {
mν(n)tν

})1−j
.

It remains to observe that for any ν ∈ {1, . . . , d},∑
j∈{0,1}

�mν(n)tν	 + j

mν(n)

{
mν(n)tν

}j (1 − {
mν(n)tν

})1−j = �mν(n)tν	 + {mν(n)tν}
mν(n)

= tν,

and the assertion follows. �
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Second, we show that convergence in probability in the space D([0,1]d) can be converted to
convergence in probability in C([0,1]d) via interpolations.

Lemma 5.7 (Convergence and interpolation). Let X1,X2, . . . be random elements in D([0,

1]d) and X a random element in C([0,1]d), all defined on a common probability space. If

Xn
P−→X in D([0,1]d) as n → ∞, then

LnXn
P−→

n→∞X in C
([0,1]d).

Proof. By (5.7), we can write for any t ∈ [0,1]d and n ∈N,

(LnXn)(t) − X(t) =
∑

i∈{0,1}d

(
Xn

(�m(n)t	 + i

m(n)

)
− X

(�m(n)t	 + i

m(n)

))
α

(n)
i (t)

+
∑

i∈{0,1}d

(
X

(�m(n)t	 + i

m(n)

)
− X(t)

)
α

(n)
i (t).

Thus, invoking (5.7) again, we obtain the bound

sup
t∈[0,1]d

∣∣(LnXn)(t) − X(t)
∣∣≤ sup

t∈[0,1]d
∣∣Xn(t) − X(t)

∣∣+ wX

(
m(n)−1),

where

wX(u) := sup
{∣∣X(s) − X(t)

∣∣: s, t ∈ [0,1]d,‖s − t‖∞ ≤ u
}
, u > 0,

is the modulus of continuity of X, which satisfies limu→0 wX(u) = 0 a.s. since the realizations
of X are uniformly continuous. Thus, limn→∞ wX(m(n)−1) = 0 a.s. Finally, since convergence
to a continuous function in D([0,1]d) is equivalent to uniform convergence, it follows that

supt∈[0,1]d |Xn(t) − X(t)| P−→ 0 as n → ∞. �

Proof of Theorem 5.4. We have for any n ∈ N, by Lemma 5.6, decomposition (5.2), and the
linearity of the operator Ln,

〈m(n)〉
〈c(n)〉1/2

(
Ṽ (n)

p − vp

)= Ln

( 〈m(n)〉
〈c(n)〉1/2

(
V (n)

p − vp

))= LnU
(n)

ρp
+ Lnβ

(n)
p .

Note that the function

t �→ vp

(�m(n)t	
m(n)

)
coincides with vp on En. Since Lng depends on the function g only through the values of g on
En, we find that

Lnvp = Lnvp

(�m(n)·	
m(n)

)
,
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whence

Lnβ
(n)
p = 〈m(n)〉

〈c(n)〉1/2

(
Lnvp − Lnvp

(�m(n)·	
m(n)

))
= 0.

The assertion in the case (2) follows now from Theorem 2.7 and Lemma 5.7. In the case (1),
one can apply Theorem 2.4, Lemma 5.7 and Skorohod’s representation theorem [11], Theo-
rem 4.30. �
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